
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc

Uncovering Indicators of Compromise (IoC) Using

PowerShell, Event Logs, and a Traditional Monitoring Tool

GIAC (GCCC) Gold Certification

Author: Dallas Haselhorst
Email: dallas[at]sicoir[dot]com Twitter: @oneoffdallas

Advisor: Manuel Humberto Santander Peláez
Accepted: October 6, 2015

Abstract

What security concerns keep you up at night? Is it pivoting, persistent access, the time to detect
compromise, or one of a thousand other possibilities? What if you were told that without a doubt,
you have tools at your disposal to periodically verify your security posture and you are not
presently using them? Why spend more hours and more budget implementing a new product
with new agents and new headaches that will not effectively reduce your workload or anxiety
level? Even if you have commercial tools already monitoring your systems for security events,
how do you know they are working? Is it even practical to use a customized PowerShell
scripts/plugins, built-in event logs, and a traditional monitoring tool such as Nagios to monitor
for indicators of compromise on Windows systems? In addition, you will be presented with some
applied research as well as easy to follow guidelines you can integrate into your own
environment(s).

Uncovering Indicators of Compromise | 2

Dallas Haselhorst

1. Introduction

Your systems are talking, but are you listening? There are indicators of compromise

(IoC) in standard “off the shelf” monitoring systems that may provide possible symptoms. The

problem is none of them are absolute signs of malicious activity and they do not necessarily

throw up alarms clearly stating “you have been hacked.” For example, 1) a compromised system

used to host cracked applications or even movies might fill up a drive partition, 2) uncommon

programs taxing the system and causing uncommonly high CPU or memory usage, 3) hung

applications or services crashing that previously hummed along for years without issue, 4) logs

with numerous warnings and errors in recent history, or 5) unexpected system reboots. How

many of us have heard of administrators who simply expanded the drive space, added memory or

processors, or simply restarted services rather than digging in to determine the root cause?

Maybe the administrator did not have time or maybe they were tasked with keeping the systems

up and running, i.e. they did not know what to look for beyond basic stability? Whatever the

reasoning, the other key component in all of these scenarios is the system administrator must

have the understanding of what normal is in order to determine what is abnormal. Furthermore,

they must have previously setup monitoring for “ordinary” and understood the day-to-day

nuances of the system rather than struggling to learn on the fly when any semblance of normal

has been tossed out the window. For example, maybe a system is writing an error to an event log

every 5 minutes, but when did it start displaying that behavior -- yesterday, a month ago, since

the day it was installed? The bottom line is whether the behavior the system or application is

currently exhibiting is normal.

There are a number of systems that provide standard monitoring metrics in a nice, neat,

and concise package. It is important to understand that with some event correlation, many

standard system baselines -- CPU, memory, hard drive, errors/warnings -- may very well point us

in that direction. However, this is not going to be a discussion over the aforementioned possible

indicators of compromise regardless of how invaluable they may be in a root cause investigation.

I am going to dig into the act of monitoring for what are more often than not, absolute indicators

of compromise. Although there will invariably be false positives if the environment or system is

unknown, at the very least all of these suspect events should be investigated with a watchful eye.

While this could be used as a standalone solution, this solution would likely better serve as a

Uncovering Indicators of Compromise | 3

Dallas Haselhorst

“checks and balances” detection solution. For example, how do you know Splunk is catching

relevant logged events and alerting? Much in the same way a vulnerability scanning engine such

as Nessus can be used to double-check your patch management or WSUS implementation, a

monitoring system with a bit of tweaking can absolutely double-check for meaningful security

events to assist in recognizing compromised systems. Also worth noting, this in no way

eliminates or even alleviates the need for centralized log management. In fact, log management

and collection actually yields benefits far beyond simply identifying the occurrence of an attack.

While the techniques I am covering may determine if someone is trying to cover their tracks or

set up a persistent backdoor, centralized log management allows you to see what took place prior

to the log clearing activity. In many cases, centralized logging will also help lead your incident

handling team to the original entry point where the attacker gained access to your system(s). Last

but not least, centralized log management may help significantly with event correlation between

disparate systems. For example, a new Windows service was created on this server and then

another, similar service was created on an unrelated server. Was there expected maintenance on

those systems? Can we tie this activity back to a change control request? Is it malicious?

Before jumping into the monitoring system and accompanying script, there is one

important question often asked… “Why not focus on mitigating the attacks rather than after the

fact?” As our systems and networks grow more complex, it inevitably becomes more difficult to

protect and defend them. Some would argue the sheer notion of attempting to prevent all attacks

is an agonizing lesson in futility. “Prevention is ideal, but detection is a must.” This phrase has

become a tenant of information security, but what does it mean? The best illustration of this

concept in an easily explainable format may be found in a recent Mandiant Threat Report

(Mandiant, 2015). Based on the data gathered across multiple industries, only 31% of breaches

were detected internally. With only 31% detected internally, that means a staggering 69% of

breach notifications were a result of external parties -- the FBI, other companies, ISPs, auditors,

etc. (Figure 1). In addition, the median time to detect compromise was over 200 days with the

longest presence of compromise over 8 years (Figure 2). Clearly, preventing these breaches

would have been preferred. However, early detection and appropriate countermeasures

absolutely would have minimized the damage experienced by these organizations as well as

Uncovering Indicators of Compromise | 4

Dallas Haselhorst

limited the amount of sensitive data lost.

