
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

Gathering the Information Needed For the 20 Critical Controls

GIAC (GCCC) Gold Certification

Author: Jonathan Risto, jonathan.risto@hotmail.com

Advisor: Richard Carbone

Accepted: August 20, 2016

Abstract

The 20 Critical Controls provide a guideline for the controls that need to be placed in our

networks to manage and secure our systems. The second control states there should be a

software inventory that contains the names and versions of the products for all devices

within the infrastructure. The challenge for a large number of organizations is the ability

to have accurate information available with minimal impact on tight IT budgets. This

paper will discuss the Microsoft Windows command line tools that will gather this

information, and provide example scripts that can be run by the reader.

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

2

Jonathan Risto;jonathan.risto@hotmail.com

1. Introduction

To understand and know what programs are installed on the computers within an

organization, regular monitoring and analysis are needed. To accomplish this tools are

required that can query the systems in question and provide detailed information to

administrators.

1.1. Overview of the control

The goal of Control 2 of the Critical Security Controls is to “Actively manage

(inventory, track, and correct) all software on the network so that only authorized

software is installed and can execute, and that unauthorized and unmanaged software is

found and prevented from installation or execution.” (Center for Internet Security, 2015)

Control 2.3 states that organizations should deploy inventory tools that track versions of

the applications installed on the system in question (Center for Internet Security, 2015).

In their 2016 Internet Security Threat Report, Symantec reports that 75% of legitimate

web sites have vulnerabilities. Within the report, it also states that fifteen percent of

websites have critical vulnerabilities that would be trivial to exploit (Symantec, 2016). It

is the opinion of the author that the vast majority of these sites must not know these

vulnerabilities are present or not know that the software installed leaves such a massive

security gap in place.

1.2. Challenges collecting information

As with many IT implementations, there are numerous reasons why a specific

piece of hardware or software does not get implemented. One problem that continually

occurs is the lack of money to purchase and implement a solution. Budgets are limited,

and there are always items that need to be purchased. If it were possible to start

monitoring this control with minimal expense, it would permit faster adoption and

implementation.

Secondly, the resources needed to manage any new software or hardware is a

continued pressure point for organizations, as IT departments are perpetually looking for

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

3

Jonathan Risto;jonathan.risto@hotmail.com

staff (Security Magazine, 2012) (Ponemon Institute LLC, 2014). By providing a

solution that does not depend heavily on personnel and automates as much as possible, it

will help avoid an added burden on existing IT staff.

2. Installed Windows Programs

The Windows operating system provides numerous ways to accomplish the same

task. For example, three different methods will be discussed for collecting the installed

software information from the command line. These methods are

1) Psinfo.exe, a program provided by the Microsoft Sysinternals group;

2) Windows Management Instrumentation, or WMI; and

3) PowerShell.

The Windows operating system is also a challenging operating system, as

depending on how the query is performed, the results may differ slightly. Specific details

about each method’s limitations will be discussed in the following sections.

2.1. Command line collection methods

For this paper, the primary criterion for selecting the gathering method was to use

programs and practices that are quickly and readily available to the administrator. Also,

it was desired to have a means that any level of reader – novice to expert - can employ.

Finally, as cost is always a limiting factor for any organization, methods that were free

were desired.

With these criteria in mind, this work examines various methods built into the

operating system by Microsoft to provide the listing of installed programs. A further

extension of this list was permitted with tools from Microsoft’s Sysinternals used, as

these tools are freely available and can to be used without a Graphical User Interface

(GUI). The reasoning behind removing a GUI was to permit the tools to be scripted and

automated as much as possible.

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

4

Jonathan Risto;jonathan.risto@hotmail.com

2.2. Microsoft programs – Psinfo.exe and Psinfo64.exe

The first method used to collect the installed applications on a Windows system

was the Microsoft Sysinternals programs psinfo.exe and psinfo64.exe, for 32 and 64-bit

systems respectively (Microsoft, 2016). The Sysinternals web site was created by the

group to store and make available the advanced system utilities they created (Microsoft,

2016).

