
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"SIEM with Tactical Analytics (Security 555)"
at http://www.giac.org/registration/gcda

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcda

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting DLL Search Order Hijacking:

How using a purple team approach can help create
better defensive techniques and a more tactical SIEM

GIAC (GCDA) Gold Certification

Author: Lasse Hauballe Jensen, Lassehauballe@protonmail.com
Advisor: Robert Vandenbrink

Accepted: April 30th, 2020

Abstract

Many SIEM analysts will recognize the feeling of being overwhelmed with security logs
and alerts, and having to deal with them using a SIEM that gets slower and slower. For
many, it may even seem that the SIEM has transitioned into being an overpriced log
storage system. Figuring out how to make the SIEM faster, more tactical, and defensive-
oriented will also be a way to make the analysts better and happier. It will also provide
more accurate reporting for managers, and lastly, it will reduce storage and processing
requirements reducing the overall cost of running a SIEM.

This paper will show that by utilizing a purple team approach in combination with the
MITRE ATT&CK™ framework, it is possible to systematically generate precise and
simple detection techniques that will work in any SIEM. To exemplify this, this paper
will focus on the post-exploitation technique called DLL Search Order Hijacking, which
is used for persistence, privilege escalation, and evasion. By gathering an understanding
of what the technique is and running the actual attack, it will be possible to create a
reliable detection technique combining the use of Powershell, Sysmon, Windows Task
Scheduler, and ELK. This approach will not only result in a minimum of logs to analyze,
but it will also provide analysts with knowledge of specific offensive techniques and
tactics, making the security team/SOC even more capable of detecting evil in their
environment.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 2

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

1. Introduction
The purpose of this paper is to outline how to optimize a SIEM using thought-out

detection techniques. It thus seems appropriate first to define the technology behind the

acronym: SIEM. According to Gartner:

“Security information and event management (SIEM) technology supports threat

detection, compliance and security incident management through the collection and

analysis (both near real time and historical) of security events, as well as a wide variety

of other event and contextual data sources. “ (Gartner, n.d.-a)

“SIEM technology aggregates event data produced by security devices, network

infrastructure, systems and applications. The primary data source is log data, but SIEM

technology can also process other forms of data, such as network telemetry. Event data is

combined with contextual information about users, assets, threats and vulnerabilities.”

(Gartner, n.d.-b)

From the above definitions, it is understandable why an organization would

decide to buy a SIEM. It is very beneficial for any security team to have centralized log

collection, and the ability to correlate security logs from various infrastructure

components along with Netflow data from network equipment like routers and switches.

More than that, a SIEM can be utilized to create sophisticated alerting rules, provide

better reporting for the managerial staff, and, most importantly, gain visibility into the

entire network. It is, therefore, no surprise that the market for SIEMs has been growing

for the last couple of years, and will most likely continue to do so in the years to follow

(Research and Markets, 2019).

The purpose of this paper is not to debate which SIEM is the best. Instead, the

focus will be on how to optimize any SIEM by only collecting and using the logs needed

for detecting malicious activity.

The approaches used in this paper are twofold; The MITRE ATT&CK™

Framework and purple teaming. MITRE describes The MITRE ATT&CK™ framework

or matrix for enterprises in the following way:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 3

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

“MITRE's Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK)

is a curated knowledge base and model for cyber adversary behavior, reflecting the

various phases of an adversary's attack lifecycle and the platforms they are known to

target… (Strom et al., 2018)

The framework is essentially a matrix where each cell represents an attack

technique, and each column, a tactic. One way of using it to optimize the SIEM is to first

pick-out a technique from the matrix, second try to learn as much as possible about the

attack method, and lastly, create a way of detecting it and visualizing it in the SIEM. This

way of structurally approaching the task of creating detection techniques, and mapping

those on to the ATT&CK framework is a way for the security team to visualize which

attacks they can and cannot yet detect in their network. Thus, ATT&CK can become a

foundation for the rules in the SIEM and the corresponding detection techniques that

triggers them. Using ATT&CK in this way will be a stable path to making the SIEM

more tactical, faster, and defensive-oriented.

The technique in focus for this paper is DLL Search Order Hijacking, which,

according to the ATT&CK framework, is used for evasion, privilege escalation, and

persistence. The question now becomes, how does one create a viable detection method

for a given offensive technique?

