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Abstract 

Static analysis tool vendors are debating whether to allow their customers a rule-set 
tailored to their environment. There is no empirical evidence to support each argument or 
counter-argument. Veracode does not accept custom rules and argues that lock-down is in 
their customer’s best interest. Checkmarx enables their customer to customize a rule-set 
under very special license agreements, while open-source tools such as SonarQube allow 
for complete customization. Putting vendor concerns and priorities aside, should the 
enterprise add a tailored rule-set – by adding rules that enforce its secure coding 
standards – too? More importantly, does a tailored rule-set increase the value of static 
code analysis to the business? In this study, four different static analysis tools – 
Veracode, IBM AppScan, Burp Proxy Scanner and SonarQube – scan a JavaScript 
application. After showing the limitations of the default rule-set for each scanner, the 
research study adds rules that cover the distinct design and coding standards of the 
sample application. It is not possible to add a custom rule-set to every scanner. For that 
reason, the experiment adds the tailored rule-set to the SonarQube platform and combines 
the results of the two scanning tools: the one tool enforces security standards while the 
other finds common flaws in the code. While prior research shows that combining the 
strengths of multiple code analysis tools deliver better results in general, this research 
study proves that a tailored rule-set improves the outcome even more. The research 
undertaking recommends practical steps to increase the coverage of automated static 
analysis and maximize its value to the enterprise.   
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1. Introduction 
Malicious actors, the drivers that motivate them and how they compromise a 

business, change continuously (Center for Internet Security, 2016). Amidst this changing 

threat landscape, the Center of Information Security (CIS) maintains a set of technical 

controls that defend the enterprise from attack. CIS updates these controls as new security 

incidents and breaches emerge from around the globe. Security controls help a company 

to reach and can - at times - exceed compliance requirements such as PCI, ISO, HIPAA, 

ITIL, and NIST. Above all, the Center for Information Security (2017) claims that the 

first five critical controls alone will stop approximately 85% of attacks in the real world. 

One CIS technical security control deals with securing application software and 

code review is an essential piece (Center for Internet Security, 2016). Developers could 

peer review the code manually; however, the idea of the CIS framework is that an 

enterprise will do this automatically and on a continuous basis (Center for Information 

Security, 2017). A static analysis tool (or SAST) can achieve this ideal. A SAST tool 

analyzes source code, bytecode, and binaries in a non-running state to find potential 

security vulnerabilities within a code-base. Common SAST tools include Veracode, IBM 

AppScan, Burp Static Scanner, Checkmarx, and SonarQube. 

However, a SAST scan cannot discover all the security flaws within a code-base. 

According to Houser (2014), over 40% of software vulnerabilities originate from a 

system’s chosen architecture and design. It is also difficult to find flaws within a system’s 

design and architecture by parsing code only (Chess & West, 2007). Houser (2014) 

recommends a manual approach to finding flaws in software architecture. 

Houser (2014) groups architectural risk analysis according to job function – a 

function that may be specific to the enterprise. Houser's method then assigns a CWE 

(Common Weakness Enumeration) risk factor to every job role within the architecture. 
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Houser's risk analysis method can highlight the following potential flaws in an enterprise 

architecture: 

1. Vulnerable business rules that in turn may lead to improper input validation 

CWE-20,  

2. Weak access controls with ill-defined authorities and responsibilities that may 

lead to a violation of least privilege CWE-272 or information exposure CWE-200,  

3. Incompatible definitions of data, which can lead to the exposure of sensitive data 

through data queries CWE-202. 

Houser (2014) explains how the distinct inner workings of an enterprise and its 

architecture can lead to security vulnerabilities in software. Security architecture, 

enterprise architecture and secure coding standards all play a vital role in securing 

application software – many of them being specific to the enterprise.  

To what extent can a static code analysis tool find flaws in a system’s 

architecture? Chess & West (2007) reason that analyzing the risk of system architecture 

can only be a manual task. However, around the same time, Dalci et al. (2006) proved 

that custom rules within a SAST tool could embrace security standards unique to an 

enterprise. Finally, in 2008, Shawky et al. (2008) used a SAST tool to discover the 

distinct patterns of software design and enterprise architecture in a code-base specifically. 

Today, several static code analysis tools claim to be industry-specific. 

