
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Increase the value of static code analysis by
enhancing its rule set.

GIAC (GCCC) Gold Certification

Author: Michael Matthee, michael.h.matthee@protonmail.com
Advisor: David Hoelzer

Accepted: November 2017

Abstract

Static analysis tool vendors are debating whether to allow their customers a rule-set
tailored to their environment. There is no empirical evidence to support each argument or
counter-argument. Veracode does not accept custom rules and argues that lock-down is in
their customer’s best interest. Checkmarx enables their customer to customize a rule-set
under very special license agreements, while open-source tools such as SonarQube allow
for complete customization. Putting vendor concerns and priorities aside, should the
enterprise add a tailored rule-set – by adding rules that enforce its secure coding
standards – too? More importantly, does a tailored rule-set increase the value of static
code analysis to the business? In this study, four different static analysis tools –
Veracode, IBM AppScan, Burp Proxy Scanner and SonarQube – scan a JavaScript
application. After showing the limitations of the default rule-set for each scanner, the
research study adds rules that cover the distinct design and coding standards of the
sample application. It is not possible to add a custom rule-set to every scanner. For that
reason, the experiment adds the tailored rule-set to the SonarQube platform and combines
the results of the two scanning tools: the one tool enforces security standards while the
other finds common flaws in the code. While prior research shows that combining the
strengths of multiple code analysis tools deliver better results in general, this research
study proves that a tailored rule-set improves the outcome even more. The research
undertaking recommends practical steps to increase the coverage of automated static
analysis and maximize its value to the enterprise.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 2
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

1. Introduction
Malicious actors, the drivers that motivate them and how they compromise a

business, change continuously (Center for Internet Security, 2016). Amidst this changing

threat landscape, the Center of Information Security (CIS) maintains a set of technical

controls that defend the enterprise from attack. CIS updates these controls as new security

incidents and breaches emerge from around the globe. Security controls help a company

to reach and can - at times - exceed compliance requirements such as PCI, ISO, HIPAA,

ITIL, and NIST. Above all, the Center for Information Security (2017) claims that the

first five critical controls alone will stop approximately 85% of attacks in the real world.

One CIS technical security control deals with securing application software and

code review is an essential piece (Center for Internet Security, 2016). Developers could

peer review the code manually; however, the idea of the CIS framework is that an

enterprise will do this automatically and on a continuous basis (Center for Information

Security, 2017). A static analysis tool (or SAST) can achieve this ideal. A SAST tool

analyzes source code, bytecode, and binaries in a non-running state to find potential

security vulnerabilities within a code-base. Common SAST tools include Veracode, IBM

AppScan, Burp Static Scanner, Checkmarx, and SonarQube.

However, a SAST scan cannot discover all the security flaws within a code-base.

According to Houser (2014), over 40% of software vulnerabilities originate from a

system’s chosen architecture and design. It is also difficult to find flaws within a system’s

design and architecture by parsing code only (Chess & West, 2007). Houser (2014)

recommends a manual approach to finding flaws in software architecture.

Houser (2014) groups architectural risk analysis according to job function – a

function that may be specific to the enterprise. Houser's method then assigns a CWE

(Common Weakness Enumeration) risk factor to every job role within the architecture.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 3
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Houser's risk analysis method can highlight the following potential flaws in an enterprise

architecture:

1. Vulnerable business rules that in turn may lead to improper input validation

CWE-20,

2. Weak access controls with ill-defined authorities and responsibilities that may

lead to a violation of least privilege CWE-272 or information exposure CWE-200,

3. Incompatible definitions of data, which can lead to the exposure of sensitive data

through data queries CWE-202.

Houser (2014) explains how the distinct inner workings of an enterprise and its

architecture can lead to security vulnerabilities in software. Security architecture,

enterprise architecture and secure coding standards all play a vital role in securing

application software – many of them being specific to the enterprise.

To what extent can a static code analysis tool find flaws in a system’s

architecture? Chess & West (2007) reason that analyzing the risk of system architecture

can only be a manual task. However, around the same time, Dalci et al. (2006) proved

that custom rules within a SAST tool could embrace security standards unique to an

enterprise. Finally, in 2008, Shawky et al. (2008) used a SAST tool to discover the

distinct patterns of software design and enterprise architecture in a code-base specifically.

Today, several static code analysis tools claim to be industry-specific.

CodeSonar from GrammaTech (GrammaTech CodeSonar®, 2017) is one example

of a static code analysis tool that can do this. GrammaTech claims that its static analysis

tool ensures that companies follow DO-178C (aerospace), IEC 61508 (industry), ISO

26262 (automotive), and IEC 62304 (medical) standards. For example, the DO-178C

compliance document from the Radio Technical Commission for Aeronautics (RTCA,

2011) says that source code must match both the data flow and control flow of its

software architecture. To satisfy the DO-178C standard, CodeSonar will parse the source

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 4
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

code and then tell the customer whether the program adheres to the intended architecture

and standard or not (GrammaTech CodeSonar®, 2017). CodeSonar can also enforce

design standards – and if not by default, then at least through customization

(GrammaTech CodeSonar®, 2017). Customization plays an important role when laying

down architecture and design constraints for a code-base, especially when the needs

become enterprise or project specific.

