
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Security Essentials - Enterprise Defender (Security 501)"
at http://www.giac.org/registration/gced

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gced

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Mitigating Risk with the CSA 12 Critical Risks for

Serverless Applications

GIAC (GCED) Gold Certification

Author: Mishka McCowan, mmcocwan@eagna.net

Advisor: Jonathan Risto

Accepted: Ausgust 22, 2020

Abstract

Since its introduction in 2014, serverless technology has seen significant adoption
in businesses of all sizes. This paper will examine a subset of the 12 Most Critical Risks
for Serverless Applications from the Cloud Security Alliance and the efficacy of their
recommendations in stopping attacks. It will demonstrate practical attacks, measure the
effectiveness of the Cloud Security Alliance recommendations in preventing them, and
discuss how the recommendations can be applied more broadly.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 2

Mishka McCowan, mmccowan@eagna.net

1. Introduction
Since their introduction in 2014 (Amazon Web Services, n.d.), the use of

Lambdas, the AWS serverless technology, has become incredibly widespread. In 2018,

Gartner predicted that more than 20 percent of global enterprises would deploy serverless

technologies by the end of the decade (Gartner, 2018). The monitoring and analytics

company Datadog reported in early 2020 that half of their AWS customers had adopted

Lamba (Datadog, 2020). They concluded that "serverless functions are now in

widespread use across a variety of companies with an infrastructure footprint in AWS."

((Datadog, 2020)

The security community's efforts to create best practices for securing serverless

technologies has trailed the explosive growth in its adoption. In the latter part of 2018,

OWASP released a serverless interpretation of their OWASP Top Ten (Open Web

Application Security Project, 2018). A list of the top 12 security risks for serverless

created by the Cloud Security Alliance (Cloud Security Alliance, 2019) was released

shortly after that. The security portion of the Lambda documentation on the AWS site

references neither document (Amazon Web Services, n.d.).

Even as the security community struggles to define how to best secure serverless,

we are using them for security automation. According to the 2019 Cloud Security Survey

from SANS, 46.4% of respondents used serverless for automation and orchestration

(Shackleford, 2019). This begs the question as to how well the security is securing its

own infrastructure.

This paper will examine the CSA Top 12 Critical Risks for Serverless

Applications as a viable framework for securing serverless applications. A sample of the

risks will be tested using practical attacks against a vulnerable application in the AWS

cloud. After remediating the vulnerabilities, the application will be retested to measure

the efficacy of the CSA recommendations.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 3

Mishka McCowan, mmccowan@eagna.net

2. CSA Top 12 Critical Risks for Serverless Applications
A serverless architecture is a model for organizations to run applications without

having to manage the underlying infrastructure. In this model, the cloud provider is

responsible for dynamically allocating computing resources for code when it executes.

Typically, the code takes the form of a function and is running inside stateless containers.

Hence, this model is also referred to as Function-as-a-Service or FaaS.

The serverless model is attractive to both developers and enterprises. It allows

developers to focus on building and maintaining their applications without having to

worry about managing the infrastructure because that is the responsibility of the cloud

provider. Enterprises are attracted to the serverless model because of the potential for cost

savings. Instead of paying an hourly fee for each server supporting the application,

serverless functions typically incur a cost when they execute. This eliminates the need to

pay for idle servers. However, this model is not without its drawbacks. For example, an

attacker may invoke a serverless application many times over a long period with the

intent of inflating the target organization's monthly bill and inflicting financial loss.

The Top 12 Critical Risks for Serverless Applications is an effort to define

security best practices for serverless applications. Developed by the Cloud Security

Alliance (CSA), the Critical Risks came out of a recognition that this new paradigm

introduces a different set of security issues. The size and complexity of the attack surface

for these types of applications are more extensive than they are for "traditional"

applications. At the same time, the current crop of automated scanning tools has not

adapted to examining serverless applications (Cloud Security Alliance, 2019).

The CSA Critical Risks were released in 2019 to aid and educate "organizations

seeking to adopt the serverless architecture model" (Cloud Security Alliance, 2019). They

are patterned after work done by the Open Web Application Security Project (OWASP)

with their Top Ten Web Application Security Risks. In 2017, OWASP released an

"Interpretation for Serverless" of their Top Ten to serve as a "first glance to the serverless

security world and will serve as a baseline to the official OWASP Top 10 in Serverless

project" (OWASP, 2018). The CSA Critical Risks references the OWASP Top Ten and

has a mapping to it.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 4

Mishka McCowan, mmccowan@eagna.net

The CSA Critical Risks was chosen as the reference for this paper over the

OWASP interpretation for two reasons. First, it is more recent. The serverless world is

evolving quickly, so the CSA Critical Risks represent the most current thinking by the

security community. Second, the language used to convey the risks is very specific to

serverless. This specificity is useful in illustrating both the vulnerabilities and the

associated remediation.