CodeSonar from GrammaTech (GrammaTech CodeSonar®, 2017) is one example 

of a static code analysis tool that can do this. GrammaTech claims that its static analysis 

tool ensures that companies follow DO-178C (aerospace), IEC 61508 (industry), ISO 

26262 (automotive), and IEC 62304 (medical) standards. For example, the DO-178C 

compliance document from the Radio Technical Commission for Aeronautics (RTCA, 

2011) says that source code must match both the data flow and control flow of its 

software architecture. To satisfy the DO-178C standard, CodeSonar will parse the source 
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code and then tell the customer whether the program adheres to the intended architecture 

and standard or not (GrammaTech CodeSonar®, 2017). CodeSonar can also enforce 

design standards – and if not by default, then at least through customization 

(GrammaTech CodeSonar®, 2017). Customization plays an important role when laying 

down architecture and design constraints for a code-base, especially when the needs 

become enterprise or project specific.  

SAST tools can, therefore, find vulnerabilities within a system’s design or 

architecture. However, the potential precision and accuracy of a SAST tool is still an 

obstacle in the vendor industry. The lack of accuracy and precision in SAST tools arise 

from a mathematical problem called the halting problem (Hicks, 2016), i.e., one cannot 

always determine if a computer program and its data input will either halt or run forever. 

Likewise, when automating code review, an analyzer cannot simulate and calculate all 

possible outcomes of a program. A scanner does not know what will happen when some 

arbitrary data is input to the system; there are too many possibilities to calculate. 

Examples of coding structures that will create such an undecidable outcome include 

bounds checking for array access, a SQL query constructed from untrusted user input and 

dereferencing a pointer after releasing it (Hicks, 2016). A static analysis tool cannot 

report definitively on these coding structures as the code may be vulnerable or secure 

depending on the state of the program and its data input. An alternative is to enforce a 

safe coding style, for instance: only allowing prepared SQL statements in the code-base 

and not allowing developers to build dynamic SQL queries based on user input. 

Nevertheless, it is impossible to make a perfect static analysis tool due to the halting 

problem.  

In addition to the halting problem, tool vendors are also forced to balance 

scalability and precision within their product (Hicks, 2016). For a SAST tool to be 

accurate, it must scrutinize the source code meticulously. During analysis, a SAST tool 

will consume more resources on a program that is cluttered and difficult to understand 
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than a code-base that is clean and well-structured (Hicks, 2016). A messy code-base 

increases the workload for an automated code review to complete. And yet, customers 

expect their SAST tool to run through vast amounts of code within a reasonable amount 

of time. SAST tool vendors cannot assume that the code-base is clean. So, to speed up the 

analysis process, precision and accuracy must give way. However, by tailoring a rule-set 

to the enterprise, reasonable assumptions about the structure, architecture, and framework 

of the code-base can be made, including: 

1. the language of the software program, e.g., JavaScript 

2. the technology framework(s) that the software is using, e.g., AngularJS, 

NodeJS or Coffee 

3. the enterprise may require specific coding guidelines, standards, and 

design/architecture frameworks, e.g., only allow prepared SQL statements 

within the source code. 

Adopting such criteria for evaluating the code-base may – or may not – increase 

the speed and precision of the SAST tool. Could custom rule-sets attain both: greater tool 

precision along with an increase in language and framework coverage? 

2. Arguments against customization 
One tool vendor that does not allow its clients to customize the default rule-set is 

Veracode (2014). Veracode prides itself in claiming that it has the lowest number of false 

positives in the industry. It claims to achieve this by offering a well-balanced rule-set 

within its platform.  

After questioning Veracode about its reasons for not allowing custom rules in its 

platform, one of its principal solutions architects had the following to say: 
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“Allowing developers to write rules can lead to an artificially low false positive 

rate by providing the ability to suppress findings one at a time, or by writing custom 

rules. The first approach is labor intensive; the second approach is error-prone (and 

possibly abuse-prone) and requires developer training or often consulting work from the 

vendor and must be repeated for each application.” (Principal Solutions Architect, 

personal communication, 29 June 2017). 

Veracode does not allow anyone to change or adapt its default rule-set – even if 

this happens within an isolated environment. Veracode believes that its rule engine is too 

advanced for its customers to enhance and consume responsibly – a client may 

inadvertently cause damage to herself.  

