
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security
Assessments

GIAC (GCCC) Gold Certification

Author: Rebecca Deck, sdsecurityacct@hotmail.com
Advisor: Adam Kliarsky

Accepted: October 27, 2016

Abstract

Conducting a full array of security tests on all applications in an enterprise may be
infeasible due to both time and cost. According to the Center for Internet Security, the
purpose of application specific and penetration testing is to discover previously unknown
vulnerabilities and security gaps within the enterprise. These activities are only warranted
after an organization attains significant security maturity, which results in a large backlog
of systems that need testing. When organizations finally undertake the efforts of
penetration testing and application security, it can be difficult to choose where to begin.
Computing environments are often filled with hundreds or thousands of different systems
to test and each test can be long and costly. At this point in the testing process, little
information is available about an application beyond the computers involved, the owners,
data classification, and the extent to which the system is exposed. With so few variables,
many systems are likely to have equal priority. This paper suggests a battery of technical
checks that testers can quickly perform to stratify the vast array of applications that exist
in the enterprise ecosystem. This process allows the security team to focus efforts on the
riskiest systems first.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 2
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

1. Introduction
In mature enterprises, application security and penetration testing programs exist

to find vulnerabilities in internally developed applications and the complex interactions

between systems (Scarfone et al., 2008). Both programs should be integrated with the

Secure Development Lifecycle (SDL) to prevent vulnerabilities in internally developed

applications from reaching the end users (Conklin & Shoemaker, 2014). Even

commercial and third-party developed systems still warrant some steps of this process.

Performing in-depth security assessments of all systems in an enterprise is, unfortunately,

a long and costly undertaking (Scarfone et al., 2008). During this lengthy process, it is

possible that some systems that security testers will not test applications in an order

commensurate with the risk to an organization. This paper covers some of the

shortcomings with current prioritization methods and proposes an alternative scheme to

overcome these limitations.

Application security is a key part of a “defense in depth” strategy. This control is

often only considered for internally developed software, but attackers look for

vulnerabilities in all systems (McGraw, 2006). While this is true for several of the

measures in the Application Software Security control, this control is more extensive than

basic testing of in-house created applications. The Critical Security Controls (CSC)

advise that vendors must support all software, all systems must be behind a protocol-

aware firewall, system owners must maintain a development environment that is separate

from production, and harden all database servers. The controls also advise in-depth

testing of any application that is created by an in-house development team or by a third

party explicitly for an organization (Center for Internet Security, 2016). The importance

of application-specific firewalls cannot be over-estimated. These tools are instrumental in

mitigating vulnerabilities discovered during application security and penetration testing

until patches are available.

A penetration test involves an experienced information security practitioner

attacking a target network using the same techniques as real attackers. Penetration testing

differs from other methods of finding vulnerabilities in that testers exploit vulnerabilities

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 3
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

to access sensitive data or specific targets (Northcutt et al., 2006). The purpose of this

exploitation is to illustrate the actual risk to the organization resulting from security

vulnerabilities. In the context of the Critical Security Controls, red teaming is a

specialized type of penetration test where the testers emulate the tactics, techniques, and

procedures of a specific adversary. System owners often fail to understand how their

opponents operate, which makes it difficult to prioritize security efforts (Peake, 2003).

These testing activities also aid in discovering how the compromise of a system with a

low data classification can be used to gain access to more sensitive systems in unexpected

ways (Center for Internet Security, 2016).

This paper does not describe the methods by which one conducts application

security or penetration tests. Each of these topics already has volumes of material written

with descriptions of vast numbers of specific tests that an analyst must perform. The

critical controls contain several of the basic qualities that are necessary for application

security and penetration testing programs. For a more expansive list of activities, the

Building Security in Maturity Model (BSIMM) contains a thorough listing of activities

that organizations should perform as part of testing in the SDL including threat modeling,

static analysis, dynamic analysis tools and penetration testing (Merkow & Raghavan,

2010). Penetration testers have several exceptional choices when determining specific

test cases that analysts should run on in-scope systems. For general penetration testing,

the Penetration Testing Execution Standard (PTES) covers hundreds of specific checks

that may be conducted based on the scope of a test. If the test includes a web application,

the Open Web Application Security Project (OWASP) produces a testing guide that

checks for many common web application misconfigurations and vulnerabilities (Meucci

& Mueller, 2014). The testing team should select a methodology and series of tests that

are appropriate for each type of system within the enterprise.

