GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensic:
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

LI 1o L0 O] 01 (=1] £ O PPPPPPPR 1
StEVEN BECKEI Gl A.UOC. ittt e e e e e e e e e e e e e e ettt e e e e e e aaa e e e eeeaaa e eeeeensanns 2

© SANS Institute 2005 Author retains full rights.

© SANS Institute 2005

Analyze an Unknown Image
and
Forensic Tool Validation: Sterilize

GCFA Practical Assignment
Version 1.5 Option 2
December 20, 2004

by
Steven Becker

Author retains full rights.

Table of Contents

Table of Contents 2
Abstract: 3
Part 1 — Analyze an Unknown Image: 4
Case Background 4
Analysis Steps and Details 4
Floppy Disk Image Receipt and Verification 4
Enumeration of Files 7
Recovery of Deleted Files 8

File Analysis 10
Chasing a Possible Lead 13
Analyzing the Mystery Program 13
Finding Hidden Files 20
Generating a Timeline 23
Analyzing the Hidden Files 24
What Does the Evidence Show? 27
References for Part 1 28
Part 2 — Perform Forensic Tool Validation 29
Scope 29
Tool Description 29
Test Apparatus and Environmental Conditions 30
Description of the Procedures 30
Criteria for Approval 31
Data and Results 32
Analysis 37
Presentation 37
Conclusion 38
References for Part 2 39

© SANS Institute 2005 Author retains full rights.

Abstract:

This practical assignment contains two main parts. The first is a mock
scenario where | have been asked to analyze a floppy disk that is suspected of
containing proprietary information being leaked to a competitor. This part of the
assignment will explain the steps | took to analyze the data as well as the
evidence recovered.

The second part of this assignment will be an analysis of a program used to
create forensically sterile media. The program is called Sterilize and is available
free of charge from the CyberSecurity® Institute’.

! http://www.cybersecurityinstitute.biz/software/

© SANS Institute 2005 Author retains full rights.

Part 1 — Analyze an Unknown Image:

Case Background?

Ballard Industries is a company that designs and produces specialized fuel
cell batteries used by customers around the world. Recently it seems that many
customers are no longer ordering from Ballard but instead have begun to order
from a competitor Rift, Inc. It seems that Rift, Inc. is now offering the same fuel
cell batteries that were once unique to Ballard, Inc. A full investigation has
begun to see if Rift, Inc. has somehow been given access to propriety
information regarding the Ballard, Inc. fuel cell battery design and the customers
who are purchasing them.

| have been asked by David Keen, the security administrator for Ballard
Industries to aid in the investigation by analyzing a floppy disk seized from a
Ballard Industries employee by the name of Robert John Leszczynski, Jr. This
document contains a step by step explanation of how | analyzed the data and
the results which | reported to Mr. Keen including the evidence discovered
during my analysis.

Analysis Steps and Details
Floppy Disk Image Receipt and Verification

My analysis began by receiving a chain of custody form from Mr. Keen which
contained the following information related to the seized floppy:

Tag# fl-260404-RJL1

3.5 inch TDK floppy disk

MD5: d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img
fl-260404-RJL1.img.gz

| did not receive the actually floppy disk but instead was given a compressed
image of that floppy. (For the sake of this assignment an image file was
downloaded here http://www.giac.org/gcfa/vl 5.9z and renamed to fl-260404-
RJL.img.gz. This downloaded image is then used as if it were presented
directly to me by the fictitious David Keen.)

An image file is an exact copy of all the data contained on the floppy disk,
including data not accessible through normal viewing. This allows me to

2 As described by the GIAC site http://www.giac.org/GCFA assign_15.php

© SANS Institute 2005 Author retains full rights.

examine data that may have been deleted or hidden by Mr. Leszczynski.
Compression was used to make the file smaller while is but being transported to
me. Compression is easily undone and does not permanently alter the data.
This is verified by comparing the digital fingerprint of the original floppy disk and
the digital fingerprint of the copy | received.

The strange looking string of numbers and letters preceded by ‘MDS:’ on the
chain of custody form is the digital fingerprint of the floppy disk seized from Mr.
Leszczynski. ‘MD5’ is the name of the cryptographic hashing algorithm used to
produce the fingerprint and followed by the name of the data the fingerprint
represents, fl-260404-RJL1.img.

Digital fingerprints are referred to as ‘hashes’ of the data. To create a digital
fingerprint the data is put through a mathematical algorithm that creates a
unique numerical representation of the original data. In this case the algorithm
used was the Message Digest 5 (MD5). Hash values are especially useful for
detecting changes in data because the algorithms are created so that even a
small change in data will create a noticeable change in the hash value.

According to RFC1321:

“..the difficulty of coming up with two messages having the same
message digest is on the order of 2764 operations, and that the
difficulty of coming up with any message having a given message
digest is on the order of 27128 operations.”?

This means that the likelihood of two sets of data resulting in the same digital
fingerprintis 1 in 2°64 (1 in 18,446,744,073,709,551,616).

| took the compressed image file, which is an exact copy of the seized floppy,
named fl-260404-RJL1.img.gz and transferred it to my forensic analysis
machine. As stated earlier the compression simply makes the image file
smaller so that it takes up less space when transferring it and is completely
reversible. After transferring the image to my workstation | uncompressed it,
returning it to its original state and took a digital fingerprint to verify that it had
not been modified. Below is a screen capture from my forensic workstation
showing that the resulting MD5 hash (fingerprint) matches the value provided to
me by Mr. Keen.

3 http://www.fags.org/rfcs/rfc1321.html

© SANS Institute 2005 Author retains full rights.

: root® Daisy;~/Desktop/GCFA
File Edit WView Terminal Tabs Help

3 980adbed4d37ledaZad £1-260404-RJL1.img
isy GCFAT#

Figure 1

Note that the hash value of the image file shown in figure 1 matches the hash
value of the seized floppy given to us by Mr. Keen listed on the chain of custody
form as:

d7641eb4da871d980adbe4d371eda2ad

After verifying that my image of the floppy disk was forensically identical to
the original floppy disk, | mounted it using the command:

mount -o loop,ro /root/Desktop/GCFA/fl-260404-RJL1.img /mnt/evidence_mount/

This command basically allows me to access the data in the image the same
way | could if | had the original floppy disk in the floppy drive of my workstation.
The only difference is that | mounted it using the ‘ro’ option which stands for
‘read-only’. By mounting it this way | am prevented from accidentally modifying
the data and tainting the evidence while analyzing it. Even though | will actually
be examining the image | will refer to it as ‘the floppy’ since that's where the
data was originally.

© SANS Institute 2005 Author retains full rights.

Enumeration of Files

The next several steps used utilities distributed with The Sleuth Kit (TSK)*
which is a collection of tools used for computer investigations. The first step
was to use the tool called ‘fls’ to list the files on the floppy and details about
them. The exact command | used was:

fls -l -f fat12 -z MDT7MST /root/Desktop/ GCFA/fl-260404-RJL1.img

The ‘-I’ flag tells the utility that we want the long version of output which includes
information about where the entry physically sits on the disk, the name of the
entry, the modified, accesses, changed (MAC) times related to the files, the size
of the files, and who the owns the files. The ‘-f option tells the utility what type
of file system it's examining (fat12 is the floppy disk file system). The final flag ‘-
Z lets us tell the utility the time zone in which the activity took place, in this case
Mountain Time.

The results contain 9 pieces of data for each entry.
1. File type - The file type tells us if it's a file or a directory, normal files are
represented by ‘r/r and directories would be shown as ‘d/d’.

2. Inode - The inode is simply an address on the disk where the metadata
resides for that file. Metadata is data about data. In the case of computer
disks the metadata tells us about the data and files on the disk, such as
where on the disk the pieces of a file reside, the size of the file, the last
time the file was used, etc. Any inode with a ™’ represents a deleted file.

3. File Name - Is the name of the file in two formats. The first is the long
format and the second (contained in parentheses) is a shortened form for
backward compatibility with older systems.

4. Modification Time - This is the time that the file was last written to or
modified.

5. Access Time - This is the time that the file was last read or accessed.

6. Change/Created Time - This is the time that the inode information
(metadata) for the file was last modified.

7. Size - The number of disk blocks containing the file.

8. User ID* - The system ID of the user who owns the file.

* Floppy disks do not support users and groups so the User IDs and Group IDs are set to zero.
4 The Sleuth Kit is available at http://www.sleuthkit.org/sleuthkit/index.php

© SANS Institute 2005 Author retains full rights.

file
type

r/r
r/r
r/r
r/r
r/r
r/r
r/r
r/r

r/r

9. Group ID* - The system ID of the group to which the file belongs.

The results were saved to a spreadsheet shown below in figure 2.

inode file name
3: RJL (Volume Label Entry)
*5: CamShell.dll (AMSHELL.DLL)
9: Information_Sensitivity Policy.doc
(INFORM~1.DOC)
13: Internal_Lab_Security Policy1.doc
(INTERN~1.DOC)
17: Internal_Lab_Security Policy.doc
(INTERN~2.DOC)
20: Password_Policy.doc
(PASSWO~1.DOC)
23: Remote_Access_Policy.doc
(REMOTE~1.DOC)
27: Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)
*28: _ndex.htm
Figure 2

them. The remaining entries are for files that all have a .doc extension and

modified time

2004.04.25
10:53:40 (MST)
2001.02.03
19:44:16 (MDT)
2004.04.23
14:11:10 (MST)
2004.04.22
16:31:06 (MST)
2004.04.22
16:31:06 (MST)
2004.04.23
11:55:26 (MST)
2004.04.23
11:54:32 (MST)
2004.04.23
14:10:50 (MST)
2004.04.23
10:53:56 (MST)

accessed time

2004.04.25
00:00:00 (MST)
2004.04.26
00:00:00 (MST)
2004.04.26
00:00:00 (MST)
2004.04.26
00:00:00 (MST)
2004.04.26
00:00:00 (MST)
2004.04.26
00:00:00 (MST)
2004.04.26
00:00:00 (MST)
2004.04.26
00:00:00 (MST)
2004.04.26
00:00:00 (MST)

change time

2004.04.25
10:53:40 (MST)
2004.04.26
09:46:18 (MST)
2004.04.26
09:46:20 (MST)
2004.04.26
09:46:22 (MST)
2004.04.26
09:46:24 (MST)
2004.04.26
09:46:26 (MST)
2004.04.26
09:46:36 (MST)
2004.04.26
09:46:44 (MST)
2004.04.26
09:47:36 (MST)

size

0

36864

42496

32256

33423

307935

215895

22528

727

userid group

id
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

These results show that there are nine entries on the floppy, the first one, at
inode 3, is the entry for the name of the floppy. The entries at inodes 5 and 28
are deleted files, which | made note of so that | could recover them and examine

appear to be regular and accessible through normal means.

that they are either very long documents or possibly being used to conceal

One interesting thing that caught my eye was that two of the regular (not
deleted) files are an order of magnitude larger then the other four. This means

contraband information.