These two tools collect the information from the system registry keys and runs on

Windows NT/2000 or higher. While a lot of information is available from these

programs, only the installed applications information was needed for this work. Psinfo

has an option, the –s applications switch, which will provide a listing of the installed

programs for the computer that is queried (Russinovich, 2010). An example of how this

program can be run is shown in Figure 1.

Figure 1 - Psinfo command line

The output of this tools a listing of applications and version numbers, illustrated

in Figure 2.

Figure 2 - Psinfo example output

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

5

Jonathan Risto;jonathan.risto@hotmail.com

Psinfo interrogates the HKLM/System registry key to get the listing of installed

programs by using the Windows remote registry service (Russinovich, 2010). For the

program to work, either on a local machine or on a remote system, the computer must

have the remote registry service running for the tool to work.

2.2.1. Enabling remote registry
To quickly check if the remote registry service is running or not, from either the

command prompt or the Windows run location on the start menu, type services.msc, as

shown in Figure 3.

Figure 3 – Launching services.msc

Once the services program is started ensure that the items are sorted

alphabetically, and then scroll down to the Remote Registry entry as shown in Figure 4.

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

6

Jonathan Risto;jonathan.risto@hotmail.com

Figure 4 - Remote registry service information

Once the service is located, a double click will expand the entry, similar to Figure

5, and enable the service to be started if needed.

Figure 5 - Service information display

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

7

Jonathan Risto;jonathan.risto@hotmail.com

2.3. Windows Management Instrumentation

According to Microsoft, Windows Management Instrumentation (WMI) is their

implementation of Web-Based Enterprise Management (WBEM), an industry initiative to

standardize the collection of management information (Microsoft, 2016a). WMI is based

on Common Information Model (CIM), put out by the Distributed Management Task

Force (DMTF) (Wikipedia, 2016).

Within WMIC, which stands for Windows Management Instrumentation

Command-line, numerous commands have been built into the tool to detail various

settings and configurations of the computer (Morrison, 2012). Given that WMIC can be

called remotely, an administrator can query any system under their control.

For this paper, the product option will be used. This command can return the

following items: name, description, install date, vendor and version. Given that this work

is interested in verifying the names and versions of software on the system, the Name and

Version options will be used.

To put all these options together into a single command line entry is easy. To run

the commands and options outlined above, it would need the following command:

wmic product get name, version

Figure 6 - WMIC command line

Running this command returns a large number of entries, with an example shown

in Figure 7.

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

8

Jonathan Risto;jonathan.risto@hotmail.com

Figure 7 - WMIC output

2.4. PowerShell

PowerShell is a command line shell that Microsoft created to assist with the

management of systems. It originated from Microsoft’s Monad shell, which morphed

into PowerShell v1 (Snover, 2007) (Snover, 2002). PowerShell provides access to a large

number of built-in commands, called cmdlets, which are grouped together in modules

within the environment. Details on the PowerShell modules and cmdlets are beyond the

scope of this work, but information posted by Microsoft on these PowerShell topics can

be found at (Microsoft, 2013).

The PowerShell functionality that is used in this paper is the ability to open a

registry key location and read its contents. The two places that are accessed by

PowerShell for this are:

'HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\'

 and

'HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall\'

Both of these registry locations store information about programs that have been installed

on the system in so long as the programs register themselves correctly.

The problem, so to speak, with the registry, is that each program that accurately

writes to this location creates this information in a new sub-key. An example of a sub-

key is shown in Figure 8 and Figure 9. Within each of these Figures, it is possible to see

that there is a significant number of sub-keys that need to be looked at to try and extract

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

9

Jonathan Risto;jonathan.risto@hotmail.com

the desired information of program name and version number. On the computer used for

testing, there were 447 sub-keys located in HKLM\SOFTWARE\Microsoft\Windows

\CurrentVersion\Uninstall\ alone. To extract the required information from each of the

sub-keys, PowerShell needs to iterate through each potential sub-key and determine if

there is a value present for ProductName and DisplayVersion fields in each registry entry.