The approach used in this paper, for creating detection techniques is called purple

teaming. The name derives from combining the two traditional methodologies in IT-

security, namely Red Teaming and Blue Teaming. The first being the offensive-oriented

pentesting team, the latter being the SIEM-focused defensive team. Traditional in-house

security teams will often focus on the defensive side exclusively. Such groups might

never find it necessary to spin-up a Kali Linux host to test a vulnerability themselves.

Instead, they will rather rely on outside red team consultants that will routinely scan the

network, try different techniques, write a report, and hand it back to the in-house blue

team. This division of labor has been accepted for many years, but it might not be the

most effective way of approaching the SIEM:

"In our current security climate, the traditional adversarial relationship does not

work. Pitting the Red Team against the Blue Team is a thing of the past. A better path

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 4

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

forward is to intertwine the two units to create a ‘Purple Team’ to allow the two teams to

cooperate in much greater detail and enable much better results. " (Dale, 2019)

The purple team approach used in this paper will hopefully demonstrate Dale’s

point of view. First, creating a proof of concept (POC) will provide insight into how

DLLs Search Order Hijacking functions and what indicators of compromises (IOC’s) the

attack leaves behind. Second, these IOCs will then be used by the blue team to create a

better and more thorough detection technique.

Note that detection methods should be continuously retested and reevaluated;

thus, the Purple Team approach should be an ongoing process.

The first chapter of this paper will be an in-depth look into how DLL Search

Order Hijacking functions, followed by a POC of running an attack on Windows 10 to

gain privilege-escalation and persistence. In chapter 2, the IOC’s from the POC are

highlighted, and it is discussed why specific logs could be helpful, and others might not

be. Then follows the defensive part of the paper, making sure that the logs are correct and

shipped to the SIEM, where they will be processed, enriched, and visualized.

This paper will use the ELK-stack, commonly known as ELK, as the SIEM.

According to Elastic’s website, ELK is: "... the acronym for three open source projects:

Elasticsearch, Logstash, and Kibana. Elasticsearch is a search and analytics engine.

Logstash is a server‑side data processing pipeline that ingests data from multiple sources

simultaneously, transforms it, and then sends it to a "stash" like Elasticsearch. Kibana

lets users visualize data with charts and graphs in Elasticsearch." (Elastic, n.d.-a) ELK is

unique in that it is highly customizable and can be used for a wide variety of use-cases

other than a SIEM. The ELK stack is not branded as a SIEM; however, it is very capable

of operating as such.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 5

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

2. DLL Search Order Hijacking (T1038)
2.1. What are DLLs and the DLL Search Order?

Before showing how DLL Search Order Hijacking works, it is crucial first to

explain the terms DLL and DLL Search Order. It will be challenging to understand why

hijacking a DLL file would be possible without understanding those terms in-depth.

Dynamic Link Libraries or DLLs are a standard filetype in Windows operating

systems. According to Microsoft, a DLL "is a library that contains code and data that

can be used by more than one program at the same time. For example, in Windows

operating systems, the Comdlg32 DLL performs common dialog box related functions."

(Microsoft, n.d.) For a programmer in need of a common dialog box, he or she can just

load the DLL file and all of its functionalities without having to program it themselves.

Naturally, this makes DLLs precious building blocks for any program running in a

Windows operating system.

Having an understanding of what a DLL file is, it is now possible to go into

details regarding how Windows finds and loads the exact DLL that a specific program is

trying to use. Again, looking at the Microsoft documentation:

"A system can contain multiple versions of the same dynamic-link library (DLL).

Applications can control the location from which a DLL is loaded by specifying a full

path or using another mechanism such as a manifest. If these methods are not used, the

system searches for the DLL at load time…" (Microsoft, 2018a)

So first off, the programmer could decide to hard-code the location of the DLL

that he or she would like to use. Loading a DLL in C++ is done using the function

LoadLibrary. In C++, hardcoding the path to the DLL comdlg32 would thus look like

this:

LoadLibrary(L“C:\Windows\SysWOW64\Comdlg32.dll”);

One problem with hardcoding the path is that a version of Comdlg32.dll is located

in C:\Windows\System32, which would be needed if the system was a 32-bit Windows

version. Hardcoding the path would, therefore, make the program unavailable for 64-bit

versions or vice-versa. Instead, what programmers tend to do is write:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 6

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

 LoadLibrary(L”Comdlg32.dll”);

In this case, Windows will go through a couple of steps to try and find the correct

DLL. First, Windows will check to see if the system already has another DLL loaded

with the same name. If this is true, the system will run the function from the DLL in

memory. However, if this is not the case, Windows will instead look into the registry key

called KnownDLLs (Microsoft, 2018a). According to Microsoft's documentation

regarding known DLLs:

"If the DLL is on the list of known DLLs for the version of Windows on which the

application is running, the system uses its copy of the known DLL (and the known DLLs

dependent DLLs, if any) instead of searching for the DLL." (Microsoft, 2018a)

Lastly, if the KnownDLLs registry key does not contain the DLL, Windows will

invoke the so-called DLL Search Order. The DLL Search Order is just a list of locations

where the operating system will look for a DLL with the name corresponding to the

filename requested by the program. The DLL Search Order is as follow:

1. The directory from which the application loaded.

2. The system directory.

3. The 16-bit system directory.

4. The Windows directory.

5. The current directory.

6. The directories listed in the PATH environment variable. (Microsoft, 2018b)

The DLL Search Order listed above assumes two things to be true: 1)

SafeDLLSearchMode is enabled, which has been the default since Windows XP Service

Pack 2. If this is not the case, then the current directory will be checked before the 16-bit

system directory. 2) The process looking for the DLL is a Desktop Application and not a

Windows Store App. This paper will only focus on Desktop Applications running in

Microsoft Windows 10 since most organizations and enterprises will most likely not be

using Windows Store Apps.

It is essential to highlight that Windows is only trying to match the name of the

requested DLL. In other words, if the system stumbles upon an incorrect DLL with the

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 7

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

same name, then the system will load the incorrect one regardless. The system will not

check for either the MD5-sum of the file, the publisher, file version, or whether the

desired function is found within the DLL.

That means that the attacker will need the following: 1) a process requesting a

DLL using the DLL Search Order, 2) write-permissions to a folder within the DLL

Search Order, and 3) the name of the DLL required by the process. It might seem

unlikely for an attacker to have all three things; however, it is quite common for a process

to look for a DLL but never find it, and to have directories within the DLL Search Order

that unprivileged users can modify. Therefore, this makes it a very valid path for

attackers to take when looking to create persistence, gain privilege escalation, and evade

detection. Lastly, an interesting fact to keep in mind is that many processes will run fine

without ever finding all their required DLLs, and many will even function having loaded

a wrong DLL. However, it also occurs that a process crashes or even makes the entire

system crash, so be aware of testing for this in an environment that can handle a crash.

Placing a malicious DLL within a directory in the DLL Search Order is known as

DLL Search Order Hijacking1 and is labeled T1038 in the MITRE ATT&CK Framework

(Kanthak et al., 2019). MITRE also describes the technique in the following way:

"If a search order-vulnerable program is configured to run at a higher privilege

level, then the adversary-controlled DLL that is loaded will be executed at the higher

level. In this case, the technique could be used for privilege escalation from user to

administrator or SYSTEM or from administrator to SYSTEM, depending on the

program." (Kanthak et al., 2019).

Knowing the terms DLL, DLL Search Order, and having an understanding as to

why attackers exploit this normal Windows behavior, it is time to look at a proof of

concept. The purpose of this POC is not only to demonstrate a DLL Search Order

Hijacking attack but also to help answer the following questions: At what stage would a

SIEM analyst be able to detect it? What IOCs does the attack leave behind? Does the

	
1	It	is	also	referred	to	as	DLL	preloading	or	binary	planting	attack.	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 8

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

system need any specific configurations? Furthermore, what defensive technologies will

the security team need to implement to detect DLL Search Order Hijacking?

2.2. POC: Hijacking a DLL for svchost.exe and gaining
SYSTEM on Windows 10

From the previous chapter, we learned that the attacker would first need to locate

a process that is invoking the DLL Search Order. One way to find such a process is to use

the Windows Sysinternals tool called Process Monitor (Microsoft, 2019), which can help

visualize how processes are behaving on the system. Process Monitor will monitor

multiple things, including whether a process is trying to load a file, reading or editing a

registry key. Still, most importantly, it will show if a process is looking for a DLL and

whether it loaded correctly or never found it. Process Monitor is a valuable tool to have

as a security team; though, it is unlikely that an attacker would use it since offensive

toolkits like PowerSploit have this feature integrated (Schroeder, 2020).

Process Monitor comes with a feature called Boot Logging, which allows Process

Monitor to log everything happening while the system is booting. It is during the booting

process that many high privileged services start in the context of NT Authority\SYSTEM.