Figure 1: Breach Detection Figure 2: Discovery Time

2. What is Nagios?

The monitoring tool I integrated my script and this general technique with is Nagios. This

particular integration takes place with the Nagios XI server, although integrating with the Nagios

Core product would work as well because the agent is available on both of them. So what is

Nagios? According to the Nagios website, “Nagios is a powerful monitoring system that enables

organizations to identify and resolve IT infrastructure problems before they affect critical

business processes” ("About Nagios," 2015). Nagios is essentially a way to monitor nearly every

aspect of your computing environment.

Nagios is built on a client-server architecture. This architecture allows the Nagios server

processes to communicate directly with the clients, whether passive or active. In some cases, the

communication channel is an agent built-in to the system such as SNMP or even SSH. In these

cases, no additional software is necessary and only minor configuration changes are needed in

Uncovering Indicators of Compromise | 5

Dallas Haselhorst

order to allow the flow of communication. Other times, a software agent must be installed to give

the system administrator added functionality beyond the information you can receive from a

native and/or “basic” client. The client may be a Linux system, a Windows server, a router, a

switch, etc. Regardless of the means of communication, the Nagios server runs a user defined set

of checks against the client system. These checks can vary wildly in their capability from simply

pinging a host to testing VPN connectivity. Typically, Nagios and similar monitoring tools are

utilized for testing the stability and overall performance of systems and networks. For example,

on a standard server, Nagios might monitor for running services or processes, a lack of hard

space (Figure 3), or too much CPU or memory usage. On a network device, it may monitor for

interface link utilization and whether links are up or down. The types of devices Nagios can

monitor and the level of monitoring is quite substantial; in fact, one could argue that depending

on the skillset of the implementer, the device list and level of detail is endless.

Figure 3: Example Nagios Disk Usage

We will work exclusively with the Nagios NCPA agent for the purpose of this paper.

Even if you are familiar with Nagios, you may or may not be familiar with the NCPA agent as

there are a number of agents available beyond even the base ones previously mentioned. So what

is the NCPA agent? The acronym NCPA stands for Nagios Cross Platform Agent. The agent was

designed to “maintain cross-platform servitude” and also as “an abstraction between the

sysadmin and the system” (Introduction -- NCPA). How the NCPA client fits into the Nagios

architecture is represented in Figure 4. The NCPA script on the server calls the NCPA client,

which in turn runs the individual desired checks on the system and returns the appropriate

value(s). The original NCPA script call on the server specifies (whether by default or user-

Uncovering Indicators of Compromise | 6

Dallas Haselhorst

supplied parameters) whether a returned value is within tolerance. Going back to the graphical

representation in Figure 3, if the disk usage is greater than 90%, the system might report back an

error if it is above the defined threshold. In this case, since disk usage is less than 90%, the

system would report back a status of “OK”.

Figure 4: Standard NCPA Agent

The NCPA agent was selected as a component of this security monitoring solution [over

other possibilities] for a number of reasons. First and foremost, it is cross-platform as the

acronym implies; it can be installed for Windows, Linux, and Macintosh with identical API calls.

While cross-platform is not a necessary requirement for our security-minded integration needs, it

is essential to a more holistic strategy in any environment. Second, all traffic to and from the

NCPA client is encrypted. Once again, encryption is not necessarily a requirement for our needs,

but rather a must for protecting both internal and external network data. Lastly, NCPA allows for

easy integration of numerous scripting languages including Visual Basic, PowerShell, shell and

many more. For this reason alone, NCPA is the perfect choice to mesh Nagios and any checks

one wishes to perform.

The script-friendliness of NCPA and the general flexibility of scripting really allow for

limitless possibilities. Fortunately, integrating a custom script into Nagios via NCPA could not

be any easier either. For example, to add a PowerShell script so NCPA can call it, simply place

the script in the appropriate directory; on a standard Windows install, the full path for the plugins

directory is %programfiles%\Nagios\NCPA\plugins. The addition of a PowerShell script into

Nagios is a rather simple change to the overall NCPA design. In fact, the only real change (red

Uncovering Indicators of Compromise | 7

Dallas Haselhorst

box) is the addition of the script itself (Figure 5). Absolutely nothing more is required to get your

script working on the client side. On the server side, simply configure the server check to call the

name of the script, e.g. script.ps1. Those few, fairly straightforward steps are how easy it is to get

a PowerShell script working in Nagios. Though it will not be discussed further here, it is worth

mentioning that after a script is verified as working, there are additional changes that can be

made for enhanced security. For improved security, you should sign the PowerShell script(s) and

also remove “-ExecutionPolicy Bypass” from the ncpa.cfg file, which is added by default. These

two changes simply ensure no one can modify the script once it is in place and use your script for

nefarious purposes.