1.1. Penetration Testing and AppSec Prioritization
Penetration testing and securing custom applications, while important, should not

be the highest priority task when securing the enterprise. The Center for Internet Security

defines the Critical Security Controls for Effective Cyber Defense to assist organizations

in determining the order in which to implement some of the National Institute of

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 4
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

Standards and Technology (NIST) 800-53 priority one controls. Based on the guidance in

version 6.1 of these controls, application security is the 18th control family and

penetration testing is the 20th, and final, control family. The controls also explicitly state

that penetration testing and red teaming do not provide a significant benefit without prior

work in other areas (Center for Internet Security, 2016).

One of the primary reasons for the lower ranking for the application security and

penetration testing controls is that lack of these controls is not a predominant factor in

modern breaches. Most recent breaches are not the result of zero-day exploits or in-depth

research on an organization’s custom written applications (Northcutt et al, 2006; Bing,

2016). According to Verizon, in 2015 the median amount of time a patch was available

before exploitation began was 30 days. Attackers are likely to use well-known and tested

vulnerabilities in attacks as long as the techniques are still effective (Verizon, 2016). If

known vulnerabilities and configuration errors exist, the control families for secure

configurations and continuous vulnerability assessment and remediation should address

the issues. By fixing the easily found security issues first, organizations will limit

successful attacks to all but the most skilled and targeted attacks.

The controls of application security and penetration testing are extremely resource

intensive (NIST, 2013). Many application security tools such as static and dynamic

application security testing software have substantial false positive or false negative rates

(Merkow & Raghavan, 2010). These tools are useless without experienced personnel to

validate whether or not findings are legitimate. Due to the manual nature of penetration

testing, it does not suffer from the same false positive issues but does require a large time

investment. By first implementing an effective vulnerability management and

remediation program and applying secure configurations to systems before penetration

testing, the time required for penetration testing will be far less. Properly implementing

higher priority critical controls allows penetration testing and application security efforts

to focus on more complex security issues.

 After implementing the prerequisite control families, application security and

penetration testing should reveal vulnerabilities that do not currently have patches. Since

the lack of patches makes fully remediating these vulnerabilities impractical,

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 5
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

organizations are forced to consider mitigating controls. With proper application of

application-specific firewalls, packet filtering firewalls, and authentication controls it is

possible to reduce the exposure of any vulnerabilities discovered as a result of security

testing. Without these controls, risk mitigation is rarely an option. The organization will

be forced to either accept, transfer, or avoid the risk. (Conrad et al., 2010).

There are a few exceptions to the rule that organizations should save penetration

testing until late in the enterprise security model. The first, and most common, reason is

that regulations – such as PCI-DSS and FFIEC – mandate this activity. Penetration

testing can also be useful if a security organization is having difficulty garnering support

from executive management. The fact that a third party is involved and notes a risk can

provide the justification for appropriating funds to enhance security. The final reason to

conduct a penetration test or red team assessment is that the security team is unsure what

controls to implement next. Unless an organization meets one of these three criteria, a

penetration test is not warranted (J. Tarala, personal communication, September 25,

2016).

1.2. Prioritization Side-effects
Since there are so many activities to perform before application or penetration

testing of systems is warranted, there will already be a mature computing environment

with a vast array of applications. The organization must then determine in which order to

apply various application security and penetration testing activities. Common sense

dictates that organizations should first examine the applications that pose the greatest risk

to the organization.

NIST suggests that either a qualitative or quantitative risk assessment process

should be used to rank systems for security testing. NIST provides guidance on how to

conduct a risk assessment but does not provide specific tests that should be part of this

assessment (NIST, 2012). One qualitative approach is to ask a few high-level questions to

discern the risk of a system. Some of the more pertinent questions are data classification,

exposure to the internet, and user population (ard3n7, 2013). This methodology allows

resources with no technical abilities to rank systems in a very short period. Assessors

accomplish this with a combination of interviews and short surveys with system owners.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 6
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

Unfortunately, a qualitative approach to risk assessment results with a few rating

classifications that have many systems in each classification. In practice, the product of

such a rating is even worse, as many systems will have either the highest or lowest risk

rating. Using the previously mentioned qualitative methodology, all systems with

sensitive data, customer data, or that are internet facing will receive the highest risk

categorization (ard3n7, 2013). These factors make the qualitative approach insufficient

for the purpose of deciding where to begin testing.

	

2. Application Security Report Cards
2.1. Overview

Josh Wright introduced the concept of using a “Report Card” format to outline a

hybrid quantitative-qualitative risk assessment technique (Wright, 2015). By examining a

small number of easily observable security measures, a moderately skilled analyst can

arrive at a numeric score to determine how bad a given application is likely to be from a

security perspective. The technical tests contained in the report cards require only a short

time to perform and require only moderate technical expertise. With this methodology, it

is feasible for a single analyst to examine several applications per day. In contrast, fully

testing the same number of applications manually would take weeks to months.