Boot Logging thus makes for an excellent way to find privilege escalation opportunities

on the system. Figure 1 is the result of having enabled Boot Logging within Process

Monitor. Note that the result shown is filtered: Only show paths ending in ".dll" and only

show results if the field Result is equal to "NAME NOT FOUND."

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 9

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

	

Figure	1:	Results	from	Process	Monitors	Boot	Logging	

The highlighted results in figure 1 show that the process named svchost.exe is

looking for a DLL called WptsExtensions.dll, and not finding it. Figure 1 also shows that

the process is being run as NT Authority\SYSTEM, making it a highly valuable process

to hijack. Lastly, we see that the process is going through the DLL Search Order as

expected. Notice that individual paths look unique for the victim PC. These are the

directories listed in the so-called System PATH environment variable, which is the last

step of the DLL Search Order. In this case, the victim-PC seems to have multiple

directories listed, including directories belonging to Nvidia, Microsoft SQL, and dotnet.

It is important to note that two distinct PATH environment variables exist in Windows

operating systems. The first is the system PATH environment variable, and the second is

the user PATH environment variable. The system PATH variable is for system-wide

usage, whereas the user variable is user-specific. It is essential to understand this

distinction because process running as SYSTEM will only look in the PATH variable,

whereas process running as the current user will look in both system and user. If an

attacker is looking to privilege-escalate using DLL Search Order Hijacking, they would

have to find a writeable directory in the System PATH variable. However, if the attacker

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 10

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

is only using DLL Search Order Hijacking for evasion purposes, they could rely on both

the System and the User environment variable. Thus, they would not need to hijack a

process running as SYSTEM; however, it would be preferable for an attacker. The POC

in this paper will focus on gaining privilege-escalation, and thus, the focus will be on the

System PATH environment variable.

The next step is to determine if the current low-privileged user has permission to

write files to a directory in the DLL Search Order. One way to test this is to create a

simple PowerShell script like the one showcased in figure 2. Scripting is not necessary,

but it can be a swift and practical approach to take. The script used only looks for

vulnerable directories within the system PATH environment variable, and not the full

DLL Search Order, thus, it assumes that a regular user does not have permission to write

files to directories like C:\Windows or C:\Windows\System32.

The script is straightforward. It will go through each directory in the System

PATH variable and check to see if users other than those listed in $ignoreUsers have one

of the following permissions: Modify, Write or FullControl. If this is true, the script will

write the directory to the screen.

Figure	2:	Detect	vulnerable	directories	

	
Figure 3 is the result of running the script on the victim-PC, we see that the group

Authenticated Users has permission to write files to the folder C:\Security\, which has

been added to the System PATH variable for testing purposes.

$Reg = "Registry::HKLM\System\CurrentControlSet\Control\Session Manager\Environment"
(Get-ItemProperty -Path "$Reg" -Name PATH).Path.Split(";") | ForEach {
 $currentPath = $_
 if ($_ -ne "") {
 (get-acl $_).access | Where-Object {$_.FileSystemRights -like "Write*" -or
$_.FileSystemRights -like "FullControl" -or $_.FileSystemRights -like "Modify*"} |
ForEach {
 $user = $_.IdentityReference
 $permission = $_.FileSystemRights

 #Ignore the following privileged users.
 $ignoreUsers = @("NT SERVICE\TrustedInstaller", "NT AUTHORITY\SYSTEM",
"BUILTIN\Administrators", "APPLICATION PACKAGE AUTHORITY\ALL APPLICATION PACKAGES")
 if ($ignoreUsers -notcontains $user) {
 echo "[VULNERABLE] $user can add files to $currentPath"
 }
 }
 }
}

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 11

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

	

Figure	3:	Output	from	the	Powershell	script	

The next step is to create a custom DLL that will showcase that the privilege

escalation happened. The DLL will be created using Microsoft Visual Studio 2017. The

DLL will have a single function: To output the user running the DLL (i.e. SYSTEM) to a

text file called "C:\Security\whoami.txt." The DLL is simple, yet it will show that code-

execution happened and that privilege escalation was possible. Figure 4 is the code used

for this POC.

	

Figure	4:	C++	code	for	the	DLL	used	in	the	proof	of	concept	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 12

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

The DLL is compiled and placed in the directory C:\Security\ and named

WptsExtensions.dll. Afterward, the computer is restarted.