SAST tools can, therefore, find vulnerabilities within a system’s design or

architecture. However, the potential precision and accuracy of a SAST tool is still an

obstacle in the vendor industry. The lack of accuracy and precision in SAST tools arise

from a mathematical problem called the halting problem (Hicks, 2016), i.e., one cannot

always determine if a computer program and its data input will either halt or run forever.

Likewise, when automating code review, an analyzer cannot simulate and calculate all

possible outcomes of a program. A scanner does not know what will happen when some

arbitrary data is input to the system; there are too many possibilities to calculate.

Examples of coding structures that will create such an undecidable outcome include

bounds checking for array access, a SQL query constructed from untrusted user input and

dereferencing a pointer after releasing it (Hicks, 2016). A static analysis tool cannot

report definitively on these coding structures as the code may be vulnerable or secure

depending on the state of the program and its data input. An alternative is to enforce a

safe coding style, for instance: only allowing prepared SQL statements in the code-base

and not allowing developers to build dynamic SQL queries based on user input.

Nevertheless, it is impossible to make a perfect static analysis tool due to the halting

problem.

In addition to the halting problem, tool vendors are also forced to balance

scalability and precision within their product (Hicks, 2016). For a SAST tool to be

accurate, it must scrutinize the source code meticulously. During analysis, a SAST tool

will consume more resources on a program that is cluttered and difficult to understand

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 5
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

than a code-base that is clean and well-structured (Hicks, 2016). A messy code-base

increases the workload for an automated code review to complete. And yet, customers

expect their SAST tool to run through vast amounts of code within a reasonable amount

of time. SAST tool vendors cannot assume that the code-base is clean. So, to speed up the

analysis process, precision and accuracy must give way. However, by tailoring a rule-set

to the enterprise, reasonable assumptions about the structure, architecture, and framework

of the code-base can be made, including:

1. the language of the software program, e.g., JavaScript

2. the technology framework(s) that the software is using, e.g., AngularJS,

NodeJS or Coffee

3. the enterprise may require specific coding guidelines, standards, and

design/architecture frameworks, e.g., only allow prepared SQL statements

within the source code.

Adopting such criteria for evaluating the code-base may – or may not – increase

the speed and precision of the SAST tool. Could custom rule-sets attain both: greater tool

precision along with an increase in language and framework coverage?

2. Arguments against customization
One tool vendor that does not allow its clients to customize the default rule-set is

Veracode (2014). Veracode prides itself in claiming that it has the lowest number of false

positives in the industry. It claims to achieve this by offering a well-balanced rule-set

within its platform.

After questioning Veracode about its reasons for not allowing custom rules in its

platform, one of its principal solutions architects had the following to say:

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 6
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

“Allowing developers to write rules can lead to an artificially low false positive

rate by providing the ability to suppress findings one at a time, or by writing custom

rules. The first approach is labor intensive; the second approach is error-prone (and

possibly abuse-prone) and requires developer training or often consulting work from the

vendor and must be repeated for each application.” (Principal Solutions Architect,

personal communication, 29 June 2017).

Veracode does not allow anyone to change or adapt its default rule-set – even if

this happens within an isolated environment. Veracode believes that its rule engine is too

advanced for its customers to enhance and consume responsibly – a client may

inadvertently cause damage to herself.

Reducing false positives is a problem inherent in static code analysis tools, but so

are false negatives (Chess & West, 2007). According to Dalci & Steven (2006), tool

vendors favor general rule-sets – i.e., rules that will minimize error across a vast

spectrum of companies and software applications. Tool vendors prefer to scale their

engines to a mass audience over being perfect for a select few (Chess & West, 2007).

Veracode (2017) claims to have a low false positive rate of only 5% and argues that its

competitors lag with a rate of 32% by comparison. Knowing the false positive rate of a

tool is useful, but understanding its false negative rate is important too. A false negative

rate predicts how many flaws a tool may miss during its scanning exercise.

Unfortunately, customers notice false positives more often than their false negative

counterparts as a scan will incorrectly report them as security flaws. By comparison, a

customer does not receive a list of vulnerabilities that a tool does not detect – you do not

know what you cannot see – and neither does Veracode.

3. Arguments in favor of customization
Reaching a vast customer base is a vital piece of marketing, but offering the best

rule-set to the distinct characteristics of each client has value too. Not only can custom

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 7
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

rule-sets expand the scope and role of static analysis, but custom rules can also increase

the precision and accuracy of the tool’s results. Over the years, research has favored two

techniques to reduce the number of false negatives produced by SAST tools: ranking of

security warnings and the use of machine learning models (Zhao, 2016). A third

alternative is to tailor custom static analysis rules to the enterprise or project at hand

(Dalci & Steven, 2006). Ideally, every company keeps its own set of security standards

alongside a wealth of threat and incident data that is unique to its line of business. While

tool vendors are unlikely to tailor their rules to suit a client, it could be worthwhile for

each enterprise to do so individually.