Purchasing and configuring automated tools for static or dynamic analysis also carries a

cost in both time and capital.

Report cards in no way replace full penetration testing or any application security

tests. Penetration testing and application security testing are designed to catalog

vulnerabilities so information technology teams can address the findings. For report

cards, the intent is not to deliver the card to a development team so they can remediate

specific findings to achieve a higher score. These cards should be used only to prioritize

applications for full testing. This situation is likely to occur when an organization first

begins examining the security of applications and during surges of project deliveries.

The scoring mechanism of the report cards is designed to detect whether or not an

application follows good security practices. The report card process assesses various

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 7
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

observable properties of an application to produce a quantitative score on a one-hundred

point scale. The weighting of each test in the report card is based either on the likelihood

that a component will introduce a vulnerability or ignores a common security practice.

The wording of questions is such that a higher number of points indicates better security

practices. Analysts may award partial credit if a test’s requirements are not completely

satisfied. This credit is awarded at the discretion of the analyst performing the

assessment.

Tests used in the report card process are not necessarily meant to detect the most

severe vulnerabilities that may be present in an application. Modern systems will often

have at least some measure of protection against common vulnerabilities such as the

OWASP Top 10. It is infeasible to ensure that an application is free of these

vulnerabilities without extensive testing. Instead, the purpose is to determine if

developers followed good security practices by inspecting easily observable properties of

an application. Because each category of application will have different security

properties, several different report cards are necessary. Josh Wright provided mobile

application scorecards for both Android and Apple iOS applications (Wright, 2015). Due

to the prevalence of Web-based applications, this paper expands the report card concept

to cover these additional categories. The proposed report cards are available at

https://github.com/rangercha/AppReportCards.

The report cards developed as part of this project use two categories of tests:

administratively observable and dynamically observable. Administratively observable

tests are best performed by using administrative access to in-scope systems and viewing

the system configuration. Analysts perform the dynamic tests in much the same way as a

traditional test. However, the purpose of performing these tests is not to develop exploits

or to find all occurrences of a single type of vulnerability. The goal is only to determine

whether or not developers appear to have included security controls or use dangerous

functionality in an application.

2.2. Report Card Development Process
The author developed the web application cards by performing a series of

application assessments and analyzing the results. The applications are a combination of

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 8
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

commercially purchased and internally developed applications in a variety of languages.

After conducting a full application assessment on each application, testers reviewed the

findings for easily found vulnerabilities or configurations that exacerbated vulnerabilities.

Several security issues, such as command injection, are not included because they proved

difficult for entry-level testers to detect reliably. Maximum point values designate how

likely a test is to indicate a problem and how derelict an application is for not meeting a

specific standard. For example, using a non-privileged service account is a common

security practice and occurred in most applications tested. In the application that failed to

adhere to this practice, it exacerbated several security vulnerabilities. Therefore, using a

non-privileged service account has a high maximum point value. In contrast, performing

password resets using an out-of-band system has a low point value because several

acceptable in-band methods for password resets exist. However, several of the test

applications that implemented password reset self-service had vulnerabilities in this

functionality.

3. Report Card Integration
Report cards are only a small part of an organization’s security program. The

purpose of the report cards is only to help prioritize systems for undertaking critical

controls 18 and 20. To effectively use the cards, organizations should first implement all

previous controls, plan how to implement the critical controls of application security and

penetration testing, prioritize systems, and execute full test plans.

3.1. Phase 1 – Previous Controls
Beginning application security or penetration testing when an organization’s

security program is still immature will not be an effective use of assets. By first

implementing prior controls from the CIS Critical Security Controls, application security

and penetration testing will be far more beneficial. Security tests will be able to focus

more on complex or custom vulnerabilities in a network. Additionally, the organization

will know what systems exist on their network and have security controls to mitigate new

vulnerabilities.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 9
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

3.2. Phase 2 – Requirements and Preparation
When an organization has finished preparing for penetration testing and

application security testing, the testing team must first select a methodology and

determine the goal of the testing. As is previously noted, the BSIMM is one of the most

prescriptive approaches to software security. The BSIMM program provides 112

practices for secure software development. Several procedures for exist for penetration

testing. The PTES contains hundreds of specific steps that a tester can take when

executing a penetration test of any size. The OWASP testing guide is a suitable choice,

but only provides testing steps for web-based applications. For providing quantitative

measures of risk, the testing team may consider using the Open Source Security Testing

Methodology Manual (OSSTMM). The OSSTMM provides specific ways to measure

risk within a system and broad statements about what a tester should check (Merkow &

Raghavan, 2010). It competes neither with the PTES or the OWASP testing guides since

the OSSTMM does not supply specific technical checks to perform on a system

(OWASP, 2016). Regardless of the methodologies and activities an organization select, it

is important to select a process and communicate it to project managers, business owners,

and IT owners.