	

Figure	5:	NT	SYSTEM	ran	the	DLL	and	created	whoami.txt	

Figure 5 should be pretty self-explanatory at this point. Upon restarting,

svchost.exe looked for WptsExtensions.dll, it searched the DLL Search Order, and found

the malicious DLL in C:\Security\, which it loaded thus executing our code. The

execution wrote the name of the current user: SYSTEM to the file whoami.txt. Once

again, we begin Process Monitor with boot logging enabled.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 13

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

	

Figure	6:	Process	monitor	showing	WptsExtension.dll	loaded	from	the	c:\security	directory	

As expected, we see that the process svchost.exe went through the DLL Search

Order until it reached the malicious DLL located in C:\Security. As expected, the system

booted with no issues, and so an attacker would be able to run this DLL Search Order

Hijacking attack without the user ever noticing.

3. Creating the detection technique
Having a thorough understanding of how DLL Search Order Hijacking works and

having gone through the red team exercise of creating a proof of concept, it is now time

to figure out how to create a detection technique that will work with the SIEM. To do

this, we will try to adhere to the following three key points: First, the analyst looking in

the SIEM should have to go through the fewest logs possible. Secondly, the risk of

false/positives should be minimal, and thirdly, if possible, it should be evident right away

what technique in the MITRE ATT&CK™ matrix was used, in this case, T1038 or DLL

Search Order Hijacking. If we manage to meet these critical points, the analyst will be

able to react swiftly and appropriately following the appropriate incident response

process.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 14

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

3.1. Audit the DLL Search Order using Powershell
From chapter 1, we learned that for the attacker to succeed with DLL Search

Order Hijacking, he or she would have to place a malicious DLL inside the DLL Search

Order. In Windows operating systems, it is possible to create logging on folders and files

using Object Access Logging. Now, in theory, it would be possible to have Object Access

Logging on every folder on the operating system; however, anyone with Object Access

Logging experience would properly advise heavily against it due to the number of logs

generated. Therefore the goal is only to enable Object Access Logging on those specific

directories listed in the DLL Search Order. Furthermore, it is only necessary to enable on

those folders, where non-privileged users have write-permissions.

In the proof of concept example, we found that only one directory "C:\Security\"

was vulnerable, and so this is the only folder that needs to have Object Access Logging

enabled. Two things are necessary to achieve this: 1) Create a Local or Group Policy and

make sure to set Audit File System to Success and Failure under “Computer

Configuration/Windows Settings/Security Settings/Advanced Audit Policy.” The Audit

File System policy allows for the system to generate Object Access Logging events in the

Windows Security Log. 2) By default, Windows will not audit any folder without a SACL

or System Access Control List. According to Microsoft, a SACL "enables administrators

to log attempts to access a secured object. Each ACL specifies the types of access

attempts by a specified trustee that cause the system to generate a record in the security

log." (Microsoft, 2018c) SACLs can be created manually in Windows; however, it is also

possible to extend the PowerShell script from the proof of concept, to enable auditing on

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 15

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

vulnerable folders. For this to work, make sure the script runs as an administrator.

	

Figure	7:	Enable	Auditing	by	adding	SACL	to	the	directory	

 The extended script will go through each directory in the system PATH

environment variable and add a SACL to it. The script could be moderated further only to

fit certain users; however, for the sake of simplicity and thoroughness, Everyone will

work as intended. It could also be extended to prevent DLL Search Order Hijacking by

restricting access for unprivileged-users. The preventive approach will only make sense if

it is clear that this would not disrupt the users' ability to work. Lastly, it should be noted

that if a directory is later removed from the system PATH environment variable or if non-

privileged users can no longer add files to it, the audit settings would remain. This

problem could be solved by having a similar script that, instead of adding audit settings,

would remove them if no longer needed.

In a Windows Domain, this PowerShell script could be placed on a shared

network folder (with read-only), and have a Group Policy created to run it for every client

on startup. This approach would ensure that every Windows workstation and server in the

network would only generate the necessary Object Access logs.

$Reg = "Registry::HKLM\System\CurrentControlSet\Control\Session Manager\Environment"
(Get-ItemProperty -Path "$Reg" -Name PATH).Path.Split(";") | ForEach {
 $currentPath = $_
 if ($_ -ne "") {
 (get-acl $_).access | Where-Object {$_.FileSystemRights -like "Write*" -or
 $_.FileSystemRights -like "FullControl" -or $_.FileSystemRights -like "Modify*"}
 ForEach {
 $user = $_.IdentityReference
 $permission = $_.FileSystemRights
 #The following users will have permissions and should be ignored
 $ignoreUsers = @("NT SERVICE\TrustedInstaller", "NT AUTHORITY\SYSTEM",