Reducing false positives is a problem inherent in static code analysis tools, but so 

are false negatives (Chess & West, 2007). According to Dalci & Steven (2006), tool 

vendors favor general rule-sets – i.e., rules that will minimize error across a vast 

spectrum of companies and software applications. Tool vendors prefer to scale their 

engines to a mass audience over being perfect for a select few (Chess & West, 2007). 

Veracode (2017) claims to have a low false positive rate of only 5% and argues that its 

competitors lag with a rate of 32% by comparison. Knowing the false positive rate of a 

tool is useful, but understanding its false negative rate is important too. A false negative 

rate predicts how many flaws a tool may miss during its scanning exercise. 

Unfortunately, customers notice false positives more often than their false negative 

counterparts as a scan will incorrectly report them as security flaws. By comparison, a 

customer does not receive a list of vulnerabilities that a tool does not detect – you do not 

know what you cannot see – and neither does Veracode.   

3. Arguments in favor of customization 
Reaching a vast customer base is a vital piece of marketing, but offering the best 

rule-set to the distinct characteristics of each client has value too. Not only can custom 
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rule-sets expand the scope and role of static analysis, but custom rules can also increase 

the precision and accuracy of the tool’s results. Over the years, research has favored two 

techniques to reduce the number of false negatives produced by SAST tools: ranking of 

security warnings and the use of machine learning models (Zhao, 2016). A third 

alternative is to tailor custom static analysis rules to the enterprise or project at hand 

(Dalci & Steven, 2006). Ideally, every company keeps its own set of security standards 

alongside a wealth of threat and incident data that is unique to its line of business. While 

tool vendors are unlikely to tailor their rules to suit a client, it could be worthwhile for 

each enterprise to do so individually. 

4. Related research  
Recent undertakings attempt to offer benchmarks on the accuracy and precision of 

static analysis tools in the marketplace. Livshits (2017) from Stanford supports a set of 

vulnerable Java applications to evaluate the scope and accuracy of static analysis tools 

and their rule-sets. The SAMATE (2017) initiative at NIST and the Build Security In 

(2017) program at the Department of Homeland Security have similar aspirations. But, 

there is no widely accepted yardstick for measuring static analysis tools and its rule-sets 

(Chess & West, 2007), so research studies extrapolate their results. 

From time to time, the NSA uses SAMATE test suites to evaluate SAST tools that 

are available in the marketplace (National Security Agency Center for Assured Software, 

2011; NSA, 2012). Returning to the CIS critical security controls, a perfect SAST tool 

will automate code review entirely and will not require manual inspection of the code-

base at all. Ideally, the SAST tool will find all vulnerabilities – or true positives – within 

the code-base. NSA calls this metric the recall rate which measures how well a SAST 

tool can detect every known security flaw within a code-base.  

The recall rate for five SAST tools analyzed by the NSA during a 2011 study 

shows that SAST tools do not perform equally well (Center for Assured Software 



© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights. 

Static Code Analysis	 8 
	
 
 
 
 
 
 

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

National Security Agency, 2011). Depending on the language or technology at play, it 

may be better to combine one or two SAST tools. Data for Table 1 below originates from 

this NSA research study. It shows the recall rate while pairing the results from five 

different SAST tools. The NSA study runs SAST scans on a test suite written in Java 

called Juliet.  

Table	1:	Results	of	an	NSA	study	on	combining	SAST	tools	to	get	better	recall	rates	(Center	for	Assured	Software	
National	Security	Agency,	2011).	

 Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 

Tool 1 0.53 0.59 0.77 0.73 0.59 

Tool 2 0.59 0.11 0.70 0.52 0.25 

Tool 3 0.77 0.70 0.67 0.91 0.80 

Tool 4 0.73 0.52 0.91 0.50 0.62 

Tool 5 0.59 0.25 0.80 0.62 0.22 

 

The NSA study analyzes the results of five SAST tools; the product names are 

anonymous and are therefore listed as Tools 1 to 5 within the table. The recall rate in this 

study range between zero and one with a larger number being better. Blocks colored in 

grey within Table 1 represent the recall rate for a single SAST tool. Table entries in blue 

confirm that the pairing of SAST tools improves the final recall rate – i.e., a combined 

toolset finds more security flaws within the code-base.  