Figure 8 - Registry value example in Software\WOW6432 location

Not all sub-keys have the values being requested, which adds uncertainty to the

requests being made. Examples without the Name value are shown in Figure 10, without

the version information is provided in Figure 11 or without any of the required

information is seen in Figure 12.

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

10

Jonathan Risto;jonathan.risto@hotmail.com

Figure 9 - Registry example from the Software\Microsoft location

Figure 10 - Example of a registry sub-key that does not have the DisplayName value

Figure 11 - Example of a registry sub-key that does not have a ProductVersion value

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

11

Jonathan Risto;jonathan.risto@hotmail.com

Figure 12 - Example of a registry sub-key that does not have any required information

With the examples and problems illustrated in Figures 5 through 9, the

PowerShell commands used need to recognize and handle unknown values (the key

names), as well as conditions when the desired values are not present (names of version).

Contrary to WMIC or Psinfo collection methods, as both utilized built in functionality to

extract the required information. Within PowerShell however, we are accessing the

information directly, and therefore need to be able to handle any error and any abnormal

conditions.

3. Putting it all together – Scripting

While most of the commands that have been discussed can be typed from the

command prompt, it is much easier and creates fewer problems if the files are placed into

a script that can be called quickly and repetitively. To that end, a script to simplify the

collection process has been included in Appendix A through C.

Each of these scripts has automated the process to collect the installed programs

from the three methods discussed previously. They automate the running of the

commands. The scripts also request some user input, specifically the IP address of the

computer that the user wishes to run the script. These scripts also save the output that can

be viewed either from the command line or loaded into the program of the user’s choice.

Some input error checking has been performed on the scripts, when possible. For

example, within the PowerShell script, the user is forced to put the IP address in the

correct format of x.x.x.x. If another input other than a number is entered, the program

requests the information again, as it is invalid input.

The scripts have been documented heavily, to permit the user to follow what the

commands within are doing. If the code is from another source, this information is

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

12

Jonathan Risto;jonathan.risto@hotmail.com

recorded in the script, as well as the location where the code was obtained. For example,

the psinfo.exe and psinfo64.exe commands generate some duplication in their outputs,

either individually or collectively. A simple, but powerful, two-line sequence was found

that iterates through two text files and removed any duplicate entries.

4. Conclusion

This paper has provided three scripts that collect the system information in three

different manners. While the information obtained from each script is different, due to

inconsistencies in information sources, consistently using the same means to collect the

data is essential to enable comparisons.

Each of the scripts provided is interactive, as it requires the entry of the IP address

of the system to be scanned. With minimal changes, an administrator could change all of

the scripts to accept the IP address as part of the script call, thereby allowing the scripts to

be scheduled when desired.

The PowerShell script collects the most extensive listing of information, and

could arguably be stated the best script to use to enumerate the software installed on a

Windows system. The details include information on operating system patches that have

been applied to the system as well as software installed. Details regarding patches

applied to Microsoft software are also contained within the PowerShell output.

The Psinfo script provides information on installed software from the registry, as

well as information some of the patches installed on the system for Microsoft software.

However, it does not contain operating system patches.

Using the WMIC collection method is by far the slowest collection method used

within this paper. It does provide a detailed listing of software. However, it does not

include any information on the operating system patches nor the Microsoft software

patches.

Regardless of the script used, having a baseline of installed software is a crucial

step in addressing the control. Corporate policies may prevent the use of one option or

another, so this work does provide multiple means for administrators to obtain the details

required to baseline the systems in question.