 "BUILTIN\Administrators", "APPLICATION PACKAGE
 AUTHORITY\ALL APPLICATION PACKAGES")

if ($ignoreUsers -notcontains $user) {

 echo "[VULNERABLE] $user can write to $currentPath"
 #Set Audit Rules
 $ACL = Get-Acl $currentPath
 $AuditRule = New-Object Security.AccessControl.FileSystemAuditRule(

 "Everyone","Write","None","None","success")
 $ACL.SetAuditRule($AuditRule)
 $ACL | Set-Acl $currentPath
 echo "SACL has now been added for the directory $currentPath"
 }
 }
 }
}

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 16

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

With the correct logging in place on the Windows clients, the logs are now ready

to be forwarded to the SIEM. How to achieve this often depends on the SIEM in use

since most will have a product-specific log agent or log shipper; QRadar uses

WinCollect, Splunk uses Universal Forwarder, and so on. Most SIEMs will, however,

receive incoming logs just fine no matter the agent as long as the formatting is correct.

The log agent used for this paper is NXLog, which is a highly customizable agent, that

can be made to only forward specific logs, and do so in the format most suitable for the

SIEM like CSV, Syslog, and JSON (NXLog, 2018). In ELK, it is easy to use the JSON-

format because the ingestion engine in ELK, called Logstash, can automatically parse

JSON. Using Logstash to accept, parse, and enrich the logs will be the focus of the next

section.

3.2. Tagging in Logstash and visualizing in Kibana
One of the things that make the ELK-stack stand out from other SIEMs is

Logstash: "a server-side data processing pipeline that ingests data from a multitude of

sources simultaneously, transforms it, and then sends it to your favorite 'stash'" (Elastic,

n.d.-b). Logstash parses and enriches logs with information like geo and DNS lookup on

IPs. It can tag individual logs and add entirely new fields with information that will help

the analyst understand the event better. It is important to note that Logstash can work

with any SIEM; it is just a matter of placing it in between the log agent and the SIEM.

Figure 8 is an example of setting up a Logstash configuration filter for Windows Object

Access Log event ID 4663.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 17

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

	

Figure	8:	Logstash	configuration	filter	

The filter should be quite self-explanatory, ignoring the date filter at the top, the

configuration will look for a log with the EventID value of 4663 (An attempt was made

to access an object). It then checks to see if the AcesssMask is "0x2", which, according to

Microsoft, is "WriteData (or Add file)" meaning a file was added to the directory

(Microsoft, 2017). Lastly, Logstash will look at the field ObjectName and check if the

value of the file contains ".dll." If the event meets these criteria, Logstash will then enrich

the log with the tags: "Alert" and "MITRE”, and create a new field called MITRE with

the value “T1308”. Configuring the filter to drop events not containing “.dll” is also an

option that naturally would free up even more space in the SIEM.

Turning the focus to Kibana, our SIEM frontend, we see that event logs from the

Windows client are visible. Figure 9 shows that Logstash parsed the event correctly and

created the field “MITRE” with T1308 as the value.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 18

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

	

Figure	9:	Event	ID	4663	in	Kibana	

Now, there is no right or wrong way to create dashboards and visualizations. The

most important thing is to make sure the analyst has a comfortable and clean overview,

and that he or she knows what is happening on the screen. Many SIEMs will come pre-

installed with a bunch of cluttered graphs and colorful visuals, which might work when

selling the product, but they will most likely only remove focus and cause further

confusion for the analyst.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 19

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

	

Figure	10:	Visualization	in	Kibana	

Figure	10	is	an	example	of	a	Kibana	dashboard	called	Windows	created	to	

give	a	simple	overview	of	the	Windows	clients	in	the	monitored	environment,	which	

in	this	case,	is	only	a	single	client.	Depending	on	the	number	of	clients,	servers,	

domains,	and	networks	being	monitored,	the	dashboard	might	be	too	simplistic;	