There are many cloud providers with serverless or Function-as-a-Service

offerings. Amazon, Microsoft, Google, IBM, Oracle, and others include serverless as part

of their portfolio. This paper will focus on the serverless offering from Amazon Web

Services (AWS) because they are a market leader and a pioneer of serverless with their

release of Lambda functions in 2014. While the examples will be specific to AWS, the

concepts are applicable, regardless of vendor.

To examine the efficacy of the Critical Risks in stopping attacks, this paper will

demonstrate practical attacks, measure the effectiveness of the CSA recommendations in

preventing them, and discuss how they can be applied more broadly. The demonstrations

will use a tool called Serverless Goat, a serverless application maintained by OWASP for

demonstrating common serverless security flaws (Open Web Application Security

Project 2019). After each demonstration, a technique will be put in place to address the

flaw. Rerunning the attack will gauge the effectiveness of the mitigation. There will then

be a discussion of other types of mitigations for each class of vulnerability. Three of the

Critical Risks will be tested as a representative sample of the entire list.

3. Mitigating the Risks
The CSA has marked each of the Critical Risks with a unique identifier in the

form of SAS-[NUMBER]. For ease of reference, the number will be used for each of the

risks in this section.

3.1 SAS-1: Function Event-Data Injection

Injection attacks are a staple of application security. OWASP has highlighted this

type of attack as one of its top 10 application security risks since its initial release in 2003

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 5

Mishka McCowan, mmccowan@eagna.net

(Heinrich, n.d.). It appears on the Top 10 Secure Coding Practices from Carnegie Mellon

University's Software Engineering Institute's CERT Division (Carnegie Mellon

University Software Engineering Institute). The CWE Top 25 Most Dangerous Software

Errors published by MITRE lists three different variants (MITRE, 2019). However,

despite all of this, injection errors still make up 6% of the public vulnerabilities published

on MITRE's Common Vulnerabilities and Exposures list (MITRE, n.d.).

Like web applications, serverless applications are vulnerable to injection attacks.

Unlike web applications, the surface area for attacks against serverless applications is

much larger. They can be triggered by events from user input, message queues, cloud

storage, databases, and other serverless functions. Defenders must consider not only

direct attacks, but also more complicated ones in which data placed into a queue or data

store may contain a malicious payload to be consumed by the serverless application. To

add to the degree of difficulty, the input provided by these events can be provided in

different formats, depending on their source.

3.1.1 Example: Command Injection

The Serverless Goat is a simple application that takes a Microsoft Word document

as an input, parses it, and displays the text of the document for the user. There is a default

value for a Word document hosted by one of the project supporters that can be used for

testing. Pressing the "Submit" button with the default value will return the text of a

William Blake poem.

The first step for any attacker is to start probing for vulnerabilities. In the case of

the Serverless Goat, testing for injection vulnerabilities begins by adding different special

characters to the end of the url for the Word document. When a semi-colon is added, the

following error message is displayed:

Error: Command failed: ./bin/curl --silent -L
https://www.puresec.io/hubfs/document.doc; | /lib64/ld-linux-x86-
64.so.2 ./bin/catdoc -
/bin/sh: -c: line 0: syntax error near unexpected token `|'
/bin/sh: -c: line 0: `./bin/curl --silent -L
https://www.puresec.io/hubfs/document.doc; | /lib64/ld-linux-x86-
64.so.2 ./bin/catdoc -'

 at checkExecSyncError (child_process.js:630:11)
 at Object.execSync (child_process.js:666:15)

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 6

Mishka McCowan, mmccowan@eagna.net

 at Runtime.exports.handler (/var/task/index.js:29:29)
 at processTicksAndRejections (internal/process/task_queues.js:97:5)

The bolded portion of the error message reveals two critical pieces of information.

First, the application uses curl to download the Word document. Second, the error

message "syntax error near unexpected token `|" indicates that the output is piped from

the curl utility into something else. These two things indicate that the application is

passing commands to the operating system for execution. The next step is to try to exploit

the possible command injection vulnerability by changing parameters in the URL.

A simple test is to add an operating system command to the end of the URL.

Updating the URL to "https://www.puresec.io/hubfs/document.doc;

ls;#" results in random characters surrounding the text of the poem. At the very bottom

of the output is a list of files. Changing the URL to refer to a non-existent document will

ensure that the listing is not part of the document's metadata: "http://not-a-

domain/bad.doc; ls;#".