A quick internet search for information on the deleted file CamShell.dll using
Google ™? turned up a discussion which indicated that CamShell.dll may be

related to a program called Camouflage®. | decided to do more research on this
program after further analysis of this deleted file and the other.

Recovery of Deleted Files

Next | proceeded to recover the two deleted files. In order to do this | needed
to determine where on the floppy disk their data resided. This was done using
the tool ‘istat’ from The Sleuth Kit on the inode of each file:

3 http://www.google.com

¢ http://www.tranceaddict.com/forums/archive/topic/79627-1.html

© SANS Institute 2005

Author retains full rights.

istat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 5

istat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 28

Just like when using the ‘fls’ command earlier we use the -f flag to tell the utility
that it's examining a floppy disk. The ‘5’ at the end of command tells the ‘istat’
tool that we are wanting information for the file with inode 5 which, we see from
figure 2, is the deleted file CamShell.dll. Likewise the ‘28’ at the end of the
second ‘istat’ command tells the tool we want information related to the deleted
file named ‘°_ndex.htm’. The output from running this command on each inode
is shown below:

© SANS Institute 2005 Author retains full rights.

[root@Daisy GCFAJ# istat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 5
Directory Entry: 5

Not Allocated

File Attributes: File, Archive

Size: 36864

Num of links: 0

Name: _AMSHELL.DLL

Directory Entry Times:

Written: Sat Feb 3 19:44:16 2001
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:46:18 2004

Sectors:
33

Recovery:

33 34 3536 37 38 39 40
414243 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

6566 676869707172
7374757677787980
818283 84 8586 87 88
8990919293 94 95 96

97 98 99 100 101 102 103 104
[root@Daisy GCFAJ# istat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 28
Directory Entry: 28

Not Allocated

File Attributes: File, Archive
Size: 727

Num of links: 0

Name: _ndex.htm

Directory Entry Times:

Written: Fri Apr 23 10:53:56 2004
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:47:36 2004

Sectors:
33

Recovery:
33 34
Figure 3

The important details we need for recovering the deleted files are the
Recovery sectors. This tells us which sectors on the disk contain the data for
the file we wish to recover. In this case it appears that one file was written over
the top of the other. We know this because the Recovery sectors for _ndex.htm
are the same as the first two recovery sectors for CamShell.dll. Based on the
times that the files were written to disk (the Change times as listed in Figure 2)
my guess would be that the _ndex.htm file was written over Camshell.dlII.

The next step in recovering the files is to copy the data out of the Recovery

© SANS Institute 2005 Author retains full rights.

sectors for each one out to a new file. This was done using the ‘dcat’ utility from
The Sleuth Kit which simply copies the contents of a particular data unit. We
are able to tell the ‘dcat’ utility what sector to start at and how many sectors to
copy. The output in Figure 3 shows us that the Recovery sectors for
CamShell.dll start at 33 and are contiguous to 104 which is 72 sectors total. To
recover CamShell.dll | used the following command:

dcat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 33 72 > CamShell.dll.recovered

The two numbers following the path to the floppy disk image are the starting
sector for the data and the total sectors needing to be copied. The greater than
symbol sends the data to the file named CamShell.dll.recovered instead of just
displaying it all on the screen. This process was repeated for ‘°_ndex.htm’ with
that starting sector being 33 again and the total sectors to be copied being 2:

dcat -f fat12 /root/Desktop/GCFA/fl-260404-RJL1.img 33 2 > _ndex.htm.recovered

File Analysis

Next | used the Linux command ‘file’” to determine what kind of files these
may be. This command reported that they were both ‘HTML document text'.
Since they were reported as being text documents | used the Linux command
‘less’ to read them. ‘Less’ simply allows the user to read the contents of a file.
It became apparent that _ndex.htm was indeed a HTML document as reported
by the ‘file’ command. It also became apparent that CamShell.dll only
contained HTML text at the beginning of the file and that the rest contained
unreadable data interspersed with readable words much like an executable
program does. This furthered my speculation that the file _ndex.htm had
overwritten the file CamShell.dll. The HTML recovered from the two files is
shown below:

" For information on the ‘file’ command and other Linux commands used please visit
http:/linux.ctyme.com/

© SANS Institute 2005 Author retains full rights.

<HTML>

<HEAD>

<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<TITLE>Ballard</TITLE>

</HEAD>

<BODY bgcolor="#EDEDED">

<center>

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">

<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality VALUE=high> <PARAM NAME=bgcolor
VALUE=#CCCCCC>

<EMBED src="ballard.swf" quality=high bgcolor=#CCCCCC WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash" PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer'></EMBED>
</OBJECT>

</center>

</BODY>

</HTML>

Figure 4

This HTML appears to be a simple webpage that attempts to load a
Shockwave™ Flash movie which was not found on the floppy disk. At this point
in the analysis the HTML seemed uninteresting as far as potentially being used
to leak proprietary information out of Ballard Industries so | refocused on finding
more about the rest of the CamShell.dll file.

The next tool | used to examine CamShell.dll was the Linux command
‘strings’. This command searches a file and displays the printable characters. It
is very helpful in pulling the human readable words from files that are mostly
machine code much like the bulk of CamShell.dll appeared to be. The output of
the ‘strings’ command was saved to a file using the command:

strings CamShell.dll.recovered > CamShell.dll.strings

| used the Linux command ‘less’ again to examine the output from the strings
command. There were several interesting strings of text contained in the file. A
partial list is shown below:

© SANS Institute 2005 Author retains full rights.

© SANS Institute 2005

advapi32.dll

CamouflageShell

CamShell

CamShell.dll

C:\My Documents\VB Programs\Camouflage\Shell\IctxMenu.tlb
C:\WINDOWS\SYSTEM\MSVBVM60.DLL\3
DeleteDC

DeleteObject
DliCanUnloadNow
DlIFunctionCall
DliGetClassObject
DlIRegisterServer
DllUnregisterServer
DragQueryFileA
EVENT_SINK2_AddRef
EVENT_SINK2_Release
EVENT_SINK_AddRef
EVENT_SINK_QuerylInterface
EVENT_SINK_Release
FindResourceA

FIShellExtlnit
GetFullPathNameA
GetObjectA

GetTextMetricsA IContextMenu
IContextMenu_GetCommandString
IContextMenu_InvokeCommand
IContextMenu_QueryContextMenu
IContextMenu_TLB
IctxMenu.tibWw

idCmd

idCmdFirst

idCmdLast

indexMenu

InsertMenuA

IShellExtlnit
IShellExtInit_Initialize
LoadBitmapA

LoadLibraryA

LoadResource
MSVBVM60.DLL
RegCloseKey
RegOpenKeyExA
RegQueryValueExA
ReleaseStgMedium
RtIMoveMemory

SelectObject
SetMenultemBitmaps
shell32.dll

Shell_Declares

ShellExt

Shell_Functions
stdole2.tibWWW

StretchBlt

StringFromGUID2
SystemParametersinfoA

Author retains full rights.

Figure 5

| searched for many of the strings using Google™ and found that many of
them were Microsoft® Windows system files and Microsoft® Visual Basic® files
or function calls. | noticed several lines that contained the word ‘Camouflage’
which | had seen reference too when searching the Internet for information on
this file.

Next | examined the six files on the floppy disk that had not been deleted.
Since they had not been deleted there was no need to extract them using The
Sleuth Kit tools. | simply navigated to the mounted read only floppy image at
/mnt/evidence_mount. From there | ran ‘file’ against each of them to see what
they reported to be. They all reported to be Microsoft Office Documents. This
being the case | decided to open them with a word processor on an isolated
machine. | used an isolated machine in case the documents happened to
contain a virus or other malware.

They all opened with Microsoft® Word and appeared normally in the word
processor. They all appeared to be policy files based on the example policies
and templates available from SANS8. The two files that | noted as being very
large earlier in the analysis were each only three pages long which led me to
suspect that there could be data hidden in them.

Chasing a Possible Lead

The next step was to see if | could tie the reference to Camouflage and the
large Word documents together. To do this | started by doing a Google™
search for “hiding data in word documents using camouflage”. This search
resulted in several interesting hits. The first page | looked at® was an article
discussing how the author found data hidden in a picture that was put there
using a program called Camouflage. While the article itself was very
interesting, what was more useful to this investigation were the links at the
bottom of the page which linked to tools to unprotect Camouflage files. | took
note of these links in case it turned out that Camouflage was indeed used and
the files were password protected. | went back to my search page and looked
for sites that contained copies of the Camouflage program for download. | was
fortunate to find and download a copy of version v1.2.1 of the file'® which |
installed on my sandbox machine.

Camouflage is a program that hides a file or file within another file. The
website from which | downloaded my copy used for testing described it this way:

8 http://www.sans.org/resources/policies/#template
% http://guillermito2.net/stegano/camouflage/
10 Camouflage v1.2.1 was downloaded from http://camouflage.unfiction.com/

© SANS Institute 2005 Author retains full rights.

“Camouflage allows you to hide files by scrambling them and then attaching them to the file of your
choice. This camouflaged file then looks and behaves like a normal file, and can be stored, used or
emailed without attracting attention.

For example, you could create a picture file that looks and behaves exactly like any other picture
file but contains hidden encrypted files, or you could hide a file inside a Word document that would
not attract attention if discovered. Such files can later be safely extracted.

For additional security you can password your camouflaged file. This password will be required
when extracting the files within.
You can even camouflage files within camouflaged files.

Camouflage was written for use with Windows 95, Windows 98, Windows ME, Windows NT and
Windows 2000, and is simple to install and use.”"!

Analyzing the Mystery Program

The next step was to verify that Camouflage v1.2.1 is the same program that
the deleted CamShell.dll file from the floppy is a part of. For comparison |
copied the CamShell.dll file from my sandbox machine to my forensics
workstation. If both CamShell.dll files were from the same version of the
Camouflage program, then the MD5 hashes should be the same as should a
MD5 hash of any part of the files. | knew from earlier examination that the first
part of the recovered CamShell.dll contained the HTML text from the recovered
file _ndex.htm. | knew that for this reason an MD5 hash of the CamShell.dll files
would not be the same since the recovered CamShell.dll had been altered. |
decided | would make a copy of the recovered CamShell.dll removing the first
part which had been overwritten by _ndex.htm. | also made a copy of the control
CamShell.dll from the Camouflage installation | downloaded from the Internet. |
removed from this copy the same number of bytes that had been changed from
the beginning of the recovered CamShell.dll.