However,	the	idea	should	remain	the	same.	The	dashboard	contains	three	

visualizations:	The	top-left	visualization	is	for	DLL	Search	Order	Hijacking	only.	The	

table	will	only	show	events	if	they	contain	"MITRE:	T1038",	in	that	case,	it	will	show	

the	hostname,	the	username,	and	the	name	and	location	of	the	DLL.	For	an	analyst,	

this	makes	detecting	DLL	Search	Order	Hijacking	a	lot	easier,	and	he	or	she	can	

begin	the	incident	response	process	right	away,	knowing	that	this	is	most	likely	an	

actual	threat.	This	particular	detection	technique	does	not	reveal	to	the	analyst	what	

process	was	attempted	exploited	or	if	it	was	successful.	However,	for	an	analyst	

charged	with	managing	this	incident,	those	questions	should	be	secondary.	The	

visualization	in	the	bottom-left	corner	shows	how	many	MITRE	ATT&CK	detections	

that	have	been	triggered	on	Windows	hosts.	The	visualization	is	great	for	creating	

security	reports	on	the	condition	of	the	entire	Windows	environment.	Last,	the	top-

right	corner	will	show	the	analyst	which	Windows	events	are	most	common.	This	

visualization	is	valuable	to	look	at	in	the	beginning,	since	Windows	Object	Access	

Logging	can	become	very	noisy	if	configured	incorrectly.	Having	an	overview	close	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 20

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

to	the	other	visualization	might	help	in	detecting	false/positives	or	other	

misconfigurations.		

The	visualization	in	the	example	only	monitored	a	single	Windows	host.	In	

reality,	a	security	team	could	be	tasked	to	monitor	hundreds,	thousands	or	even	

tens	of	thousands	making	the	visualization	provided	seem	very	simplistic.	Since	DLL	

Search	Order	Hijacking	is	not	commonly	an	attack	vector	used	on	multiple	systems	

at	a	time,	it	really	should	not	be	an	issue	for	the	analysts	to	keep	up	with	the	number	

of	alerts	generated	by	this	technique.	Therefore,	the	detection	technique	provided	is	

valid	even	for	organizations	with	thousands	of	clients	and	servers.				

3.3. Keeping up with the PATH environment variable
The paper up until now has consisted of a red team exercise followed by a blue

team exercise: Creating a proof of concept, adapting the findings into blue team

knowledge, and finally creating the detection technique. Now the task is to circle back

again and ask: "Does this detection technique contain flaws"?

One thing that will inevitably make this detection technique obsolete is the fact

that a Windows environment will eventually change, and with it, so will the DLL Search

Order since new directories will appear in the PATH system environmental variable.

Specific programs will only work if certain directories are added to the System PATH

environment variable, and so the DLL Search Order will change.

Luckily, Microsoft Sysinternals have made another tool called Sysmon that is

gaining popularity rapidly. Sysmon allows for enhancing logging capabilities further in

Windows operating systems and makes it possible for administrators to select what to

monitor in a way that Windows cannot do on its own. This could include logging when

specific processes or subprocesses are running, keeping an eye on network connections,

or monitor changes to particular registry keys. Earlier, we learned that the system PATH

environment variable is stored in the registry key located in

HKLM\System\CurrentControlSet\Control\Session Manger\Environment (Microsoft,

2018d). So to monitor changes to the system environment PATH variable, all one needs

to do is set up a Sysmon configuration to track changes made to this key:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 21

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

	

Figure	11:	A	Sysmon	configuration	file	for	monitoring	changes	to	the	PATH	variable

Now, if someone makes a change to the System PATH environment variable,

Sysmon will create event ID 13. Figure 12 is an example of such an event. Here the

directory "C:\Security\Sysmon" was added as an example. We also see that the event

includes all the directories in the System PATH environment variable.

	

Figure	12:	Sysmon	Event	ID	13:	A	registry	value	changed

Knowing that Sysmon can create this event makes it possible only to run the

PowerShell audit-script when necessary. New directories added to the system PATH

variable would then automatically be given the correct SACL and have object access

logging performed. Sysmon could be skipped entirely, and instead, just have the script

run on every startup. Now, this would work though it might be a bad idea if the Windows

environment is large while at the same time, the security team is trying to pull in every

PowerShell log. In that case, the number of logs created every day from running this

script could become a problem. To have the PowerShell script execute when a specific

event is generated, we turn to an old Windows Application called Task Scheduler known

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 22

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

to many since the 1990s. Windows Task Scheduler can trigger an action based on an

event in the Windows Event Log, for instance, a Sysmon event containing a specified

string. Figure 13 shows how to accomplish this using XPath queries in Task Scheduler.