The new URL returned the same list of files (line breaks added for clarity), as

follows:

bin
index.js
lib
node_modules
package.json
package-lock.json

The listing shows directories and files on the filesystem for the application's

deployment directory. Another change to the URL displays the source code for the

Lambda function that is processing the files: "http://not-a-domain/bad.doc;

cat index.js;#". For the full text of the Lambda, please refer to Appendix A.

The source code reveals how the application is constructed. It is written in

NodeJS, stores the URL in a DynamoDB table each time it is called, and an S3 bucket

with public-read permissions stores the results. The source code also reveals the root

cause for the vulnerability: untrusted user input. The URL is used without sanitizing it

first.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 7

Mishka McCowan, mmccowan@eagna.net

3.1.2 Remediation: Command Injection

There are multiple methods for correcting command injection vulnerabilities,

including input validation, whitelisting, escaping OS commands, parameterization, and

removing direct calls to OS commands. The OWASP Command Injection Defense Cheat

Sheet recommends using multiple methods to provide for a layered defense (Open Web

Application Security Project, n.d.). For this demonstration, whitelisting will be used as a

simple method to address this vulnerability.

The whitelist will consist of the letters A through Z, numbers, and the special

characters required to make a valid URL – the colon, period, and forward slash.

Removing the ability to use special characters such as a semi-colon or pound sign

severely restricts how a would-be attacker can manipulate the OS command to fetch the

document. The first line below is the original assignment of the URL entered by the end-

user to a variable for processing. The second line uses the replace function to restrict the

characters in the URL to the list described above. Any other characters are removed.

let documentUrl = event.queryStringParameters.document_url;

let documentUrl = (event.queryStringParameters.document_url)
.replace(/[^0-9a-zA-Z.:/]/g,"");

Once the change has been made, and the code is deployed, the original commands

were rerun. The section below shows each command, the original result, and the result

after inserting the whitelisting.

• https://www.puresec.io/hubfs/document.doc"

o Original Result – The William Blake poem is displayed

o Whitelisted Result – The William Blake poem is displayed

o Notes – A valid request continues to return the parsed text

• https://www.puresec.io/hubfs/document.doc;"

o Original Result – An error message from the operating system

o Whitelisted Result – The William Blake poem is displayed

o Notes – The semi-colon is removed because the character is not in the

whitelist. The result is that the URL for the document is valid and is

processed without error

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 8

Mishka McCowan, mmccowan@eagna.net

• https://www.puresec.io/hubfs/document.doc; ls;#

o Original Result – The William Black poem is display surrounded by

random characters and a file system listing

o Whitelisted Result – A 404 error

o Notes – The semi-colon, pound sign, and spaces are removed, resulting in

an invalid URL, https://www.puresec.io/hubfs/document.docls. When

called, this URL will return the 404 message provided the server

• http://not-a-domain/bad.doc; ls;#

o Original Result – A file system listing

o Whitelisted Result – A zero (0) is displayed

o Notes – There was no server to return a 404 error. The –silent parameter in

the curl statement suppresses curl's return code, so no information is

passed to into catdoc. The zero is the return code from catdoc, indicating

the operation completed.

The results show that whitelisting was effective in stopping the command

injection. The attempts were either ignored by the system or returned a 404 Page Not

Found error. The junk characters in the last test case are the result of curl's inability to

resolve the domain with the –silent parameter, so it can be considered an implicit 404

error. Note that the code changes, while effective for this demonstration, are not

production-ready. It blocks characters that could legitimately be a part of a URL such as

question marks and ampersands. It also does not take into account character encodings

such as Unicode or HTML encodings, both of which could potentially circumvent the

whitelist's protection.

To address this issue, OWASP has a repository of regular expressions for

validation on their site at https://owasp.org/www-

community/OWASP_Validation_Regex_Repository. The repository includes a regular

expression for URL validation. Organizations can use this regular expression as a starting

point for creating a validation that meets their requirements. The OWASP regular

expression will require customization because it is written to accept URLs for a variety of

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 9

Mishka McCowan, mmccowan@eagna.net

protocols such as gopher, telnet, and nntp. Good security practice dictates removing any

unnecessary protocols.

This demonstration highlights a common misconception with serverless, which is

that the cloud provider manages the underlying infrastructure and operating system, so

attacks against them are the cloud provider's responsibility. Conversely, the customer

must harden both the application and the infrastructure configuration.

The other danger shown in this demonstration is how untrusted input can come to

reside on the trusted network. The Serverless Goat application parses the text of a Word

document and saves it into an S3 bucket. It also stores the URL submitted by the user into

a DynamoDB table. Neither piece of data was subject to any security checks. While the

current incarnation of the application makes use of this data, nothing is preventing a

future version from adding additional lambdas that do. Those lambdas need to check and

sanitize the input even though it is not directly from the user, but from another source

within the application.