To do this | loaded the _ndex.htm file and each CamShell.dll into a hex
editor. | found that _ndex.htm was 1024 bytes long, numbered as bytes 0-1023.
| switched to the CamShell.dll.recovered file and selected byte number 1024
through the end of the file, byte number 36863, and copied those bytes to a file
named CamShell.dll.recovered.partial. | did the same using the
CamsShell.dll.control file and saved those bytes to CamShell.dll.control.partial. |
then ran md5Sum against all the files and found that the hashes for
CamShell.dll.recovered.partial and CamShell.dll.control.partial were the same
indicating that the recovered CamShell.dll was originally part of a Camouflage
v1.2.1 installation. A screen shot of the dmSsum results is shown below:

1 http://camouflage.unfiction.com/

© SANS Institute 2005 Author retains full rights.

File Edit WView Terminal Tabs Help

temp]# md5sum CamShell.dll.control
2946bed86Bb5FB96906Ff CamShell.dll.control
temp]# mdSsum CamShell.dll.recovered

2fcd4ffadeabeff8 CamShell.dll.recovered
temp]# mdSsum CamShell.dll.control rtial
efdB02361£560£305a74 CamShell.dll.control.partial

3]# mdSsum CamShell.dll.recovered.partial
361£560f305a74 CamShell.dll.recovered.partial

y temp]#

Figure 6

Camouflage v1.2.1 was downloaded as a self extracting zip file. When

extracted the program installed four files into C:\Program Files\Camouflage.
Those files were:

Camouflage.exe
CamShell.dll
Readme.ixt
Uninst.isu

Executing the Camouflage.exe program brought up a settings dialog that allows
the user to configure the behaviors of Camouflage such as how menu options

are named and what file attributes are shown. Below is an example of the

settings dialog:

%2 Camouflage v1.2. 1 - Settings

Show File Details:

v Size
Created
tadified
Accezzed

[¢ Show Tool Tips

Click here to get the |atest version

v Show Camouflage menu optiohs when right-clicking an files in
Witidowes Ewplarer.

Camouflage’ Menu Test: |Camnuflage

Uncamouflage' Menu Teat: |Uncamouf|age

¥ Make camouflaged files Read-Only

Wiew Readme File Cloze

Figure 7

© SANS Institute 2005

Author retains full rights.

The CamShell.dll is the file which does the actual work. To use it simply right
click a file, or files, with your mouse. The user is then presented with the usual
menu options as well as two new ones, Camouflage and Uncamouflage (figure
8).

Open

Frint

Edit
B8 Camouflage
Uncamouflage

Scan for Viruses.

Open With »
= WinZip 4

Send To 4

Cut
Copy
Create Shortout

Delete
Fename

Froperties
Figure 8

When the Camouflage option is selected a dialog box pops up showing the file
or files that have been selected to be hidden:

EEX

Settings

“2 Camouflage

Thesze files will be hidden within your camouflaged file.

ame Size | Attributes
ret Document, kst
lﬂﬂ.nﬂlhel’ Secret jpg 1KB A
Click here to get the |atest version Newst > Cloze
Figure 9

© SANS Institute 2005 Author retains full rights.

Next the file that will be used to host the Camouflaged data is selected:

“2 Camouflage

our camouflaged files will be made to ook and act like the following file,

EEX

Camouflage Using C:%\Host File. doc

Click here to get the |atest version

=1

Close

Figure 10

Next the location and filename for the new Camouflage file is entered. The read
only option is given since altering a Camouflaged file will destroy the hidden

data. (This was verified experimentally):

“2 Camouflage

Chooge the location and filename for the camouflage file that iz about to be created.
Create This File |C:\Host File2. doc =1
[+ Read-only
Click here to qet the latest version < Back Mext » Close
Figure 11

Finally the option to provide a password is given:

© SANS Institute 2005

Author retains full rights.

“2 Camouflage

Enter a security pazsword for vour camouflaged file if you wizh,

xxxxxxxx

Pazsword |

Yerify Pazzword | xxxxxxx 1

Click here to get the |atest version < Back | Finish | Cloze |

Figure 12

The resulting file, in this case C:\Host File2.doc, opens normally using
Microsoft® Word. The only noticeable difference is that the new camouflage file
is larger then the original host document.

To Uncamouflage a file the procedure is basically the reverse of the
Camouflaging it. Simply right click the Camouflaged file and select
‘Uncamouflage’ from the menu (Figure 8). At that time the password dialog box
appears and prompts the user to enter the password:

&2 Camouflage X
Enter the pazsword (if any] to extract the files from the camouflaged file. Seftings
Pazzword | xxxxxxx 1
Click here to get the |atest version | Newst > | Cloze |

Figure 13

If the password is correct then a dialog box appears showing what files are
hidden and what the original host file was called. The hidden files are indicated
by the Camouflage icon:

“2 Camouflage

The camouflaged file [created with Camouflage «1.2.7] containg these filez. Select the files pou
wizh to extract or laave them unzelected to extract them all

Marne | Size | Aittributes
BT Host File.doc KR A
Secret Document. bt TEE A
Another Secretjpg 1KE A

Click here to get the |atest version < Back Newst > Cloze

© SANS Institute 2005 Author retains full rights.

Figure 14

After selecting which files to extract a dialog is presented for the user to select
where the files should be recovered to:

“2 Camouflage

Chooze the folder where the selected files are to be extracted.

Extract To Folder ﬁ j J

Click here to get the |atest version < Back | Finish | Cloze |
Figure 15

The Uncamouflaged files now appear the same as before they were hidden. A
quick ‘md5sum’ of the original files and the Uncamouflaged files show that
using Camouflage does not change the files at all since they return the same
MD5 hash value.

The Camouflage ‘Readme.txt’ files is, as the name suggests, a read me file
containing instructions on how to use Camouflage and the changes made in this
release (v1.2.1). Lastly the ‘Uninst.isu’ file is used when uninstalling the
program.

There were also several registry entries made during installation of
Camouflage v1.2.1. Some of the more interesting ones included:

© SANS Institute 2005 Author retains full rights.

HKEY_CLASSES_ROOT*\shellex\ContextMenuHandlers\Camouflage
HKEY_CLASSES_ROOT\CamouflageShell.ShellExt
HKEY_CLASSES_ROOT\CLSID\{29557489-990B-11D4-9413-004095490AD4}
HKEY_CURRENT_USER\Software\Camouflage
HKEY_CURRENT_USER\Software\Camouflage\CamouflageFile
HKEY_CURRENT_USER\Software\Camouflage\OutputFile
HKEY_CURRENT_USER\Software\Camouflage\OutputFolder
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\MenuOrder\Start
Menu2\Programs\Camouflage
HKEY_CURRENT_USER\Software\Microsoft\Windows\ShellNoRoam\MUICache
HKEY_LOCAL_MACHINE\SOFTWARE\Classes*\shellex\ContextMenuHandlers\Camouflage
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CamouflageShell.ShellExt
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\{29557489-990B-11D4-9413-
004095490AD4}
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App
Management\ARPCache\Camouflage
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\Camouflage.exe
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Camouflage
HKEY_LOCAL_MACHINE\SOFTWARE\Twisted Pear Productions\Camouflage\1.2.1
HKEY_USERS\S-1-5-21-1078081533-1614895754-1801674531-
1338\Software\Camouflage\CamouflageFile
HKEY_USERS\S-1-5-21-1078081533-1614895754-1801674531-
1338\Software\Camouflage\OutputFile
HKEY_USERS\S-1-5-21-1078081533-1614895754-1801674531-
1338\Software\Camouflage\OutputFolder
HKEY_USERS\S-1-5-21-1078081533-1614895754-1801674531-
1338\Software\Microsoft\Windows\CurrentVersion\Explorer\MenuOrder\Start
Menu2\Programs\Camouflage
Figure 16

Since general users don’t know about the registry or don’t know how to
modify it monitoring the registry for these entries could be very useful. A tool
that monitors the registry for changes such as Tripwire® could be used to watch
for the addition of one or more of these registry keys. There are several keys
that are especially interesting for investigative purposes. Specifically

HKEY_CURRENT_USER\Software\Camouflage\CamouflageFile
HKEY_CURRENT_USER\Software\Camouflage\OutputFile and
HKEY_CURRENT_USER\Software\Camouflage\OutputFolder

The values in the CamouflageFile key indicate what files have been used to
host Camouflaged data. The values in the OutputFile key list the resulting
Camouflage files and where they were saved. The OutputFolder lists the
directories where Camouflaged data has been uncamouflaged to. It would be
interested to view the registry of Mr. Leszczynski’'s machine to see if the file |
have recovered also appears in his Camouflage related registry entries. This
would help show that it was in fact Mr. Leszczynski that hid these files and
therefore help show that he was knowingly removing them from the company
grounds in violation of Ballard Industries policy.

© SANS Institute 2005 Author retains full rights.

| searched the registry on my sandbox machine to see if any entries existed
that listed what files were actually hidden using Camouflage. | was unable to
find any entries that listed this information.

Finding Hidden Files

| systematically attempted to open each of the six Word documents using
Camouflage. Camouflage prompted me for a password for each file. Not
having recovered any passwords yet | tried leaving it blank and was able to open
one file with Camouflage. The file ‘Internal_Lab_Security Policy.doc’ contained
a hidden text file named ‘Opportunity.txt’ which contained the following text:

I am willing to provide you with more information for a price. | have included a sample of our
Client Authorized Table database. | have also provided you with our latest schematics not yet
available. They are available as we discussed - "First Name".

My price is 5 million.

Robert J. Leszczynski
Figure 17

The remaining five files were either password protected or did not have data
hidden in them with this version of Camouflage. This being the case | decided
to look into finding a utility to help open password protected Camouflage files.

| returned to the web site | had found previously and looked again at the links
at the bottom of the page. The one that seemed most promising was a program
called CamoDetect written by Andrew Christensen'. CamoDetect is a Perl
script that claims to be able to detect if Camouflage has been used to hide data
in a particular file and if a password had been used it can retrieve it. |
downloaded this file and ran it against each of the six Word documents. | ran it
against the document we had already retrieved hidden data from to verify that
the program actually worked as described.

The CamoDetect script, called ‘SetecAstronomy.pl’ was able to determine
that three files were if fact hiding data using Camouflage. It was able to
determine the amount of hidden data in bytes, the number of hidden files in
each document, and that two of them were password protected. The script was
able to determine the password for the two protected files even made an
unprotected copy of each. The output from running the script is shown below:

12 http://packetstormsecurity.nl/crypt/stego/camouflage/Setec Astronomy.pl

© SANS Institute 2005 Author retains full rights.

= Command Prompt

C:w>perl SetecAstronomy.pl C:\TEMP~Acceptabhle_ Encryption_Policy.doc
CamoDetect — Written October 2084 by Andrew Christensen, anc at protego dot denmark
Camo Status: Ho hidden data found in G:\TEMP“Acceptabhle_Encryption_Policy.doc...

