
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Steven_Becker_GCFA.doc...2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Analyze an Unknown Image
and

Forensic Tool Validation: Sterilize

GCFA Practical Assignment
Version 1.5 Option 2
December 20, 2004

by
Steven Becker

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents
Table of Contents 2
Abstract: 3
Part 1 – Analyze an Unknown Image: 4

Case Background 4
Analysis Steps and Details 4

Floppy Disk Image Receipt and Verification 4
Enumeration of Files 7
Recovery of Deleted Files 8
File Analysis 10
Chasing a Possible Lead 13
Analyzing the Mystery Program 13
Finding Hidden Files 20
Generating a Timeline 23
Analyzing the Hidden Files 24
What Does the Evidence Show? 27

References for Part 1 28
Part 2 – Perform Forensic Tool Validation 29

Scope 29
Tool Description 29
Test Apparatus and Environmental Conditions 30
Description of the Procedures 30
Criteria for Approval 31
Data and Results 32
Analysis 37
Presentation 37
Conclusion 38
References for Part 2 39

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

1 http://www.cybersecurityinstitute.biz/software/

Abstract:

This practical assignment contains two main parts. The first is a mock
scenario where I have been asked to analyze a floppy disk that is suspected of
containing proprietary information being leaked to a competitor. This part of the
assignment will explain the steps I took to analyze the data as well as the
evidence recovered.

The second part of this assignment will be an analysis of a program used to
create forensically sterile media. The program is called Sterilize and is available
free of charge from the CyberSecurity® Institute1.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

2 As described by the GIAC site http://www.giac.org/GCFA_assign_15.php

Part 1 – Analyze an Unknown Image:

Case Background2

Ballard Industries is a company that designs and produces specialized fuel
cell batteries used by customers around the world. Recently it seems that many
customers are no longer ordering from Ballard but instead have begun to order
from a competitor Rift, Inc. It seems that Rift, Inc. is now offering the same fuel
cell batteries that were once unique to Ballard, Inc. A full investigation has
begun to see if Rift, Inc. has somehow been given access to propriety
information regarding the Ballard, Inc. fuel cell battery design and the customers
who are purchasing them.

I have been asked by David Keen, the security administrator for Ballard
Industries to aid in the investigation by analyzing a floppy disk seized from a
Ballard Industries employee by the name of Robert John Leszczynski, Jr. This
document contains a step by step explanation of how I analyzed the data and
the results which I reported to Mr. Keen including the evidence discovered
during my analysis.

Analysis Steps and Details

Floppy Disk Image Receipt and Verification

My analysis began by receiving a chain of custody form from Mr. Keen which
contained the following information related to the seized floppy:

Tag# fl-260404-RJL1•
3.5 inch TDK floppy disk•
MD5: d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img•
fl-260404-RJL1.img.gz•

I did not receive the actually floppy disk but instead was given a compressed
image of that floppy. (For the sake of this assignment an image file was
downloaded here http://www.giac.org/gcfa/v1_5.gz and renamed to fl-260404-
RJL.img.gz. This downloaded image is then used as if it were presented
directly to me by the fictitious David Keen.)

An image file is an exact copy of all the data contained on the floppy disk,
including data not accessible through normal viewing. This allows me to

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

3 http://www.faqs.org/rfcs/rfc1321.html

examine data that may have been deleted or hidden by Mr. Leszczynski.
Compression was used to make the file smaller while is but being transported to
me. Compression is easily undone and does not permanently alter the data.
This is verified by comparing the digital fingerprint of the original floppy disk and
the digital fingerprint of the copy I received.

The strange looking string of numbers and letters preceded by ‘MD5:’ on the
chain of custody form is the digital fingerprint of the floppy disk seized from Mr.
Leszczynski. ‘MD5’ is the name of the cryptographic hashing algorithm used to
produce the fingerprint and followed by the name of the data the fingerprint
represents, fl-260404-RJL1.img.

Digital fingerprints are referred to as ‘hashes’ of the data. To create a digital
fingerprint the data is put through a mathematical algorithm that creates a
unique numerical representation of the original data. In this case the algorithm
used was the Message Digest 5 (MD5). Hash values are especially useful for
detecting changes in data because the algorithms are created so that even a
small change in data will create a noticeable change in the hash value.

According to RFC1321:

“…the difficulty of coming up with two messages having the same
message digest is on the order of 2^64 operations, and that the
difficulty of coming up with any message having a given message
digest is on the order of 2^128 operations.”3

This means that the likelihood of two sets of data resulting in the same digital
fingerprint is 1 in 2^64 (1 in 18,446,744,073,709,551,616).

I took the compressed image file, which is an exact copy of the seized floppy,
named fl-260404-RJL1.img.gz and transferred it to my forensic analysis
machine. As stated earlier the compression simply makes the image file
smaller so that it takes up less space when transferring it and is completely
reversible. After transferring the image to my workstation I uncompressed it,
returning it to its original state and took a digital fingerprint to verify that it had
not been modified. Below is a screen capture from my forensic workstation
showing that the resulting MD5 hash (fingerprint) matches the value provided to
me by Mr. Keen.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 1

Note that the hash value of the image file shown in figure 1 matches the hash
value of the seized floppy given to us by Mr. Keen listed on the chain of custody
form as:

d7641eb4da871d980adbe4d371eda2ad

After verifying that my image of the floppy disk was forensically identical to
the original floppy disk, I mounted it using the command:

mount -o loop,ro /root/Desktop/GCFA/fl-260404-RJL1.img /mnt/evidence_mount/

This command basically allows me to access the data in the image the same
way I could if I had the original floppy disk in the floppy drive of my workstation.
The only difference is that I mounted it using the ‘ro’ option which stands for
‘read-only’. By mounting it this way I am prevented from accidentally modifying
the data and tainting the evidence while analyzing it. Even though I will actually
be examining the image I will refer to it as ‘the floppy’ since that’s where the
data was originally.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

* Floppy disks do not support users and groups so the User IDs and Group IDs are set to zero.
4 The Sleuth Kit is available at http://www.sleuthkit.org/sleuthkit/index.php

Enumeration of Files

 The next several steps used utilities distributed with The Sleuth Kit (TSK)4

which is a collection of tools used for computer investigations. The first step
was to use the tool called ‘fls’ to list the files on the floppy and details about
them. The exact command I used was:

fls -l -f fat12 -z MDT7MST /root/Desktop/GCFA/fl-260404-RJL1.img

The ‘-l’ flag tells the utility that we want the long version of output which includes
information about where the entry physically sits on the disk, the name of the
entry, the modified, accesses, changed (MAC) times related to the files, the size
of the files, and who the owns the files. The ‘-f’ option tells the utility what type
of file system it’s examining (fat12 is the floppy disk file system). The final flag ‘-
z’ lets us tell the utility the time zone in which the activity took place, in this case
Mountain Time.

The results contain 9 pieces of data for each entry.
File type - The file type tells us if it’s a file or a directory, normal files are 1.
represented by ‘r/r’ and directories would be shown as ‘d/d’.

Inode - The inode is simply an address on the disk where the metadata 2.
resides for that file. Metadata is data about data. In the case of computer
disks the metadata tells us about the data and files on the disk, such as
where on the disk the pieces of a file reside, the size of the file, the last
time the file was used, etc. Any inode with a ‘*’ represents a deleted file.

File Name - Is the name of the file in two formats. The first is the long 3.
format and the second (contained in parentheses) is a shortened form for
backward compatibility with older systems.

Modification Time - This is the time that the file was last written to or 4.
modified.

Access Time - This is the time that the file was last read or accessed.5.

Change/Created Time - This is the time that the inode information 6.
(metadata) for the file was last modified.

Size - The number of disk blocks containing the file.7.

User ID* - The system ID of the user who owns the file.8.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

5 http://www.google.com
6 http://www.tranceaddict.com/forums/archive/topic/79627-1.html

Group ID* - The system ID of the group to which the file belongs.9.