Figure 5: NCPA Agent with PowerShell

3. Spotting the Adversary

 Much of my work is based on a wonderfully concise whitepaper from the NSA titled,

Spotting the Adversary with Windows Event Log Monitoring. According to the document

author(s), “Windows includes monitoring and logging capabilities and logs data for many

activities occurring within the operating system. The vast number of events which can be logged

does not make it easy for an administrator to identify specific important events. This document

defines a recommended set of events to collect and review on a frequent basis.” (National

Security Agency, 2013). As you might expect, the whitepaper goes into a fair level of detail on

various Windows events and even outlines the importance of why various events are significant.

Uncovering Indicators of Compromise | 8

Dallas Haselhorst

These events are easily discovered by searching for the specified event IDs within the Windows

Event Viewer or even the XML filter query, which is built into every modern Windows

installation. Although there is no need to rehash the whitepaper in its entirety, here is a quick

rundown of some of the more advantageous checks assuming their usage and subsequent value in

your environment.

3.1. New Windows Services

 Why is there a new service on that system? Is it a new service for a new application

someone forgot to perform change control on? Or is it a persistent backdoor? Windows Services

are a great way to create persistence because the functionality is built-in to the operating system.

In addition, you can add a new service from a command line in seconds and if the system is

rebooted, the service and associated program are automatically started. By locating event ID

7045 in the System event log, you can easily spot new services as they are created.

 Searching for added services also provides a number of other benefits that might not be

as obvious. The Sysinternals tool, psexec, creates a service and leaves the service behind after

doing so. Of course it writes a log entry when it runs, but what about some other common ones?

How about the Metasploit module psexec? It is well known as a means to pivot in a Windows

environment. Though the service is deleted immediately after the exploit is run (Figure 6), it still

leaves a log entry when the service is initially created (Figure 7).

Figure 6: Metasploit psexec

Uncovering Indicators of Compromise | 9

!

Dallas Haselhorst

Figure 7: Service Log Entry Created by Metasploit psexec

3.2. Windows Firewall Modifications

 How often are firewall changes made? If you are utilizing the default Windows Firewall,

you can easily check for event IDs 2004, 2005, and 2006/2033; those event IDs represent

firewall rule adds, changes, and deletes respectively. Monitoring for these changes is vital to the

overall integrity of a system. An attacker will often make modifications to allow persistent tools

a means of inbound or outbound communication. Even if the Windows Firewall is turned off

entirely or disabled for any single profile, an event is still logged (Figure 88).

Figure 8: Disabled Firewall

3.3. Event Log Clears

 Yet another event type worth monitoring is related to event log clearing. Checking for

event ID 104 in the System log whether it is cleared, while searching for 1102 in the Audit log

does the same. But clearing the application log puts nothing in the application event log?

Uncovering Indicators of Compromise | 10

!

Dallas Haselhorst

Although the application log clear does not result in a log clear entry in the actual application

log, it does write an entry to the system log which was previously mentioned.

Is clearing event logs considered a normal activity? Granted, the act may not always

result from malicious intent, but it should be considered enough of a non-standard event that it

warrants closer examination. When log clears are performed in conjunction with other events, it

is clearly a great way to cover your tracks if you were previously creating services, making

firewall rules changes, etc. In some cases, if a system is functioning on an island without log

forwarding or any other outside communication, this singular event might be your only

indication of a much larger issue.

 But wait… There are several ways to clear out the log files. Let us examine several of

them to see how they work and ensure our monitoring will detect them. Obviously using the

Windows native method of clearing event logs (Figure 9) is going to generate the event IDs we

are looking for above. Event ID 104 is created just as expected when clearing out the System log.

Figure 9: Standard Log Clear

What about some not-so-standard methods of clearing the event logs? Clearing the logs via

PowerShell (Figure 10), WMIC (Figure 11), or even a non-Microsoft program like clearlogs.exe

(Figure 12) all produced the same results. Regardless of what method was chosen, all of them

wrote a “log clear” entry as expected.

Uncovering Indicators of Compromise | 11

!

Dallas Haselhorst

Figure 10: PowerShell Log Clear Entry

Figure 11: WMIC Log Clear Entry

Figure 12: Clearlogs.exe Log Clear Entry

 The list of significant events to possible look for based the NSA whitepaper is quite large

and only a handful of them were covered in the examples above. In fact, there are a number of

pertinent log events that may prove more useful than the ones described above depending on the

environment. For example, do you use Microsoft EMET (Enhanced Mitigation Experience

Uncovering Indicators of Compromise | 12

!

Dallas Haselhorst

Toolkit) or Microsoft AppLocker? If so, there are event IDs specific to those applications. Would

it be useful to know if an application was blocked by AppLocker? Maybe the blocks point to a

malicious application trying to break out of the confines of AppLocker? What if you are working

on a server that rarely, if ever, has applications installed (or removed) beyond Windows

Updates? Then you can easily search for the event IDs associated with new MSI installs, new

application installs, or even anytime an application is updated or removed.

 It is also important to note that some of the event log searches may yield false indicators.