C:w>perl Seteclizstronomy_pl C:A\TEMP~Information_Sensitivity Policy.doc
CamoDetect — Written October 2084 by fAndrew Christenszen, anc at protego dot denmark
Camo Status: NHo hidden data found in C:A\TEMP~Information_Sensitivity Policy.doc...

C:x>perl Seteclistronomy.pl C:~\TEHMP~Internal_Lab_Security_Policyl.doc
CamoDetect — Written October 20884 by Andrew Christensen, anc at protego dot denmark
Camo Status: Mo hidden data found in C:~TEMP-~Internal_Labh_Security_Policyl.doc...

C:w>perl SetecAstronomy.pl C:»\TEMP:~Internal Lab_Security_Policy.doc

CamoDetect — Written October 2084 by Andrew Christensen, anc at protego dot denmark
Camo Status: G:NTEMPNInternal Lab_Security_Policy.doc contains 1 hidden file{s>.
Approx. 312 bytes of hidden data were found

Thiz archive requires no password to open

C:w>perl Seteclistronomy.pl C:S\TEMP~Password_Policy.doc
CamoDetect — Written October 2084 hy fAndrew Christenszen, anc at protego dot denmark
Camo Status: C:“\TEMP~Password Policy.doc contains 3 hidden file<ds>.
. 267144 bytes of hidden data were found
The 8-character password to open the original file is: Password
Saving an wunprotected version of the file, named *‘C:“\TEMP\Password Policy.doc.unprotected’

C:w>perl SetecAstronomy.pl C:\TEMP~Remote_Access_Policy.doc

CamoDetect — Written October 2084 by Andrew Christensen, anc at protego dot denmark

Camo Status: CG:N\TEMP“Remote_Access_Policy.doc contains 1 hidden filed{s).

Approx. 184328 hytez of hidden data were found

The 6—character password to open the original file is: Remote

Saving an wunprotected version of the file, named *C:“\TEMP“Remote_fccess_Policy.doc.unprotected’

CznD

Figure 18

As the output in Figure 6 shows the file named ‘Password_Policy.doc’ contained
three hidden documents and the password to retrieve them was ‘Password’.

We can also see from the output that the file named
‘Remote_Access_Policy.doc’ contains one hidden file, which can be retrieved
using the password ‘Remote’.

With this new information | successfully opened the two password protected
Camouflaged documents. Hidden within ‘Password_Policy.doc’ were three files
named ‘PEM-fuel-cell-large.jpg’, ‘Hydrocarbon%20fuel%20cell%20page2.jpg’,
and ‘pem_fuelcell.gif’. Hidden within the ‘Remote_Access_Policy.doc’ was a
file titted ‘CAT.mdb’. | extracted these files and immediately ran the tool
‘mac_daddy.pl'* to try and determine when the files were created, modified, and
accessed. The tool ‘mac_daddy.pl’ was used to gather MAC times (modified,
accessed, changed times) much like | did on the original images using fls’. |
used ‘mac_daddy.pl’ to gether these times because the files are visible to the
operating system through normal means. ‘mac_daddy.pl’ pulls the times from
the files in a directory whereas ‘fls’ was used to extract the times from a raw
image file.

Some of the times were changed to reflect the time that | extracted the files
from their host documents. Notice that the MAC times shown for document files
are different then the times listed for them earlier, this has to do with the fact
that ‘fls’ has a parameter for adjusting the time based on the time zone the
evidence originated from where ‘mac_daddy.pl’ does not. For this reason | used
these times only to get an idea of how the files were used and related to each

3 mac_daddy.pl is a perl script authored by Rob Lee

© SANS Institute 2005 Author retains full rights.

other time wise. A fully adjusted time line was created and is discussed later in
this paper. The relevant results are shown below, with the times related to my
extraction process omitted:

Apr 22 2004 18:31:06 33423 m.. -r-------- root root /mnt/winxp/TEMP/Internal_Lab_Security_Policy.doc
32256 m.. -r-------- root root /mnt/winxp/TEMP/Internal_Lab_Security Policy1.doc
Apr 23 2004 09:15:16 30264 m.. -r-------- root root /mnt/winxp/TEMP/pem_fuelcell.gif
Apr 23 2004 09:21:02 208127 m.. -r-------- root root /mnt/winxp/TEMP/Hydrocarbon%20fuel%20cell%20page2.jpg
Apr 23 2004 09:23:23 28167 m.. -r-------- root root /mnt/winxp/TEMP/PEM-fuel-cell-large.jpg
Apr 23 2004 10:21:06 184320 m.. -r-------- root root /mnt/winxp/TEMP/CAT.mdb
Apr 23 2004 13:03:53 312 m.. -r---—----- root root /mnt/winxp/TEMP/Opportunity.txt
Apr 23 2004 13:54:32 215895 m.. -r-------- root root /mnt/winxp/TEMP/Remote_Access_Policy.doc
Apr 23 2004 13:55:26 307935 m.. -r-------- root root /mnt/winxp/TEMP/Password_Policy.doc
Apr 23 2004 13:59:09 312 .a. -r-----—--- root root /mnt/winxp/TEMP/Opportunity.txt
Apr 23 2004 13:59:36 208127 .a. -r-------- root root /mnt/winxp/TEMP/Hydrocarbon%20fuel%20cell%20page2.jpg
28167 .a. -r-------- root root /mnt/winxp/TEMP/PEM-fuel-cell-large.jpg
30264 .a. -r---—----- root root /mnt/winxp/TEMP/pem_fuelcell.qgif
Apr 23 2004 14:00:14 184320 .a. -r-------- root root /mnt/winxp/TEMP/CAT.mdb
Apr 23 2004 16:10:50 22528 m.. -r-------- root root /mnt/winxp/TEMP/Acceptable_Encryption_Policy.doc
Apr 23 2004 16:11:10 42496 m.. -r-------- root root /mnt/winxp/TEMP/Information_Sensitivity Policy.doc

Figure 19

As a test to better understand how MAC times related to the use of
Camouflage | hide a test file in a test document. | then extracted it to a new file
and used ‘mac_daddy.pl’ again to gather a timeline of the test files used. The
test showed that the Modified time of the recovered/hidden file was unaffected
by the camouflaging and un-camouflaging processes. The test also seemed to
indicate that the Accessed time of the recovered file is the time that the file was
accessed by Camouflage in order to hide it and is very close to the Modified
time of the host document used. The test also showed that the Accessed times
of the host document and the Created/Changed time for all documents is the
time which the hidden files were recovered using Camouflage. With this test
information it is safe to assume that the Modified and Accessed times for
recovered files and the Modified times for host documents are relevant in
timeline analysis. The remaining times are affected by the investigative process
and should not be used for timeline construction.

Generating a Timeline

With this new information about the MAC times of the hidden files | decided
to create a compete timeline incorporating the information on the files from the
original floppy disk image as well as the related information from the
camouflaged files. Since mac_daddy doesn’t have a way to adjust the times
based on time zone | decided to gather all the MAC times without this sort of
adjustment so that all the times would be accurate relative to each other. | ran
the command ‘fls’ again against the floppy disk image, this time telling it to
output the data in the ‘mactime’ format. | then ran the command ‘mac-robber’

© SANS Institute 2005 Author retains full rights.

against the directory that contained the recovered camouflaged files. ‘mac-
robber’ is a tool from The Sleuth Kit that gather MAC information on the files in a
directory and outputs that information in ‘mactime’ format. | then used the Linux
tool ‘cat’ to merge the two sets of MAC time information into one file. This file
was then sorted and formatted into a timeline using the ‘mactime’ from The
Sleuth Kit. This output is formatted the same as the ‘mac_daddy.pl’ output we
saw earlier.

The timeline seemed to indicate that the hidden files were all hidden the
morning of Friday April 23, 2004. It appears that the Camouflage file,
CamShell.dll was deleted on Monday April 26, 2004 the morning of the day that
the floppy disk was seized from Mr. Leszczynski. The resulting expanded
timeline is shown below:

Sat Feb 03 2001 19:44:16 36864 m.. -/-rwxrwxrwx 0 0 5 /CamShell.dll (AMSHELL.DLL) (deleted)
Thu Apr 22 2004 16:31:06 33423 m.. -/-rwxrwxrwx 0 0 17 /Internal Lab Security Policy.doc
(INTERN~2.DOC)

32256 m.. -/-rwxrwxrwx O 0 13 /Internal Lab Security Policyl.doc
(INTERN~1.DOC)
Fri Apr 23 2004 08:15:17 30264 ma. -rwxr--r—-- 99 99 2431695 /images/pem fuelcell.gif
Fri Apr 23 2004 08:21:02 208127 ma. -rwxr--r—-- 99 99 2431694 /images/Hydrocarbon fuel cell page2.jpg
Fri Apr 23 2004 08:23:24 28167 ma. -rwxr--r-- 99 99 2431693 /images/PEM-fuel-cell-large.jpg
Fri Apr 23 2004 09:21:06 184320 ma. -rwxr--r-- 99 99 2431696 /images/CAT.mdb
Fri Apr 23 2004 10:53:56 727 m.. -/-rwxrwxrwx O 0 28 /_ndex.htm (deleted)
Fri Apr 23 2004 11:54:32 215895 m.. -/-rwxrwxrwx 0 0 23 /Remote Access Policy.doc (REMOTE~1.DOC)
Fri Apr 23 2004 11:55:26 307935 m.. -/-rwxrwxrwx 0 0 20 /Password Policy.doc (PASSWO~1.DOC)
Fri Apr 23 2004 12:03:53 312 ma. -rwxr--r-- 99 99 2431692 /images/Opportunity.txt
Fri Apr 23 2004 14:10:50 22528 m.. -/-rwxrwxrwx O 0 27 /Acceptable Encryption Policy.doc
(ACCEPT~1.DOC)
Fri Apr 23 2004 14:11:10 42496 m.. -/-rwxrwxrwx 0 0 9 /Information Sensitivity Policy.doc
(INFORM~1.DOC)
Sun Apr 25 2004 00:00:00 0 .a. -/-rwxrwxrwx 0 0 3 /RJL (Volume Label Entry)
Sun Apr 25 2004 10:53:40 0 m.c -/-rwxrwxrwx 0 0 3 /RJL (Volume Label Entry)
Mon Apr 26 2004 00:00:00 42496 .a. -/-rwxrwxrwx 0 0 9 /Information Sensitivity Policy.doc
(INFORM~1.DOC)

36864 .a. -/-rwxrwxrwx 0 0 5 /CamShell.dll (AMSHELL.DLL) (deleted)

22528 .a. -/-rwxrwxrwx 0 0 27 /Acceptable Encryption Policy.doc
(ACCEPT~1.DOC)

32256 .a. -/-rwxrwxrwx 0 0 13 /Internal Lab Security Policyl.doc
(INTERN~1.DOC)