3.2 SAS-3: Insecure Serverless Deployment Configuration

Cloud services offer a plethora of configuration settings that allow their customers

to tailor their environments to their specific needs. Some of those settings have profound

security implications for applications deployed in those environments. In the 2020

Verizon Data Breach Report, misconfiguration was cited as the fourth most common

error leading to breaches, up four spots from 2015 (Verizon, 2020). According to the

report, errors such as misconfigurations "are now equally as common as Social breaches

and more common than Malware, and are truly ubiquitous across all industries (Verizon,

2020)"

3.2.1 Example: Insecure Configuration

One of the most common areas for misconfiguration errors is cloud storage. One

high profile example was the 2019 Capital One data breach that compromised the

personal data of 100 million credit card customers and applicants (SC Media, 2019). In

that case, the root cause was a misconfigured Web Application Firewall, manipulated into

giving access to information stored in S3 buckets stored within Capital One's AWS

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 10

Mishka McCowan, mmccowan@eagna.net

infrastructure. The Serverless Goat also has flaws that allow access to information stored

in an S3 bucket.

When the Serverless Goat finishes extracting the text from a Word document, it

stores the result in an S3 bucket. That bucket is configured to host web content, and the

objects it contains have been given read permissions for all users. As a result, the

contents of any of the files are available to anyone with the URL. At first glance,

accessing the URL for each file would seem to be a tall order. An attacker would need to

know both the bucket name and the name of the file. While the bucket name would be

simple to discover, the files' names are random UUIDs generated by the application.

They are not predictable and would take a considerable amount of time to brute force. A

list of all of the files in the bucket would be required for the attack to be practical.

The Serverless Goat's configuration allows even a minimally-skilled attacker to

generate a list of files for the bucket. The Access Control List for the bucket grants the

List Objects permission to the Everyone group, allowing anyone to list the bucket's

contents. The steps for doing so require no skills beyond being able to copy and paste the

text. It takes just three steps for an attacker to view the bucket's contents.

1. Log any the AWS Console. It does not matter what account is used so long as the

user is authenticated.

2. Append the bucket name to the end of the following URL:

https://s3.console.aws.amazon.com/s3/buckets/

3. Paste the new URL into a different tab in the same browser. A list of the files will

be displayed.

The attacker could then view the contents of individual files or download them in

bulk. Logging is disabled on that bucket, so there would be no evidence of data being

viewed or exfiltrated.

3.2.2 Remediation: Insecure Configuration

Two simple changes can be made to the application to secure the S3 bucket used

to store the extracted text. The first is by far the simplest – remove the List Objects

permission from the Everyone group in the Permission section. Once that permission has

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 11

Mishka McCowan, mmccowan@eagna.net

been removed, viewing the bucket from another account results in an Access Denied

error. However, viewing the contents of an individual file is still possible. Appending a

forward slash and a file name to the end of the URL will display the file. Removing the

List permission only stops others from listing the contents of the bucket. It does not block

access to viewing or downloading them if the names of the bucket and file are known.

The next step is to disable public access to the bucket by disabling web hosting.

On the bucket properties page, click on the "Static website hosting" setting, click the

"Disable website hosting" option, and click Save. Additionally, the AWS "Block public

access" setting should also be enabled to help ensure that public access is not enabled

accidentally through a bucket policy or ACL. The setting is on the permissions page.

Click the Edit button, put a check next to "Block all public access," and click the Save

button. A prompt appears to confirm this choice. Once completed, public access will be

disabled.

The application, however, will be broken after blocking public access. Attempting

to submit a file for processing will result in an Access Denied error. The Lambda

function explicitly sets the permissions on the file to public, read-only access. To set the

correct permission, change line 41 from "ACL: 'public-read'" to "ACL: 'private'." After

updating the Lambda and submitting a file for processing, a new error is displayed. The

existing code relies on the bucket to host the content as a web server. When it tries to

redirect the user to the bucket, it fails because web hosting has been disabled.

To share content securely from an S3 bucket, AWS has a feature called a pre-

signed URL that will grant time-limited permission to download an object. The bucket

does not have to be public, nor does it have to be configured to serve static web content.

Instead, the URL is signed using the credentials the Lambda function uses to access the

S3 bucket. During the creation process, the length of time for which the URL is valid is

specified. Anyone who receives the pre-signed URL can then access the object. When the

URL expires, it will no longer retrieve the content, and a new one must be generated to

reaccess the object.