The results were saved to a spreadsheet shown below in figure 2.

file
type

inode file name modified time accessed time change time size user id group
id

r/r 3: RJL (Volume Label Entry) 2004.04.25
10:53:40 (MST)

2004.04.25
00:00:00 (MST)

2004.04.25
10:53:40 (MST)

0 0 0

r/r * 5: CamShell.dll (_AMSHELL.DLL) 2001.02.03
19:44:16 (MDT)

2004.04.26
00:00:00 (MST)

2004.04.26
09:46:18 (MST)

36864 0 0

r/r 9: Information_Sensitivity_Policy.doc
(INFORM~1.DOC)

2004.04.23
14:11:10 (MST)

2004.04.26
00:00:00 (MST)

2004.04.26
09:46:20 (MST)

42496 0 0

r/r 13: Internal_Lab_Security_Policy1.doc
(INTERN~1.DOC)

2004.04.22
16:31:06 (MST)

2004.04.26
00:00:00 (MST)

2004.04.26
09:46:22 (MST)

32256 0 0

r/r 17: Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)

2004.04.22
16:31:06 (MST)

2004.04.26
00:00:00 (MST)

2004.04.26
09:46:24 (MST)

33423 0 0

r/r 20: Password_Policy.doc
(PASSWO~1.DOC)

2004.04.23
11:55:26 (MST)

2004.04.26
00:00:00 (MST)

2004.04.26
09:46:26 (MST)

307935 0 0

r/r 23: Remote_Access_Policy.doc
(REMOTE~1.DOC)

2004.04.23
11:54:32 (MST)

2004.04.26
00:00:00 (MST)

2004.04.26
09:46:36 (MST)

215895 0 0

r/r 27: Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)

2004.04.23
14:10:50 (MST)

2004.04.26
00:00:00 (MST)

2004.04.26
09:46:44 (MST)

22528 0 0

r/r * 28: _ndex.htm 2004.04.23
10:53:56 (MST)

2004.04.26
00:00:00 (MST)

2004.04.26
09:47:36 (MST)

727 0 0

Figure 2

These results show that there are nine entries on the floppy, the first one, at
inode 3, is the entry for the name of the floppy. The entries at inodes 5 and 28
are deleted files, which I made note of so that I could recover them and examine
them. The remaining entries are for files that all have a .doc extension and
appear to be regular and accessible through normal means.

One interesting thing that caught my eye was that two of the regular (not
deleted) files are an order of magnitude larger then the other four. This means
that they are either very long documents or possibly being used to conceal
contraband information.

A quick internet search for information on the deleted file CamShell.dll using
Google™5 turned up a discussion which indicated that CamShell.dll may be
related to a program called Camouflage6. I decided to do more research on this
program after further analysis of this deleted file and the other.

Recovery of Deleted Files

Next I proceeded to recover the two deleted files. In order to do this I needed
to determine where on the floppy disk their data resided. This was done using
the tool ‘istat’ from The Sleuth Kit on the inode of each file:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

istat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 5

istat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 28

Just like when using the ‘fls’ command earlier we use the -f flag to tell the utility
that it’s examining a floppy disk. The ‘5’ at the end of command tells the ‘istat’
tool that we are wanting information for the file with inode 5 which, we see from
figure 2, is the deleted file CamShell.dll. Likewise the ‘28’ at the end of the
second ‘istat’ command tells the tool we want information related to the deleted
file named ‘_ndex.htm’. The output from running this command on each inode
is shown below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

[root@Daisy GCFA]# istat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 5
Directory Entry: 5
Not Allocated
File Attributes: File, Archive
Size: 36864
Num of links: 0
Name: _AMSHELL.DLL

Directory Entry Times:
Written: Sat Feb 3 19:44:16 2001
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:46:18 2004

Sectors:
33

Recovery:
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104
[root@Daisy GCFA]# istat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 28
Directory Entry: 28
Not Allocated
File Attributes: File, Archive
Size: 727
Num of links: 0
Name: _ndex.htm

Directory Entry Times:
Written: Fri Apr 23 10:53:56 2004
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:47:36 2004

Sectors:
33

Recovery:
33 34
Figure 3

 The important details we need for recovering the deleted files are the
Recovery sectors. This tells us which sectors on the disk contain the data for
the file we wish to recover. In this case it appears that one file was written over
the top of the other. We know this because the Recovery sectors for _ndex.htm
are the same as the first two recovery sectors for CamShell.dll. Based on the
times that the files were written to disk (the Change times as listed in Figure 2)
my guess would be that the _ndex.htm file was written over Camshell.dll.

The next step in recovering the files is to copy the data out of the Recovery

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

7 For information on the ‘file’ command and other Linux commands used please visit
http://linux.ctyme.com/

sectors for each one out to a new file. This was done using the ‘dcat’ utility from
The Sleuth Kit which simply copies the contents of a particular data unit. We
are able to tell the ‘dcat’ utility what sector to start at and how many sectors to
copy. The output in Figure 3 shows us that the Recovery sectors for
CamShell.dll start at 33 and are contiguous to 104 which is 72 sectors total. To
recover CamShell.dll I used the following command:

dcat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 33 72 > CamShell.dll.recovered

 The two numbers following the path to the floppy disk image are the starting
sector for the data and the total sectors needing to be copied. The greater than
symbol sends the data to the file named CamShell.dll.recovered instead of just
displaying it all on the screen. This process was repeated for ‘_ndex.htm’ with
that starting sector being 33 again and the total sectors to be copied being 2:

dcat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 33 2 > _ndex.htm.recovered

File Analysis

Next I used the Linux command ‘file’7 to determine what kind of files these
may be. This command reported that they were both ‘HTML document text’.
Since they were reported as being text documents I used the Linux command
‘less’ to read them. ‘Less’ simply allows the user to read the contents of a file.
It became apparent that _ndex.htm was indeed a HTML document as reported
by the ‘file’ command. It also became apparent that CamShell.dll only
contained HTML text at the beginning of the file and that the rest contained
unreadable data interspersed with readable words much like an executable
program does. This furthered my speculation that the file _ndex.htm had
overwritten the file CamShell.dll. The HTML recovered from the two files is
shown below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">

<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality VALUE=high> <PARAM NAME=bgcolor

VALUE=#CCCCCC>
<EMBED src="ballard.swf" quality=high bgcolor=#CCCCCC WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash" PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>

</OBJECT>
</center>
</BODY>
</HTML>
Figure 4

 This HTML appears to be a simple webpage that attempts to load a
Shockwave™ Flash movie which was not found on the floppy disk. At this point
in the analysis the HTML seemed uninteresting as far as potentially being used
to leak proprietary information out of Ballard Industries so I refocused on finding
more about the rest of the CamShell.dll file.

The next tool I used to examine CamShell.dll was the Linux command
‘strings’. This command searches a file and displays the printable characters. It
is very helpful in pulling the human readable words from files that are mostly
machine code much like the bulk of CamShell.dll appeared to be. The output of
the ‘strings’ command was saved to a file using the command:

strings CamShell.dll.recovered > CamShell.dll.strings

I used the Linux command ‘less’ again to examine the output from the strings
command. There were several interesting strings of text contained in the file. A
partial list is shown below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

advapi32.dll
CamouflageShell
CamShell
CamShell.dll
C:\My Documents\VB Programs\Camouflage\Shell\IctxMenu.tlb
C:\WINDOWS\SYSTEM\MSVBVM60.DLL\3
DeleteDC
DeleteObject
DllCanUnloadNow
DllFunctionCall
DllGetClassObject
DllRegisterServer
DllUnregisterServer
DragQueryFileA
EVENT_SINK2_AddRef
EVENT_SINK2_Release
EVENT_SINK_AddRef
EVENT_SINK_QueryInterface
EVENT_SINK_Release
FindResourceA
FIShellExtInit
GetFullPathNameA
GetObjectA
GetTextMetricsA IContextMenu
IContextMenu_GetCommandString
IContextMenu_InvokeCommand
IContextMenu_QueryContextMenu
IContextMenu_TLB
IctxMenu.tlbWW
idCmd
idCmdFirst
idCmdLast
indexMenu
InsertMenuA
IShellExtInit
IShellExtInit_Initialize
LoadBitmapA
LoadLibraryA
LoadResource
MSVBVM60.DLL
RegCloseKey
RegOpenKeyExA
RegQueryValueExA
ReleaseStgMedium
RtlMoveMemory
SelectObject
SetMenuItemBitmaps
shell32.dll
Shell_Declares
ShellExt
Shell_Functions
stdole2.tlbWWW
StretchBlt
StringFromGUID2
SystemParametersInfoA

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

8 http://www.sans.org/resources/policies/#template
9 http://guillermito2.net/stegano/camouflage/
10 Camouflage v1.2.1 was downloaded from http://camouflage.unfiction.com/

Figure 5

I searched for many of the strings using Google™ and found that many of
them were Microsoft® Windows system files and Microsoft® Visual Basic® files
or function calls. I noticed several lines that contained the word ‘Camouflage’
which I had seen reference too when searching the Internet for information on
this file.

Next I examined the six files on the floppy disk that had not been deleted.
Since they had not been deleted there was no need to extract them using The
Sleuth Kit tools. I simply navigated to the mounted read only floppy image at
/mnt/evidence_mount. From there I ran ‘file’ against each of them to see what
they reported to be. They all reported to be Microsoft Office Documents. This
being the case I decided to open them with a word processor on an isolated
machine. I used an isolated machine in case the documents happened to
contain a virus or other malware.