33423 .a. -/-rwxrwxrwx 0 0 17 /Internal Lab Security Policy.doc
(INTERN~2.DOC)

215895 .a. -/-rwxrwxrwx 0 0 23 /Remote Access Policy.doc (REMOTE~1.DOC)

727 .a. -/-rwxrwxrwx 0 0 28 / _ndex.htm (deleted)

307935 .a. -/-rwxrwxrwx 0 0 20 /Password Policy.doc (PASSWO~1.DOC)
Mon Apr 26 2004 09:46:18 36864 ..c -/-rwxrwxrwx 0 0 5 /CamShell.dll (AMSHELL.DLL) (deleted)
Mon Apr 26 2004 09:46:20 42496 ..c -/-rwxrwxrwx 0 0 9 /Information Sensitivity Policy.doc
(INFORM~1.DOC)
Mon Apr 26 2004 09:46:22 32256 ..c -/-rwxrwxrwx 0 0 13 /Internal Lab Security Policyl.doc
(INTERN~1.DOC)
Mon Apr 26 2004 09:46:24 33423 ..c -/-rwxrwxrwx 0 0 17 /Internal Lab Security Policy.doc
(INTERN~2.DOC)
Mon Apr 26 2004 09:46:26 307935 ..c -/-rwxrwxrwx 0 0 20 /Password Policy.doc (PASSWO~1.DOC)
Mon Apr 26 2004 09:46:36 215895 ..c -/-rwxrwxrwx 0 0 23 /Remote Access Policy.doc (REMOTE~1.DOC)
Mon Apr 26 2004 09:46:44 22528 ..c -/-rwxrwxrwx 0 0 27 /Acceptable Encryption Policy.doc
(ACCEPT~1.DOC)
Mon Apr 26 2004 09:47:36 727 ..c —/-rwxrwxrwx 0 0 28 / ndex.htm (deleted)

Figure 20

© SANS Institute 2005 Author retains full rights.

Analyzing the Hidden Files

After having gather the MAC time information from the recovered file | ran the
Linux command file’ against them to see if it reported them to be the same as
their file extensions suggested they were. The results from the ‘file’ command
are below:

[root@Daisy recovered_files]# file PEM-fuel-cell-large.jpg
PEM-fuel-cell-large.jpg: JPEG image data, JFIF standard 1.02

[root@Daisy recovered_files]# file Hydrocarbon%20fuel%20cell%20page?2.jpg
Hydrocarbon%20fuel%20cell%20page2.jpg: JPEG image data, JFIF standard 1.02

[root@Daisy recovered_files}# file pem_fuelcell.gif
pem_fuelcell.gif: GIF image data, version 89a, 550 x 373

[root@Daisy recovered_files]# file CAT.mdb
CAT.mdb: Microsoft Access Database
Figure 21

| then opened each of the image files with Microsoft® Windows Picture and
Fax Viewer which came installed with my default installation of Windows XP
and the database file was opened with Microsoft® Access. What was
contained in those files is shown below and much of it appeared to be
confidential and proprietary information belonging to Ballard Industries. At this
point it appeared that | may have found the proverbial “Smoking Gun”. The
contents of these files are shown below:

© SANS Institute 2005 Author retains full rights.

Fuel Cell Stack

Design of a PEM Fuel Cell

Expanded
Single Fuel Cell

ngs

" ~— Hydrogen
' -— Membrane

[
f Flowfield Plate

Figure 22 - PEM-fuel-cell-large.jpg

Flow Field Plaie
Gas Diffusion Electrode (Anode)
Catalyst

Figure 23 - pem_fuelcell.gif

© SANS Institute 2005

ELECTRIC CIRCUIT
(40% — 60% Efficiency)

B8 g O (Oxygen) from Air

Heat (857C)
Water or Air Cooled

Flowr Field Plate
Gas Diffusion Electrede (Cathede)
Catalyst

Proton Exchange Membrane

Author retains full rights.

020
P i CrHg Cakig
| E 0126 o 0 omos , g o0n® 00
fo e
; il %ﬁ 4> Voltage = 0.4V
H 4 [[] 10 12
Timee {x10% 53

[Figuire 3 Eflect of swilcheng fuel fype on e cell wath the Cu-ceria compste anode at
973K The power gensity of he callis shown as a hunction of teme. The fue was switched
ti0m -butane (Lo 10 toluens (C-Hyl 370 back to n-butans.

higher temperature. Visual inspection of a cell after two davs
in m-butane at 1,073 K showed that the anode itself remained free of
the tar deposits that covered the alumina walls.

Alhough it is possible that the power generated from n-butane
fuels resulted from oxidation of Hy—formed by gas-phase reactions
of n-butane that produce hydrocarbons with a lower CGH ratio—
other evidence shows that this is not the case, First, experiments
were conducted in which the cell was charged with n-butane and
then operated in a batch mode without flow. After 30 minutes of
batch aperation with the cell short-circuited, GC analysis showed
that all of the n-butane in the cell had been converted completely to
€O, and water. (Negligible amounts of CO, were formed in a
similar experiment with an open circuit.) Second, analysis of the
€O, formed under steady-state flow conditions, shown in Fig. 2,
demonstrates that the rate of CO, formation increased linearly with
the current density. (It was not possible for us to quantify the
amount of water formed in our system.) Figure 2 includes data for
both n-butane at 973 K, and methane a1 973 Kand 1,073 K. Thelines
in the figure were calculated assuming complete oxidation of
methane (the dashed line) and n-butane (the solid line) to CO,
and water according to reactions (1) and (2):

CH, +40°" = CO, + 2H,0 + 8¢~ (4]

CHyp + 1307 — 4CO, + 5H,0 + 26¢” 43}

‘With methane, only trace levels of CO were observed along with
C0y, so that the agreement between the data points and the
calculation d o in the and no
leaks in the cell. With n-butane, simultaneous, gas-phase, free-
radical reactions to give hydrocarbons with various C:H ratios make
quantification more difficult; however, the data still suggest that
complete oxidation is the primary reaction. Furthermore, the batch

| experiments show that the secondary products formed by gas-phase
| reactions are ultimately oxidized as well. Taken together, these
| results demonstrate the direct, electrocatalytic oxidation of a
higher hydrocarbon in a SOFC.

Along with our observation of stable power generation with n-
butane for 48 hours, Fig. 3 further demonstrates the stability of the
composite anodes against coke formation. Aromatic molecules,
such as toluene, are expected to be precursors to the formation of
graphitic coke deposits. In Fig. 3, the power density was measured at
973 K and 0.4 V while the fuel was switched from dry n-butane, 1o
0.033 bar of toluene in He for 30 minutes, and back to dry n-butane.
The data show that the performance decreased rapidly in the
| presence of toluene. Upon switching back to dry n-butane, however,

Citha C7Hy CHyp CH,
— e} @
012 | & Wo‘gﬁ

% 0.08 P oﬂmmﬁ P
§
g 004 L -
Voltage = 0.4V

5 0 [0 20
Time (<10 &

CiHg CiHg

Figure 4 Effect of switching fuel type on e coll with the Cu-jdoped cenia) compoute
@node at 973 K. The power density i shown as a function o time. The fuels vace: o
Butane (CoH.. iuen (CoHyl, -butane. methan ICHy), ethane (C;Hgl and 1-butene
[N

the current density returned to 0.12 W cm ™ after one hour, Becavse
the return was not instantancous, it appears that carbon formation
occurred during exposure 10 toluene, but that the anode is self-
cleaning. We note that the electrochemical oxidation of soot has
bbeen reported by others™.

The data in Fig. 4 show that further improvements in cell
performance can be achieved. For these experiments, samaria-
doped ceria was substituted for ceria in the anode, and the current
densities were measured at a potential of 0.4 Vat 973 K. The power
densities for H; and n-butane in this particular cell were approxi-
mately 20% lower than for the first cell, which is within the range of
our ability to reproduce cells. However, the power densities
achieved for some other fuels were significantly higher. In particu-
lar, s1zble power generation was now observed for toluene. Simi-
larly, Fig. 4 shows that methane, ethane and 1-butene could be used
as fuels to produce electrical energy. The data show transients for
some of the fuels, which are at least partially due to switching.

The role of samaria in enhancing the results for toluene and some
of the other hydrocarbons is uncertain, While samaria is used to
enhance mived (ionic and electronic) conductivity in ceria and
could increase the active, three-phase boundary in the anode,
samaria is also an active catalyst”, Other improvements in the
performance of SOFCs are possible. For example, the composite
anodes could be easily attached to the cathode-supported, thin-film
electrolytes that have been used by others 1o achieve very high power
densities’. In addition to raising the power density, thinner electro-
Iytes may also allow lower operating temperatures.

Additional research is clearly necessary for commercial develop-
ment of fuel cells which generate electrical power directly from
hydrocarbons; however, the work described here suggests that
SOFCs have an intriguing future as portable, electric generators
and possibly even as energy sources for transportation. The sim-
plicity afforded by not having to reform the hydrocarbon fuels is a
significant advantage of these cells. m]

Recetved 13 Septersber 1999, sccepond 26 Jusssary 3000,

1. Srele, B C. K. Rusning o asaral gas. Nature 430, £20-821 (19991,

2 Service, K F. Bringing foel celh down 1o earih. Sriemee 285, 042-843 (1999

3 Pery My, £ Tl T Barnest, §. & & dioect-mathane furl call with 8 coria-baved anods, Narurs.
40, 13431 (1999].

4. Potna, 5. Saabemrauch, 1. Vi, | M. B Geeve, B | Ceria-based noasbes o the die enidnion of
ethuse i ol cnide foel cela. Langmss 11, $401-4107 (1998].

S, Park, &, Cracive, K. Vohe, | M. & Gorte, . | fetl

alk 1 ' Soc 148,

& Saeee, B C M. Ky, L Middison, P M. & R, 2. Crdation of marthans in soled -seasr
lecesochemical eacnon. 5ol Seane e, I8, 1347-1553 (1988).