Modifying the Lambda function to create a pre-signed URL requires three

changes to the code – adding a module, a block of code to generate the URL, and

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 12

Mishka McCowan, mmccowan@eagna.net

modifying the return statement to redirect the user to the pre-signed URL. Adding the

module requires a single line of code.

const s3 = new AWS.S3({signatureVersion: 'v4'});

The following code is added after the s3.putObject block in the exports.handler

method. In this example, the expiration for the URL has been set to 30 seconds to

facilitate testing. In a real application, the timeout would be a value that strikes a balance

between security and business needs.

const url = s3.getSignedUrl('getObject', {
 Bucket: process.env.BUCKET_NAME,
 Key: key,
 Expires: 30
 });

The final change is to update the existing redirect to use the variable that holds the

pre-signed URL.

"Location": `${url}`

Once these changes are made to the Lambda, the application functions normally

again. Submitting the test Word document returns the poem. While anyone with the URL

can still access the file, its lifetime is limited to a short window of time.

3.2.3 Final Thoughts: Insecure Configuration

Insecure configurations for data stores is a severe and widespread security

problem. Cloud infrastructure providers such as AWS provide many tools for addressing

these issues. Additional steps could also be taken to secure the data in the S3 bucket. For

instance, adding authentication using Cognito would ensure that the intended recipient

could only use the URL. Other examples of additional security controls include

configuring the S3 data lifecycle to enforce data retention policies and moving the data to

DynamoDB, where it could be encrypted.

Insecure configuration vulnerabilities are not restricted to data stores. It

encompasses any of the infrastructure used by the application. For instance, the network

is another area where misconfigurations are common. Overly permissive security groups,

public IP addresses assigned to resources that should be private, and a lack of network

segregation are common mistakes.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 13

Mishka McCowan, mmccowan@eagna.net

3.3 SAS-4: Over-Privileged Function Permissions and Roles

 The description of this vulnerability in the official CSA documentation is a single

sentence: "A serverless function should have only the privileges essential to performing

its intended logic - a principle known as 'least privilege'" (Cloud Security Alliance,

2019). This vulnerability exists because, in the infrastructure-as-code world, permissions

are simple for developers to assign but can be difficult to monitor at scale.

3.3.1 Example: Over-Privileged Function Permissions and Roles

Once again, the Serverless Goat will be used to demonstrate the vulnerability and

its remediation. The source code for the processing Lambda retrieved via command

injection in Section 3.1.1 showed the request's information is logged to a DynamoDB

table. The name of that table is not hard-coded into the source code. Command injection

can be used to retrieve the table name using the env command.

http://not-a-domain/bad.doc; env|grep TABLE_NAME;#

TABLE_NAME=serverlessrepo-serverless-goat-Table-Q21W29UK6B7N

With the table name revealed, the application can be probed with different

commands to see what permissions it has with the database. NodeJS code will be

appended to the document request. The first command will try to read data from the table

and display it as part of the results.

https://; node -e 'const AWS = require("aws-sdk"); (async () =>
{console.log(await new AWS.DynamoDB.DocumentClient().scan({TableName:
"serverlessrepo-serverless-goat-Table-Q21W29UK6B7N"}).promise());})();'

 The above command uses the node command to execute the NodeJS code. The

code creates a DocumentDB client and tries to read the data in the serverlessrepo-

serverless-goat-Table-Q21W29UK6B7N table. If successful, the data will be outputted to

the console and displayed on the web page. Here is an excerpt of what is returned:

{ document_url: 'https://www.puresec.io/hubfs/document.doc', id:
'2b41b5a0-654c-49fd-a88c-c298d017568e', ip: '108.18.232.37' },
{ document_url: 'https://; env | grep table;', id: '2445c30c-8f78-46a4-
8a14-03c0c499c47d', ip: '108.18.232.37' }

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 14

Mishka McCowan, mmccowan@eagna.net

The command was successful. All of the records in the DynamoDB table were

displayed on-screen. The application has permissions to read as well as write to

DynamoDB. The next command will test if arbitrary data can be written to the table.

https://; node -e 'const AWS = require("aws-sdk"); (async () =>
{console.log(await new AWS.DynamoDB.DocumentClient().put({TableName:
"serverlessrepo-serverless-goat-Table-
Q21W29UK6B7N",Item:{"id":"this","document_url":"is","ip":"bad"}}).promi
se());})();'

When the string above is entered into the Serverless Goat, only two brackets are

returned: { }. To see if the insert was successful, the command from the previous

example must be rerun. The following now appears in the output:

{ id: 'this', document_url: 'is', ip: 'bad' }

The record was successfully inserted into the DynamoDB table. It is expected that

the application has permission to write to the database because it is part of the design.