3.3. Phase 3 – Prioritizing Systems
The third phase uses both qualitative and quantitative measures to build an

application risk rating. First, either the security testing team or a separate governance,

risk, and compliance (GRC) team should conduct a qualitative risk assessment. At a

minimum, this assessment should capture the exposure value and data classification of

the system. The technical security assessment team then executes the report card scoring

process to produce a quantitative score. Qualitative scores should then be assigned a

numeric value, with more risky systems having a lower rating. Figure	1 shows a potential

rating scheme. These values should then be multiplied together to obtain a priority value

for each system. After performing this process on several systems, then the full tests can

begin on this prioritized list. When the organization learns of a new application, all phase

3 activities should be conducted and added to the queue for testing.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 10
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

	

Figure	1.	Sample	numeric	ratings	for	qualitative	risk	levels

3.4. Phase 4 –Security Assessments and Treatment
During the final phase, technical security testers conduct an assessment of a

specific system or application using the methodology defined in phase 2. This process

may cover any number of security activities including threat modeling, Static Application

Security Testing (SAST), Dynamic	Application	Scanning	Tools	(DAST), penetration

testing, and other measures. After completing a test, it is essential to track any findings

for remediation. As part of the critical controls implementation, the organization should

already have a process in place for remediating vulnerabilities or handling the residual

risk.

4. Web Application Tests
4.1. Administratively Observable Tests

The choice of programming language for a web application can significantly

affect the overall security posture of the application. Some languages, such as ASP.NET

and J2EE, have a great deal of security-related features built into the language. For

example, the ASP.NET framework provides robust protection against reflected cross-site

scripting and ViewState tampering. ASP.NET also provides features such as cross-site

request forgery (CSRF) protection, SQL injection defense with Linq, and configuration

file encryption. While it is possible to configure applications written in PHP in a secure

manner, this requires significant effort (Meier et al., 2006). It is also important that

frameworks, such as .NET or Java, use supported versions. For this test, languages such

Risk Rating Quantitative Multiplier
Critical 0.75
High 1.00
Moderate 1.25
Low 1.50
Very Low 1.75

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 11
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

as J2EE and ASP.NET with supported frameworks receive full points while Ruby, Perl,

ASP.NET 1.0, and PHP receive no points.

Web applications should run under a service account with minimal permissions.

The application should only require read access to most web-accessible folders. While it

is possible for an application to write files securely to web-accessible folders, the

potential for abuse is much greater than if this capability is never coded. Web application

and database service accounts should never be administrators. Standard operating system

tools can retrieve this information. Figure 2 demonstrates using netstat and ps to retrieve

a process owner in Linux for a service listening on port 80 and Figure 3 illustrates the use

of the Internet Information Services (IIS) management console to find this information.

Analysts should award full points only if an application has read-only access to web-

accessible folders. Partial credit is possible if the application uses write access

judiciously. A small amount of partial credit is possible if an application has read/write

access to the web directories. If an application runs with administrative permissions, then

no points are awarded.

Figure	2.	Locating	the	process	owner	from	a	port	number	on	Linux.	
	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 12
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

	
Figure	3.	Viewing	the	application	pool	identity	in	Internet	Information	Services.	

	
Often, web applications utilize standard web servers such as Microsoft’s Internet

Information Services, the Microsoft HTTP API, JBoss, Apache, or other similarly tried

and tested components. However, it is possible that developers will rewrite standard web

server functionality or use a solution that does not receive the same level of scrutiny as

more popular server platforms. In these scenarios, analysts must also test core server

components as vigorously as the web application itself. If administrative access is

unavailable, tools such as Nikto are often sufficient to fingerprint a web server. However,

it is more reliable to view the installed software on the server to determine application

versions. Analysts should check both web server versions (such as IIS or Apache) as well

as framework versions (such as PHP and the .NET framework). Figure 4 depicts using

the apachectl command to view a server’s version of Apache. Applications that use a

well-tested server technology would receive full points. The analyst may award partial

points for publicly available server technology that has not received the same level of

scrutiny as the previously mentioned web servers. Custom implementations receive zero

points.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 13
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

Figure	4.	Using	apachectl	to	check	a	server’s	apache	version.	
	