7. Loyl A € The pwer plant n yous baiersern 5ol Am. U1, 80-4 (1955

200 anat
Figure 24 - Hydrocarbon%20fuel%20cell%20page2.jpg

First Last Phone Company Address Address1 City State Zipcode Account Passward
| |Bob Esposito 703-233-2048 Cook Labs 245 Main 5t Alexandria WA 2023 espomain yAMSHMNE
| |derry Jackson 10-677-7223 Double J's 11561 W, 27 5t Baltimore MD 20278 jackZ7st JLbW3Pg5
|| Dawid Lee B66-654-0922 Tech Vision 300 Lane Grove Lane Wichita K3 3mas legtechy 0142623k
| |Marie Horton 800-234-king | King Labs, Inc. | 700 King Labs Ave Suite 500 Biloxi WS 39533 hortking Sl pA
| |Lenny Jones 877-Get-done | Quick Printing |99 E. Grand iew Dr Omaha NE 56095 joneeast 868y48RH
|| Jeff Hayes 404-593-5521 Big Sky First 90 Old Saw Mill Rd Eillings MT 59332 hayealds SRE0bL7I
| |Roger Forrester 210-586-2312 | TCFL 185 Greerville Rd Awustin IS 77238 forrgree sid OWBLY
| ¥ | Edward Cash 212-562-0997 E & CInc. 76 5. King St Suite 300 Santa Barbara | CA 80124 cashking OfgucfC
| |Steve Bei 616-833-0129 | Island Labs B5 Kiwi WWay Honalulu HA 93991 heikiwiw JOHZ20u26
| |Jodie Kelly Data Maovers 7266 Bearwah Ave Suite 110 Watherby UK LS22 BRG kellheer trau0ENOk
| |Patrick Roy The Magic Lam| 4150 Regents Park Row #170 Calgary CAN RAZ1EDF roythema rlagBa00

*
record: (I 4][s)] of 11

Figure 25 - CAT.mdb

| took all of the results and reported them to David Keen of Ballard Industries.
| also recommended a meeting with Ballard Industries legal council to discuss
the legal implications of my findings.

© SANS Institute 2005

Author retains full rights.

What Does the Evidence Show?

With only the floppy disk image to examine it would be difficult to prove that
Mr. Leszczynski was the one the Camouflaged the proprietary information found
on the floppy. Itis, however, very likely that he knew the information was hidden
since his name appears in one of the recovered files along with text indicating
his intent to sell Ballard Industries trade secrets. The evidence from the floppy
disk could be combined with other evidence to make a strong case against Mr.
Leszczynski.

Determining whether or not Mr. Leszczynski is guilty of breaking any laws is
up to the courts and it is up to Ballard Industries legal council if they wish to
press charges. lItis likely that Mr. Leszczynski and those who received
information from him are guilty of violating the Uniform Trade Secrets Act.
According to IPWatchdog.com:

“Virtually all states have adopted a portion of or modified version of the Uniform Trade
Secrets Act, which was drafted by the National Conference of Commissioners on
Uniform State Laws in 1970 and amended in 1985."1

One thing that they will need to take into consideration is whether or not Ballard
Industries has taken the necessary steps to protect their proprietary information.
One source says:

“Information that qualifies as a trade secret is subject to legal protection (against theft
and misappropriation) as a form of valuable property--but only if the owner has taken the
necessary steps to preserve its secrecy. If the owner has not diligently tried to keep the
information secret, courts will usually refuse to extend any help to the trade secret owner
if others learn of the information.”'®

The only information | have regarding Ballard Industries related to this is that
they have a policy against removing floppy disks from the R&D lab. If this policy
and other safeguards they have in place are enough to qualify the recovered
data as trade secrets they may have a case against Mr. Leszczynski. If found
guilty under the Economic Espionage Act of 1996 Mr. Leszczynski could be
fined up to $500,000.00 and Rift, Inc. could be fined up to $5,000,000.00.® This
information was included in my report and given to Mr. Keen along with a print
out of the recovered files and a CD-ROM of the recovered files.

14 http://www.ipwatchdog.com/tradesecret.html

15 http.//www.marketingtoday.com/legal/tradesec.htm

16 http://cobrands.business.findlaw.com/intellectual property/nolo/fag/9078 1 CA8-0ECE-4E38-
BF9E29F7A6DAS5830.html

© SANS Institute 2005 Author retains full rights.

References for Part 1

Carrier, Brian. “Overview.” The Sleuth Kit. 2 Nov. 2004. URL:
http://www.sleuthkit.org/sleuthkit/index.php (4 Dec. 2004).

Christensen, Andrew. “CamoDetect” 23 Oct. 2004. URL:
http://packetstormsecurity.nl/crypt/stego/camouflage/SetecAstronomy.pl (5 Dec. 2004).

Elias, Stepher. “Trade Secret Law: Overview.” 1998. URL.:
http://www.marketingtoday.com/legal/tradesec.htm (11 Dec. 2004).

FindLaw. “Trade Secret Basics FAQ” 2002. URL:
http://cobrands.business.findlaw.com/intellectual property/nolo/faq/90781CA8-0ECE-
4E38-BF9E29F7A6DAS5830.html (11 Dec. 2004).

Google. “Google Search.” URL: http://www.google.com (4 Dec. 2004).

Guillermito, “(easily) Breaking a (very weak) steganography software.” 6 May 2003. URL.:
http://quillermito2.net/stegano/camouflage/ (5 Dec. 2004).

IPWatchdog. “Trade Secret Law.” 24 Nov. 2004. URL:
http://mww.ipwatchdog.com/tradesecret.html (11 Dec. 2004).

Payne, Steve. “DataLifter Forensicware Tools.” 14 Nov. 2004. URL:
http://www.datalifter.com (4 Dec. 2004).

Perkel, Marc. “Linux MAN Pages.” 9 Feb. 2004. URL: http:/linux.ctyme.com/ (4 Dec.
2004).

Rivest, Ronald R. “RFC 1321 - The MD5 Message-Digest Algorithm.” Apr. 1992. URL:
http://www.fags.org/rfcs/rfc1321.html (4 Dec. 2004).

SANS Institute. “GIAC: Global Information Assurance Certification - GIAC Certified
Forensic Analyst (GCFA) Practical Assignment.” 30 Apr. 2004. URL.:
http:/Amww.giac.org/GCFA assign 15.php (4 Dec. 2004).

SANS Institute. “The SANS Security Policy Project.” URL:
http://www.sans.org/resources/policies/#template (4 Dec. 2004).

Sourceforge. “Foremost - Latest version 0.69.” 19 Nov. 2004. URL:
http://foremost.sourceforge.net/ (4 Dec. 2004).

TranceAddict Forums. ” Camoflagued Mp3s Contain A Backdoor Beware.” 12 Dec. 2002.
URL: hitp://www.tranceaddict.com/forums/archive/topic/79627-1.html (4 Dec. 2004).

Unfiction. “Download Camouflage” 26 Mar. 2003. URL: http://camouflage.unfiction.com/ (5
Dec. 2004).

© SANS Institute 2005 Author retains full rights.

Part 2 — Perform Forensic Tool Validation
Scope

When making an image of a disk or other electronic evidence, it is
recommended by many sources'’'® that the examination or working copy be
saved to media that has been made forensically sterile.

Forensically sterile media is free from any residual data left over from
previous uses of the media or the manufacturing process. Typically a series of
‘null’ values are written on every sector of the disk to eliminate any previous
data.

In this test we will take a hard drive that contains data and make it
forensically sterile. We will then do a series of test to verify that it has been
properly prepared.

Tool Description

The tool that will be used to make the hard drive forensically sterile is called
Sterilize and it available free of charge from the CyberSecurity® Institute.

The read me file that was downloaded with the Sterilize tool has a very good
explanation as to why using sterile media is a good practice when doing
computer forensics. From the Readme.ixt file:

“Why use Sterilize?

It is extremely important to remove any residual data (or the possibility
that data exists in some form) from the media to be used as working
copies for a forensic examination. This sterilization process should be
documented and visually verified by the forensic examiner, leaving no
doubt that whatever is found on the working copy during a forensic
examination is/was also present on the original media.

A true bit stream or forensic imaging process by itself should overwrite
any existing data on the working copy media. When the original media and
working media hash the same, the examiner can say that a forensically
sound image has been created. The extra step of sanitizing media prior
to creating forensic working copies however will help the forensic
examiner in dealing with possible "junk science" attacks, and will
result in one less aspect of the overall procedures and methodology used

17 http://www.itsecurity.com/papers/halcrow1.htm

18 http://www.pimall.com/nais/nl/ecomputerf. html
19 http://www.cybersecurityinstitute.biz/software/

© SANS Institute 2005 Author retains full rights.

being brought under scrutiny.”?°

The version used in this test is 1.02.7 by Robert Orr. This version will wipe
the media so that it is forensically sterile. It will also wipe the data in such a
way as to be compliant with several standards for sanitizing media including the
Department of Defense standards found in DOD 5220.22-M?' Chapter 8.
According to the Readme file, Sterilize will write the hexadecimal value ‘0x00’ to
every sector on the disk. It will then check random sectors on the drive to verify
that they do in fact contain ‘Ox00’. The Sterilize program also provide the
capability to do a 128-bit checksum on the disk as well as manually checking
sectors on the disk to verify that the value ‘0x00’ has been written to them.
Sterilize also has a very nice feature in that all the results of these actions can
be written to a report file.

In order to use Sterilize | first created a Windows boot floppy. Itis
recommended that this boot floppy be made into a forensic boot floppy using the
program ‘mod_com.exe’ by Dan Mares??. This tool prepares the floppy disk in
such a way as too prevent it from accessing the system hard drive when booting
the system. Once a bootable floppy is created the only other file needed is the
Sterilize executable itself, ‘sterliz.exe’.

Test Apparatus and Environmental Conditions

The test machine used was an old Pll 333MHZ with 128MB RAM and with a
Western Digital Caviar 2850 853.6 MB hard drive. The machine was not
connected to a network and no operating system was loaded on the hard drive.
The hard drive was formerly a data drive from another system. The hard drive
contained some data files that were no longer needed but were still on the hard
drive and could therefore be used to verify that the sterilization processed
worked. The lab was in a locked room and all systems, media, and results were
in my control or locked up until the testing was completed to ensure that no
outside forces could alter the results.

Description of the Procedures

Preparation of the test system was comprised of verifying that the device
boot order was floppy disk and CD-ROM before hard drive. | also verified that all
the programs being used for the test ran properly.

Test results generated by Sterilize will be saved to the Sterilize boot floppy as
text files following the default naming convention defined by the program.

2 Readme.txt from the ‘sterliz.zip’ file downloaded from the CyberSecurity® Institute.

2! http://www.dtic.mil/whs/directives/corres/html/522022m.htm
2 http://www.maresware.com/maresware/freesoftware.htm

© SANS Institute 2005 Author retains full rights.

Results from verification programs will be saved as a text file with the name of
the command being run followed by the number of the run in the series (i.e.
command1.txt). All results will then be compiled into this document.

The test results will be verified using two basic tools. Norton DiskEdit from
Symantec? will be used to examine the raw sector data and verify that what
Sterilize shows is the same as what DiskEdit shows. The live bootable Linux
CD distribution called Helix?* will be used to verify checksum values as reported
by Sterilize. Both of these tools are used from bootable media and mount the
hard drive in read only mode by default. This will ensure that these verification
tools will not inadvertently alter the data on the hard drive there by protecting the
results of the actions taken by Sterilize.