They all opened with Microsoft® Word and appeared normally in the word
processor. They all appeared to be policy files based on the example policies
and templates available from SANS8. The two files that I noted as being very
large earlier in the analysis were each only three pages long which led me to
suspect that there could be data hidden in them.

Chasing a Possible Lead

The next step was to see if I could tie the reference to Camouflage and the
large Word documents together. To do this I started by doing a Google™
search for “hiding data in word documents using camouflage”. This search
resulted in several interesting hits. The first page I looked at9 was an article
discussing how the author found data hidden in a picture that was put there
using a program called Camouflage. While the article itself was very
interesting, what was more useful to this investigation were the links at the
bottom of the page which linked to tools to unprotect Camouflage files. I took
note of these links in case it turned out that Camouflage was indeed used and
the files were password protected. I went back to my search page and looked
for sites that contained copies of the Camouflage program for download. I was
fortunate to find and download a copy of version v1.2.1 of the file10 which I
installed on my sandbox machine.

Camouflage is a program that hides a file or file within another file. The
website from which I downloaded my copy used for testing described it this way:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

11 http://camouflage.unfiction.com/

“Camouflage allows you to hide files by scrambling them and then attaching them to the file of your
choice. This camouflaged file then looks and behaves like a normal file, and can be stored, used or
emailed without attracting attention.

For example, you could create a picture file that looks and behaves exactly like any other picture
file but contains hidden encrypted files, or you could hide a file inside a Word document that would
not attract attention if discovered. Such files can later be safely extracted.

For additional security you can password your camouflaged file. This password will be required
when extracting the files within.
You can even camouflage files within camouflaged files.

Camouflage was written for use with Windows 95, Windows 98, Windows ME, Windows NT and
Windows 2000, and is simple to install and use.”11

Analyzing the Mystery Program

The next step was to verify that Camouflage v1.2.1 is the same program that
the deleted CamShell.dll file from the floppy is a part of. For comparison I
copied the CamShell.dll file from my sandbox machine to my forensics
workstation. If both CamShell.dll files were from the same version of the
Camouflage program, then the MD5 hashes should be the same as should a
MD5 hash of any part of the files. I knew from earlier examination that the first
part of the recovered CamShell.dll contained the HTML text from the recovered
file _ndex.htm. I knew that for this reason an MD5 hash of the CamShell.dll files
would not be the same since the recovered CamShell.dll had been altered. I
decided I would make a copy of the recovered CamShell.dll removing the first
part which had been overwritten by _ndex.htm. I also made a copy of the control
CamShell.dll from the Camouflage installation I downloaded from the Internet. I
removed from this copy the same number of bytes that had been changed from
the beginning of the recovered CamShell.dll.

To do this I loaded the _ndex.htm file and each CamShell.dll into a hex
editor. I found that _ndex.htm was 1024 bytes long, numbered as bytes 0-1023.
I switched to the CamShell.dll.recovered file and selected byte number 1024
through the end of the file, byte number 36863, and copied those bytes to a file
named CamShell.dll.recovered.partial. I did the same using the
CamShell.dll.control file and saved those bytes to CamShell.dll.control.partial. I
then ran md5Sum against all the files and found that the hashes for
CamShell.dll.recovered.partial and CamShell.dll.control.partial were the same
indicating that the recovered CamShell.dll was originally part of a Camouflage
v1.2.1 installation. A screen shot of the dm5sum results is shown below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 6

Camouflage v1.2.1 was downloaded as a self extracting zip file. When
extracted the program installed four files into C:\Program Files\Camouflage.
Those files were:

Camouflage.exe
CamShell.dll
Readme.txt
Uninst.isu

Executing the Camouflage.exe program brought up a settings dialog that allows
the user to configure the behaviors of Camouflage such as how menu options
are named and what file attributes are shown. Below is an example of the
settings dialog:

Figure 7

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The CamShell.dll is the file which does the actual work. To use it simply right
click a file, or files, with your mouse. The user is then presented with the usual
menu options as well as two new ones, Camouflage and Uncamouflage (figure
8).

Figure 8

When the Camouflage option is selected a dialog box pops up showing the file
or files that have been selected to be hidden:

Figure 9

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Next the file that will be used to host the Camouflaged data is selected:

Figure 10

Next the location and filename for the new Camouflage file is entered. The read
only option is given since altering a Camouflaged file will destroy the hidden
data. (This was verified experimentally):

Figure 11

Finally the option to provide a password is given:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 12

 The resulting file, in this case C:\Host File2.doc, opens normally using
Microsoft® Word. The only noticeable difference is that the new camouflage file
is larger then the original host document.

To Uncamouflage a file the procedure is basically the reverse of the
Camouflaging it. Simply right click the Camouflaged file and select
‘Uncamouflage’ from the menu (Figure 8). At that time the password dialog box
appears and prompts the user to enter the password:

Figure 13

If the password is correct then a dialog box appears showing what files are
hidden and what the original host file was called. The hidden files are indicated
by the Camouflage icon:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 14

After selecting which files to extract a dialog is presented for the user to select
where the files should be recovered to:

Figure 15

The Uncamouflaged files now appear the same as before they were hidden. A
quick ‘md5sum’ of the original files and the Uncamouflaged files show that
using Camouflage does not change the files at all since they return the same
MD5 hash value.

The Camouflage ‘Readme.txt’ files is, as the name suggests, a read me file
containing instructions on how to use Camouflage and the changes made in this
release (v1.2.1). Lastly the ‘Uninst.isu’ file is used when uninstalling the
program.

There were also several registry entries made during installation of
Camouflage v1.2.1. Some of the more interesting ones included:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

HKEY_CLASSES_ROOT*\shellex\ContextMenuHandlers\Camouflage
HKEY_CLASSES_ROOT\CamouflageShell.ShellExt
HKEY_CLASSES_ROOT\CLSID\{29557489-990B-11D4-9413-004095490AD4}
HKEY_CURRENT_USER\Software\Camouflage
HKEY_CURRENT_USER\Software\Camouflage\CamouflageFile
HKEY_CURRENT_USER\Software\Camouflage\OutputFile
HKEY_CURRENT_USER\Software\Camouflage\OutputFolder
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\MenuOrder\Start

Menu2\Programs\Camouflage
HKEY_CURRENT_USER\Software\Microsoft\Windows\ShellNoRoam\MUICache
HKEY_LOCAL_MACHINE\SOFTWARE\Classes*\shellex\ContextMenuHandlers\Camouflage
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CamouflageShell.ShellExt
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{29557489-990B-11D4-9413-

004095490AD4}
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App

Management\ARPCache\Camouflage
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App

Paths\Camouflage.exe
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Camouflage
HKEY_LOCAL_MACHINE\SOFTWARE\Twisted Pear Productions\Camouflage\1.2.1
HKEY_USERS\S-1-5-21-1078081533-1614895754-1801674531-

1338\Software\Camouflage\CamouflageFile
HKEY_USERS\S-1-5-21-1078081533-1614895754-1801674531-

1338\Software\Camouflage\OutputFile
HKEY_USERS\S-1-5-21-1078081533-1614895754-1801674531-

1338\Software\Camouflage\OutputFolder
HKEY_USERS\S-1-5-21-1078081533-1614895754-1801674531-

1338\Software\Microsoft\Windows\CurrentVersion\Explorer\MenuOrder\Start
Menu2\Programs\Camouflage

Figure 16

 Since general users don’t know about the registry or don’t know how to
modify it monitoring the registry for these entries could be very useful. A tool
that monitors the registry for changes such as Tripwire® could be used to watch
for the addition of one or more of these registry keys. There are several keys
that are especially interesting for investigative purposes. Specifically

HKEY_CURRENT_USER\Software\Camouflage\CamouflageFile
HKEY_CURRENT_USER\Software\Camouflage\OutputFile and
HKEY_CURRENT_USER\Software\Camouflage\OutputFolder

 The values in the CamouflageFile key indicate what files have been used to
host Camouflaged data. The values in the OutputFile key list the resulting
Camouflage files and where they were saved. The OutputFolder lists the
directories where Camouflaged data has been uncamouflaged to. It would be
interested to view the registry of Mr. Leszczynski’s machine to see if the file I
have recovered also appears in his Camouflage related registry entries. This
would help show that it was in fact Mr. Leszczynski that hid these files and
therefore help show that he was knowingly removing them from the company
grounds in violation of Ballard Industries policy.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

12 http://packetstormsecurity.nl/crypt/stego/camouflage/SetecAstronomy.pl

I searched the registry on my sandbox machine to see if any entries existed
that listed what files were actually hidden using Camouflage. I was unable to
find any entries that listed this information.