The NSA conducts these research studies on an infrequent basis, and they 

consistently arrive at similar conclusions (NSA, 2012): 

1. Different tools have different strengths, particularly when analyzing 

programming code of a specific language type. 
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2. Combining tools deliver better results as they can complement one 

another. 

According to the TIOBE (2017) index, the popularity of programming languages 

fluctuates over time. To what extent can SAST tools complement one another when the 

target technology and programming language are still emerging and new? What happens 

when a SAST scanner does not support a new development framework? 

5. Research study 
The tool vendor must evolve its rule engine to support new languages, 

frameworks, and technologies over time – and many of these changes can be specific to 

the business. Adding a rule-set and tailoring it to the secure coding standard, design, 

architecture and technology of an enterprise, could enhance the results of an overall code 

scanning exercise. 

One technology that undergoes many changes is JavaScript. According to TIOBE 

(2017), JavaScript has been increasing in popularity over the past few years; more 

projects are adopting JavaScript today as their primary programming language. 

JavaScript is a weakly typed language which makes it malleable and hard to scan 

accurately (Liang, 2014). JavaScript is also dynamic, and it can alter its behavior at 

runtime – a dangerous characteristic to an unsuspecting victim. Over the years, JavaScript 

frameworks have appeared to make the language safer and more structured during 

implementation (TIOBE, 2017). Today, trending frameworks include AngularJS and 

NodeJS; both are based on a variation of JavaScript called TypeScript.  

During this research study, a vulnerable application was built using AngluarJS 

and NodeJS and then scanned using four different static analysis tools: Veracode, IBM 

AppScan, Burp Proxy Scanner and SonarQube. The vulnerable application extends an 

existing NodeJS application from OWASP called NodeGoat (Karande, OWASP, 2017). 
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NodeGoat forms the bulk of the sample program, and the author increases the attack 

surface by adding vulnerabilities to a new screen using AngularJS. Many of the 

AngularJS flaws are subtle, and the SAST tool needs to have a deep understanding of the 

AngularJS framework to detect them.  

 

Figure	1:	Percentage	of	flaws	found	within	a	vulnerable	JavaScript	application	by	each	scanning	tool.		

Figure 1 shows the percentage of flaws found by each scanning tool (see 

Appendix A for detailed results of this scanning exercise). Of all the SAST tools, 

Veracode finds the most security flaws in the sample application. IBM AppScan Source 

performs poorly; however, version 9.0.2 is over two years old, and its support for 

JavaScript technologies may have improved since. This lack of support reaffirms the 

need to continuously update and run the latest version of a SAST tool. SAST tools do not 

support every language and framework that a project may use. The extent to which a 

scanner understands a programming language may vary too. Table 2 below, lists popular 

programming languages in the industry and records to what degree each tool supports it.  
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Percentage	of	Security	Flaws	Detected

Default	Set	(Recall	Rate)



© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights. 

Static Code Analysis	 11 
	
 
 
 
 
 
 

Michael	Matthee,	
michael.h.matthee@protonmail.com	 	 	

Table	2:	A	selection	of	popular	languages	and	tool	support	for	each	(SonarQube,	2017;	IBM,	2015;	Veracode,	2017).	
The	color	red	denotes	no	tool	support;	yellow	indicates	some	tool	support	while	green	marks	complete,	extensive	or	
unknown	version	support	for	a	programming	language.		

 Veracode IBM AppScan SonarQube 

Java JRE 1.4 – 1.8 Supported –versions 

are NA 

Good support 

Scala Up to v2.13 & 

compiled with JavaC 

1.6 – 1.8 

No support No support 

.NET C# VS .NET 2003, 2005, 

2008, 2010, 2013, 

2015, 2017 / Mono 4.x 

.NET 2.0, 3.0, 3.5, 4.0, 

4.5 

Good support. .NET 

versions not clear. 

ASP.NET 

with C# or 

VB.NET  

VS .NET 2003, 2005, 

2008, 2010, 2013, 

2015, 2017 – .NET 1.x, 

2.0, 3.x, 4.x or core 1.1 

for C# only 

.NET 2.0, 3.0, 3.5, 4.0, 

4.5 

Good support. .NET 

versions not clear. 