This goes back to the underlying importance of setting up monitoring when the system is

“known good” rather than after thoughts of a possible compromise. For example, the queries

specified in the NSA whitepaper for pass-the-hash events are somewhat incomplete. While both

successful and failed pass-the-hash (PtH) events are detected (Figure 13), some Remote Desktop

and RemoteApp events create identical PtH-identified events when tested in several production

environments. My independently discovered false positives for PtH seem to coincide with a

BlackHat paper from 2014 where the authors state, “Our conclusion after studying this data (and

exploring a great many failed assertions) was that detecting the characteristics of stolen

credentials in use requires context around typical behavior in an environment than simple rules-

based alerting can provide” (Hathaway & Myers, 2014). How about searching for changes

related to another persistent access favorite -- scheduled tasks? Scheduled are easily found

(Figure 14), however, to avoid false positives you will need to disable all jobs related to the

Microsoft Windows Application Experience as well as the Customer Experience Improvement

Program. If not, you will see scheduled tasks modified throughout the day as scheduled jobs run.

How about account lockouts? If the number of “invalid password attempts to lockout” group

policy is set low enough and your helpdesk already receives plenty of support calls about locked

accounts, then you will need to make some changes before relying on that particular metric as an

unconditional indicator of compromise.

Uncovering Indicators of Compromise | 13

!

Dallas Haselhorst

Figure 13: Successful PtH Log Entry

Figure 14: Scheduled Tasks Log Entry

4. Automate, Automate, Automate

 While the work in the NSA whitepaper is superb, it would require a fleet of support

personnel to painstakingly comb through all of the logs manually. Even if you created and saved

filters as custom views it would still be extremely tedious. What if this process could be

automated? The possibility of automating these checks was the initial thought and foundation for

the entire project. A secondary goal was the concept of using a tool traditionally meant for

stability monitoring and re-tool it to monitor for security events. This, in essence, would combine

the functionality of a NOC (network operations center) with the functionality of a SOC (security

Uncovering Indicators of Compromise | 14

!

Dallas Haselhorst

operations center). Is there really that much of a fundamental difference between an alert for a

router link dropping and a system alert for the installation of a new or questionable service?

 As it turns out, the act of combining the two was greatly simplified because of two

important factors. As previously discussed, adding a PowerShell script to the Nagios NCPA

client is trivial. As trivial as it may seem, without that capability, the project would have required

a drastic course correction assuming it still would have been feasible from a time standpoint.

Second, Microsoft has greatly enhanced the power of the command line with PowerShell. The

functionality of PowerShell has expanded more and more over the years as it has transformed

into its own, full-fledged scripting language with numerous native features. One of the built-in

capabilities added in later versions is the “Get-WinEvent” cmdlet; this cmdlet allows you to

quickly search and parse the Windows event logs. With the number of filters used in the various

queries, the Get-WinEvent cmdlet offers significant speed improvements over the Get-EventLog

cmdlet (Berry, 2011). Get-WinEvent is actually enough of a gain in speed that during testing, the

usage of Get-EventLog would not even have been sufficient to return values back to Nagios in a

timely fashion.

 So the goal was to create an easy-to-use, security-driven PowerShell script that anyone

could read through and make modifications to with the eventual goal of Nagios integration for

the purpose of automation. The script was named “check_ioc.ps1” to fall in line with the general

naming convention of Nagios scripts and those found on Nagios Exchange. Throughout its

design, the NSA whitepaper was heavily referenced. In fact, even the “selectable” options in the

script point back to the corresponding section in the NSA whitepaper. For example, the option to

enable checks for successful pass-the-hash events is aptly named “SuccessfulPtHCheck.” Shortly

after the variable set for the check (0 for disable or 1 for enable), you will find a 4.15 reference in

the comments (Figure 15); if you go to the NSA whitepaper, section 4.15 is titled “Pass the Hash

Detection.” This allows the implementer to easily reference additional documentation for details

about a check if necessary. In addition, other than a few exceptions, all of the event IDs

discussed in the NSA whitepaper are available in the check_ioc.ps1 PowerShell script as a

selectable option.

Uncovering Indicators of Compromise | 15

!

Dallas Haselhorst

Figure 15: Successful Pass-The-Hash Check

5. Mapping Controls to Script Checks

 The Critical Security Controls are a well-known methodology for prioritizing various

components of security and they are now maintained by the Council on CyberSecurity. The

purpose of the Critical Security Controls is to “focus on the most fundamental and valuable

actions that every organization should take” (Council on CyberSecurity, 2014). While not all of

the checks from the check_ioc script translate to a specific control, a significant number of them

do. In fact, many of the checks discussed in the NSA whitepaper and implemented in the

PowerShell script have a direct relationship to the Critical Security Controls (Table 1). In a quick

rundown of the controls, one could easily argue a minimum of seven Critical Security Controls

are either bolstered or nearly satisfied by implementing the script and various “checks” in an

environment.