4. Related research
Recent undertakings attempt to offer benchmarks on the accuracy and precision of

static analysis tools in the marketplace. Livshits (2017) from Stanford supports a set of

vulnerable Java applications to evaluate the scope and accuracy of static analysis tools

and their rule-sets. The SAMATE (2017) initiative at NIST and the Build Security In

(2017) program at the Department of Homeland Security have similar aspirations. But,

there is no widely accepted yardstick for measuring static analysis tools and its rule-sets

(Chess & West, 2007), so research studies extrapolate their results.

From time to time, the NSA uses SAMATE test suites to evaluate SAST tools that

are available in the marketplace (National Security Agency Center for Assured Software,

2011; NSA, 2012). Returning to the CIS critical security controls, a perfect SAST tool

will automate code review entirely and will not require manual inspection of the code-

base at all. Ideally, the SAST tool will find all vulnerabilities – or true positives – within

the code-base. NSA calls this metric the recall rate which measures how well a SAST

tool can detect every known security flaw within a code-base.

The recall rate for five SAST tools analyzed by the NSA during a 2011 study

shows that SAST tools do not perform equally well (Center for Assured Software

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 8
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

National Security Agency, 2011). Depending on the language or technology at play, it

may be better to combine one or two SAST tools. Data for Table 1 below originates from

this NSA research study. It shows the recall rate while pairing the results from five

different SAST tools. The NSA study runs SAST scans on a test suite written in Java

called Juliet.

Table	1:	Results	of	an	NSA	study	on	combining	SAST	tools	to	get	better	recall	rates	(Center	for	Assured	Software	
National	Security	Agency,	2011).	

 Tool 1 Tool 2 Tool 3 Tool 4 Tool 5

Tool 1 0.53 0.59 0.77 0.73 0.59

Tool 2 0.59 0.11 0.70 0.52 0.25

Tool 3 0.77 0.70 0.67 0.91 0.80

Tool 4 0.73 0.52 0.91 0.50 0.62

Tool 5 0.59 0.25 0.80 0.62 0.22

The NSA study analyzes the results of five SAST tools; the product names are

anonymous and are therefore listed as Tools 1 to 5 within the table. The recall rate in this

study range between zero and one with a larger number being better. Blocks colored in

grey within Table 1 represent the recall rate for a single SAST tool. Table entries in blue

confirm that the pairing of SAST tools improves the final recall rate – i.e., a combined

toolset finds more security flaws within the code-base.

The NSA conducts these research studies on an infrequent basis, and they

consistently arrive at similar conclusions (NSA, 2012):

1. Different tools have different strengths, particularly when analyzing

programming code of a specific language type.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 9
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

2. Combining tools deliver better results as they can complement one

another.

According to the TIOBE (2017) index, the popularity of programming languages

fluctuates over time. To what extent can SAST tools complement one another when the

target technology and programming language are still emerging and new? What happens

when a SAST scanner does not support a new development framework?

5. Research study
The tool vendor must evolve its rule engine to support new languages,

frameworks, and technologies over time – and many of these changes can be specific to

the business. Adding a rule-set and tailoring it to the secure coding standard, design,

architecture and technology of an enterprise, could enhance the results of an overall code

scanning exercise.

One technology that undergoes many changes is JavaScript. According to TIOBE

(2017), JavaScript has been increasing in popularity over the past few years; more

projects are adopting JavaScript today as their primary programming language.

JavaScript is a weakly typed language which makes it malleable and hard to scan

accurately (Liang, 2014). JavaScript is also dynamic, and it can alter its behavior at

runtime – a dangerous characteristic to an unsuspecting victim. Over the years, JavaScript

frameworks have appeared to make the language safer and more structured during

implementation (TIOBE, 2017). Today, trending frameworks include AngularJS and

NodeJS; both are based on a variation of JavaScript called TypeScript.

During this research study, a vulnerable application was built using AngluarJS

and NodeJS and then scanned using four different static analysis tools: Veracode, IBM

AppScan, Burp Proxy Scanner and SonarQube. The vulnerable application extends an

existing NodeJS application from OWASP called NodeGoat (Karande, OWASP, 2017).

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 10
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

NodeGoat forms the bulk of the sample program, and the author increases the attack

surface by adding vulnerabilities to a new screen using AngularJS. Many of the

AngularJS flaws are subtle, and the SAST tool needs to have a deep understanding of the

AngularJS framework to detect them.

Figure	1:	Percentage	of	flaws	found	within	a	vulnerable	JavaScript	application	by	each	scanning	tool.		