VB.NET  VS .NET 2003, 2005, 

2008, 2010, 2013, 

2015, 2017 – .NET 1.1, 

2.0, 3.0, 3.5, 4.0, 4.5, 

4.6 

.NET 2.0, 3.0, 3.5, 4.0, 

4.5 

Good support. .NET 

versions not clear. 

JavaScript 

and 

TypeScript 

Support AngularJS and 

NodeJS. No support for 

CoffeeScript nor Dart 

No specific support for 

JS frameworks listed. 

No specific support for 

JS frameworks listed. 
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Empirical results show 

poor support. 

Empirical results show 

poor support. 

PHP 5.2 – 5.6 4.x to 5.3 Only ten rules 

 

Table 2 evaluates a sample of programming languages and does not reflect a 

tool’s complete support profile. However, gaps in the support for these programming 

languages exist, reducing the ability of SAST tools to capture every flaw that a code-base 

may have. While analyzing JavaScript code, Veracode does not support CoffeeScript nor 

does it examine Dart. Both JavaScript technologies, CoffeeScript (2017) and Dart (2017), 

have been in existence for longer than six years – a long time for SAST tools to add 

support for them within their rule engines. SAST tool vendors zoom in on their client’s 

greatest need; this typically involves the more popular language constructs and 

frameworks in Java. But, new technologies, frameworks, and architectures need new 

SAST rules to accompany them. An extensive list of supported languages and 

frameworks for each tool is available online (SonarQube, 2017; IBM, 2015; Veracode, 

2017). 

Running multiple scanning tools increases the total coverage and likelihood of 

finding coding flaws (Center for Assured Software National Security Agency, 2011) – 

the strengths of one tool cover the weak areas of another. This research study benchmarks 

such tool combinations against a custom rule-set that assumes a set of enterprise security 

standards.  

Figure 2 shows the scan results for various tool and rule-set combinations against 

the vulnerable JavaScript application. Combining the results of each scanner with that of 

Burp Proxy improves the outcome, shown as blue bars in Figure 2. Combining the 

strengths of all four tools (shown as yellow bars in Figure 2) advances the recall rate 

significantly. However, adding a rule-set that applies a security standard to the project, 
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improves the result of each scanner drastically too (shown as dark green bars); and in the 

case of Veracode, it exceeds all other combinations of toolsets. In this study, the tailored 

rule-set finds another 19% of security flaws when added to the joint strength of four 

SAST tools – the investment is small but the reward is big. This increase affirms the need 

for a custom secure coding standard and how such a rule-set deters security flaws that 

may otherwise occur.  

 

Figure	2:	Scan	results	before	and	after	adding	a	tailored	rule-set.	

This research experiment adds a tailored rule-set using the extension framework 

of SonarQube to find violations of the secure coding standard in the source-code. The 

experiment adds coding standards that forbid error-prone constructs such as 

sce.trustAsHtml of AngularJS and window.location within JavaScript.   

 A code snippet that violates a secure coding standard does not imply that an 

exploit or vulnerability exists for each finding; neither is it considered a false positive. 

However, it does highlight areas in the source code that violate the coding, design, and 
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architecture standards of its owner. Security standards cover the areas that Veracode 

misses during its analysis of the vulnerable JavaScript application.  

5.1. Adding custom rules 
Even though this research proves that an augmented rule-set can improve the 

value of automated code review in the enterprise, some static analysis tool vendors - 

including Veracode - do not allow customers to add more rules directly to their engines. 

In this research study, rules are added to the SonarQube tool to enforce the custom 

security code standard.    

Two options exist while adding custom rules to the SonarQube platform: either 

extend an existing plugin with more scan rules or develop an entirely new plugin. Both 

approaches need the API from SonarQube (2017). 

To extend the existing JavaScript rule-set, SonarQube needs the SonarJS 3.0 

dependency along with the Java SDK in its classpath. After installing Java and adding the 

SonarJS dependency create a new Java plugin and an entry point, or main class, by 

implementing the Plugin interface as depicted below: 

public class JavaScriptAngularExtensionRulesPlugin implements Plugin { 

@Override 

public void define(Context context) { 

    context.addExtension(JavaScriptAngularExtensionRulesDefinition.class); 

} 

List this main class within the manifest file of the final plugin artifact so that the 

SonarQube platform can register it to its list of available extensions.  