Finding Hidden Files

I systematically attempted to open each of the six Word documents using
Camouflage. Camouflage prompted me for a password for each file. Not
having recovered any passwords yet I tried leaving it blank and was able to open
one file with Camouflage. The file ‘Internal_Lab_Security_Policy.doc’ contained
a hidden text file named ‘Opportunity.txt’ which contained the following text:

I am willing to provide you with more information for a price. I have included a sample of our
Client Authorized Table database. I have also provided you with our latest schematics not yet
available. They are available as we discussed - "First Name".
My price is 5 million.

Robert J. Leszczynski
Figure 17

 The remaining five files were either password protected or did not have data
hidden in them with this version of Camouflage. This being the case I decided
to look into finding a utility to help open password protected Camouflage files.

I returned to the web site I had found previously and looked again at the links
at the bottom of the page. The one that seemed most promising was a program
called CamoDetect written by Andrew Christensen12. CamoDetect is a Perl
script that claims to be able to detect if Camouflage has been used to hide data
in a particular file and if a password had been used it can retrieve it. I
downloaded this file and ran it against each of the six Word documents. I ran it
against the document we had already retrieved hidden data from to verify that
the program actually worked as described.

The CamoDetect script, called ‘SetecAstronomy.pl’ was able to determine
that three files were if fact hiding data using Camouflage. It was able to
determine the amount of hidden data in bytes, the number of hidden files in
each document, and that two of them were password protected. The script was
able to determine the password for the two protected files even made an
unprotected copy of each. The output from running the script is shown below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

13 mac_daddy.pl is a perl script authored by Rob Lee

Figure 18

As the output in Figure 6 shows the file named ‘Password_Policy.doc’ contained
three hidden documents and the password to retrieve them was ‘Password’.
We can also see from the output that the file named
‘Remote_Access_Policy.doc’ contains one hidden file, which can be retrieved
using the password ‘Remote’.

With this new information I successfully opened the two password protected
Camouflaged documents. Hidden within ‘Password_Policy.doc’ were three files
named ‘PEM-fuel-cell-large.jpg’, ‘Hydrocarbon%20fuel%20cell%20page2.jpg’,
and ‘pem_fuelcell.gif’. Hidden within the ‘Remote_Access_Policy.doc’ was a
file titled ‘CAT.mdb’. I extracted these files and immediately ran the tool
‘mac_daddy.pl’13 to try and determine when the files were created, modified, and
accessed. The tool ‘mac_daddy.pl’ was used to gather MAC times (modified,
accessed, changed times) much like I did on the original images using ‘fls’. I
used ‘mac_daddy.pl’ to gether these times because the files are visible to the
operating system through normal means. ‘mac_daddy.pl’ pulls the times from
the files in a directory whereas ‘fls’ was used to extract the times from a raw
image file.

 Some of the times were changed to reflect the time that I extracted the files
from their host documents. Notice that the MAC times shown for document files
are different then the times listed for them earlier, this has to do with the fact
that ‘fls’ has a parameter for adjusting the time based on the time zone the
evidence originated from where ‘mac_daddy.pl’ does not. For this reason I used
these times only to get an idea of how the files were used and related to each

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

other time wise. A fully adjusted time line was created and is discussed later in
this paper. The relevant results are shown below, with the times related to my
extraction process omitted:

Apr 22 2004 18:31:06 33423 m.. -r-------- root root /mnt/winxp/TEMP/Internal_Lab_Security_Policy.doc
32256 m.. -r-------- root root /mnt/winxp/TEMP/Internal_Lab_Security_Policy1.doc

Apr 23 2004 09:15:16 30264 m.. -r-------- root root /mnt/winxp/TEMP/pem_fuelcell.gif
Apr 23 2004 09:21:02 208127 m.. -r-------- root root /mnt/winxp/TEMP/Hydrocarbon%20fuel%20cell%20page2.jpg
Apr 23 2004 09:23:23 28167 m.. -r-------- root root /mnt/winxp/TEMP/PEM-fuel-cell-large.jpg
Apr 23 2004 10:21:06 184320 m.. -r-------- root root /mnt/winxp/TEMP/CAT.mdb
Apr 23 2004 13:03:53 312 m.. -r-------- root root /mnt/winxp/TEMP/Opportunity.txt
Apr 23 2004 13:54:32 215895 m.. -r-------- root root /mnt/winxp/TEMP/Remote_Access_Policy.doc
Apr 23 2004 13:55:26 307935 m.. -r-------- root root /mnt/winxp/TEMP/Password_Policy.doc
Apr 23 2004 13:59:09 312 .a. -r-------- root root /mnt/winxp/TEMP/Opportunity.txt
Apr 23 2004 13:59:36 208127 .a. -r-------- root root /mnt/winxp/TEMP/Hydrocarbon%20fuel%20cell%20page2.jpg

28167 .a. -r-------- root root /mnt/winxp/TEMP/PEM-fuel-cell-large.jpg
30264 .a. -r-------- root root /mnt/winxp/TEMP/pem_fuelcell.gif

Apr 23 2004 14:00:14 184320 .a. -r-------- root root /mnt/winxp/TEMP/CAT.mdb
Apr 23 2004 16:10:50 22528 m.. -r-------- root root /mnt/winxp/TEMP/Acceptable_Encryption_Policy.doc
Apr 23 2004 16:11:10 42496 m.. -r-------- root root /mnt/winxp/TEMP/Information_Sensitivity_Policy.doc

Figure 19

As a test to better understand how MAC times related to the use of
Camouflage I hide a test file in a test document. I then extracted it to a new file
and used ‘mac_daddy.pl’ again to gather a timeline of the test files used. The
test showed that the Modified time of the recovered/hidden file was unaffected
by the camouflaging and un-camouflaging processes. The test also seemed to
indicate that the Accessed time of the recovered file is the time that the file was
accessed by Camouflage in order to hide it and is very close to the Modified
time of the host document used. The test also showed that the Accessed times
of the host document and the Created/Changed time for all documents is the
time which the hidden files were recovered using Camouflage. With this test
information it is safe to assume that the Modified and Accessed times for
recovered files and the Modified times for host documents are relevant in
timeline analysis. The remaining times are affected by the investigative process
and should not be used for timeline construction.

Generating a Timeline

With this new information about the MAC times of the hidden files I decided
to create a compete timeline incorporating the information on the files from the
original floppy disk image as well as the related information from the
camouflaged files. Since mac_daddy doesn’t have a way to adjust the times
based on time zone I decided to gather all the MAC times without this sort of
adjustment so that all the times would be accurate relative to each other. I ran
the command ‘fls’ again against the floppy disk image, this time telling it to
output the data in the ‘mactime’ format. I then ran the command ‘mac-robber’

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

against the directory that contained the recovered camouflaged files. ‘mac-
robber’ is a tool from The Sleuth Kit that gather MAC information on the files in a
directory and outputs that information in ‘mactime’ format. I then used the Linux
tool ‘cat’ to merge the two sets of MAC time information into one file. This file
was then sorted and formatted into a timeline using the ‘mactime’ from The
Sleuth Kit. This output is formatted the same as the ‘mac_daddy.pl’ output we
saw earlier.

 The timeline seemed to indicate that the hidden files were all hidden the
morning of Friday April 23, 2004. It appears that the Camouflage file,
CamShell.dll was deleted on Monday April 26, 2004 the morning of the day that
the floppy disk was seized from Mr. Leszczynski. The resulting expanded
timeline is shown below:

Sat Feb 03 2001 19:44:16 36864 m.. -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
Thu Apr 22 2004 16:31:06 33423 m.. -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)

 32256 m.. -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc
(INTERN~1.DOC)
Fri Apr 23 2004 08:15:17 30264 ma. -rwxr--r-- 99 99 2431695 /images/pem_fuelcell.gif
Fri Apr 23 2004 08:21:02 208127 ma. -rwxr--r-- 99 99 2431694 /images/Hydrocarbon fuel cell page2.jpg
Fri Apr 23 2004 08:23:24 28167 ma. -rwxr--r-- 99 99 2431693 /images/PEM-fuel-cell-large.jpg
Fri Apr 23 2004 09:21:06 184320 ma. -rwxr--r-- 99 99 2431696 /images/CAT.mdb
Fri Apr 23 2004 10:53:56 727 m.. -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)
Fri Apr 23 2004 11:54:32 215895 m.. -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)
Fri Apr 23 2004 11:55:26 307935 m.. -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)
Fri Apr 23 2004 12:03:53 312 ma. -rwxr--r-- 99 99 2431692 /images/Opportunity.txt
Fri Apr 23 2004 14:10:50 22528 m.. -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)
Fri Apr 23 2004 14:11:10 42496 m.. -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc
(INFORM~1.DOC)
Sun Apr 25 2004 00:00:00 0 .a. -/-rwxrwxrwx 0 0 3 /RJL (Volume Label Entry)
Sun Apr 25 2004 10:53:40 0 m.c -/-rwxrwxrwx 0 0 3 /RJL (Volume Label Entry)
Mon Apr 26 2004 00:00:00 42496 .a. -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc
(INFORM~1.DOC)