Table 1: Critical Security Controls Relationships

CSC Title Relevant checks

2 Inventory of Authorized and Unauthorized

Software

AppLockerBlockCheck

AppLockerWarningCheck

MSIInstallCheck

AppInstallCheck

5 Malware Defenses EMETCheck

Various Kernel Driver Signing Checks

Various Persistence Checks

11 Limitation and Control of Network Ports,

Protocols, and Services

FirewallRuleModCheck

12 Controlled Use of Administrative Privileges UserAddPrivGroupCheck

SecEnabledGroupModCheck

Uncovering Indicators of Compromise | 16

!

Dallas Haselhorst

14 Maintenance, Monitoring, and Analysis of

Audit Logs

Overall

16 Account Monitoring and Control FailedUserAccountLoginCheck

AccountLockoutCheck

18 Incident Response and Management Overall

5.1. Critical Security Control #2 – Software

 Critical Security Control #2 deals with the inventory of authorized and unauthorized

software. The control specifically mentions application whitelisting and monitoring for the

installation of unauthorized software. AppLocker is an application whitelisting technology

developed by Microsoft and if implemented, writes event log entries whenever a warning or

block occurs. Why is this important? Similar to monitoring or auditing access log files for user

login attempts, what does the last failed entry mean? Does the last failed entry mean the attacker

gave up trying to access the system? Or does it mean they were successful in their very next

attempt, i.e. no point into continuing to try if you are already in? In the same manner, a

successful bypass of application whitelisting technology is often preceded by at least one or more

failed attempts. For this reason alone, failed or blocked application executions should be

monitored closely. It is also worth noting that other industry leading application whitelisting

technologies such as those provided by Bit9 write to the event logs as well. As a result, checks

for Bit9 or any other technology could easily be added to the PowerShell script for the purpose

of automation in lieu of using AppLocker (and related checks).

 To further assist with software inventory, why not look for new application installs? On a

deployed and stable server, it is normal to see a new application installed on a regular basis?

Granted, this check alone will not detect every application executed, however, it will quickly and

easily find any new applications installed. Going back to the point made on another check, at the

very least a new application install [and alert] should merit an additional level of scrutiny. The

relevant check_ioc configuration variable for testing this is called AppInstallCheck. On

Windows 8 and newer systems, the MSIInstallCheck variable should be used instead as the event

Uncovering Indicators of Compromise | 17

!

Dallas Haselhorst

IDs associated with AppInstallCheck have been removed.

5.2. Critical Security Control #5 – Malware

 Malware defenses appear in Critical Security Control #5. The use of Enhanced Mitigation

Experience Toolkit (EMET) is characterized as a “Quick Win” in the Critical Security Controls

under section 5-6 (Council on CyberSecurity, 2014). Furthermore, checking the Windows event

logs for EMET related entries can help identify possible spear phishing attempts as well as other

exploits successfully mitigated by the toolkit. A number of checks in the check_ioc script test for

Kernel driver signing. These are also used to detect malicious or malware activity. Any alteration

of a kernel driver should prompt immediate follow-up as this is non-standard behavior and is

most likely an indication of compromise.

 The next step after successful exploitation for any attacker or malware is typically

directed at gaining persistence. Why go through the trouble of getting entry to a system only to

have someone reboot it and all of the prior work to be lost? Persistence is the foothold that

allows the attacker continued access to a system after successive reboots or when any other

changes are made. Fortunately, there are a limited number of ways attackers (or malware)

typically maintain control of a system. As described earlier, if persistence is acheived through the

creation of a new service, a log entry is written and subsequently checked for by the script.

Several registry keys are often modified as a way to have a malicious application automatically

start each time during boot or logon. With a few changes (described in the next section), you can

easily keep an eye on the registry keys in question. Last but not least, malicious applications will

often write an entry to any number of standard file locations so Windows auto-starts the

application on boot or logon. Much in the way registry keys can be monitored for changes, files

and folders can go through a similar process, which is built into the check_ioc script.

5.3. Critical Security Control #11 – Network Ports

 The limitation and control of network ports, protocols, and services is included in Critical

Security Control #11. This control discusses the need for host-based firewalls and the necessity

for said firewall to drop any traffic that is not explicitly allowed (Council on CyberSecurity,

Uncovering Indicators of Compromise | 18

!

Dallas Haselhorst

2014). While the built-in Windows Firewall does not default to deny outbound traffic, it does

explicitly deny all inbound traffic when it is enabled. In addition, the behavior for outbound

traffic can be altered rather easily with readily available documentation. After the required

changes are made to deny outbound communication, firewall modifications are absolutely

essential to allow communication on any port or program not already allowed. Any changes then

become simple to identify because Microsoft logs all additions, modifications, or deletions of

Windows Firewall rules to the event viewer. The FirewallRuleModCheck in the check_ioc script

tests for any firewall related changes to the system.

5.4. Critical Security Controls #12 and #16 – User Accounts

 Multiple controls reference user accounts, user account privileges, and administrative

groups. Critical Security Control #12 deals specifically with the limitation of administrative

privileges while Critical Security Control #16 is geared more toward account monitoring and

control. It is also worth noting that Critical Security Control #3 (and more specifically 3-3) also

touches on the limitation of administrative privileges, however, it is repeated and handled more

in-depth in Critical Security Control #12. By limiting administrative privileges, one can often

slow down or thwart attackers and malware alike from escalating and doing additional damage.