The vulnerability is that users are able to add separate records containing arbitrary values.

The final step is to see if data can be deleted from the table as well. This example

will delete the record created in the previous example. The command is as follows:

https://; node -e 'const AWS = require("aws-sdk"); (async () =>
{console.log(await new AWS.DynamoDB.DocumentClient().delete({TableName:
"serverlessrepo-serverless-goat-Table-
Q21W29UK6B7N",Key:{"id":"this"}}).promise());})();'

This command also returns two empty brackets. The success of this command can

be verified by running the code from the first example in this section.

https://; node -e 'const AWS = require("aws-sdk"); (async () =>
{console.log(await new AWS.DynamoDB.DocumentClient().scan({TableName:
"serverlessrepo-serverless-goat-Table-Q21W29UK6B7N"}).promise());})();'

No records are returned. The delete command was successful. The application is

vulnerable to unauthorized reads, writes, and deletes. There may be additional

vulnerabilities, but this list is sufficient to demonstrate how it works.

3.3.2 Remediation: Over-Privileged Function Permissions and Roles

The root cause of this vulnerability is the permissions assigned to the role used by

the Lambda function. If the developer granted the permissions according to the concept

of least privilege, only the dynamodb:PutItem permission would be assigned. However,

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 15

Mishka McCowan, mmccowan@eagna.net

the Serverless Goat developers chose to grant the following, more expansive set of

permissions.

{
 "Statement": [
 {
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:DeleteItem",
 "dynamodb:PutItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:UpdateItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:BatchGetItem",
 "dynamodb:DescribeTable",
 "dynamodb:ConditionCheckItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-
2:112033489311:table/serverlessrepo-serverless-goat-Table-
Q21W29UK6B7N",
 "arn:aws:dynamodb:us-west-
2:112033489311:table/serverlessrepo-serverless-goat-Table-
Q21W29UK6B7N/index/*"
],
 "Effect": "Allow"
 }
]
}

These permissions allow the role to create, update, delete, and query information

in the table. The least privileged version of this policy that still allows the application to

function as designed would contain only the PutItem permission.

{
 "Statement": [
 {
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-
2:112033489311:table/serverlessrepo-serverless-goat-Table-
Q21W29UK6B7N",
 "arn:aws:dynamodb:us-west-
2:112033489311:table/serverlessrepo-serverless-goat-Table-
Q21W29UK6B7N/index/*"
],
 "Effect": "Allow"
 }
]
}

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 16

Mishka McCowan, mmccowan@eagna.net

Updating the policy and running the tests from the previous section yielded the

following results:

Test Result Notes

Default Word document. Succeded The poem was displayed. Application functions
normally

Display records Failed No information returned. CloudWatch logs show
access was denied.

Create record Succeded User can still create records with arbitrary values

Delete record Failed The record was not deleted. CloudWatch logs
show access was denied.

After the update, the application continued to function normally. Attempts to gain

unauthorized read access and delete access both failed. However, the unauthorized

creation of a new record succeeded. The fault lies not with the assigned permissions, but

with other vulnerabilities in the application. When the OS command injection

remediation from Section 3.1.2 is applied, attempts to create unauthorized records fail as

well.

4. Testing Summary
The results from the tests can be summarized as follows:

1. Injection Flaws – Implementing a whitelist cut stopped command injection

attempts. The change will affect users whose documents have forbidden

characters in their names. The change also made exploiting the insecure

configuration and over-privileged function flaws significantly more difficult.

2. Insecure Configuration – Eliminating public access to the S3 bucket and

implementing signed URLs restricts access to the data. Minor code changes

were required. The expiring URLs would impact end-users who seek to

bookmark the data to view it later.

3. Over-Privileged Functions – Removing unneeded permissions prevents

attackers from exfiltrating or manipulating data stored in DynamoDB. No

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 17

Mishka McCowan, mmccowan@eagna.net

coding changes were required, and the application continued to function as

designed.

5. Remaining Risks
This paper addressed only a quarter of the twelve vulnerabilities on the CSA list.

Based on the results of the three vulnerabilities tested in this paper, it is possible to make

conclusions about the rest of the list. The first conclusion is that the existing best

practices also apply to serverless architectures. The three vulnerabilities examined here

map directly to three entries on the OWASP Top Ten list – Injection, Broken Access

Control, and Security Misconfiguration. Most of the remaining nine vulnerabilities also

map to the OWASP Top Ten list. The two that do not have a direct OWASP analog are

SAS-11: Obsolete Functions, Cloud Resources, and Event Triggers, and SAS-12: Cross-

Execution Data Persistency.