Figure 1 shows the percentage of flaws found by each scanning tool (see

Appendix A for detailed results of this scanning exercise). Of all the SAST tools,

Veracode finds the most security flaws in the sample application. IBM AppScan Source

performs poorly; however, version 9.0.2 is over two years old, and its support for

JavaScript technologies may have improved since. This lack of support reaffirms the

need to continuously update and run the latest version of a SAST tool. SAST tools do not

support every language and framework that a project may use. The extent to which a

scanner understands a programming language may vary too. Table 2 below, lists popular

programming languages in the industry and records to what degree each tool supports it.

0
5

10
15
20
25
30
35
40
45
50

Veracode IBM	AppScan	Source	
(v	9.0.2)

SonarQube	(v	6.7	
LTS)

Burp	Proxy	Static	
Scanner	(v	1.7.28)

Percentage	of	Security	Flaws	Detected

Default	Set	(Recall	Rate)

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 11
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Table	2:	A	selection	of	popular	languages	and	tool	support	for	each	(SonarQube,	2017;	IBM,	2015;	Veracode,	2017).	
The	color	red	denotes	no	tool	support;	yellow	indicates	some	tool	support	while	green	marks	complete,	extensive	or	
unknown	version	support	for	a	programming	language.		

 Veracode IBM AppScan SonarQube

Java JRE 1.4 – 1.8 Supported –versions

are NA

Good support

Scala Up to v2.13 &

compiled with JavaC

1.6 – 1.8

No support No support

.NET C# VS .NET 2003, 2005,

2008, 2010, 2013,

2015, 2017 / Mono 4.x

.NET 2.0, 3.0, 3.5, 4.0,

4.5

Good support. .NET

versions not clear.

ASP.NET

with C# or

VB.NET

VS .NET 2003, 2005,

2008, 2010, 2013,

2015, 2017 – .NET 1.x,

2.0, 3.x, 4.x or core 1.1

for C# only

.NET 2.0, 3.0, 3.5, 4.0,

4.5

Good support. .NET

versions not clear.

VB.NET VS .NET 2003, 2005,

2008, 2010, 2013,

2015, 2017 – .NET 1.1,

2.0, 3.0, 3.5, 4.0, 4.5,

4.6

.NET 2.0, 3.0, 3.5, 4.0,

4.5

Good support. .NET

versions not clear.

JavaScript

and

TypeScript

Support AngularJS and

NodeJS. No support for

CoffeeScript nor Dart

No specific support for

JS frameworks listed.

No specific support for

JS frameworks listed.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 12
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Empirical results show

poor support.

Empirical results show

poor support.

PHP 5.2 – 5.6 4.x to 5.3 Only ten rules

Table 2 evaluates a sample of programming languages and does not reflect a

tool’s complete support profile. However, gaps in the support for these programming

languages exist, reducing the ability of SAST tools to capture every flaw that a code-base

may have. While analyzing JavaScript code, Veracode does not support CoffeeScript nor

does it examine Dart. Both JavaScript technologies, CoffeeScript (2017) and Dart (2017),

have been in existence for longer than six years – a long time for SAST tools to add

support for them within their rule engines. SAST tool vendors zoom in on their client’s

greatest need; this typically involves the more popular language constructs and

frameworks in Java. But, new technologies, frameworks, and architectures need new

SAST rules to accompany them. An extensive list of supported languages and

frameworks for each tool is available online (SonarQube, 2017; IBM, 2015; Veracode,

2017).

Running multiple scanning tools increases the total coverage and likelihood of

finding coding flaws (Center for Assured Software National Security Agency, 2011) –

the strengths of one tool cover the weak areas of another. This research study benchmarks

such tool combinations against a custom rule-set that assumes a set of enterprise security

standards.

Figure 2 shows the scan results for various tool and rule-set combinations against

the vulnerable JavaScript application. Combining the results of each scanner with that of

Burp Proxy improves the outcome, shown as blue bars in Figure 2. Combining the

strengths of all four tools (shown as yellow bars in Figure 2) advances the recall rate

significantly. However, adding a rule-set that applies a security standard to the project,

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 13
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

improves the result of each scanner drastically too (shown as dark green bars); and in the

case of Veracode, it exceeds all other combinations of toolsets. In this study, the tailored

rule-set finds another 19% of security flaws when added to the joint strength of four

SAST tools – the investment is small but the reward is big. This increase affirms the need

for a custom secure coding standard and how such a rule-set deters security flaws that

may otherwise occur.

Figure	2:	Scan	results	before	and	after	adding	a	tailored	rule-set.	

This research experiment adds a tailored rule-set using the extension framework

of SonarQube to find violations of the secure coding standard in the source-code. The

experiment adds coding standards that forbid error-prone constructs such as

sce.trustAsHtml of AngularJS and window.location within JavaScript.

 A code snippet that violates a secure coding standard does not imply that an

exploit or vulnerability exists for each finding; neither is it considered a false positive.