	
Figure	13:	Adding	customized	Windows	event	trigger	using	XPath	

The above task will only trigger on Sysmon Event ID 13 and only if the event

contains the string: "HKLM\System\CurrentControlSet\Control\Session

Manager\Environment\Path". Upon seeing this event, Windows Task Scheduler will run

PowerShell as an elevated user and execute the audit-script. With this final step

implemented, we now have a complete automatic DLL Search Order Hijacking detection

technique.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 23

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

4. Conclusion
DLL Search Order Hijacking is an attack technique that, without the proper

understanding of the intricacies of the attack, can be very hard to detect in a SIEM. The

goal of this paper was to use the MITRE ATT&CK framework as a foundation, pick out

a single attack technique (in this case T1038), and then approach it using a purple team

approach to create a reliable detection technique. The detection technique had to live up

specific demands: The number of logs shipped to the SIEM had to be as few as possible.

Secondly, the risk of a false/positive should be minimal. Lastly, since the foundation of

the approach was the MITRE ATT&CK framework, it should be evident right away for

the analyst that the logs were referring to T1038 making for a faster incident response

process.

The purple team approach used in this paper helped us understand how and why

the attack works by going through a full red team proof of concept. Knowing how the

attack works, along with the indicators of compromise from the POC, made it possible to

create a detection technique that lived up to the demands proposed in this paper. By using

tools like PowerShell, Sysmon, NXLog, and Windows Task Scheduler, the SIEM analyst

ended up with efficient visualizations capable of detecting DLL Search Order Hijacking.

The technique does not identify whether the attacker was successful in loading a

malicious DLL; however, it will detect the attempt, which hopefully will be enough for

most security teams.

The SIEM is an excellent tool for security teams looking to enhance their network

visibility, and strengthen the organization's overall defensive posture, but keep in mind

that a SIEM is only as good as the logs it receives.

	 	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 24

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

	
References

Dale, Chris. (2019). Red, Blue and Purple Teams: Combining Your Security Capabilities

for the Best Outcome. Retrieved from SANS.org: https://www.sans.org/reading-

room/whitepapers/analyst/red-blue-purple-teams-combining-security-capabilities-

outcome-39190

Elastic. (n.d.-a). What is the ELK Stack? Retrieved from: https://www.elastic.co/what-

is/elk-stack

Elastic. (n.d.-b). Logstash. Retrieved from Elastic: https://www.elastic.co/logstash

Gartner. (n.d.-a). Gartner Glossary: S: Security Information and Event Management

(SIEM). Retrieved from https://www.gartner.com/en/information-

technology/glossary/security-information-and-event-management-siem

Gartner. (n.d.-b). Security Information and Event Management Market. Retrieved from:

https://www.gartner.com/reviews/market/security-information-event-management

Microsoft. (n.d.). What is a DLL? Retrieved from: https://support.microsoft.com/da-

dk/help/815065/what-is-a-dll

Microsoft. (2017). 4663(S): An attempt was made to access an object. Retrieved from:

https://docs.microsoft.com/en-us/windows/security/threat-

protection/auditing/event-4663

Microsoft. (2018a). Dynamic-Link Library Search Order. Retrieved from:

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-

search-order

Microsoft. (2018b). Dynamic-Link Library Security. Retrieved from:

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-

security

Microsoft. (2018c). Access Control Lists. Retrieved from: https://docs.microsoft.com/en-

us/windows/win32/secauthz/access-control-lists

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Detecting	DLL	Search	Order	Hijacking 25

	

Lasse	Hauballe	Jensen,	lassehauballe@protonmail.com	 	 	

Microsoft. (2018d). Environment Variables. Retrieved from Microsoft:

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-

variables

Microsoft. (2019). Process Monitor v.3.53. Retrieved from:

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

MITRE. (n.d.). ATT&CK. Retrieved from: https://attack.mitre.org/

NXLog. (2018). NXLog Community Edition Reference Manual v. 2.10.2150. Retrieved

from: https://nxlog.co/docs/nxlog-ce/nxlog-reference-manual.html

Research and Markets. (2019). Security Information and Event Management Market to

2027 – Global Analysis and Forecast by Solution; Service; and End User.

Retrieved from: https://www.researchandmarkets.com/reports/4762286/security-

information-and-event-management-market

Schroeder, Will. (n.d.). PowerSploit Documentation. Retrieved from:

https://powersploit.readthedocs.io/en/latest/Privesc/Find-ProcessDLLHijack/

Stefan Kanthak et al. (2019). DLL Search Order Hijacking. Retrieved from:

https://attack.mitre.org/techniques/T1038/

Strom, Blake E. et al. (2018). MITRE ATT&CK™: Design and Philosophy. Retrieved

from https://www.mitre.org/sites/default/files/publications/pr-18-0944-11-mitre-

attack-design-and-philosophy.pdf