36864 .a. -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
22528 .a. -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc

(ACCEPT~1.DOC)
32256 .a. -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc

(INTERN~1.DOC)
 33423 .a. -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc

(INTERN~2.DOC)
215895 .a. -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)

727 .a. -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)
307935 .a. -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)

Mon Apr 26 2004 09:46:18 36864 ..c -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
Mon Apr 26 2004 09:46:20 42496 ..c -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc
(INFORM~1.DOC)
Mon Apr 26 2004 09:46:22 32256 ..c -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc
(INTERN~1.DOC)
Mon Apr 26 2004 09:46:24 33423 ..c -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)
Mon Apr 26 2004 09:46:26 307935 ..c -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)
Mon Apr 26 2004 09:46:36 215895 ..c -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)
Mon Apr 26 2004 09:46:44 22528 ..c -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)
Mon Apr 26 2004 09:47:36 727 ..c -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)

Figure 20

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Analyzing the Hidden Files

After having gather the MAC time information from the recovered file I ran the
Linux command ‘file’ against them to see if it reported them to be the same as
their file extensions suggested they were. The results from the ‘file’ command
are below:

[root@Daisy recovered_files]# file PEM-fuel-cell-large.jpg
PEM-fuel-cell-large.jpg: JPEG image data, JFIF standard 1.02

[root@Daisy recovered_files]# file Hydrocarbon%20fuel%20cell%20page2.jpg
Hydrocarbon%20fuel%20cell%20page2.jpg: JPEG image data, JFIF standard 1.02

[root@Daisy recovered_files]# file pem_fuelcell.gif
pem_fuelcell.gif: GIF image data, version 89a, 550 x 373

[root@Daisy recovered_files]# file CAT.mdb
CAT.mdb: Microsoft Access Database
Figure 21

I then opened each of the image files with Microsoft® Windows Picture and
Fax Viewer which came installed with my default installation of Windows XP
and the database file was opened with Microsoft® Access. What was
contained in those files is shown below and much of it appeared to be
confidential and proprietary information belonging to Ballard Industries. At this
point it appeared that I may have found the proverbial “Smoking Gun”. The
contents of these files are shown below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 22 - PEM-fuel-cell-large.jpg

Figure 23 - pem_fuelcell.gif

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 24 - Hydrocarbon%20fuel%20cell%20page2.jpg

Figure 25 - CAT.mdb

I took all of the results and reported them to David Keen of Ballard Industries.
I also recommended a meeting with Ballard Industries legal council to discuss
the legal implications of my findings.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

14 http://www.ipwatchdog.com/tradesecret.html
15 http://www.marketingtoday.com/legal/tradesec.htm
16 http://cobrands.business.findlaw.com/intellectual_property/nolo/faq/90781CA8-0ECE-4E38-
BF9E29F7A6DA5830.html

What Does the Evidence Show?

With only the floppy disk image to examine it would be difficult to prove that
Mr. Leszczynski was the one the Camouflaged the proprietary information found
on the floppy. It is, however, very likely that he knew the information was hidden
since his name appears in one of the recovered files along with text indicating
his intent to sell Ballard Industries trade secrets. The evidence from the floppy
disk could be combined with other evidence to make a strong case against Mr.
Leszczynski.

Determining whether or not Mr. Leszczynski is guilty of breaking any laws is
up to the courts and it is up to Ballard Industries legal council if they wish to
press charges. It is likely that Mr. Leszczynski and those who received
information from him are guilty of violating the Uniform Trade Secrets Act.
According to IPWatchdog.com:

“Virtually all states have adopted a portion of or modified version of the Uniform Trade
Secrets Act, which was drafted by the National Conference of Commissioners on
Uniform State Laws in 1970 and amended in 1985.”14

One thing that they will need to take into consideration is whether or not Ballard
Industries has taken the necessary steps to protect their proprietary information.
One source says:

“Information that qualifies as a trade secret is subject to legal protection (against theft
and misappropriation) as a form of valuable property--but only if the owner has taken the
necessary steps to preserve its secrecy. If the owner has not diligently tried to keep the
information secret, courts will usually refuse to extend any help to the trade secret owner
if others learn of the information.”15

The only information I have regarding Ballard Industries related to this is that
they have a policy against removing floppy disks from the R&D lab. If this policy
and other safeguards they have in place are enough to qualify the recovered
data as trade secrets they may have a case against Mr. Leszczynski. If found
guilty under the Economic Espionage Act of 1996 Mr. Leszczynski could be
fined up to $500,000.00 and Rift, Inc. could be fined up to $5,000,000.00.16 This
information was included in my report and given to Mr. Keen along with a print
out of the recovered files and a CD-ROM of the recovered files.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

References for Part 1

Carrier, Brian. “Overview.” The Sleuth Kit. 2 Nov. 2004. URL:
http://www.sleuthkit.org/sleuthkit/index.php (4 Dec. 2004).

Christensen, Andrew. “CamoDetect” 23 Oct. 2004. URL:
http://packetstormsecurity.nl/crypt/stego/camouflage/SetecAstronomy.pl (5 Dec. 2004).

Elias, Stepher. “Trade Secret Law: Overview.” 1998. URL:
http://www.marketingtoday.com/legal/tradesec.htm (11 Dec. 2004).

FindLaw. “Trade Secret Basics FAQ” 2002. URL:
http://cobrands.business.findlaw.com/intellectual_property/nolo/faq/90781CA8-0ECE-
4E38-BF9E29F7A6DA5830.html (11 Dec. 2004).

Google. “Google Search.” URL: http://www.google.com (4 Dec. 2004).

Guillermito, “(easily) Breaking a (very weak) steganography software.” 6 May 2003. URL:
http://guillermito2.net/stegano/camouflage/ (5 Dec. 2004).

IPWatchdog. “Trade Secret Law.” 24 Nov. 2004. URL:
http://www.ipwatchdog.com/tradesecret.html (11 Dec. 2004).

Payne, Steve. “DataLifter Forensicware Tools.” 14 Nov. 2004. URL:
http://www.datalifter.com (4 Dec. 2004).

Perkel, Marc. “Linux MAN Pages.” 9 Feb. 2004. URL: http://linux.ctyme.com/ (4 Dec.
2004).

Rivest, Ronald R. “RFC 1321 - The MD5 Message-Digest Algorithm.” Apr. 1992. URL:
http://www.faqs.org/rfcs/rfc1321.html (4 Dec. 2004).

SANS Institute. “GIAC: Global Information Assurance Certification - GIAC Certified
Forensic Analyst (GCFA) Practical Assignment.” 30 Apr. 2004. URL:
http://www.giac.org/GCFA_assign_15.php (4 Dec. 2004).

SANS Institute. “The SANS Security Policy Project.” URL:
http://www.sans.org/resources/policies/#template (4 Dec. 2004).

Sourceforge. “Foremost - Latest version 0.69.” 19 Nov. 2004. URL:
http://foremost.sourceforge.net/ (4 Dec. 2004).

TranceAddict Forums. ” Camoflagued Mp3s Contain A Backdoor Beware.” 12 Dec. 2002.
URL: http://www.tranceaddict.com/forums/archive/topic/79627-1.html (4 Dec. 2004).

Unfiction. “Download Camouflage” 26 Mar. 2003. URL: http://camouflage.unfiction.com/ (5
Dec. 2004).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

17 http://www.itsecurity.com/papers/halcrow1.htm
18 http://www.pimall.com/nais/nl/ecomputerf.html
19 http://www.cybersecurityinstitute.biz/software/

Part 2 – Perform Forensic Tool Validation

Scope

When making an image of a disk or other electronic evidence, it is
recommended by many sources1718 that the examination or working copy be
saved to media that has been made forensically sterile.

Forensically sterile media is free from any residual data left over from
previous uses of the media or the manufacturing process. Typically a series of
‘null’ values are written on every sector of the disk to eliminate any previous
data.

In this test we will take a hard drive that contains data and make it
forensically sterile. We will then do a series of test to verify that it has been
properly prepared.

Tool Description

 The tool that will be used to make the hard drive forensically sterile is called
Sterilize and it available free of charge from the CyberSecurity® Institute19.

The read me file that was downloaded with the Sterilize tool has a very good
explanation as to why using sterile media is a good practice when doing
computer forensics. From the Readme.txt file:

“Why use Sterilize?