In many cases, a limited user account (non-admin) can mitigate an attack entirely by itself.

Therefore, any changes to privileges or additional privileges should be monitored as it could be

the sign of a malicious attack. At the very least, it is a way to prevent a future attack. The

UserAddPrivGroupCheck tests for any user additions to privileged groups at the active directory

level while the SecEnabledGroupModCheck test checks for somewhat similar functionality at

the local, system level.

 Critical Security Control #16 handles accounts monitoring and control. While the

necessary registry or group policy changes must be made before the script is even capable of

monitoring, it can greatly assist after doing so. For example, assume user account lockouts are

configured to lockout the user for 15 minutes after 25 failed attempts. Is a normal user going to

fail logging in 25 times in a row? Typically, the only time this might occur is if a client (such as

an email client) is set to login automatically and the end user recently changed their password.

Despite the possibility for the occasional false positive, receiving an alert for a locked account is

Uncovering Indicators of Compromise | 19

!

Dallas Haselhorst

essential to the Critical Security Controls as well as the security of any environment. But what

happens in the same scenario with an attacker using password spraying techniques, i.e. they are

only attempting 20 password attempts at a time on each of your 500 users? In this example, the

account lockout would never trigger if there is enough time in between subsequent rounds of

attempts on any particular user. For this reason, there is a separate check called

FailedUserAccountLoginCheck. The corresponding variable to this check is

FailedUserAcctThreshold and it requires some knowledge of your systems in order to be “sized”

appropriately. Maybe your environment never sees more than 100 failed user account logins for

the time period you specify? By setting your threshold variable to 100, the prior example would

have triggered an alert because it resulted in 1000 total failed attempts (500 users X 20 password

attempts).

5.5. Critical Security Controls #14 and #18 – Overall

 The final two controls covered by the implementation of the check_ioc script are #14 and

#18. Critical Security Control #14 is the maintenance, monitoring, and analysis of audit logs,

which is the fundamental basis for the script. In fact, one could argue the script improves on

some of the control recommendations because it automates a fair amount of searching for

anomalies. While the solution is not an all-encompassing log review of every device, any level of

automation should be welcomed and viewed as a step toward improvement. Last but not least,

incident response and management is represented in Critical Security Control #18. While the

automated solution does not lend itself to incident response whatsoever, the script may be used

as a quick and easy tool by the incident response team to determine what changed on any

previously unmonitored system.

6. Getting Started and Implementation

 Before going any further, we will need to do a little housekeeping to ensure the data we

are looking for is written to the event logs. Several of the IoC checks require audit policies

enabled on the monitored machine in order to work properly. To modify these policies for a local

machine, follow the steps below.

Uncovering Indicators of Compromise | 20

!

Dallas Haselhorst

1) Click Start, click Run, type "gpedit.msc" and hit Enter

2) On the left hand side, navigate to Local Computer Policy > Computer Configuration >

Windows Settings > Security Settings > Local Policies > Audit Policy

3) On the right hand side, double-click “Audit logon events”

4) Place a check-box in the “Success” and “Failure” boxes and click “OK” (Figure 168)

5) On the right-hand side, double-click “Audit object access”

6) Place a check-box in the “Success” and “Failure” boxes and click “OK” (Figure 179)

Figure 16: Audit Logon Events
!

!

Figure 17: Audit Object Access
!

!

These changes add numerous security related events to the Windows Event Logs. For more

details on what the changes made here specifically entail, please refer to their respective section

in the Appendix for additional information from Microsoft.

 If you enable audit object access to allow for monitoring of files or registry keys, you

need to configure some secondary settings as well. Are you trying to verify no one adds a

persistent backdoor via any one of the standard startup registry keys specified by Microsoft?

Uncovering Indicators of Compromise | 21

!

Dallas Haselhorst

(Understand and Control…) If so, you will need to follow the steps below for each of the

“Standard Persistent Registry Key” entries found in the Appendix.

1) Click Start, click Run, type "regedit" and hit Enter

2) Navigate to the key, right-click on it and go to Permissions”

3) Click on “Advanced” (Figure 188)

4) Go to the “Auditing” tab and click “Add” (Figure 18)

5) Select “Everyone” as the principal and change “Type” to “All” (Figure 19)

6) Change the “Advanced permissions” as seen in Figure 199

7) Click “OK” multiple times to get back to the base Registry Editor screen

Figure 18: Changing Registry Key Audit Level (1 of 2)

Uncovering Indicators of Compromise | 22

!

Dallas Haselhorst

Figure 19: Changing Registry Key Audit Level (2 of 2)

 With the Windows housekeeping out of the way, we can move onto the PowerShell script

itself. The script is freely downloadable on GitHub. It is now open source software distributed

under the GPL licensing structure. The easiest method to get the file for usage is by simply going

to the link below and then clicking on the check_ioc.ps1 file listed there.

https://github.com/oneoffdallas/check_ioc

Once the file is downloaded, open it using the text editor of your choice. There are quite a few

“selectable” options in the PowerShell script and it is important to remember you can reference

the NSA whitepaper if any additional information is needed on a particular check. Although it

may take a little extra time during implementation, it is highly recommended you go through all

of the options to determine which ones make sense in your environment; investing time during

the setup phase will absolutely save time later and it will also help familiarize you with the

various options. The latter option will also assist you if and when there are changes in your

environment. For example, although you don’t currently have AppLocker configured what about

a year from now when you roll it out? Keep in mind, several indicators are enabled out of the

Uncovering Indicators of Compromise | 23

!