The next step is to create a repository that holds the custom rules. Creating a new 

and custom repository enables the scanning platform to apply rules selectively across 

projects. Tailored rules may increase the accuracy and cover more flaws in one project, 

but it might not be a good fit for another. Excessive rules can add unnecessary noise and 

slow down an analysis process. Rule repositories enable one to apply rules selectively, 
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where proper. Create a new rule repository and give it a name along with a key as shown 

below.  

public class JavaScriptAngularExtensionRulesDefinition extends CustomJavaScriptRulesDefinition { 

@Override 

  public String repositoryName() { 

    return "Extension repository for AngularJS rules "; 

  } 

The key acts as a primary key within the SonarQube platform to distinguish it 

from other rule repositories. The rule repository class must implement the checkClasses() 

method to return an array of custom rules to add. Using the $sce.trustAsHtml(…) Angular 

method may result in a subtle and complex flaw that a scanner may miss during its scan 

of the code-base. If the enterprise were to forbid the use of this AngularJS method, then a 

custom SonarQube rule can enforce this during software development cycles. The code 

snippet below is the signature of this rule. 

@Rule( 

key = “A1", 

priority = Priority.MAJOR, 

name = “$sce.trustAsHtml function is forbidden“, 

tags = {“security”} 

) 

@SqaleSubCharacteristic(RulesDefinition.SubCharacteristics.DATA_RELIABILITY) 

@SqaleConstantRemediation("5min") 

public class ForbiddenAngularFunctionCheck extends DoubleDispatchVisitorCheck {  
Logic within the visitCallExpression method detect the use of the forbidden 

method and will flag it when used by developers. 

@Override 

public void visitCallExpression(CallExpressionTree tree) { 

ExpressionTree callee = tree.callee(); 

if (callee.is(Kind.IDENTIFIER_REFERENCE) && 
FORBIDDEN_FUNCTIONS.contains(((IdentifierTree) callee).name())) { 
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     addIssue(tree, "Do not use the Angular $sce.trustAsHtml function."); 

  }  

By running a custom SonarQube platform in tandem with Veracode, one reaches 

both a higher recall rate and coverage for enterprise and technology-specific rules. An 

open-source and free tool, such as SonarQube, can augment and enhance the scanning 

exercise. A further research study can quantify how the combination of a tailored tool 

(such as SonarQube) with a reliable and commercial tool (such as Veracode) increases 

the recall rate for an entire portfolio of projects within an enterprise.  

Adding a coding standard within the SonarQube scan and pairing that with a 

standard Veracode scan improves the result to find many more flaws in the vulnerable 

JavaScript application. As discussed in Section 4, combining the strengths of two or more 

SAST tools delivers better results than using a single scanner. However, by adding 

enterprise-specific rules to the one scanner (e.g., SonarQube) and running that alongside 

a second scanner (e.g., Veracode), the results exceed those of the Center for Assured 

Software National Security Agency research study (2011).  

5.2. The alternative  
During this research study, Veracode was reporting false negatives – i.e., it did 

not detect all known flaws within the vulnerable JavaScript application. The pre-scanner 

of Veracode did not link all the application resources correctly causing the tool to miss 

nine false negatives from the outset. However, credit is due to Veracode consultants who 

are very helpful and supportive to its customers and particularly during this research 

study.  

Veracode takes its customer base seriously and does listen when there is a need to 

support an enterprise-specific framework, a new technology framework - such as 

AngularJS - or a new programming language. Veracode did perform an analysis of the 

false negatives after the research study was complete, but such assessments take time. 

Adding framework support can also be a costly and time-consuming exercise. The 
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alternative is to add a second SAST tool in the toolset and tailor its rule-set to cover 

coding and design standards of the owning enterprise – adding support to scanners such 

as Veracode in the situations where they fail. As Veracode did not detect 53% of the 

vulnerabilities in this sample study, it may be prudent to do so. 

6. Conclusion 
Adding code, design, and architecture standards to an automated code review 

increases the value of code scanning for the enterprise; SAST tools find more security 

flaws in the source-code without increasing the false positive rate. Many of these 

standards are specific to the industry or business, but it requires a scanner to hold a 

tailored rule-set. 

Although existing commercial tools have an expansive set of rules, some tool 

vendors do not allow customers to add custom rules, e.g., Veracode (2014). Veracode 

wants to protect the integrity and credibility of its rule-set and not subject it to any 

wrongdoing (Principal Solutions Architect, personal communication, 29 June 2017; 

Senior Application Security Consultant, 20 November 2017).  