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

13

Jonathan Risto;jonathan.risto@hotmail.com

References
Brumfield, K. (2014, January 19). Simple way to temporarily bypass PowerShell

execution policy. Retrieved July 30, 2016, from Ken Brumfield's Blog:

https://blogs.technet.microsoft.com/ken_brumfield/2014/01/19/simple-way-to-

temporarily-bypass-powershell-execution-policy/

Center for Internet Security. (2015). The CIS Critical Security Controls for Effective

Cyber Defense. Arlington: Center for Internet Security. Retrieved July 30, 2016

Microsoft. (2013, October 17). Microsoft.PowerShell.Core Module. Retrieved July 30,

2016, from Microsoft Developer Network: https://technet.microsoft.com/en-

us/library/hh847840.aspx

Microsoft. (2016). Microsoft Sysinternals. Retrieved July 30, 2016, from Microsoft:

https://technet.microsoft.com/en-us/sysinternals/default.aspx

Microsoft. (2016a). About WMI. Retrieved July 30, 2016, from Microsoft Developer

Network: https://msdn.microsoft.com/en-us/library/aa384642(v=vs.85).aspx

Morrison, B. (2012, February 17). Useful WMIC Queries. Retrieved July 30, 2016, from

Ask the Performance Team Blog:

https://blogs.technet.microsoft.com/askperf/2012/02/17/useful-wmic-queries/

Ponemon Institute LLC. (2014, February). Understaffed and at Risk: Today’s IT Security

Department. Retrieved July 30, 2016, from Ponemon Institute:

http://www.hp.com/hpinfo/newsroom/press_kits/2014/RSAConference2014/Pone

mon_IT_Security_Jobs_Report.pdf

Russinovich, M. (2010, April 28). PsInfo v1.77. Retrieved July 30, 2016, from Windows

Sysinternals: https://technet.microsoft.com/en-us/sysinternals/psinfo

Security Magazine. (2012, August 16). Cyber Security -- Staffing. Retrieved July 30,

2016, from Security Magazine: http://www.securitymagazine.com/articles/83412-

study--63-percent-of-companies--it-departments-are-understaffed

Snover, J. (2002, August 8). Monad Manifesto. Retrieved July 30, 2016, from

https://msdnshared.blob.core.windows.net/media/MSDNBlogsFS/prod.evol.blogs.

msdn.com/CommunityServer.Components.PostAttachments/00/01/91/05/67/Mon

ad%20Manifesto%20-%20Public.doc

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

14

Jonathan Risto;jonathan.risto@hotmail.com

Snover, J. (2007, March 18). Monad Manifesto – the Origin of Windows PowerShell.

Retrieved July 30, 2016, from Windows PowerShell Blog:

https://blogs.msdn.microsoft.com/powershell/2007/03/18/monad-manifesto-the-

origin-of-windows-powershell/

Symantec. (2016, April). Internet Security Threat Report, Volume 21. Retrieved July 30,

2016, from Symantec:

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-

en.pdf

Wikipedia. (2016, July 24). Windows Management Instrumentation. Retrieved July 30,

2016, from Wikipedia:

https://en.wikipedia.org/wiki/Windows_Management_Instrumentation

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory

15

Jonathan Risto;jonathan.risto@hotmail.com

Appendix A
PSinfo.exe and PSinfo64.exe script

For this script to work, the psinfo.exe and psinfo64.exe files must be in the c:\temp

directory. To change this, any reference to c:\temp within the batch file must be modified

to the new location of these files. When the script is run, it will request the IP address of

the system to query.

The output of this script is also stored in the c:\temp directory. The output will be

in the format of <IP address>_YEAR_MONTH_DAY_HOUR_MINUTE.txt. This

format is to permit multiple collections from the same IP address to happen without

overwriting the information, and to quickly provide a reference of when the script created

the file.