Dallas Haselhorst

box to begin with. However, that should not stop you from enabling/disabling as appropriate to

match the specific needs of your environment. Once completed, simply save the file.

 Once you have made all of the necessary changes, you can run the script. It should

initially run from the command line to ensure it works as expected before integrating it with

Nagios or another monitoring engine. You can also easily specify a longer “check” timeframe at

the command line to identify if false positives exist and eliminate them. If you run the script

without any modifications (and you do not trigger any alerts), your output should look similar to

the following:

PS > .\check_ioc.ps1

OK: SuccessfulPtH:0 FailedPtH:0 LogClear:0 FirewallRuleMod:0 ServiceAdd:0

FailedUserAcctLogin below threshold:0 InvalidImageHashFile:0

InvalidPageHashFile:0 FailedKernelDriver:0 RegKeyMod:0 in the last 30 minutes

So what does all of that mean? By default, you are checking for Windows event log entries in the

last 30 minutes related to 1) successful pass-the-hash, 2) failed pass-the-hash, 3) event log clears,

4) Windows firewall rule modifications, 5) added Windows services, 6) failed user account

logins above a specified threshold, 7) invalid image hash files, 8) invalid page hash files, 9)

failed kernel drivers, and 10) registry key modifications on configured keys. In this example, all

of the checks came back with values of 0 so an alert was not triggered and we instead received a

value of “OK”.

 Once you have the client-side configuration complete, the only remaining configuration

is on the Nagios server-side. If you already have the NCPA python script (check_ncpa.py) and

the Nagios command on a working server, you will just need to configure your host service

check. In the case of Nagios XI, the following line should be copied to the $ARG1$ text box.

-t '<token>' -P <port number> -M ‘agent/plugin/check_ioc.ps1/<ArgLastMinutes>'

This is located within the Core Config Manager under the individual service and the “Service

Management” section. Obviously, the token, port number, and ArgLastMinutes should all be

filled in with the values for your environment. The resulting full command line when re-

configuring the service from the main interface will look similar to the following assuming the

Uncovering Indicators of Compromise | 24

!

Dallas Haselhorst

check command “check_xi_ncpa_agent” is aliased to “$USER1$/check_ncpa.py -H

$HOSTADDRESS$ $ARG1$”.

check_xi_ncpa_agent!-t ‘mytoken’ -P 5693 -M 'agent/plugin/check_ioc.ps1/30'

The “-M” is the path to the script on the client. If any issues are discovered at this point, it is

worth mentioning that you can easily test the script operation in any browser using a string such

as https://<HostIPAddress>:5693/api/agent/plugin/check_ioc.ps1/30 and manually inputting your

token for authentication.

 After saving the configuration changes, the next time the newly installed indicators of

compromise service check runs you will end up with a service detail view similar to Figure 20.

So what happens if someone triggers an IoC such as clearing the security log? If any of the

indicators are triggered, a critical error is placed on the screen (Figure 21). In addition, the actual

log entry is recorded below it, which allows for a quick, inside view of the event log viewer and

what caused the alarm without actually logging into the server. Also, depending on how the

Nagios server is configured to begin with, you may also receive emails or any number of other

means of notification alerting you to the issue.

Figure 20: Nagios - No IoC

Uncovering Indicators of Compromise | 25

!

Dallas Haselhorst

Figure 21: Nagios – IoC (Log Clear)

7. Conclusion

Doing security well has become increasingly difficult as our environments continue to

grow more complex. At the same time, our desire to become inter-connected has never been

greater than it is now. As a result, breaches will continue to happen. The next evolution in

security must be the realization that prevention is not the only need in a good security plan.

While prevention should continue to receive a majority of our focus, supplying little to no

resources to detection can only be described as poor planning. By monitoring our internal

networks for known attack vectors or methods of persistence an attacker might utilize, we can

begin to swing the pendulum back to the side of the defense and continue improving the

resiliency of our networks.

The Critical Security Controls should be referenced regardless of the size of your

organization. They can serve as a basis for any security program in any industry. While the

Uncovering Indicators of Compromise | 26

!

Dallas Haselhorst

controls are far from perfect, they can significantly enhance the security of any environment

when properly consulted and followed. Although the check_ioc script and interrelated

infrastructure only cover a small subset of the Critical Security Controls and security measures

necessary to keep information secure, it can greatly improve security when customized

appropriately for an organization.

Is there a need for yet another security tool such as check_ioc? Often times, more

products and complexity are part of the problem rather than part of the answer. Many

organizations have SIEM solutions, next generation firewalls, and numerous other security

products already in place, yet they continue to experience breaches. If the solutions are not the

issue, then maybe the problem is shaping those solutions to meet the needs of our environments.