Although attacks such as SQL injection leverage an application’s database to

affect a system’s security, the use of a database still provides a measure of security versus

other forms of data storage. Modern databases support authentication, encryption, and

disaster recovery. In contrast, if an application chooses to leverage a textual data storage

mechanism, such as eXtensible Markup Language (XML), or a proprietary storage

mechanism then it is unlikely that all the security features offered by a full database will

be present. SQL injection attacks against such a system may not be feasible, but other

attack categories such as XPATH injection are available to malicious actors. The most

reliable way to check the data storage mechanism is to interview system owners and then

verify by checking software versions on the test systems. Use of a database such as

Oracle, Postgres, MySQL, or Microsoft SQL Server will receive full points. SQLite

databases, XML, and flat file data storage receive zero points. Systems that serve static

content and have no form of back-end data storage will still receive full points.

Application Programming Interfaces (APIs) provide a mechanism for

programmatic access to an application’s functionality. Client-side mobile or thick client

applications often consume these APIs. A secure API is certainly possible, but testing

shows that direct access to an API often results in security vulnerabilities. Languages

such as ASP.NET provide controls such as the RegularExpressionValidator control that

are very effective at preventing injection attacks. In an API, the developers must

manually implement these protections on the server. However, this is a simple step to

forget, and testers must specifically configure DAST to test these APIs. Some indicators

of the presence of an API are Simple Object Access Protocol (SOAP) or JavaScript

Object Notation (JSON) requests or common web service extensions, such as svc or

asmx. If an application does not contain an API, then full points are awarded. The

presence of an API or web service results in zero points. Use of a framework such as the

Model-View-Controller (MVC) framework does not count as an API for scoring.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 14
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

Strong authentication is a requirement for any application that processes sensitive

information. However, not all authentication mechanisms are equal. Creating custom

authentication mechanisms can cause many security issues. OWASP scores broken

authentication as the number two vulnerability in its top 10 (OWASP, 2013). Instead,

applications should leverage common authentication frameworks and single sign-on

technologies whenever possible. Figure 5 shows an example of an IIS server configured

to require a specific Windows group access to a website. Analysts should award full

points for the use of common single sign-on technologies such as Google Authenticator,

open token, certificate-based authentication, Active Directory, or similar solutions.

Analysts should award no points if an application uses a custom authentication method.

Figure	5.	IIS	configured	to	allow	only	a	specific	group	website	access.	
	

4.2. Dynamic Tests
When an application uses passwords for authentication, it is often necessary to

provide password reset functionality. Issues such as security question choice, storage of

security questions, and brute force attacks will often arise in these implementations. This

functionality is usually in the form of a “Forgot Password” link on a web site’s login

page. If applications reset passwords using out-of-band methods, then an application

should receive full points. Some valid out-of-band methods are SMS and manual

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 15
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

verification by a customer service representative. Using other methods such as secret

question/secret answer receive no points.

If the application requires passwords, the complexity requirements influence how

easy it will be to acquire control of an account using brute force techniques. Emerging

government standards recommend a minimum length of eight characters and a maximum

length of at least sixty-four characters. The list of acceptable characters should be all

printable characters, including UNICODE characters. Applications should also check

passwords against a blacklist of trivial and recently compromised passwords (Grassi et

al., 2015). Finally, the use of multi-factor authentication is also necessary to receive

maximum credit for this test. Applications that implement only some of the defenses

against weak passwords can obtain partial credit.

File uploads in web applications are another significant source of vulnerabilities.

Like APIs, a developer can securely provide the ability to upload files to a web server,

but this requires several checks (Ullrich, 2009). While discerning if these security

controls are present in an application is difficult, finding whether or not file upload

functionality exists is usually simple. Testers should interview system owners to

determine if an application supports file uploads and conduct a cursory review to

discover this capability. DAST tools such as Burp proxy will alert an analyst to this

functionality, as Figure 6 shows. If an application allows file uploads then zero points

should be awarded; otherwise, the application should receive full credit.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 16
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

Figure	6.	Burp	proxy	detecting	a	file	input	control.	
	

Cross-site request forgery (CSRF) vulnerabilities arise due to lack of entropy in

web requests. The client must submit a random value as part of each request to the server

to prevent this category of attack. Fortunately, analysts can easily observe this

countermeasure during an initial assessment. Often this will manifest as a random token

in a hidden form field or the ASP.NET ViewState. Apache Tomcat Manager embeds

CSRF tokens in each request, even those using the GET methods. Figure 7 shows an

example of the Apachhe CSRF token. Figure 8 displays the ASP.NET MVC CSRF token,

which manifests as a hidden form field called “__RequestVerificationToken (Wasson,

2012).” It is also possible to implement CSRF defenses by checking the “Origin” or

“Referer” headers (Wichers, Petefish, & Sheridan, 2016). DAST tools such as

Portswigger’s Burp or OWASP’s Zed Attack Proxy (ZAP) can be used to verify that an

application uses one of these techniques by scanning a single POST request (Portswigger,

n.d.). As with all checks in the report card, the purpose is not to find all vulnerabilities,

just to determine if developers have made a reasonable attempt to implement security

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 17
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

controls. If testers find evidence of CSRF prevention techniques, then the application

should receive full points.