Addressing OWASP Top Ten vulnerabilities has been shown to be an effective

method of reducing security risk in a web application. Organizations and individuals with

expertise in addressing the OWASP vulnerabilities can apply that knowledge to

serverless architectures. It would make an excellent starting point while ramping up on

vulnerabilities that are specific to serverless.

The second conclusion is that a foundational element of serverless security is a

detailed understanding of the vendor's services and tools. In two of the three

vulnerabilities examined in this paper, knowledge of the AWS IAM roles and

permissions was pivotal in remediating them. The same is true for the remaining nine.

For example, SAS-7: Insecure Application Secrets Storage relies on the proper

configuration of AWS Key Management Service, Secrets Manager, or other similar

services for managing secrets within the infrastructure. An understanding of the lifecycle

of cloud resources is key to addressing SAS-11: Obsolete Functions, Cloud Resources,

and Event Triggers.

The last conclusion is that the learning curve for serverless security will vary

depending on an organization's experience with the other types of architectures. For

instance, an organization moving from a monolithic architecture will likely face more of

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 18

Mishka McCowan, mmccowan@eagna.net

a learning curve than one using microservices. Microservices have a great deal in

common with serverless architectures, so the security problem space is similar.

Monolithic applications require a much higher learning curve because they are so

dissimilar to serverless and microservices.

6. Conclusion
The CSA recommendations for remediating the Top 12 critical vulnerabilities

proved effective in testing. In all three test cases, the vulnerability was either eliminated

or significantly reduced. This demonstrated that the CSA recommendations are a

practical framework for locating and remediating common vulnerabilities in serverless

architectures. The fully remediated Lambda function can be found in Appendix B.

The CSA recommendations have their roots in the OWASP Top Ten

vulnerabilities. Organizations can leverage their familiarity with the OWASP material to

flatten the learning curve for using the CSA recommendations. Security professionals

should become familiar with the services offered by the cloud vendor, as well as the CSA

vulnerabilities that are specific to the cloud.

Organizations that are embracing serverless architectures should embrace the

CSA Top 12 Critical Vulnerabilities in the same way they embraced the OWASP Top

Ten.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 19

Mishka McCowan, mmccowan@eagna.net

References

Amazon Web Services (n.d.). AWS Lambda Releases. Retrieved from

https://docs.aws.amazon.com/Lambda/latest/dg/Lambda-releases.html

Amazon Web Services (n.d.). Security in AWS Lambda. Retrieved from

https://docs.aws.amazon.com/Lambda/latest/dg/Lambda-security.html

Amazon Web Services (2019, March). Security Overview of AWS Lambda.

Retrieved from https://pages.awscloud.com/rs/112-TZM-766/images/Overview-AWS-

Lambda-Security.pdf

Carnegie Mellon University Software Engineering Institute (2018, May 2). Top

10 Secure Coding Practices. Retrieved from

https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices.

Cloud Security Alliance (2019, April 11). The 12 Most Critical Risks for

Serverless Applications. Retrieved from https://cloudsecurityalliance.org/artifacts/the-12-

most-critical-risks-for-serverless-applications.

Datadog (2020, February). The State of Serverless. Retrieved from

https://www.datadoghq.com/state-of-serverless/.

Gartner (2018, December 4). Gartner Identifies the Top 10 Trends Impacting

Infrastructure and Operations for 2019. Retrieved from

https://www.gartner.com/en/newsroom/press-releases/2018-12-04-gartner-identifies-the-

top-10-trends-impacting-infras.

Heinrich, Christian (n.d.). Comparison of 2003, 2004, 2007, 2010, and 2013

Releases. Retrieved from https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-

2010/Release_Candidate/OWASP_Top_Ten_-

_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf.

McCowan, Mishka. (2019, July 2). Building Cloud-Based Automated Response

Systems. Retrieved from https://www.sans.org/reading-room/whitepapers/cloud/building-

cloud-based-automated-response-systems-39050.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 20

Mishka McCowan, mmccowan@eagna.net

MITRE (n.d.). Vulnerability distribution by CVE security vulnerabilities by type.

Retrieved from https://www.cvedetails.com/vulnerabilities-by-types.php.

MITRE (2019, September 18). 2019 CWE Top 25 Most Dangerous Software

Errors. Retrieved from http://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html.

Open Web Application Security Project (n.d.). OWASP OS Command Injection

Defense Cheat Sheet. Retrieved from

https://cheatsheetseries.owasp.org/cheatsheets/OS_Command_Injection_Defense_Cheat_

Sheet.html

Open Web Application Security Project (2019, January 15). OWASP Serverless

Goat. Retrieved from https://owasp.org/www-project-serverless-goat/migrated_content.