It is extremely important to remove any residual data (or the possibility
that data exists in some form) from the media to be used as working
copies for a forensic examination. This sterilization process should be
documented and visually verified by the forensic examiner, leaving no
doubt that whatever is found on the working copy during a forensic
examination is/was also present on the original media.

A true bit stream or forensic imaging process by itself should overwrite
any existing data on the working copy media. When the original media and
working media hash the same, the examiner can say that a forensically
sound image has been created. The extra step of sanitizing media prior
to creating forensic working copies however will help the forensic
examiner in dealing with possible "junk science" attacks, and will
result in one less aspect of the overall procedures and methodology used

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

20 Readme.txt from the ‘sterliz.zip’ file downloaded from the CyberSecurity® Institute.
21 http://www.dtic.mil/whs/directives/corres/html/522022m.htm
22 http://www.maresware.com/maresware/freesoftware.htm

being brought under scrutiny.”20

The version used in this test is 1.02.7 by Robert Orr. This version will wipe
the media so that it is forensically sterile. It will also wipe the data in such a
way as to be compliant with several standards for sanitizing media including the
Department of Defense standards found in DOD 5220.22-M21 Chapter 8.
According to the Readme file, Sterilize will write the hexadecimal value ‘0x00’ to
every sector on the disk. It will then check random sectors on the drive to verify
that they do in fact contain ‘0x00’. The Sterilize program also provide the
capability to do a 128-bit checksum on the disk as well as manually checking
sectors on the disk to verify that the value ‘0x00’ has been written to them.
Sterilize also has a very nice feature in that all the results of these actions can
be written to a report file.

In order to use Sterilize I first created a Windows boot floppy. It is
recommended that this boot floppy be made into a forensic boot floppy using the
program ‘mod_com.exe’ by Dan Mares22. This tool prepares the floppy disk in
such a way as too prevent it from accessing the system hard drive when booting
the system. Once a bootable floppy is created the only other file needed is the
Sterilize executable itself, ‘sterliz.exe’.

Test Apparatus and Environmental Conditions

The test machine used was an old PII 333MHZ with 128MB RAM and with a
Western Digital Caviar 2850 853.6 MB hard drive. The machine was not
connected to a network and no operating system was loaded on the hard drive.
The hard drive was formerly a data drive from another system. The hard drive
contained some data files that were no longer needed but were still on the hard
drive and could therefore be used to verify that the sterilization processed
worked. The lab was in a locked room and all systems, media, and results were
in my control or locked up until the testing was completed to ensure that no
outside forces could alter the results.

Description of the Procedures

 Preparation of the test system was comprised of verifying that the device
boot order was floppy disk and CD-ROM before hard drive. I also verified that all
the programs being used for the test ran properly.

Test results generated by Sterilize will be saved to the Sterilize boot floppy as
text files following the default naming convention defined by the program.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

23 http://www.symantec.com/sabu/sysworks/pro/
24 http://www.e-fense.com/helix/

Results from verification programs will be saved as a text file with the name of
the command being run followed by the number of the run in the series (i.e.
command1.txt). All results will then be compiled into this document.

The test results will be verified using two basic tools. Norton DiskEdit from
Symantec23 will be used to examine the raw sector data and verify that what
Sterilize shows is the same as what DiskEdit shows. The live bootable Linux
CD distribution called Helix24 will be used to verify checksum values as reported
by Sterilize. Both of these tools are used from bootable media and mount the
hard drive in read only mode by default. This will ensure that these verification
tools will not inadvertently alter the data on the hard drive there by protecting the
results of the actions taken by Sterilize.

The first series of tests will be run on the hard drive with the old data still
intact. These tests will be comprised of using Sterilize to do a checksum on the
data and view the data to verify that something still exists on the disk. The
results will then be verified using DiskEdit and Helix. It is expected that the
initial checksum created by Sterilize will not match that of the ‘sum’ command
used in Helix. This is because the Sterilize checksum is a 128-bit checksum
while the ‘sum’ command returns a 16-bit checksum.

The next set of tests will start with using Sterilize to wipe all the data from the
hard drive. Next the same tests and verifications ran is the first set of tests will
be run again. This time the tests will verify whether or not Sterilize has in fact
wiped the hard drive clean and is reporting correctly that the drive has been
wiped. The checksum validation using ‘sum’ will verify that the Sterilize
checksum is valid for this set of testing. This is because the 16-bit checksum
provided by ‘sum’ and the 128-bit checksum provided by Sterilize will both be all
zero’s if they are computing the checksums correctly.

Finally, if the disk has been properly cleaned, data will be placed on the disk
and the two sets of testing will be repeated to verify the results from the first
round of tests.

Criteria for Approval

 There are three criteria for approval in this set of tests. The first is that
Sterilize will accurately display the physical sectors of a hard drive. It is
expected that whatever values displayed by Sterilize will be the same as the
values at the same physical sectors when displayed by DiskEdit. The second
criteria is that the checksum value of the hard drive as calculated by Sterilize will
be the same value as calculated by the Linux command ‘sum’ run under Helix.
The third and final criteria for approval is the visual inspection of physical sectors

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

on the disk using the Sterilize viewing option and the tool DiskEdit.

To gather the initial set of test data the system is booted with the Sterilize
floppy. Sterilize can be run with a Graphical User Interface menu or with
command line options. For these tests I used the menu system since this
allowed me to easily save multiple test results to the same report file. From the
Sterilize menu I first ran the checksum option. These results were saved in the
Sterilize report file named ‘12190400.RPT’. When this had completed I ran the
option to physically view the disk sectors. Since Sterilize doesn’t have the ability
(at least not that I could find) to print any of the viewed sectors I wrote some
notes on paper indicating what was displayed. With these results in hand I
booted the machine to the DiskEdit floppy. Using DiskEdit I viewed the same
sectors as viewed with Sterilize. I was unable to find a way to copy the view of
the data on the physical disk sectors with DiskEdit either so I again took notes
on paper to compare what Sterilize showed with what DiskEdit showed. Next I
booted the system to the Helix CD and ran the tool ‘sum’ against the hard drive.
These results were saved as ‘sum1.txt’.

The next set of test started by booting to the Sterilize floppy and launching
the menu. From the menu I selected the ‘Sterilize’ option. This option warns
the user that this will destroy all data on the disk and asks for conformation
before continuing. I confirmed to continue and Sterilize proceeded to begin
writing the hex value ‘0x00’ to every sector of the disk. When the sterilization
process had completed I ran the checksum option from the menu. These
results were saved in the report file named ‘12190401.RPT’. I then selected the
view sectors option from the Sterilize menu and viewed several disk sectors,
noting on my note paper which sector were examined. Next I booted to the
DiskEdit floppy and viewed the same sectors as viewed with Sterilize. After
viewing the sectors I booted to the Helix CD and ran the ‘sum’ command again
against the hard drive saving the results in the file ‘sum2.txt’.

After the first two sets of tests were run data was copied to the hard disk and
the tests were all run again. This time the Sterilize reports were saved as
‘12200400.RPT’ and ‘12200401.RPT’ and the ‘sum’ results were saved as
‘sum3.txt’ and ‘sum4.txt’.

Data and Results

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

12-19-2004 02:18 : CSI Sterliz.exe report file

12-19-2004 02:18 : Report user name: Steve

12-19-2004 02:18 : ********************
12-19-2004 02:18 : Start of report segment
12-19-2004 02:18 : Checksum of HD0
12-19-2004 02:18 : ---
12-19-2004 02:18 : Drive information for HD0 (Physical Drive 80)
12-19-2004 02:18 : Physical Cylinders : 827
12-19-2004 02:18 : Physical Heads : 32
12-19-2004 02:18 : Physical Sectors/Track: 63
12-19-2004 02:18 : Bytes per Sector : 512
12-19-2004 02:18 : Total Sectors : 1667232
12-19-2004 02:18 : Total MBytes : 814Mb
12-19-2004 02:18 : ---
12-19-2004 02:32 : Media is NOT sterile!
12-19-2004 02:32 : Checksum of HD0 completed
12-19-2004 02:32 : --------Segment Summary--------
12-19-2004 02:32 : 128 bit checksum : 159226a4fc74ca6aacc6a830cfb78484
12-19-2004 02:32 : Total Read Errors : 0
12-19-2004 02:32 : Total Write Errors: 0
12-19-2004 02:32 : End of report segment
12-19-2004 02:32 : ********************
12-19-2004 02:32 : Start of report segment
12-19-2004 02:32 : Sectors on HD0
12-19-2004 02:32 : ---
12-19-2004 02:32 : Drive information for HD0 (Physical Drive 80)
12-19-2004 02:32 : Physical Cylinders : 827
12-19-2004 02:32 : Physical Heads : 32
12-19-2004 02:32 : Physical Sectors/Track: 63
12-19-2004 02:32 : Bytes per Sector : 512
12-19-2004 02:32 : Total Sectors : 1667232
12-19-2004 02:32 : Total MBytes : 814Mb
12-19-2004 02:32 : ---
12-19-2004 02:32 : Displayed sector 0
12-19-2004 02:32 : Displayed sector 1
12-19-2004 02:32 : Displayed sector 2
12-19-2004 02:32 : Displayed sector 3
12-19-2004 02:32 : --------Segment Summary--------
12-19-2004 02:32 : Total Read Errors : 0
12-19-2004 02:32 : Total Write Errors: 0
12-19-2004 02:32 : End of report segment
12-19-2004 02:32 :