Figure	7.	Apache	Tomcat	Manager	with	CSRF	protection	on	each	link.	
	

	
Figure	8.	CSRF	protection	in	an	ASP.NET	MVC	application	(Wasson,	2012).	

	
	

Input sanitization is a concept that is central to preventing many different types of

attacks. For both security and user experience, regular expressions should be used to

ensure that user input is in the format expected by the application. Analysts can quickly

check ASP.NET applications for the presence of the various “Validator” controls, such as

RegularExpressionValidators and RequiredFieldValidators. These controls automatically

run the expected input validation checks on both the client and server. Other languages

are not quite so obvious and require manual verification. Analysts should look for fields

such as email address, dates, and social security numbers, then submit malformed data

using an intercepting proxy. The expected result is that the application should produce an

error message that the input is improperly formatted.

Cross-site scripting (XSS) and HyperText Markup Language (HTML) injection

attacks result when a server directly sends uncontrolled data to a user’s web browser

without proper encoding. Analysts can observe whether or not an application

appropriately encodes data by supplying potentially dangerous characters to input fields.

If the application either reflects this input or places it into an unsafe control, such as a

.NET label, analysts should observe if the dangerous characters are encoded. A man in

the middle proxy should be used for this task, as modern web browsers frequently

automatically encode characters to prevent XSS attacks. Figure 9 shows an HTML-

encoded string. An exhaustive test of the application is not necessary. Analysts only

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 18
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

should check a sample of locations where their input is reflected. If any failures to encode

in a dangerous control are detected, then the analyst should award zero points.

Figure	9.	HTML-encoded	characters	in	an	HTTP	response.	
	

Attackers often target a web application’s cookies for theft since they commonly

allow the attacker to act as a legitimate user or contain other sensitive data. This

statement is especially true for session tokens that are regularly used to track a user’s

login state. These values are often disclosed either by including cookies in insecure

transactions or through a cross-site scripting vulnerability within an application.

Fortunately, modern web browsers support two flags that will protect these cookies under

many circumstances, and analysts can easily observe the flags. Analysts can simply use

the application and then check the cookies using a tool such as FireBug to ensure that the

application uses these flags. Figure 10 demonstrates using FireBug to check the status of

the HTTPOnly and Secure flags. Analysts should award points based on the percentage

of cookies using each of the flags. Applications that do not use cookies should receive

full points.

Figure	10.	Using	FireBug	to	view	cookie	flags	
	

Most applications only utilize a small subset of the full list of HTTP request

methods. Even so, applications often support far more of these request methods than are

necessary for a system to function. Even if the application does use the extra methods,

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 19
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

they often indicate that the application is more complex than standard web applications

and is, therefore, worthy of extra scrutiny. Nikto is one of the simplest tools to confirm

which HTTP request methods a server supports. Using Nikto to check HTTP request

methods is shown in Figure 11. If a server supports only a minimal set of methods –

GET, POST, OPTIONS, and HEAD – then it should receive full points. Analysts can

then award partial credit if the server supports limited additional methods.

Figure	11.	Using	Nikto	to	check	allowed	HTTP	request	methods	
	

The current threat landscape dictates transport layer encryption for all

applications, including those that are not accessible from the public internet. Without

encryption, attackers are free to monitor or modify sensitive communications. At a

minimum, when the client and server send sensitive information, this must operate over

an encrypted channel. Analysts can ensure that any pages with such sensitive information

use SSL by looking at the uniform resource indicator (URI) in a web browser or an

intercepting proxy. An application can achieve full points if it sends all credentials, credit

card data, personally identifiable information (PII), protected health information, or other

sensitive data over an encrypted channel. Analysts should use their discretion to award

partial credit.

Misconfigured error pages often disclose details of an application’s internal

workings. The best practice is that applications should display only a generic message

that an error occurred and possible reference numbers (Keary, 2007). Analysts can send

malformed requests and requests containing malicious content to a server and observe the

errors returned. Figure 12 displays a 404 response page disclosing the web server’s

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 20
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

version information. If the error message contains only information such as the HTTP

response code and contact numbers, then the application receives full credit.

Figure	12.	A	default	error	page	disclosing	information	about	the	server	
	

Websites have the ability to define limited violations of the same origin policy

(SOP). The SOP dictates that one site cannot access the resources of another. Enterprise

applications must often allow such resource sharing to allow interoperability between

various sites. These policies are often improperly implemented, especially in commercial

applications, increasing the likelihood of CSRF vulnerabilities. An analyst can check

these policies through the use of the OPTIONS HTTP method, crossdomain.xml, and

clientaccesspolicy.xml. Simple tools, such as Nikto, perform these checks automatically.