However, it does highlight areas in the source code that violate the coding, design, and

0
20
40
60
80
100

Veracode IBM	AppScan	Source	(v	
9.0.2)

SonarQube	(v	6.7	LTS) Burp	Proxy	Static	
Scanner	(v	1.7.28)

Percentage	of	Security	Flaws	Detected

Default	Set	(Recall	Rate)
Default	Set	+	Burp	Static	Scanner	(Recall	Rate)
Four	Tools	Combined	(Recall	Rate)
Default	+	Tailored	Set	(Recall	Rate)
Four	Tools	Combined	+	Tailored	Set	(Recall	Rate)

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 14
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

architecture standards of its owner. Security standards cover the areas that Veracode

misses during its analysis of the vulnerable JavaScript application.

5.1. Adding custom rules
Even though this research proves that an augmented rule-set can improve the

value of automated code review in the enterprise, some static analysis tool vendors -

including Veracode - do not allow customers to add more rules directly to their engines.

In this research study, rules are added to the SonarQube tool to enforce the custom

security code standard.

Two options exist while adding custom rules to the SonarQube platform: either

extend an existing plugin with more scan rules or develop an entirely new plugin. Both

approaches need the API from SonarQube (2017).

To extend the existing JavaScript rule-set, SonarQube needs the SonarJS 3.0

dependency along with the Java SDK in its classpath. After installing Java and adding the

SonarJS dependency create a new Java plugin and an entry point, or main class, by

implementing the Plugin interface as depicted below:

public class JavaScriptAngularExtensionRulesPlugin implements Plugin {

@Override

public void define(Context context) {

 context.addExtension(JavaScriptAngularExtensionRulesDefinition.class);

}

List this main class within the manifest file of the final plugin artifact so that the

SonarQube platform can register it to its list of available extensions.

The next step is to create a repository that holds the custom rules. Creating a new

and custom repository enables the scanning platform to apply rules selectively across

projects. Tailored rules may increase the accuracy and cover more flaws in one project,

but it might not be a good fit for another. Excessive rules can add unnecessary noise and

slow down an analysis process. Rule repositories enable one to apply rules selectively,

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 15
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

where proper. Create a new rule repository and give it a name along with a key as shown

below.

public class JavaScriptAngularExtensionRulesDefinition extends CustomJavaScriptRulesDefinition {

@Override

 public String repositoryName() {

 return "Extension repository for AngularJS rules ";

 }

The key acts as a primary key within the SonarQube platform to distinguish it

from other rule repositories. The rule repository class must implement the checkClasses()

method to return an array of custom rules to add. Using the $sce.trustAsHtml(…) Angular

method may result in a subtle and complex flaw that a scanner may miss during its scan

of the code-base. If the enterprise were to forbid the use of this AngularJS method, then a

custom SonarQube rule can enforce this during software development cycles. The code

snippet below is the signature of this rule.

@Rule(

key = “A1",

priority = Priority.MAJOR,

name = “$sce.trustAsHtml function is forbidden“,

tags = {“security”}

)

@SqaleSubCharacteristic(RulesDefinition.SubCharacteristics.DATA_RELIABILITY)

@SqaleConstantRemediation("5min")

public class ForbiddenAngularFunctionCheck extends DoubleDispatchVisitorCheck {
Logic within the visitCallExpression method detect the use of the forbidden

method and will flag it when used by developers.

@Override

public void visitCallExpression(CallExpressionTree tree) {

ExpressionTree callee = tree.callee();

if (callee.is(Kind.IDENTIFIER_REFERENCE) &&
FORBIDDEN_FUNCTIONS.contains(((IdentifierTree) callee).name())) {

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 16
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

 addIssue(tree, "Do not use the Angular $sce.trustAsHtml function.");

 }

By running a custom SonarQube platform in tandem with Veracode, one reaches

both a higher recall rate and coverage for enterprise and technology-specific rules. An

open-source and free tool, such as SonarQube, can augment and enhance the scanning

exercise. A further research study can quantify how the combination of a tailored tool

(such as SonarQube) with a reliable and commercial tool (such as Veracode) increases

the recall rate for an entire portfolio of projects within an enterprise.

Adding a coding standard within the SonarQube scan and pairing that with a

standard Veracode scan improves the result to find many more flaws in the vulnerable

JavaScript application. As discussed in Section 4, combining the strengths of two or more

SAST tools delivers better results than using a single scanner. However, by adding

enterprise-specific rules to the one scanner (e.g., SonarQube) and running that alongside

a second scanner (e.g., Veracode), the results exceed those of the Center for Assured

Software National Security Agency research study (2011).

5.2. The alternative
During this research study, Veracode was reporting false negatives – i.e., it did

not detect all known flaws within the vulnerable JavaScript application. The pre-scanner

of Veracode did not link all the application resources correctly causing the tool to miss

nine false negatives from the outset. However, credit is due to Veracode consultants who

are very helpful and supportive to its customers and particularly during this research

study.