Report generated by

sterliz 1.02.7 (c) 2004 CyberSecurity Institute
http://www.cybersecurityinstitute.biz

Figure 26 - 12190400.RPT

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

12-19-2004 22:00 : CSI Sterliz.exe report file

12-19-2004 22:00 : Report user name: Steve

12-19-2004 22:00 : ********************
12-19-2004 22:00 : Start of report segment
12-19-2004 22:00 : Sterilize drive HD0 ...
12-19-2004 22:00 : ---
12-19-2004 22:00 : Drive information for HD0 (Physical Drive 80)
12-19-2004 22:00 : Physical Cylinders : 827
12-19-2004 22:00 : Physical Heads : 32
12-19-2004 22:00 : Physical Sectors/Track: 63
12-19-2004 22:00 : Bytes per Sector : 512
12-19-2004 22:00 : Total Sectors : 1667232
12-19-2004 22:00 : Total MBytes : 814Mb
12-19-2004 22:00 : ---
12-19-2004 22:00 : Sterilize start
12-19-2004 22:00 : Writing 00 bytes to selected drive
12-19-2004 22:07 : Random 5000 Sector Verify of Drive: HD0
12-19-2004 22:08 : Random selection of 5000 sectors verified
12-19-2004 22:08 : Sterilize complete for HD0
12-19-2004 22:08 : 0 Read Errors
12-19-2004 22:08 : 0 Write Errors
12-19-2004 22:21 : Sterilize of HD0 completed
12-19-2004 22:21 : --------Segment Summary--------
12-19-2004 22:21 : Total Read Errors : 0
12-19-2004 22:21 : Total Write Errors: 0
12-19-2004 22:21 : End of report segment
12-19-2004 22:21 : ********************
12-19-2004 22:21 : Start of report segment
12-19-2004 22:21 : Checksum of HD0
12-19-2004 22:21 : ---
12-19-2004 22:21 : Drive information for HD0 (Physical Drive 80)
12-19-2004 22:21 : Physical Cylinders : 827
12-19-2004 22:21 : Physical Heads : 32
12-19-2004 22:21 : Physical Sectors/Track: 63
12-19-2004 22:21 : Bytes per Sector : 512
12-19-2004 22:21 : Total Sectors : 1667232
12-19-2004 22:21 : Total MBytes : 814Mb
12-19-2004 22:21 : ---
12-19-2004 22:39 : Checksum of HD0 completed
12-19-2004 22:39 : --------Segment Summary--------
12-19-2004 22:39 : 128 bit checksum : 00000000000000000000000000000000
12-19-2004 22:39 : Total Read Errors : 0
12-19-2004 22:39 : Total Write Errors: 0
12-19-2004 22:39 : End of report segment
12-19-2004 22:39 : ********************
12-19-2004 22:39 : Start of report segment
12-19-2004 22:39 : Sectors on HD0
12-19-2004 22:39 : ---
12-19-2004 22:39 : Drive information for HD0 (Physical Drive 80)
12-19-2004 22:39 : Physical Cylinders : 827
12-19-2004 22:39 : Physical Heads : 32
12-19-2004 22:39 : Physical Sectors/Track: 63
12-19-2004 22:39 : Bytes per Sector : 512
12-19-2004 22:39 : Total Sectors : 1667232
12-19-2004 22:39 : Total MBytes : 814Mb
12-19-2004 22:39 : ---
12-19-2004 22:39 : Displayed sector 0
12-19-2004 22:39 : Displayed sector 1
12-19-2004 22:39 : Displayed sector 2
12-19-2004 22:39 : Displayed sector 3
12-19-2004 22:39 : Displayed sector 4
12-19-2004 22:39 : Displayed sector 5
12-19-2004 22:39 : Displayed sector 6
12-19-2004 22:40 : Displayed sector 1667000
12-19-2004 22:40 : Displayed sector 1667001
12-19-2004 22:40 : Displayed sector 1667002
12-19-2004 22:40 : Displayed sector 1667003
12-19-2004 22:40 : Displayed sector 1667230
12-19-2004 22:40 : Displayed sector 1667231
12-19-2004 22:40 : Displayed sector 0
12-19-2004 22:40 : Displayed sector 1
12-19-2004 22:40 : Displayed sector 0
12-19-2004 22:40 : Displayed sector 1667231

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 27 - 12190401.RPT

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

12-20-2004 00:29 : CSI Sterliz.exe report file

12-20-2004 00:29 : Report user name: Steve

12-20-2004 00:29 : ********************
12-20-2004 00:29 : Start of report segment
12-20-2004 00:30 : Checksum of HD0
12-20-2004 00:30 : ---
12-20-2004 00:30 : Drive information for HD0 (Physical Drive 80)
12-20-2004 00:30 : Physical Cylinders : 827
12-20-2004 00:30 : Physical Heads : 32
12-20-2004 00:30 : Physical Sectors/Track: 63
12-20-2004 00:30 : Bytes per Sector : 512
12-20-2004 00:30 : Total Sectors : 1667232
12-20-2004 00:30 : Total MBytes : 814Mb
12-20-2004 00:30 : ---
12-20-2004 00:37 : Media is NOT sterile!
12-20-2004 00:37 : Checksum of HD0 completed
12-20-2004 00:37 : --------Segment Summary--------
12-20-2004 00:37 : 128 bit checksum : c373a372dbafb51220e122286223b1a9
12-20-2004 00:37 : Total Read Errors : 0
12-20-2004 00:37 : Total Write Errors: 0
12-20-2004 00:37 : End of report segment
12-20-2004 00:38 : ********************
12-20-2004 00:38 : Start of report segment
12-20-2004 00:38 : Sectors on HD0
12-20-2004 00:38 : ---
12-20-2004 00:38 : Drive information for HD0 (Physical Drive 80)
12-20-2004 00:38 : Physical Cylinders : 827
12-20-2004 00:38 : Physical Heads : 32
12-20-2004 00:38 : Physical Sectors/Track: 63
12-20-2004 00:38 : Bytes per Sector : 512
12-20-2004 00:38 : Total Sectors : 1667232
12-20-2004 00:38 : Total MBytes : 814Mb
12-20-2004 00:38 : ---
12-20-2004 00:38 : Displayed sector 0
12-20-2004 00:38 : Displayed sector 1
12-20-2004 00:38 : Displayed sector 2
12-20-2004 00:39 : Displayed sector 3
12-20-2004 00:39 : Displayed sector 4
12-20-2004 00:39 : Displayed sector 5
12-20-2004 00:39 : Displayed sector 6
12-20-2004 00:39 : Displayed sector 7
12-20-2004 00:39 : Displayed sector 8
12-20-2004 00:39 : Displayed sector 9
12-20-2004 00:39 : Displayed sector 10
12-20-2004 00:39 : Displayed sector 62
12-20-2004 00:39 : Displayed sector 63
12-20-2004 00:39 : Displayed sector 64
12-20-2004 00:39 : Displayed sector 65
12-20-2004 00:39 : Displayed sector 66
12-20-2004 00:39 : Displayed sector 67
12-20-2004 00:39 : --------Segment Summary--------
12-20-2004 00:39 : Total Read Errors : 0
12-20-2004 00:39 : Total Write Errors: 0
12-20-2004 00:39 : End of report segment
12-20-2004 00:39 :

Report generated by

sterliz 1.02.7 (c) 2004 CyberSecurity Institute
http://www.cybersecurityinstitute.biz

Report generated by
sterliz 1.02.7 (c) 2004 CyberSecurity Institute
http://www.cybersecurityinstitute.biz