Using Nikto to perform this check is illustrated in Figure 13. If an application does not

allow any cross-origin resource sharing or limits the scope to specific sites, then analysts

should award full points. Partial credit is possible if the sharing scope is a single domain,

such as companyname.com.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 21
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

Figure	13.	Using	Nikto	to	check	cross	domain	policies	for	Flash	and	Silverlight	

5. Relation to the Critical Security Controls
Report cards are not intended to implement any of the twenty critical control

families but can enforce some of the Application Security sub-controls. Analysts verify

vendor or development support of both applications and frameworks, which verifies

adherence to CSC 18.1. The report card process also performs limited verification that an

application checks both input and output validity, which is required by CSC 18.3.

However, it is unreasonable to expect a comprehensive result from such an abbreviated

process. Organizations should utilize SAST and DAST tools to ensure that applications

properly handle all system inputs and outputs. Finally, analysts satisfy CSC 18.5 by

checking that an application's error messages do not disclose sensitive information to the

end-user. If organizations expect additional requirements – such as a web application

firewall, separate production and development environments, or secure software

development training – then organizations may also include these as checks in the report

card process.

6. Future Research
Security testing activities are time-intensive and may carry risk to system

availability. Several efforts to deliver faster, more complete, and safer tests are underway.

Advances in these systems may drastically alter or perhaps obviate the need for

conducting preliminary technical investigations such as those in this paper.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 22
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

The Defense Advanced Research Projects Agency (DARPA) funded several

efforts to automate the security assessment process. In 2015, DARPA funded the Cyber

Independent Testing Laboratory (CITL) to devise a system to rate the security of

applications. When this project is complete, it will use automation to create a consumer

report security score for many applications (Simonite, 2016). The markers observed in

this process are all technically observable criteria and manual checks may not be

necessary after projects such as CITL’s come to fruition. DARPA also sponsored the

2016 Cyber Grand Challenge, an all-machine hacking tournament. Competitors in this

challenge created applications that can discover and patch security vulnerabilities in

applications (DARPA, 2016). As this concept expands, both the need and focus of

penetration testing and application security efforts are likely to change.

There are several ways to improve the report card system. First, the report cards

would benefit from a greater breadth of experience. With only a single tester supplying

input to the process, both the tests and point values for tests are likely biased. A greater

breadth of applications would also improve the report card’s accuracy. All applications

tested were used in a single financial services company. Other types and sizes of

businesses would serve to reduce bias. Analysis tools and scripts could automate many of

the tests in the report card system. Automation would greatly reduce the time and skill

requirement to implement this process. Finally, there are many application types other

than web applications and mobile applications. Separate report cards for thick client and

web APIs would allow the system to apply to a much larger percentage of enterprise

applications.

7. Conclusion
Application security and penetration testing are both part of the critical security

controls. However, these practices come near the end of a long line of security controls.

When it is time to undertake these tests, organizations have a vast number of systems in

operation, which will require a huge amount of time to test. Standard qualitative risk

assessment measures rarely have sufficient data points to stratify all these systems so that

testing can focus on the systems that pose the greatest risk to the organization. By

imposing a larger battery of technical tests with quantifiable scores and combining them

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 23
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

with information about system value, the organizational risk can be better quantified.

This abbreviated examination allows a company to focus their exhaustive and resource-

intensive testing activities where they can provide the greatest benefit.

The goal of the report card tests is to indicate how likely a software application is

to present a security risk without requiring a large time investment. Tests must not only

be useful for security, but analysts must be able to perform all the checks in a short

period. These factors greatly limit the number and type of tests in the report cards. Often,

security questions are difficult to answer in an absolute sense, involving checks on a large

number of system inputs or requiring a great deal of specialized training. The tests

selected for the report cards are quick, repeatable, and relatively simple.

 These prioritization techniques are intended to be just a part of the enterprise

security program. If resources such as time, budget, and personnel were never an issue,

then there would be no need for such activities. Real-world organizations must make

difficult choices about where to focus attention. By using the tests outlined in the report

cards, analysts can provide clarification for these choices across a wide range of systems

in a short time.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 24
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

References
	
Ard3n7. (2013). Introduction to Application Risk Rating & Assessment. Retrieved

September 10, 2016, from http://resources.infosecinstitute.com/introduction-to-

application-risk-rating-assessment/.