More importantly, why not integrate existing solutions into our networks and use existing tools

wherever possible? That is why the check_ioc script was needed and developed. It was designed

as a simple, yet effective tool to assist network defenders in detecting indicators of compromise

using products many organizations already have in place. Is the check_ioc script meant to

eliminate existing tools? Perhaps it could, but not necessarily. Instead, it was meant as another

layer in the defense-in-depth approach, which is mandatory for the sustainability and security of

any organization in the network age.

Uncovering Indicators of Compromise | 27

!

Dallas Haselhorst

References

About Nagios. Retrieved May 3, 2015, from http://www.nagios.org/about

Berry, M. (2011, April 1). PowerShell: Get-WinEvent vs. Get-EventLog. Retrieved July 1,

2015, from http://www.mcbsys.com/blog/2011/04/powershell-get-winevent-vs-get-

eventlog/

Council on CyberSecurity. (2014, October 7). The Critical Security Controls for Effective Cyber

Defense: Version 5.1. Retrieved from https://www.cisecurity.org/documents/CSC-

MASTER-VER5.1-10.7.2014.pdf

Hathaway, M., & Myers, J. (August 2014). Black Hat USA 2014: Why You Need to Detect More

Than PtH. Retrieved from https://www.blackhat.com/docs/us-14/materials/us-14-

Hathaway-Why-You-Need-To-Detect-More-Than-PtH-WP.pdf

Introduction — NCPA 1.8.0 documentation. (n.d.). Retrieved from

 https://assets.nagios.com/downloads/ncpa/docs/html/introduction.html#what-is-ncpa

Mandiant. Mandiant M-Trends: A View From The Front Lines. (n.d.). Retrieved from

 https://www2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf

National Security Agency. (2013, December 16). Spotting the Adversary with Windows Event

Log Monitoring. Retrieved from

https://www.nsa.gov/ia/_files/app/spotting_the_adversary_with_windows_event_log_mo

nitoring.pdf

Understand and Control Startup Apps with the System Configuration Utility. (n.d.). Retrieved

 from https://technet.microsoft.com/en-us/magazine/ee851671.aspx

Uncovering Indicators of Compromise | 28

!

Dallas Haselhorst

Windows Security Log Encyclopedia. (n.d.). Retrieved from

 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/Default.aspx

Uncovering Indicators of Compromise | 29

!

Dallas Haselhorst

Appendix

Audit logon events

This security setting determines whether the OS audits each instance of a user attempting to log

on to or to log off to this computer.

Log off events are generated whenever a logged on user account's logon session is terminated. If

this policy setting is defined, the administrator can specify whether to audit only successes, only

failures, both successes and failures, or to not audit these events at all (i.e. neither successes nor

failures).

Default values on Client editions:

 Logon: Success

 Logoff: Success

 Account Lockout: Success

 IPsec Main Mode: No Auditing

 IPsec Quick Mode: No Auditing

 IPsec Extended Mode: No Auditing

 Special Logon: Success

 Other Logon/Logoff Events: No Auditing

 Network Policy Server: Success, Failure

Default values on Server editions:

 Logon: Success, Failure

 Logoff: Success

 Account Lockout: Success

 IPsec Main Mode: No Auditing

 IPsec Quick Mode: No Auditing

 IPsec Extended Mode: No Auditing

 Special Logon: Success

 Other Logon/Logoff Events: No Auditing

 Network Policy Server: Success, Failure

Uncovering Indicators of Compromise | 30

!

Dallas Haselhorst

Important: For more control over auditing policies, use the settings in the Advanced Audit Policy

Configuration node. For more information about Advanced Audit Policy Configuration, see

http://go.microsoft.com/fwlink/?LinkId=140969.

Audit object access

This security setting determines whether the OS audits user attempts to access non-Active

Directory objects. Audit is only generated for objects that have system access control lists

(SACL) specified, and only if the type of access requested (such as Write, Read, or Modify) and

the account making the request match the settings in the SACL.

The administrator can specify whether to audit only successes, only failures, both successes and

failures, or to not audit these events at all (i.e. neither successes nor failures).

If Success auditing is enabled, an audit entry is generated each time any account successfully

accesses a non-Directory object that has a matching SACL specified.

If Failure auditing is enabled, an audit entry is generated each time any user unsuccessfully

attempts to access a non-Directory object that has a matching SACL specified.

Note that you can set a SACL on a file system object using the Security tab in that object's

Properties dialog box.

Default: No auditing.

Important: For more control over auditing policies, use the settings in the Advanced Audit Policy

Configuration node. For more information about Advanced Audit Policy Configuration, see

http://go.microsoft.com/fwlink/?LinkId=140969.

Standard Persistent Registry Keys

HKLM\Software\Microsoft\Windows\CurrentVersion\Run

HKCU\Software\Microsoft\Windows\CurrentVersion\Run

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Run

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows

HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce

Uncovering Indicators of Compromise | 31

!

Dallas Haselhorst

HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce

* RunonceEx keys no longer exist in Vista and later OSes