Open Web Application Security Project (2018, October 25). OWASP Top Ten:

Serverless Interpretation. Retrieved from https://owasp.org/www-project-serverless-top-

10/.

Open Web Application Security Project (2018, October 22). OWASP Serverless-

Top-10-Project. Retrieved from https://github.com/OWASP/Serverless-Top-10-Project.

SC Media (2019, July 30). Capital One Breach exposes not just data, but dangers

of cloud misconfigurations. Retrieved from https://www.scmagazine.com/home/security-

news/capital-one-breach-exposes-not-just-data-but-dangers-of-cloud-misconfigurations/.

Shackleford, Dave. (2019, April 30). SANS, 2019 Cloud Security Survey.

Retrieved from https://www.sans.org/reading-room/whitepapers/incident/balancing-

security-innovation-event-driven-automation-36837

Verizon (2020). 2020 Data Breach Investigations Report. Retrieved from

https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-

report.pdf

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 21

Mishka McCowan, mmccowan@eagna.net

Appendix A: Serverless Goat Lambda Source Code
const child_process = require('child_process');
const AWS = require('aws-sdk');
const uuid = require('node-uuid');

async function log(event) {
 const docClient = new AWS.DynamoDB.DocumentClient();
 let requestid = event.requestContext.requestId;
 let ip = event.requestContext.identity.sourceIp;
 let documentUrl = event.queryStringParameters.document_url;

 await docClient.put({
 TableName: process.env.TABLE_NAME,
 Item: {
 'id': requestid,
 'ip': ip,
 'document_url': documentUrl
 }
 }).promise();

}

exports.handler = async (event) => {
 try {
 await log(event);

 let documentUrl = event.queryStringParameters.document_url;
 let txt = child_process.execSync(`./bin/curl --silent -L
${documentUrl} | /lib64/ld-linux-x86-64.so.2 ./bin/catdoc -`).toString();

 // Lambda response max size is 6MB. The workaround is to upload
result to S3 and redirect user to the file. let key = uuid.v4();
 let s3 = new AWS.S3();
 await s3.putObject({
 Bucket: process.env.BUCKET_NAME,
 Key: key,
 Body: txt,
 ContentType: 'text/html',
 ACL: 'public-read'
 }).promise();

 return {
 statusCode: 302,
 headers: {
 "Location": `${process.env.BUCKET_URL}/${key}`
 }
 };

 catch (err) {
 return {
 statusCode: 500,
 body: err.stack
 };
 }
 };

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 22

Mishka McCowan, mmccowan@eagna.net

}

Appendix B: Updated Serverless Goat Lambda Source
Code

const child_process = require('child_process');
const AWS = require('aws-sdk');
const uuid = require('node-uuid');
const s3 = new AWS.S3({signatureVersion: 'v4'});

async function log(event) {
 const docClient = new AWS.DynamoDB.DocumentClient();
 let requestid = event.requestContext.requestId;
 let ip = event.requestContext.identity.sourceIp;
 let documentUrl = (event.queryStringParameters.document_url).replace(/[^0-
9a-zA-Z.:/]/g,"");
 await docClient.put({
 TableName: process.env.TABLE_NAME,
 Item: {
 'id': requestid,
 'ip': ip,
 'document_url': documentUrl
 }
 }
).promise();

}

exports.handler = async (event) => {
 try {
 await log(event);

 let documentUrl =
(event.queryStringParameters.document_url).replace(/[^0-9a-zA-Z.:/]/g,"");

 let txt = child_process.execSync(`./bin/curl --silent -L ${documentUrl}
| /lib64/ld-linux-x86-64.so.2 ./bin/catdoc -`).toString();

 // Lambda response max size is 6MB. The workaround is to upload result
to S3 and redirect user to the file.
 let key = uuid.v4();
 let s3 = new AWS.S3();

 await s3.putObject({
 Bucket: process.env.BUCKET_NAME,
 Key: key,
 Body: txt,
 ContentType: 'text/html',
 ACL: 'private'
 }).promise();

 //creates signed url that is returned to client side
 const url = s3.getSignedUrl('getObject', {
 Bucket: process.env.BUCKET_NAME,

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

M i t i g a t i n g R i s k w i t h t h e C S A 1 2 | 23

Mishka McCowan, mmccowan@eagna.net

 Key: key,
 Expires: 30
 });

 return {
 statusCode: 302,
 headers: {
 "Location": `${url}`
 }
 };
 }
 catch (err) {
 return {
 statusCode: 500,
 body: err.stack
 };
 }
};