 Figure 28 - 12200400.RPT

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

12-20-2004 01:01 : CSI Sterliz.exe report file

12-20-2004 01:01 : Report user name: Steve

12-20-2004 01:01 : ********************
12-20-2004 01:01 : Start of report segment
12-20-2004 01:01 : Sterilize drive HD0 ...
12-20-2004 01:01 : ---
12-20-2004 01:01 : Drive information for HD0 (Physical Drive 80)
12-20-2004 01:01 : Physical Cylinders : 827
12-20-2004 01:01 : Physical Heads : 32
12-20-2004 01:01 : Physical Sectors/Track: 63
12-20-2004 01:01 : Bytes per Sector : 512
12-20-2004 01:01 : Total Sectors : 1667232
12-20-2004 01:01 : Total MBytes : 814Mb
12-20-2004 01:01 : ---
12-20-2004 01:02 : Sterilize start
12-20-2004 01:02 : Writing 00 bytes to selected drive
12-20-2004 01:08 : Random 5000 Sector Verify of Drive: HD0
12-20-2004 01:10 : Random selection of 5000 sectors verified
12-20-2004 01:10 : Sterilize complete for HD0
12-20-2004 01:10 : 0 Read Errors
12-20-2004 01:10 : 0 Write Errors
12-20-2004 01:10 : Sterilize of HD0 completed
12-20-2004 01:10 : --------Segment Summary--------
12-20-2004 01:10 : Total Read Errors : 0
12-20-2004 01:10 : Total Write Errors: 0
12-20-2004 01:10 : End of report segment
12-20-2004 01:10 : ********************
12-20-2004 01:10 : Start of report segment
12-20-2004 01:10 : Checksum of HD0
12-20-2004 01:10 : ---
12-20-2004 01:10 : Drive information for HD0 (Physical Drive 80)
12-20-2004 01:10 : Physical Cylinders : 827
12-20-2004 01:10 : Physical Heads : 32
12-20-2004 01:10 : Physical Sectors/Track: 63
12-20-2004 01:10 : Bytes per Sector : 512
12-20-2004 01:10 : Total Sectors : 1667232
12-20-2004 01:10 : Total MBytes : 814Mb
12-20-2004 01:10 : ---
12-20-2004 01:18 : Checksum of HD0 completed
12-20-2004 01:18 : --------Segment Summary--------
12-20-2004 01:18 : 128 bit checksum : 00000000000000000000000000000000
12-20-2004 01:18 : Total Read Errors : 0
12-20-2004 01:18 : Total Write Errors: 0
12-20-2004 01:18 : End of report segment
12-20-2004 01:19 : ********************
12-20-2004 01:19 : Start of report segment
12-20-2004 01:19 : Sectors on HD0
12-20-2004 01:19 : ---
12-20-2004 01:19 : Drive information for HD0 (Physical Drive 80)
12-20-2004 01:19 : Physical Cylinders : 827
12-20-2004 01:19 : Physical Heads : 32
12-20-2004 01:19 : Physical Sectors/Track: 63
12-20-2004 01:19 : Bytes per Sector : 512
12-20-2004 01:19 : Total Sectors : 1667232
12-20-2004 01:19 : Total MBytes : 814Mb
12-20-2004 01:19 : ---
12-20-2004 01:19 : Displayed sector 0
12-20-2004 01:19 : Displayed sector 1
12-20-2004 01:19 : Displayed sector 2
12-20-2004 01:19 : Displayed sector 3
12-20-2004 01:19 : Displayed sector 62
12-20-2004 01:19 : Displayed sector 63
12-20-2004 01:19 : Displayed sector 64
12-20-2004 01:19 : Displayed sector 65

Report generated by
sterliz 1.02.7 (c) 2004 CyberSecurity Institute
http://www.cybersecurityinstitute.biz

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Figure 29 - 12200401.RPT

18922 833616
Figure 30 - sum1.txt

00000 833616
Figure 31 - sum2.txt

59575 833616
Figure 32 - sum3.txt

00000 833616
Figure 33 - sum4.txt

The results were as expected and all criteria for approval were met. By
comparing the results on the report files and the results from manually viewing
the disk sectors we see that Sterilize does exactly what it claims to do.
Sterilizing a disk overwrites all existing data with a series of hex value ‘0x00’
which we verified using the ‘sum’ command as well as visually inspecting the
disk sectors using DiskEdit. Sterilize also provide an accurate view of the
physical sectors which we verified by comparing the results from the Sterilize
viewer with the results from DiskEdit. It was also verified to a lesser degree that
the checksum feature appears to be accurate, at least when calculating the
checksum on a sterilized drive. This was verified using the ‘sum’ command and
verifying that both it and Sterilize returned a zero value when calculating the
checksum on the sterilized drive.

Analysis

 Thanks to the friendly report format used by the Sterilize reports it would be
very easy for an investigator to see whether or not a disk has been wiped clean
and made forensically sterile. An investigator could also use Sterilize to access
the physical sector of a disk. This would allow the investigator to view data that
my otherwise be obfuscated by the operating system or by nefarious means.

Presentation

 Using the reports generated by Sterilize it would be very easy for an
investigator to show that the media had been made forensically sterile before
being used. The reports would document when the sterilization occurred and
that the sterilization process had been verified.

 The reports are organized very well and would make explaining them to
others quite easy. Each option within Sterilize generates its own report
segment. These report segments show the time that each activity took place,

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

what that activity was, and the results of that action. When the checksum for
the test disk was generated the following report entry was made:

12-19-2004 02:18 : ********************
12-19-2004 02:18 : Start of report segment
12-19-2004 02:18 : Checksum of HD0
12-19-2004 02:18 : ---
12-19-2004 02:18 : Drive information for HD0 (Physical Drive 80)
12-19-2004 02:18 : Physical Cylinders : 827
12-19-2004 02:18 : Physical Heads : 32
12-19-2004 02:18 : Physical Sectors/Track: 63
12-19-2004 02:18 : Bytes per Sector : 512
12-19-2004 02:18 : Total Sectors : 1667232
12-19-2004 02:18 : Total MBytes : 814Mb
12-19-2004 02:18 : ---
12-19-2004 02:32 : Media is NOT sterile!
12-19-2004 02:32 : Checksum of HD0 completed
12-19-2004 02:32 : --------Segment Summary--------
12-19-2004 02:32 : 128 bit checksum : 159226a4fc74ca6aacc6a830cfb78484
12-19-2004 02:32 : Total Read Errors : 0
12-19-2004 02:32 : Total Write Errors: 0
12-19-2004 02:32 : End of report segment

This shows that at 02:18 on Dec. 19, 2004 a checksum was started on the
primary hard drive (HD0). It then shows us the drive information for the disk
being analyzed. We see that Sterilize detected that the disk contained data and
was not sterile followed by the checksum for the data found on the drive. Finally
we see that during the checksum process Sterilize encountered no read/write
errors indicating that the media is sound and that the end of that report segment
has been reached. All the options create similar entries in the report and are
equally easy to explain to the court or others.

 These reports would be easy to admit to the court as process verification in
their native form. The reports are easy to read and require no modification or
formatting. A simple print out should be very easy for anyone involved to read
and understand with very little explanation.

Conclusion

 These tests were successful and show that Sterilize is a very convenient tool
for creating forensically sterile media. Sterilize has added features that allow for
verification that the media has been successfully sterilized and produces a very
nice report of the actions and verifications.

This tool doesn’t require any changes to make it more forensically sound.
The only recommendation I have would be increasing functionality. The main
functionality improvements are already in development for future releases such
as the ability to do a MD5 hash of a disk.

Using Sterilize to make media forensically sterile should be the first step any
investigator takes before imaging a disk. The investigator can rest assured that

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

by using this tool to prepare the media he/she will not have any residual data on
the working copy and will be provided with a nice report should that fact ever be
questioned.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

References for Part 2

Dept. of Defense. “DoD 5220.22-M, ‘National Industrial Security Program
Operating Manual’.” Jan. 1995. URL:
http://www.dtic.mil/whs/directives/corres/html/522022m.htm (18 Dec. 2004)

e-Fense, Inc. “Helix.” 7 Dec. 2004. URL: http://www.e-fense.com/helix/ (18 Dec.
2004)

Grant, David. “Halcrow Group Ltd MIS Computer Forensic Procedures.” 2 Jun.
2002. URL: http://www.itsecurity.com/papers/halcrow1.htm
(18 Dec. 2004).

Hailey, Steve. “Sterilize - FREE.” 14 Sep. 2004. URL:
http://www.cybersecurityinstitute.biz/software/ (18 Dec. 2004)

Mares, Dan. “Free Software from Mares and Company.” 9 Aug. 2004. URL:
http://www.maresware.com/maresware/freesoftware.htm (18 Dec. 2004)

Newsom, Dr. P. Dennis. “An Explanation of Computer Forensics.” Sep. 2000.
URL: http://www.pimall.com/nais/nl/ecomputerf.html (18 Dec. 2004)

Symantec Corporation. “Norton Systemworks Premier Edition.” URL:
http://www.symantec.com/sabu/sysworks/pro/ (18 Dec. 2004)