The first series of tests will be run on the hard drive with the old data still
intact. These tests will be comprised of using Sterilize to do a checksum on the
data and view the data to verify that something still exists on the disk. The
results will then be verified using DiskEdit and Helix. It is expected that the
initial checksum created by Sterilize will not match that of the ‘sum’ command
used in Helix. This is because the Sterilize checksum is a 128-bit checksum
while the ‘sum’ command returns a 16-bit checksum.

The next set of tests will start with using Sterilize to wipe all the data from the
hard drive. Next the same tests and verifications ran is the first set of tests will
be run again. This time the tests will verify whether or not Sterilize has in fact
wiped the hard drive clean and is reporting correctly that the drive has been
wiped. The checksum validation using ‘sum’ will verify that the Sterilize
checksum is valid for this set of testing. This is because the 16-bit checksum
provided by ‘sum’ and the 128-bit checksum provided by Sterilize will both be all
zero’s if they are computing the checksums correctly.

Finally, if the disk has been properly cleaned, data will be placed on the disk
and the two sets of testing will be repeated to verify the results from the first
round of tests.

Criteria for Approval

There are three criteria for approval in this set of tests. The first is that
Sterilize will accurately display the physical sectors of a hard drive. ltis
expected that whatever values displayed by Sterilize will be the same as the
values at the same physical sectors when displayed by DiskEdit. The second
criteria is that the checksum value of the hard drive as calculated by Sterilize will
be the same value as calculated by the Linux command ‘sum’ run under Helix.
The third and final criteria for approval is the visual inspection of physical sectors

2 http://www.symantec.com/sabu/sysworks/pro/
2 http://www.e-fense.com/helix/

© SANS Institute 2005 Author retains full rights.

on the disk using the Sterilize viewing option and the tool DiskEdit.

To gather the initial set of test data the system is booted with the Sterilize
floppy. Sterilize can be run with a Graphical User Interface menu or with
command line options. For these tests | used the menu system since this
allowed me to easily save multiple test results to the same report file. From the
Sterilize menu | first ran the checksum option. These results were saved in the
Sterilize report file named ‘“12190400.RPT'. When this had completed | ran the
option to physically view the disk sectors. Since Sterilize doesn’t have the ability
(at least not that | could find) to print any of the viewed sectors | wrote some
notes on paper indicating what was displayed. With these results in hand |
booted the machine to the DiskEdit floppy. Using DiskEdit | viewed the same
sectors as viewed with Sterilize. | was unable to find a way to copy the view of
the data on the physical disk sectors with DiskEdit either so | again took notes
on paper to compare what Sterilize showed with what DiskEdit showed. Next |
booted the system to the Helix CD and ran the tool ‘sum’ against the hard drive.
These results were saved as ‘sum1.ixt’.

The next set of test started by booting to the Sterilize floppy and launching
the menu. From the menu | selected the ‘Sterilize’ option. This option warns
the user that this will destroy all data on the disk and asks for conformation
before continuing. | confirmed to continue and Sterilize proceeded to begin
writing the hex value ‘Ox00’ to every sector of the disk. When the sterilization
process had completed | ran the checksum option from the menu. These
results were saved in the report file named ‘12190401.RPT'. | then selected the
view sectors option from the Sterilize menu and viewed several disk sectors,
noting on my note paper which sector were examined. Next | booted to the
DiskEdit floppy and viewed the same sectors as viewed with Sterilize. After
viewing the sectors | booted to the Helix CD and ran the ‘sum’ command again
against the hard drive saving the results in the file ‘'sum2.txt’.

After the first two sets of tests were run data was copied to the hard disk and
the tests were all run again. This time the Sterilize reports were saved as

‘“12200400.RPT and ‘“12200401.RPT and the ‘sum’ results were saved as
‘sum3.txt’ and ‘sum4.txt’.

Data and Results

© SANS Institute 2005 Author retains full rights.

12-19-2004 02:18 : CSlI Sterliz.exe report file
12-19-2004 02:18 : Report user name: Steve

12_1 9_2004 02.18 . dkkkkkhkkhkhhkhkhkhhkhhkhhkx
12-19-2004 02:18 : Start of report segment
12-19-2004 02:18 : Checksum of HDO
12-19-2004 02:18 :
12-19-2004 02:18 : Drive information for HDO (Physical Drive 80)
12-19-2004 02:18 : Physical Cylinders : 827

12-19-2004 02:18 : Physical Heads 132

12-19-2004 02:18 : Physical Sectors/Track: 63

12-19-2004 02:18 : Bytes per Sector : 512

12-19-2004 02:18 : Total Sectors 1 1667232

12-19-2004 02:18 : Total MBytes : 814Mb

12-19-2004 02:18 :
12-19-2004 02:32 : Media is NOT sterile!

12-19-2004 02:32 : Checksum of HDO completed

12-19-2004 02:32 : -------- Segment Summary--------

12-19-2004 02:32 : 128 bit checksum : 159226a4fc74cabaacc6a830cfb78484
12-19-2004 02:32 : Total Read Errors : 0

12-19-2004 02:32 : Total Write Errors: 0

12-19-2004 02:32 : End of report segment

12_19_2004 02.32 . dkkkkkhkkkhhkhkkhhkkhhhx

12-19-2004 02:32 : Start of report segment

12-19-2004 02:32 : Sectors on HDO

12-19-2004 02:32 :
12-19-2004 02:32 : Drive information for HDO (Physical Drive 80)
12-19-2004 02:32 : Physical Cylinders : 827

12-19-2004 02:32 : Physical Heads 132

12-19-2004 02:32 : Physical Sectors/Track: 63

12-19-2004 02:32 : Bytes per Sector : 512

12-19-2004 02:32 : Total Sectors 11667232

12-19-2004 02:32 : Total MBytes : 814Mb

12-19-2004 02:32 :
12-19-2004 02:32 : Displayed sector 0

12-19-2004 02:32 : Displayed sector 1

12-19-2004 02:32 : Displayed sector 2

12-19-2004 02:32 : Displayed sector 3

12-19-2004 02:32 : ---—---- Segment Summary--------
12-19-2004 02:32 : Total Read Errors : 0
12-19-2004 02:32 : Total Write Errors: 0
12-19-2004 02:32 : End of report segment
12-19-2004 02:32 :

Report generated by
sterliz 1.02.7 (c) 2004 CyberSecurity Institute
http://www.cybersecurityinstitute.biz

Figure 26 - 12190400.RPT

© SANS Institute 2005 Author retains full rights.

© SANS Institu

12-19-2004 22:00 :

12-19-2004 22:00 :

12-19-2004 22:00 :

12-19-2004 22:00 :
12-19-2004 22:00 :

12-19-2004 22:00 :

12-19-2004 22:00 :
12-19-2004 22:00 :
12-19-2004 22:00 :
12-19-2004 22:00 :
12-19-2004 22:00 :
12-19-2004 22:00 :
12-19-2004 22:00 :

12-19-2004 22:00 :

12-19-2004 22:00 :
12-19-2004 22:00 :
12-19-2004 22:07 :
12-19-2004 22:08 :
12-19-2004 22:08 :
12-19-2004 22:08 :
12-19-2004 22:08 :
12-19-2004 22:21 :
12-19-2004 22:21 :
12-19-2004 22:21 :
12-19-2004 22:21 :
12-19-2004 22:21 :

12-19-2004 22:21 :

12-19-2004 22:21 :
12-19-2004 22:21 :

12-19-2004 22:21 :

12-19-2004 22:21 :
12-19-2004 22:21 :
12-19-2004 22:21 :
12-19-2004 22:21 :
12-19-2004 22:21 :
12-19-2004 22:21 :
12-19-2004 22:21 :

12-19-2004 22:21 :

12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :

12-19-2004 22:39 :

12-19-2004 22:39 :
12-19-2004 22:39 :

12-19-2004 22:39 :

12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:39 :
12-19-2004 22:40 :
12-19-2004 22:40 :
12-19-2004 22:40 :
12-19-2004 22:40 :
12-19-2004 22:40 :
12-19-2004 22:40 :
12-19-2004 22:40 :
12-19-2004 22:40 :
12-19-2004 22:40 :
12-19-2004 22:40 :

CSI Sterliz.exe report file

Report user name: Steve

Fokkkkkkkkkkkkkkkkkkk

Start of report segment
Sterilize drive HDO ...

Drive information for HDO (Physical Drive 80)
Physical Cylinders : 827

Physical Heads 132

Physical Sectors/Track: 63

Bytes per Sector : 512

Total Sectors 11667232

Total MBytes : 814Mb

Sterilize start

Writing 00 bytes to selected drive
Random 5000 Sector Verify of Drive: HDO
Random selection of 5000 sectors verified
Sterilize complete for HDO

0 Read Errors

0 Write Errors

Sterilize of HDO completed

Total Read Errors : 0
Total Write Errors: 0
End of report segment
Start of report segment
Checksum of HDO

Drive information for HDO (Physical Drive 80)
Physical Cylinders : 827

Physical Heads 132

Physical Sectors/Track: 63

Bytes per Sector : 512

Total Sectors 11667232

Total MBytes : 814Mb

Checksum of HDO completed

128 bit checksum : 00000000000000000000000000000000
Total Read Errors : 0

Total Write Errors: 0

End of report segment

Start of report segment

Sectors on HDO

Drive information for HDO (Physical Drive 80)
Physical Cylinders : 827

Physical Heads 132

Physical Sectors/Track: 63

Bytes per Sector : 512

Total Sectors 11667232

Total MBytes : 814Mb

Displayed sector 0
Displayed sector 1
Displayed sector 2
Displayed sector 3
Displayed sector 4
Displayed sector 5
Displayed sector 6
Displayed sector 1667000
Displayed sector 1667001
Displayed sector 1667002
Displayed sector 1667003
Displayed sector 1667230
Displayed sector 1667231
Displayed sector 0
Displayed sector 1
Displayed sector 0
Displayed sector 1667231

btains full rights.

Figure 27 - 12190401.RPT

© SANS Institute 2005 Author retains full rights.