Veracode takes its customer base seriously and does listen when there is a need to

support an enterprise-specific framework, a new technology framework - such as

AngularJS - or a new programming language. Veracode did perform an analysis of the

false negatives after the research study was complete, but such assessments take time.

Adding framework support can also be a costly and time-consuming exercise. The

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 17
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

alternative is to add a second SAST tool in the toolset and tailor its rule-set to cover

coding and design standards of the owning enterprise – adding support to scanners such

as Veracode in the situations where they fail. As Veracode did not detect 53% of the

vulnerabilities in this sample study, it may be prudent to do so.

6. Conclusion
Adding code, design, and architecture standards to an automated code review

increases the value of code scanning for the enterprise; SAST tools find more security

flaws in the source-code without increasing the false positive rate. Many of these

standards are specific to the industry or business, but it requires a scanner to hold a

tailored rule-set.

Although existing commercial tools have an expansive set of rules, some tool

vendors do not allow customers to add custom rules, e.g., Veracode (2014). Veracode

wants to protect the integrity and credibility of its rule-set and not subject it to any

wrongdoing (Principal Solutions Architect, personal communication, 29 June 2017;

Senior Application Security Consultant, 20 November 2017).

No static code analysis tool is perfect. Most vulnerabilities arise from the specific

architecture, design, and business logic of the underlying software system (Houser, 2014;

Chess & West, 2007). SAST tools can find flaws in software architecture and design

(GrammaTech CodeSonar®, 2017), but prominent scanners like Veracode (2014) do not

support this capability. Vendors like Veracode need to balance a low false positive rate

along with speed, performance, and quality of results for a broad audience (Hicks, 2016).

However, a tailored rule-set can make reasonable assumptions about the structure,

architecture, and framework of the source-code to be in line with specific enterprise or

industry standards.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 18
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Another concern is that SAST tools do not support every language and framework

in the software industry (IBM, 2015; Veracode, 2017; SonarQube, 2017). Research

studies by the Center for Assured Software National Security Agency (2011) conclude

that running multiple SAST tools together increases the recall rate – the strengths of one

tool covers the weaknesses of another. However, the four SAST tools used during this

research study do not support prominent programming languages in the industry like Go,

CoffeeScript, and Dart (SonarQube, 2017; IBM, 2015; Veracode, 2017). Furthermore,

many organizations develop frameworks and domain-specific languages that are

unknown to the industry at large. Tailoring a rule-set to new or unsupported

programming languages extends the reach of code analyzers.

In this research study, four SAST scanners analyze a vulnerable JavaScript

application with carefully crafted security flaws. Of the four tools, Veracode delivers the

best results, but not a perfect score. Although Veracode has good customer support, it

takes time and effort to align a rule-set to the specific needs of an enterprise – and

unfortunately in most cases, impossible (Principal Solutions Architect, personal

communication, 29 June 2017; Senior Application Security Consultant, 20 November

2017). Moreover, the default rule-set of the tools do not score high enough. In this study,

Veracode missed more than fifty percent of the coding flaws – meaning that many flaws

may go unnoticed to the unwary customer. Running a second scanner in conjunction with

Veracode, one that enforces a custom secure coding standard for the enterprise, is a better

alternative.

Research studies by the Center for Assured Software National Security Agency

(2011) show that running two or more SAST tools together deliver better results than

running only one. This research study confirms that thesis by running four different

SAST tools together; showing that the strengths of one tool cover the weaknesses of

another. However, this study further extends the research of the NSA by running a second

scanner that holds the standards of the owning enterprise in mind. This research study

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 19
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

concludes that adding enterprise-specific rules to the one scanner (e.g., SonarQube) and

running that alongside the default wiring of a second scanner (e.g., Veracode), the results

exceed those of the Center for Assured Software National Security Agency research

study (2011). Running the default rule-set of a static code analyzer is not enough;

automated code review using SAST must also include an enterprise security standard.

Doing so maximizes the business value of static code analysis and further automates the

successful implementation of the CIS critical security control for application security.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 20
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

References
Chess,	B.,	&	West,	J.	(2007).	Introduction	to	static	analysis.	In	Secure	programming	

with	static	analysis.	Upper	Saddle	River,	NJ,	United	States:	Addison-Wesley.	

Zhao,	P.	(2016).	Case	studies	of	a	machine	learning	process	for	improving	the	

accuracy	of	static	analysis	tools.	Retrieved	from	University	of	Waterloo:	

https://uwspace.uwaterloo.ca/handle/10012/11004	

Phegade,	R.,	Jain,	R.,	Randhir,	A.,	&	Kadav,	P.	(2016).	Removing	web	application	

vulnerabilities	with	static	analysis.	International	Research	Journal	of	

Engineering	and	Technology(3(11)),	1488-1490.	