To run this script, all that is needed is to call the .bat file from an administrative

command prompt. The user’s current credentials are passed along to the system being

queried by the operating system. It has been assumed that the batch file is called

psinfo.bat and has been placed in the c:\temp directory. The user must type the following

command to invoke the batch file:

C:\temp\psinfo.bat

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 16

Jonathan Risto;jonathan.risto@hotmail.com

CONTENTS OF BATCH FILE: psinfo.bat 1
 2
@ECHO OFF 3
cls 4
REM blank the screen to make it easier to follow what is happen 5
 6
set /p computer=Enter the computer IP address you wish to query: 7
REM getting the user to enter the IP address of the system to be inventoried 8

 9
for /F "tokens=1-4 delims=/ " %%i IN ('date /t') DO (10
set DT_DAY=%%i 11
set DT_MM=%%j 12
set DT_DD=%%k 13
set DT_YYYY=%%l) 14
REM the above lines date the output of the date comment and place the values into appropriate variables 15

 16
for /F "tokens=1-4 delims=: " %%i IN ('time /t') DO (17
set DT_hour=%%i 18
set DT_min=%%j) 19
REM do the same for the time command 20
 21
c:\temp\psinfo.exe -s applications \\%computer% >> C:\temp\%computer%.txt 22
c:\temp\psinfo64.exe -s applications \\%computer% >> C:\temp\%computer%.txt 23
REM above run the psinfo and psinfo 64 command, which return information on the system in question. 24
 25
sort C:\temp\%computer%.txt >> C:\temp\%computer%_.txt 26
REM the above sorts the items in the file 27
 28

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 17

Jonathan Risto;jonathan.risto@hotmail.com

REM following two lines of code remove duplicate entries in a text file. 29
REM It was found at http://stackoverflow.com/questions/11689689/batch-to-remove-duplicate-rows-from-text-file 30

 31
FOR /f "delims=" %%a IN (C:\temp\%computer%_.txt) DO SET $%%a=Y 32
(FOR /F "delims=$=" %%a In ('set $ 2^>Nul') DO ECHO %%a)>C:\temp\%computer%_%DT_YYYY%%DT_MM%%DT_DD%%DT_hour%%DT_min%.txt 33

 34
del %computer%_.txt 35
del %computer%.txt 36
REM remove temp files37

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 18

Jonathan Risto;jonathan.risto@hotmail.com

Appendix B

WMIC script

For this script to work, it does not require any additional information to invoke it.

All that is needed is the .bat file to be stored on the disk. When the batch file runs, it will

request the IP address from the user. No other input is needed. It will query the remote

PC using the credentials that invoked the program.

The output of this script is also stored in the c:\temp directory. The output will be

in the format of <IP address>_<YEAR><MONTH><DAY><HOUR><MINUTE>.txt.

For example, when the program is run it would create a file called

172.19.5.9_201607301134.txt that contains all of the output from the command.

This naming convention was done to permit multiple collections from the same IP

address to happen without overwriting the information, and to quickly provide a

reference of when the file was created.

 To change this setting, and reference to c:\temp found within the script must be

modified.

To run this script, just type the following command at an administrative command

prompt. The following command example assumes that the batch file is saved in the

c:\temp directory and is called wmic_query.bat.

c:\temp\wmic_query.bat

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 19

Jonathan Risto;jonathan.risto@hotmail.com

CONTENTS OF BATCH FILE: wmic_query.bat 1
 2
@echo off 3
cls 4
set /p computer=Enter the computer IP address you wish to query 5
REM getting the user to enter the IP address of the system to be inventoried 6
 7
for /F "tokens=1-4 delims=/ " %%i IN ('date /t') DO (8
set DT_DAY=%%i 9
set DT_MM=%%j 10
set DT_DD=%%k 11
set DT_YYYY=%%l) 12
REM the above takes the date command output and populates the appropriate variables 13