No static code analysis tool is perfect. Most vulnerabilities arise from the specific 

architecture, design, and business logic of the underlying software system (Houser, 2014; 

Chess & West, 2007). SAST tools can find flaws in software architecture and design 

(GrammaTech CodeSonar®, 2017), but prominent scanners like Veracode (2014) do not 

support this capability. Vendors like Veracode need to balance a low false positive rate 

along with speed, performance, and quality of results for a broad audience (Hicks, 2016). 

However, a tailored rule-set can make reasonable assumptions about the structure, 

architecture, and framework of the source-code to be in line with specific enterprise or 

industry standards. 
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Another concern is that SAST tools do not support every language and framework 

in the software industry (IBM, 2015; Veracode, 2017; SonarQube, 2017). Research 

studies by the Center for Assured Software National Security Agency (2011) conclude 

that running multiple SAST tools together increases the recall rate – the strengths of one 

tool covers the weaknesses of another. However, the four SAST tools used during this 

research study do not support prominent programming languages in the industry like Go, 

CoffeeScript, and Dart (SonarQube, 2017; IBM, 2015; Veracode, 2017). Furthermore, 

many organizations develop frameworks and domain-specific languages that are 

unknown to the industry at large. Tailoring a rule-set to new or unsupported 

programming languages extends the reach of code analyzers. 

In this research study, four SAST scanners analyze a vulnerable JavaScript 

application with carefully crafted security flaws. Of the four tools, Veracode delivers the 

best results, but not a perfect score. Although Veracode has good customer support, it 

takes time and effort to align a rule-set to the specific needs of an enterprise – and 

unfortunately in most cases, impossible (Principal Solutions Architect, personal 

communication, 29 June 2017; Senior Application Security Consultant, 20 November 

2017). Moreover, the default rule-set of the tools do not score high enough. In this study, 

Veracode missed more than fifty percent of the coding flaws – meaning that many flaws 

may go unnoticed to the unwary customer. Running a second scanner in conjunction with 

Veracode, one that enforces a custom secure coding standard for the enterprise, is a better 

alternative.  

Research studies by the Center for Assured Software National Security Agency 

(2011) show that running two or more SAST tools together deliver better results than 

running only one. This research study confirms that thesis by running four different 

SAST tools together; showing that the strengths of one tool cover the weaknesses of 

another. However, this study further extends the research of the NSA by running a second 

scanner that holds the standards of the owning enterprise in mind. This research study 
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concludes that adding enterprise-specific rules to the one scanner (e.g., SonarQube) and 

running that alongside the default wiring of a second scanner (e.g., Veracode), the results 

exceed those of the Center for Assured Software National Security Agency research 

study (2011). Running the default rule-set of a static code analyzer is not enough; 

automated code review using SAST must also include an enterprise security standard. 

Doing so maximizes the business value of static code analysis and further automates the 

successful implementation of the CIS critical security control for application security.  
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Appendix A 
Detailed Results of Sample Application 