Carnegie	Mellon	University.	(2017,	May	22).	Secure	coding	standards.	Retrieved	May	

22,	2017,	from	http://www.cert.org/secure-coding/research/se	

OWASP.	(n.d.).	OWASP.	Retrieved	May	22,	2017,	from	https://www.owasp.org/	

Houser,	W.	(2014,	December	01).	Static	Analysis	is	not	enough:	The	Role	of	

Architecture	and	Design	in	Software	Assurance.	Retrieved	June	14,	2017,	from	

https://www.nist.gov/publications/static-analysis-not-enough-role-

architecture-and-design-	

Abd-El-Hafiz,	S.	K.,	Shawky,	D.	M.,	&	El-Sedeek,	A.	(2008).	Recovery	of	object-

oriented	design	patterns	using	static	and	dynamic	analyses.	International	

Journal	Of	Computers	&	Applications(30(3)),	220-233.	

GrammaTech	CodeSonar®.	(2017,	June	14).	Retrieved	from	

http://www.verifysoft.com/en_FDA_standards.html	

Livshits,	B.	(2017,	June	14).	Stanford	SecuriBench.	Retrieved	from	

https://suif.stanford.edu/~livshits/securibench/	

SAMATE.	(2017,	June	14).	SAMATE	-	Software	Assurance	Metrics	And	Tool	Evaluation.	

Retrieved	from	http://samate.nist.gov/	

US	CERT.	(2017,	June	14).	Build	Security	In.	Retrieved	from	https://www.us-

cert.gov/bsi	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 21
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

SonarQube.	(2017,	June	14).	Security-related	rules	-	SonarQube	Documentation.	

Retrieved	from	https://docs.sonarqube.org/display/SONAR/Security-

related	

Veracode.	(2014,	June	6).	Secure	Agile	Q&A:	Scale,	Continuous	Integration	and	

Policies.	Retrieved	from	https://www.veracode.com/blog/2014/06/secure-

agile-qa-scale-continuous-integration-and-policies	

Center	for	Internet	Security.	(2016,	August	31).	CIS	Controls.	Retrieved	June	14,	

2017,	from	https://www.cisecurity.org/controls/	

Center	for	Information	Security.	(2017,	July	21).	Mapping	and	Compliance.	Retrieved	

July	23,	2017,	from	https://www.cisecurity.org/cybersecurity-

tools/mapping-compliance/	

Dalci,	E.,	&	Steven,	J.	(2006).	A	framework	for	creating	custom	rules	for	static	

analysis	tools.	Proc.	Static	Analysis	Summit	(pp.	49-54).	Gaithersburg:	NIST.	

Retrieved	from	https://samate.nist.gov/docs/NIST_Special_Publication_500-

262.pdf	

Hicks,	M.	(2016,	August	15).	Program	Analysis.	Software	Security.	College	Park,	

Maryland,	United	States:	University	of	Maryland.	

Karande,	C.	(2017,	October	14).	OWASP_Node_js_Goat_Project.	Retrieved	from	

owasp:	

https://www.owasp.org/index.php/Projects/OWASP_Node_js_Goat_Project	

NSA.	(2012,	March	29).	SATE4.	Retrieved	November	20,	2017,	from	samate.nist.gov:	

https://samate.nist.gov/docs/SATE4/SATE%20IV%206%20Stick%20to%2

0Facts%20II%20Erno.pdf	

National	Security	Agency	Center	for	Assured	Software.	(2011,	June	26).	

BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.pdf.	Retrieved	

November	20,	2017,	from	media.blackhat.com:	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 22
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

https://media.blackhat.com/bh-us-

11/Willis/BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.pdf	

Center	for	Assured	Software	National	Security	Agency.	(2011).	CAS	Static	Analysis	

Tool	Study	-	Methodology.	Fort	George	G.	Meade:	NSA.	

TIOBE.	(2017,	November	21).	tiobe.	Retrieved	from	tiobe:	

https://www.tiobe.com/tiobe-index/	

Liang,	Y.	E.	(2014).	JavaScript	Security.	Birmingham,	UK:	Packt	Publishing.	

Karande,	C.	(2017,	November	14).	OWASP.	Retrieved	November	22,	2017,	from	

NodeGoat:	https://github.com/OWASP/NodeGoat	

CoffeeScript.	(2017,	November	22).	Retrieved	from	http://coffeescript.org/	

Dart.	(2017,	November	22).	Retrieved	from	https://www.dartlang.org/	

SonarQube.	(2017,	November	22).	Extension	Guide.	Retrieved	from	

docs.sonarqube.org:	

https://docs.sonarqube.org/display/DEV/Extension+Guide	

Veracode.	(2017,	October).	Veracode	Compilation	Guide.	