 14
for /F "tokens=1-4 delims=: " %%i IN ('time /t') DO (15
set DT_hour=%%i 16
set DT_min=%%j 17
) 18
REM the above does the same as the above date process, but for the time command 19
 20
echo. 21
echo Starting the query. This may take a minute or two. Be patient. 22
REM Feedback to the user so they know what is happening 23
 24
wmic /node:"%computer%" /OUTPUT:C:\temp\%computer%_%DT_YYYY%%DT_MM%%DT_DD%%DT_hour%%DT_min%.txt product get name,version 25
echo. 26
echo The file C:\temp\%computer%_%DT_YYYY%%DT_MM%%DT_DD%%DT_hour%%DT_min%.txt was written 27
echo. 28

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 20

Jonathan Risto;jonathan.risto@hotmail.com

 29
REM Run the WMIC command that uses the provided address and saves the file with machine IP and date/time as the filename in C:\temp\ 30

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 21

Jonathan Risto;jonathan.risto@hotmail.com

Appendix C

PowerShell script

For this script to work, it does not require any additional information to invoke it.

All that is needed is the .ps1 file to be stored on the disk. When the command is run, it

will request the IP address from the user. No other input is needed. It will query the

remote PC using the credentials that invoked the program.

The output of this script is also stored in the c:\temp directory. The output will be

in the format of <IP address>_<YEAR><MONTH><DAY><HOUR><MINUTE>.txt.

For example, when the program is run it would create a file called

172.19.5.9_201607301134.txt that contains all of the output from the command.

This naming convention was done to permit multiple collections from the same IP

address to happen without overwriting the information, and to quickly provide a

reference of when the file was created.

 To change this setting, and reference to c:\temp found within the script must be

modified.

To run this script, just type the following command at an administrative command

prompt. The following command example assumes that the ps1 file is saved in the

c:\temp directory and is called software_enumeration.ps1.

powershell -executionpolicy bypass –file software_enumeration.ps1

The -executionpolicy bypass option is used to ensure that the script will run even

if the security policy is configured to block PowerShell scripts. This exception allows the

scripts to run and lowers the setting only for that PowerShell session, and not the entire

system configuration (Brumfield, 2014).

© 2016 The SANS Institute Author retains full rights.

CONTENTS OF POWERSHELL SCRIPT: software_enumeration.ps1 1

 2

<# 3

This script to ask the user to provide the IP address they wish to query, and then runs the PowerShell commands to get the installed software on the 4
Windows system in question. 5

 6

The output will be saved to a file called c:\temp\<IP ADDRESS>_<YEAR><MONTH><DAY><HOUR><MINUTE>.txt 7

 8

The first portion of this PS script contains a function named Get-RemoteProgram authored by Jaap Brasser. 9

It polls through the registry keys to extract the required information 10

and is posted on Microsoft's Technet at https://gallery.technet.microsoft.com/Get-RemoteProgram-Get-list-de9fd2b4 11

 12

Small modifications were needed to this code to make it work as necessary for this project. 13

 14

Where the code was modified from original, comment lines start with JR show any new information within the function 15

#> 16

Function Get-RemoteProgram { 17

<# 18

.Synopsis 19

Generates a list of installed programs on a computer 20

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 23

Jonathan Risto;jonathan.risto@hotmail.com

 21

.DESCRIPTION 22

This function creates a list by querying the registry and returning the installed programs of a local or remote computer. 23

 24

.NOTES 25

Name: Get-RemoteProgram 26

Author: Jaap Brasser 27

Version: 1.2.1 28

DateCreated: 2013-08-23 29

DateUpdated: 2015-02-28 30

Blog: http://www.jaapbrasser.com 31

#> 32

 [CmdletBinding(SupportsShouldProcess=$true)] 33

 param(34

 [Parameter(ValueFromPipeline=$true, 35

 ValueFromPipelineByPropertyName=$true, 36

 Position=0)] 37

 [string[]] 38

 $ComputerName = $env:COMPUTERNAME, 39

 [Parameter(Position=0)] 40

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 24

Jonathan Risto;jonathan.risto@hotmail.com

 [string[]]$Property 41

) 42

 43

 begin { 44

 $RegistryLocation = 'SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\', 45

 'SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall\' 46

 $HashProperty = @{} 47

 #JR original line follows 48

 #$SelectProperty = @('ProgramName','ComputerName') 49

 #JR modified line follows 50

 $SelectProperty = @('ProgramName','DisplayVersion') 51

 if ($Property) { 52

 $SelectProperty += $Property 53

 } 54

 } 55

 56

 process { 57

 foreach ($Computer in $ComputerName) { 58

 $RegBase = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey([Microsoft.Win32.RegistryHive]::LocalMachine,$Computer) 59

 foreach ($CurrentReg in $RegistryLocation) { 60

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 25

Jonathan Risto;jonathan.risto@hotmail.com

 if ($RegBase) { 61

 $CurrentRegKey = $RegBase.OpenSubKey($CurrentReg) 62

 if ($CurrentRegKey) { 63

 $CurrentRegKey.GetSubKeyNames() | ForEach-Object { 64

 if ($Property) { 65

 foreach ($CurrentProperty in $Property) { 66

 $HashProperty.$CurrentProperty = ($RegBase.OpenSubKey("$CurrentReg$_")).GetValue($CurrentProperty) 67

 } 68

 } 69

 #JR commented out following line - not needed for this work 70

 #$HashProperty.ComputerName = $Computer 71

 $HashProperty.ProgramName = ($DisplayName = ($RegBase.OpenSubKey("$CurrentReg$_")).GetValue('DisplayName')) 72

 #JR added following new line as needed for this work 73

 $HashProperty.DisplayVersion = ($DisplayVersion = ($RegBase.OpenSubKey("$CurrentReg$_")).GetValue('DisplayVersion')) 74

 75

 if ($DisplayName) { 76

 New-Object -TypeName PSCustomObject -Property $HashProperty | 77

 Select-Object -Property $SelectProperty 78

 } 79

 } 80

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 26

Jonathan Risto;jonathan.risto@hotmail.com

 } 81

 } 82

 } 83

 } 84

 } 85

} 86

 87

clear-host 88

#blanking the screen to make it easy to see output 89

$ip_resp = '' 90

$ip_addr= '' 91

#blank out the variable to ensure it is empty 92

DO 93

 {DO 94

 { 95

 $ip_addr = Read-Host 'Input the IP address of the systems you wish to scan. E.G. 10.11.12.13' 96

 } while ($ip_addr -notmatch '\p{Nd}+\.\p{Nd}+\.\p{Nd}+\.\p{Nd}+') 97

 98

#the above forces the user to user numbers in the format we want of x.x.x. 99

 write-host 'You entered' $ip_addr ', is this correct? 100

© 2016 The SANS Institute Author retains full rights.

Windows Installed Software Inventory 27

Jonathan Risto;jonathan.risto@hotmail.com

 $ip_resp = Read-Host 'Y or N' 101

 } #end of DO 102

Until ($ip_resp -eq "Y" -OR ($ip_resp -eq "y")) 103

#the above loops asking the same question until the user enters Y or y 104

 105

$a = Get-Date 106

get date/time information from the built in powershell command 107

 108

$path = 'C:\temp\' 109

#change the above location to where you wish to have the output files stored 110

$filename = $path + $ip_addr +'__'+$a.Year+$a.Month+$a.Day+$a.Hour+$a.Minute+$a.Second+'.txt' 111

#creates the filename to be stored, by combining information and referencing sub values of the Get-Date output 112

 113

Get-RemoteProgram -ComputerName $ip_addr| Out-File $filename 114

#the above calls the 3rd party function and writes out the contents to the filename specified 115

 116

write-host ‘Collection complete. File ‘ $filename ‘ written 117