Bing, C. (2016). NSA: no zero days were used in any high profile breaches in the last 24

months. Retrieved September 20, 2016, from http://fedscoop.com/nsa-no-zero-

days-were-used-in-any-high-profile-breaches-over-last-24-months.

Center for Internet Security. (2016). The CIS Critical Security Controls for Effective

Cyber Defense (v6.1). Retrieved September 16, 2016, from

https://www.cisecurity.org/critical-controls/documents/CSC-MASTER-VER61-

FINAL.pdf.

Conrad, E., Misenar, S., Feldman, J., Riggins, K. (2010). CISSP Study Guide. Burlington,

MA: Syngress.

DARPA. (2016). The Cyber Grand Challenge. Retrieved September 10, 2016, from

https://www.cybergrandchallenge.com.

Grassi, P., Fenton, J., Newton, E., Perlner, R., Regenscheid, A., Burr, W., Richer, J.,

Lefkovitz, N., Danker, J., Choong, Y., Greene, K., Theofanos, M. (2015). Draft

NIST Special Publication 800-63B Digital Authentication Guideline. Retrieved

September 25, 2016, from https://pages.nist.gov/800-63-3/sp800-63b.html.

Keary, E. (2007). Error Handling. Retrieved September 10, 2016, from

https://www.owasp.org/index.php?title=Error_Handling&setlang=en.

McGraw, G. (2006). Software Security Building Security In. Upper Saddle River, NJ:

Pearson Education Inc.

Merkow, M. & Raghavan, L. (2010). Secure and Resilient Software Development. Boca

Raton, FL: CRC Press.

Meier, J. Mackman, A. Dunner, M. Vasireddy, S. Escamilla, R. & Murukan, A. (2006).

Building Secure ASP.NET Pages and Controls. Retrieved September 10, 2016,

from https://msdn.microsoft.com/en-us/library/ff648635.aspx.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 25
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

Meucci, M., Mueller, A. (2014). OWASP Testing Guide v4. Retrieved September 13,

2016, from https://www.owasp.org/images/1/19/OTGv4.pdf.

NIST. (2012). NIST Special Publication 800-30 Guide for Conducting Risk Assessments.

Retrieved September 25, 2016, from

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf.

NIST. (2013). NIST Special Publication 800-53 Security and Privacy Controls for

Federal Information Systems. Retrieved September 25, 2016, from

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf.

Northcutt, S., Shenk, J., Shackleford, D., Rosenberg, T., Siles, R. & Mancini, S. (2006).

Penetration Testing: Assessing Your Overall Security Before Attackers Do.

Retrieved September 7, 2016, from https://www.sans.org/reading-

room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635.

OWASP. (2013). Top 10 2013. Retrieved September 10, 2016, from

https://www.owasp.org/index.php/Top_10_2013-Top_10.

OWASP. (2016). Penetration Testing Methodologies. Retrieved September 24, 2016,

from https://www.owasp.org/index.php/Penetration_testing_methodologies.

Peake, C. (2003). Red Teaming: The Art of Ethical Hacking. Retrieved September 8,

2016, from https://www.sans.org/reading-room/whitepapers/auditing/red-

teaming-art-ethical-hacking-1272.

Portswigger. (n.d.). Using Burp to Test for Cross-site Request Forgery. Retrieved

September 10, 2016, from

https://support.portswigger.net/customer/portal/articles/1965674-using-burp-to-

test-for-cross-site-request-forgery-csrf-.

Scarfone, K., Souppaya, M., Cody, A., & Orebaugh, A. (2008). NIST Special Publication

800-115 Technical Guide to Information Security Testing and Assessment.

Retrieved September 7, 2016, from http://dx.doi.org/10.6028/NIST.SP.800-115.

Simonite, T. (2016). How Public Shame Might Force a Revolution in Computer Security.

Retrieved September 10, 2016, from

https://www.technologyreview.com/s/602104/how-public-shame-might-force-a-

revolution-in-computer-security/.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Triaging the Enterprise for Application Security Assessments 26
	

Rebecca	Deck,	sdsecurityacct@hotmail.com	 	 	

Ullrich, J. (2009). 8 Basic Rules to Implement Secure File Uploads. Retrieved September

10, 2016, from http://software-security.sans.org/blog/2009/12/28/8-basic-rules-to-

implement-secure-file-uploads.

Wasson, M. (2012). Preventing Cross-Site Request Forgery (CSRF) Attacks in ASP.NET

Web API. Retrieved September 21, 2016, from http://www.asp.net/web-

api/overview/security/preventing-cross-site-request-forgery-csrf-attacks.

Wichers, D., Petefish, P., & Sheridan, E. (2016). CSRF Prevention Cheat Sheet.

Retrieved September 10, 2016, from

https://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet.