Vulnerability	 Line	 Veracode	 IBM	AppScan	 SonarQube	 Burp	Proxy	
/.../app/data/allocations-dao.js	 79	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/data/allocations-dao.js	 30	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/data/profile-dao.js	 71	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/routes/contributions.js		 24	 True	Positive	 False	Negative	 True	Positive	 False	Negative	
/.../app/routes/contributions.js		 25	 True	Positive	 False	Negative	 True	Positive	 False	Negative	
/.../app/routes/contributions.js		 26	 True	Positive	 False	Negative	 True	Positive	 False	Negative	
/.../app/routes/index.js	 60	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/routes/index.js	 61	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/routes/index.js	 82	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/routes/session.js	 60	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/routes/session.js	 138	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/routes/session.js	 189	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/routes/session.js	 48	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/routes/session.js	 65	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/routes/session.js	 73	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/routes/session.js	 106	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/views/allocations.html	 15	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/allocations.html	 22	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/allocations.html	 35	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/allocations.html	 39	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/allocations.html	 42	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/allocations.html	 45	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 20	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/benefits.html	 50	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 51	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 52	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 56	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/benefits.html	 57	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/contributions.html	 20	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/layout.html	 56	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/layout.html	 75	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/layout.html	 126	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/views/login.html	 101	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/login.html	 110	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
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/.../app/views/login.html	 115	 False	Positive	 True	Negative	 True	Negative	 False	Positive	
/.../app/views/login.html	 117	 False	Positive	 True	Negative	 True	Negative	 False	Positive	
/.../app/views/login.html	(auto)	 115	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
/.../app/views/maliciousps.html	 100	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/maliciousps.html	 114	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 24	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/profile.html	 41	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 45	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 49	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 53	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 57	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 61	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 66	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../app/views/profile.html	 68	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 57	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 74	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 79	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 85	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 90	 False	Positive	 True	Negative	 True	Negative	 False	Positive	
/.../app/views/signup.html	 95	 False	Positive	 True	Negative	 True	Negative	 False	Positive	
/.../app/views/signup.html	 101	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 103	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../app/views/signup.html	 125	 True	Negative	 False	Positive	 True	Negative	 True	Negative	
/.../app/views/signup.html	(auto)	 90	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
/.../app/views/signup.html	(auto)	 96	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
/.../artifacts/db-reset.js	 15	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 23	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 31	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 18	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 27	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../artifacts/db-reset.js	 35	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../data/contributions-dao.js	 28	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../data/contributions-dao.js	 100	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../data/contributions-dao.js	 71	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../data/contributions-dao.js	 13	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../data/contributions-dao.js	 57	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../server.js	 136	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../server.js	 21	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
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/.../server.js	 25	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
/.../server.js	 80	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../server.js	16	 16	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/.../test/security/profile-test.js	 36	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../test/security/profile-test.js	 37	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../test/security/profile-test.js	 270	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
/.../views/error-template.html	 11	 False	Positive	 True	Negative	 True	Negative	 True	Negative	
/VeracodeTestSuite/.../env/all.js	 5	 True	Positive	 False	Negative	 False	Negative	 False	Negative	
\bootstrap\bootstrap-tour.js	 422	 False	Negative	 True	Positive	 False	Negative	 False	Negative	
app\views\maliciousps.html	 104	 False	Negative	 True	Positive	 False	Negative	 False	Negative	
app\views\maliciousps.html	 66	 False	Negative	 True	Positive	 False	Negative	 True	Positive	
app\views\maliciousps.html	 69	 False	Negative	 True	Positive	 False	Negative	 True	Positive	
app\views\maliciousps.html	 62	 False	Negative	 True	Positive	 False	Negative	 False	Negative	
app\views\maliciousps.html	 114	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\views\maliciousps.html	 124	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\views\maliciousps.html	 129	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\views\maliciousps.html	 100	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\views\tutorial\layout.html	 94	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
assets/angular/sonarrules.js	 4	 False	Negative	 False	Negative	 True	Positive	 False	Negative	
assets/angular/sonarrules.js	 10	 False	Negative	 False	Negative	 True	Positive	 True	Positive	
assets/angular/sonarrules.js	 21	 False	Negative	 False	Negative	 True	Positive	 False	Negative	
assets/angular/sonarrules.js	 27	 False	Negative	 False	Negative	 True	Positive	 True	Positive	
assets/angular/sonarrules.js	 40	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
assets/angular/sonarrules.js	 43	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
assets/angular/sonarrules.js	 30	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
assets/angular/sonarrules.js	 31	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
assets/angular/sonarrules.js	 13	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
config/env/development.js	 15	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
config/env/test.js	 3	 False	Negative	 False	Negative	 False	Negative	 True	Positive	
app\routes\profile.js	 37	 False	Negative	 False	Negative	 False	Negative	 False	Negative	
app\routes\profile.js	 64	 False	Negative	 False	Negative	 False	Negative	 False	Negative	

	      
Recall	Rate	 		 47,22%	 6,94%	 9,72%	 16,67%	
Percentage	of	False	Positives	 		 24,27%	 5,83%	 0,00%	 3,88%	
Recall	Rate	-	Enhanced	Rule-Set	 79,17%	 50,00%	 48,61%	 50,00%	
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Appendix B 
Summary of IBM AppScan Results 
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Appendix C 
Summary of Veracode Results 
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Appendix D 
Summary of Burp Static Scanner Results 
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Appendix E 
Summary of SonarQube Results 

 

 

 

 