IBM. (2015). Installation and Administration Guide. IBM Security AppScan Source

Version 9.0.2.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 23
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Appendix A
Detailed Results of Sample Application

Vulnerability	 Line	 Veracode	 IBM	AppScan	 SonarQube	 Burp	Proxy	
/.../app/data/allocations-dao.js	 79	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/data/allocations-dao.js	 30	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/data/profile-dao.js	 71	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/routes/contributions.js		 24	 True	Positive	 False	Negative	 True	Positive	 False	Negative	
/.../app/routes/contributions.js		 25	 True	Positive	 False	Negative	 True	Positive	 False	Negative	
/.../app/routes/contributions.js		 26	 True	Positive	 False	Negative	 True	Positive	 False	Negative	
/.../app/routes/index.js	 60	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/routes/index.js	 61	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/routes/index.js	 82	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/routes/session.js	 60	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/routes/session.js	 138	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/routes/session.js	 189	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/routes/session.js	 48	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/routes/session.js	 65	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/routes/session.js	 73	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/routes/session.js	 106	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/views/allocations.html	 15	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/allocations.html	 22	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/allocations.html	 35	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/allocations.html	 39	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/allocations.html	 42	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/allocations.html	 45	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 20	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/benefits.html	 50	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 51	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 52	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 56	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 57	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/contributions.html	 20	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/layout.html	 56	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/layout.html	 75	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/layout.html	 126	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/views/login.html	 101	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/login.html	 110	 False	Positive	 True	Negative	 True	Negative	 True	Negative	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 24
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

/.../app/views/login.html	 115	 False	Positive	 True	Negative	 True	Negative	 False	Positive	
/.../app/views/login.html	 117	 False	Positive	 True	Negative	 True	Negative	 False	Positive	
/.../app/views/login.html	(auto)	 115	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
/.../app/views/maliciousps.html	 100	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/maliciousps.html	 114	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 24	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/profile.html	 41	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 45	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 49	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 53	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 57	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 61	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 66	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 68	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 57	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 74	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 79	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 85	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 90	 False	Positive	 True	Negative	 True	Negative	 False	Positive	
/.../app/views/signup.html	 95	 False	Positive	 True	Negative	 True	Negative	 False	Positive	
/.../app/views/signup.html	 101	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 103	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 125	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/views/signup.html	(auto)	 90	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
/.../app/views/signup.html	(auto)	 96	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
/.../artifacts/db-reset.js	 15	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 23	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 31	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 18	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 27	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 35	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../data/contributions-dao.js	 28	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../data/contributions-dao.js	 100	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../data/contributions-dao.js	 71	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../data/contributions-dao.js	 13	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../data/contributions-dao.js	 57	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../server.js	 136	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../server.js	 21	 False	Negative	 False	Negative	 False	Negative	 False	Negative	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 25
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

/.../server.js	 25	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../server.js	 80	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../server.js	16	 16	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../test/security/profile-test.js	 36	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../test/security/profile-test.js	 37	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../test/security/profile-test.js	 270	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../views/error-template.html	 11	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/VeracodeTestSuite/.../env/all.js	 5	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
\bootstrap\bootstrap-tour.js	 422	 False	Negative	 True	Positive	 False	Negative	 False	Negative	
app\views\maliciousps.html	 104	 False	Negative	 True	Positive	 False	Negative	 False	Negative	
app\views\maliciousps.html	 66	 False	Negative	 True	Positive	 False	Negative	 True	Positive	
app\views\maliciousps.html	 69	 False	Negative	 True	Positive	 False	Negative	 True	Positive	
app\views\maliciousps.html	 62	 False	Negative	 True	Positive	 False	Negative	 False	Negative	
app\views\maliciousps.html	 114	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\views\maliciousps.html	 124	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\views\maliciousps.html	 129	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\views\maliciousps.html	 100	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\views\tutorial\layout.html	 94	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
assets/angular/sonarrules.js	 4	 False	Negative	 False	Negative	 True	Positive	 False	Negative	
assets/angular/sonarrules.js	 10	 False	Negative	 False	Negative	 True	Positive	 True	Positive	
assets/angular/sonarrules.js	 21	 False	Negative	 False	Negative	 True	Positive	 False	Negative	
assets/angular/sonarrules.js	 27	 False	Negative	 False	Negative	 True	Positive	 True	Positive	
assets/angular/sonarrules.js	 40	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
assets/angular/sonarrules.js	 43	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
assets/angular/sonarrules.js	 30	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
assets/angular/sonarrules.js	 31	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
assets/angular/sonarrules.js	 13	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
config/env/development.js	 15	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
config/env/test.js	 3	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
app\routes\profile.js	 37	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\routes\profile.js	 64	 False	Negative	 False	Negative	 False	Negative	 False	Negative	

	
Recall	Rate	 		 47,22%	 6,94%	 9,72%	 16,67%	
Percentage	of	False	Positives	 		 24,27%	 5,83%	 0,00%	 3,88%	
Recall	Rate	-	Enhanced	Rule-Set	 79,17%	 50,00%	 48,61%	 50,00%	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 26
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Appendix B
Summary of IBM AppScan Results

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 27
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Appendix C
Summary of Veracode Results

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 28
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Appendix D
Summary of Burp Static Scanner Results

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Static Code Analysis	 29
	

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Appendix E
Summary of SonarQube Results