12-20-2004 00:29 : CSI Sterliz.exe report file
12-20-2004 00:29 : Report user name: Steve

12_20_2004 00.29 . dkkkkkhkkhkhhkhkhkhhkhhkhhkx
12-20-2004 00:29 : Start of report segment
12-20-2004 00:30 : Checksum of HDO
12-20-2004 00:30 :
12-20-2004 00:30 : Drive information for HDO (Physical Drive 80)
12-20-2004 00:30 : Physical Cylinders : 827

12-20-2004 00:30 : Physical Heads 132

12-20-2004 00:30 : Physical Sectors/Track: 63

12-20-2004 00:30 : Bytes per Sector : 512

12-20-2004 00:30 : Total Sectors 1 1667232

12-20-2004 00:30 : Total MBytes : 814Mb

12-20-2004 00:30 :
12-20-2004 00:37 : Media is NOT sterile!
12-20-2004 00:37 : Checksum of HDO completed
12-20-2004 00:37 : -------- Segment Summary--------

12-20-2004 00:37
12-20-2004 00:37
12-20-2004 00:37
12-20-2004 00:37 :
12-20-2004 00:38
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:38
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:38
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:38 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :

12-20-2004 00:39 :

12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :
12-20-2004 00:39 :

: 128 bit checksum : ¢c373a372dbafb51220e122286223b1a9
: Total Read Errors : 0
: Total Write Errors: 0
End of report segment
Start of report segment
Sectors on HDO

Drive information for HDO (Physical Drive 80)
Physical Cylinders : 827

Physical Heads 132

Physical Sectors/Track: 63

Bytes per Sector : 512

Total Sectors 11667232

Total MBytes : 814Mb

Displayed sector 0
Displayed sector 1
Displayed sector 2
Displayed sector 3
Displayed sector 4
Displayed sector 5
Displayed sector 6
Displayed sector 7
Displayed sector 8
Displayed sector 9
Displayed sector 10
Displayed sector 62
Displayed sector 63
Displayed sector 64
Displayed sector 65
Displayed sector 66
Displayed sector 67

Total Read Errors : 0
Total Write Errors: 0
End of report segment

Report generated by
sterliz 1.02.7 (c) 2004 CyberSecurity Institute
http://www.cybersecurityinstitute.biz

Report generated by
sterliz 1.02.7 (c) 2004 CyberSecurity Institute
http://www.cybersecurityinstitute.biz

Figure 28 - 12200400.RPT

© SANS Institute 2005

Author retains full rights.

© SANS Institute 2005 Author retains full rights.

12-20-2004 01:01 : CSI Sterliz.exe report file
12-20-2004 01:01 : Report user name: Steve
12_20_2004 01 .01 . dkkkkkhkkhkhhkhkhkhhkhhkhhkx

12-20-2004 01:01 : Start of report segment
12-20-2004 01:01 : Sterilize drive HDO ...

12-20-2004 01:01

12-20-2004 01:01 :
12-20-2004 01:01 :
12-20-2004 01:01 :
12-20-2004 01:01 :
12-20-2004 01:01 :
12-20-2004 01:01 :
12-20-2004 01:01 :
12-20-2004 01:01

12-20-2004 01:02 :
12-20-2004 01:02 :
12-20-2004 01:08 :
12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :

12-20-2004 01:10 :
12-20-2004 01:10 :

12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :
12-20-2004 01:10 :

12-20-2004 01:10 :

12-20-2004 01:10 :

Drive information for HDO (Physical Drive 80)
Physical Cylinders : 827

Physical Heads 132

Physical Sectors/Track: 63

Bytes per Sector : 512

Total Sectors 11667232

Total MBytes : 814Mb

Sterilize start

Writing 00 bytes to selected drive
Random 5000 Sector Verify of Drive: HDO
Random selection of 5000 sectors verified
Sterilize complete for HDO

0 Read Errors

0 Write Errors

Sterilize of HDO completed

Total Read Errors : 0
Total Write Errors: 0
End of report segment
Start of report segment
Checksum of HDO

Drive information for HDO (Physical Drive 80)
Physical Cylinders : 827

Physical Heads 132

Physical Sectors/Track: 63

12-20-2004 01:10 : Bytes per Sector : 512
12-20-2004 01:10 : Total Sectors 11667232
12-20-2004 01:10 : Total MBytes : 814Mb
12-20-2004 01:10 :
12-20-2004 01:18 : Checksum of HDO completed

12-20-2004 01:18 : ---—---- Segment Summary--------

12-20-2004 01:18 : 128 bit checksum : 00000000000000000000000000000000
12-20-2004 01:18 : Total Read Errors : 0

12-20-2004 01:18 : Total Write Errors: 0

12-20-2004 01:18 : End of report segment

12_20_2004 01 .19 . dkkkkkhkkhkhhkhkkhkhkkhhhx

12-20-2004 01:19 : Start of report segment

12-20-2004 01:19 : Sectors on HDO

12-20-2004 01:19 :
12-20-2004 01:19 : Drive information for HDO (Physical Drive 80)
12-20-2004 01:19 : Physical Cylinders : 827

12-20-2004 01:19 : Physical Heads 132

12-20-2004 01:19 : Physical Sectors/Track: 63

12-20-2004 01:19 : Bytes per Sector : 512

12-20-2004 01:19 : Total Sectors 11667232

12-20-2004 01:19 : Total MBytes : 814Mb

12-20-2004 01:19 :
12-20-2004 01:19 : Displayed sector 0
12-20-2004 01:19 : Displayed sector 1
12-20-2004 01:19 : Displayed sector 2
12-20-2004 01:19 : Displayed sector 3
12-20-2004 01:19 : Displayed sector 62
12-20-2004 01:19 : Displayed sector 63
12-20-2004 01:19 : Displayed sector 64
12-20-2004 01:19 : Displayed sector 65

Report generated by
sterliz 1.02.7 (c) 2004 CyberSecurity Institute
http://www.cybersecurityinstitute.biz

© SANS Institute 2005

Author retains full rights.

Figure 29 - 12200401.RPT

[18922 833616
Figure 30 - sum1.txt

[[00000 833616
Figure 31 - sum2.txt

[59575 833616
Figure 32 - sum3.txt

[00000 833616
Figure 33 - sum4.txt

The results were as expected and all criteria for approval were met. By
comparing the results on the report files and the results from manually viewing
the disk sectors we see that Sterilize does exactly what it claims to do.
Sterilizing a disk overwrites all existing data with a series of hex value ‘0x00’
which we verified using the ‘sum’ command as well as visually inspecting the
disk sectors using DiskEdit. Sterilize also provide an accurate view of the
physical sectors which we verified by comparing the results from the Sterilize
viewer with the results from DiskEdit. It was also verified to a lesser degree that
the checksum feature appears to be accurate, at least when calculating the
checksum on a sterilized drive. This was verified using the ‘sum’ command and
verifying that both it and Sterilize returned a zero value when calculating the
checksum on the sterilized drive.

Analysis

Thanks to the friendly report format used by the Sterilize reports it would be
very easy for an investigator to see whether or not a disk has been wiped clean
and made forensically sterile. An investigator could also use Sterilize to access
the physical sector of a disk. This would allow the investigator to view data that
my otherwise be obfuscated by the operating system or by nefarious means.

Presentation

Using the reports generated by Sterilize it would be very easy for an
investigator to show that the media had been made forensically sterile before
being used. The reports would document when the sterilization occurred and
that the sterilization process had been verified.

The reports are organized very well and would make explaining them to

others quite easy. Each option within Sterilize generates its own report
segment. These report segments show the time that each activity took place,

© SANS Institute 2005 Author retains full rights.

what that activity was, and the results of that action. When the checksum for
the test disk was generated the following report entry was made:

12_19_2004 02.18 . FHAKIKKIKAKIKAKAKAKIKA AR KKK K%
12-19-2004 02:18 : Start of report segment
12-19-2004 02:18 : Checksum of HDO
12-19-2004 02:18 :
12-19-2004 02:18 : Drive information for HDO (Physical Drive 80)
12-19-2004 02:18 : Physical Cylinders : 827

12-19-2004 02:18 : Physical Heads 132

12-19-2004 02:18 : Physical Sectors/Track: 63

12-19-2004 02:18 : Bytes per Sector : 512

12-19-2004 02:18 : Total Sectors 1 1667232

12-19-2004 02:18 : Total MBytes : 814Mb

12-19-2004 02:18 :
12-19-2004 02:32 : Media is NOT sterile!

12-19-2004 02:32 : Checksum of HDO completed

12-19-2004 02:32 : -------- Segment Summary--------

12-19-2004 02:32 : 128 bit checksum : 159226a4fc74cabaacc6a830cfb78484
12-19-2004 02:32 : Total Read Errors : 0

12-19-2004 02:32 : Total Write Errors: 0

12-19-2004 02:32 : End of report segment

This shows that at 02:18 on Dec. 19, 2004 a checksum was started on the
primary hard drive (HDO). It then shows us the drive information for the disk
being analyzed. We see that Sterilize detected that the disk contained data and
was not sterile followed by the checksum for the data found on the drive. Finally
we see that during the checksum process Sterilize encountered no read/write
errors indicating that the media is sound and that the end of that report segment
has been reached. All the options create similar entries in the report and are
equally easy to explain to the court or others.

These reports would be easy to admit to the court as process verification in
their native form. The reports are easy to read and require no modification or
formatting. A simple print out should be very easy for anyone involved to read
and understand with very little explanation.

Conclusion

These tests were successful and show that Sterilize is a very convenient tool
for creating forensically sterile media. Sterilize has added features that allow for
verification that the media has been successfully sterilized and produces a very
nice report of the actions and verifications.

This tool doesn’t require any changes to make it more forensically sound.
The only recommendation | have would be increasing functionality. The main
functionality improvements are already in development for future releases such
as the ability to do a MD5 hash of a disk.

Using Sterilize to make media forensically sterile should be the first step any
investigator takes before imaging a disk. The investigator can rest assured that

© SANS Institute 2005 Author retains full rights.

by using this tool to prepare the media he/she will not have any residual data on
the working copy and will be provided with a nice report should that fact ever be
qguestioned.

© SANS Institute 2005 Author retains full rights.

References for Part 2

Dept. of Defense. “DoD 5220.22-M, ‘National Industrial Security Program
Operating Manual’.” Jan. 1995. URL:
http://www.dtic.mil/whs/directives/corres/html|/522022m.htm (18 Dec. 2004)

e-Fense, Inc. “Helix.” 7 Dec. 2004. URL: http://www.e-fense.com/helix/ (18 Dec.
2004)

Grant, David. “Halcrow Group Ltd MIS Computer Forensic Procedures.” 2 Jun.
2002. URL: http://www.itsecurity.com/papers/halcrow1.htm
(18 Dec. 2004).

Hailey, Steve. “Sterilize - FREE.” 14 Sep. 2004. URL.:
http://www.cybersecurityinstitute.biz/software/ (18 Dec. 2004)

Mares, Dan. “Free Software from Mares and Company.” 9 Aug. 2004. URL:
http://www.maresware.com/maresware/freesoftware.htm (18 Dec. 2004)

Newsom, Dr. P. Dennis. “An Explanation of Computer Forensics.” Sep. 2000.
URL: http://www.pimall.com/nais/nl/ecomputerf.ntml (18 Dec. 2004)

Symantec Corporation. “Norton Systemworks Premier Edition.” URL:
http://www.symantec.com/sabu/sysworks/pro/ (18 Dec. 2004)

© SANS Institute 2005 Author retains full rights.

