GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensic:
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

Taking advantage of Ext3 journaling file system in a forensic investigation

Taking advantage of Ext3 journaling file system in a
forensic investigation

GCFA Gold Certification
Author: Gregorio Narvaez, gnarvae@yahoo.com

Adviser: Paul Wright

Accepted: December 307, 2007

Gregorio Narvaez 1

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

TABLE OF CONTENT
1 INTRODUGCTION. ...ttt ettt et e s e e e s e e e s st e e e sab e e e baeeaseeeesaeeeanbbaeanaeeennseeenes 3
1.0 LA SEUUPD e bbbt b e 3
2. EXT3FS JOURNAL FUNDAMENTALS ...ttt saa e aaeanna s 4
2.1 .J0UMNAL LITE CYCIB ...t bbbttt bbbt 6
2.2 File Deletion Process: EXt2 VS EXE3......ccuiiiiiiiiiiiiiseseeee ettt 9
3. FILE RECOVERY USING EXT3 FS JOURNALocotiiiiiiiieie sttt 13
Table 3.1: Partial IN0UE SITUCTUIEcceiiiiieiie e 15
4. SPECIAL CASE: WHEN EXT3 JOURNAL IS AN EXTERNAL DEVICE..........cccocvvvniinnnne. 19
4.1 JOUINAD STFUCTUIE ..ttt et bbbt b et et e bttt e b e ne e 20
Table 4.1: Journal administrative block standard header.............ccccoviiiinniiici 21
Table 4.2: Journal SUPEIDIOCKcveiiiiiiiiece e 22
Table 4.3: Journal descriptor DIOCK...........ooviiiiiiie e 22
Table 4.4: Journal commit DIOCK..........c.coiiiiiiiiiii 22
Table 4.5: Journal reVOKE DIOCK..........coiiiiieiieiiee e e 22
4.2 How to Automate Journal DECOUING.......cccveiiiieiieie et 24
4.3 Verification against jls on Ext3 Internal Journal (SAa6)ccccviririiiiieiiiiieesc e 28
Table 4.6: jls vs journal.awk 0N SAA6..........ccccveieiieiieecee e 28
5. TIME MACHINE RELOADED: FILE HISTORICAL ACTIVITY WITH EXT3 JOURNAL
... 31
6. CONCLUSIONS ...ttt bbb bbbt e bt e s e b et e st et benbe s bt beere s 33
Table 6.1: Functionality of tools against different SOUrCeS..........cccccveveviieriveresie e 34
T.REFERENQCES.ottt bbb bbbt b et e et et e b e bt et e b e ne e 35
Gregorio Narvaez 2

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

1. Introduction

The Ext3 file system has become the default for most Linux distributions and thus is of great
importance for any practitioner of forensics to understand how Ext3 handles files differently from the
previous standard (Ext2) and how the knowledge of these differences can be applied to recover
evidence as deleted files, and file activity. There is still the misconception that it is not possible to
recover a deleted file from an Ext3 file system. This is what one of the developers, Andreas Dilger, said

about it: “In order to ensure that ext3 can safely resume an unlink after a
crash, it actually zeros out the block pointers in the Inode, whereas ext2
Just marks these blocks as unused iIn the block bitmaps and marks the inode

as "deleted” and leaves the block pointers alone.” [Linux Ext3 FAQ 2004]. The
objective of this paper is show that it’s not impossible to recover a deleted file from an Ext3, but also
will show a couple of strategies that will allow accomplish several tasks that a forensic investigator
faces on every case and that Ext3 nature offers interesting options:

= File recovery on files using the metadata stored by the journal on Ext3 including advantages,
disadvantages and limitations.

= What happens with an Ext3 file system with its journal on an external device and how to deal
with this situation? In this scenario TSK tools like jcat, jls will not work.

= An improved “Time Machine” that will allow an analyst to track down file activity beyond its
last set of MACtimes.

With these three objectives in mind let’s start.

1.1 Lab Setup

For the following demonstrations several file systems were created on a laptop running Fedora 5
(Kernel 2.6.20-1.2320) and using an external usb 2.0 40GB hard drive:

= /dev/sdal is an Ext2 FS called “workbench” that was used for storing the images of the other
file systems.

= /dev/sda5 is an Ext2 FS that served as a baseline, labeled “baseline”

= /dev/sda6 is an Ext3 FS that has its own journal and mounted with default options
(mode=ordered) and named “ext3default”

= /dev/sda8 is an Ext3 FS that has its journal on an external device, in this case sda9

= /dev/sda9 holds sda8 journal

Before creating the images of the file systems using dd we mount them with their default options,
copied on them several pdf files, open them, deleted some of them and finally unmounting the file
systems. The images created with dd were stored on sdal mounted on /media/workbench, and the
images file name have the following notation: <dev>img.dd, so sda5img.dd is the forensic image
for /dev/sdab5.

Gregorio Narvaez 3

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

2. Ext3fs Journal Fundamentals

What we are going to explore in this research paper are some unique options that a forensic investigator
has on Ext3 files systems such as how to recover those files that were deleted either by mistake or
intentionally, or tracking down historical file activity. But before starting to explore those options a
quick review of the Ext3 journal is in order to better understand the methods that will be described. It’s
assumed that the reader has basic notions of the internal structure of Ext2/Ext3 file system, if that’s not
the case, two excellent references that can helpful to better understand some of the concepts mentioned
through this document are Brian Carrier’s File System Forensic Analysis and
Forensic Discovery by Dan Farmer & Wietse Venema.

The Ext3 file system created by Dr. Stephen C. Tweedie in 1999; is a journaled version of the old Ext2
file system standard. A Journaling File System is a type of file system that allows the OS to keep a log
of all file system changes before writing the data to disk. This log is called a journal, and it is usually
a circular log in an especially-allocated area of the file system. This type of file system offers better
probabilities to avoid corruption in case of a power outage or system crash. Just keep in mind that Ext3
is not the only file system to offer journaling capabilities, other file systems like NTFS, JFS, JFS2 and
ReiserFS offers similar capabilities.

For a better understanding of how a file system works a five layer model will be used [Carrier 2005]. A
similar model is often used on SANS Forensic course. This model offers a framework that allows
describing and understanding almost any type of file system in existence and reduces their complexity
allowing the development of techniques and procedures that can be applied over different file system
types. A summary of this five layer model is as follows:

= Files System: Describes the structure of the file system, this information includes the size
of data units, structure offset and mounting information, group descriptors, etc. In a Linux/Unix
system this structure is referred as “superblock™. Is in the superblock that we can find the
information described in this category.

= File Name: This category includes the directory entries where the FS stores the file name and
the inode number for that file. You can compare this category with a book’s table of content

= Metadata: Contains information describing the characteristics and structure of a file. In
Unix/Linux this metadata structures are known as “inodes”. The following information is stored
in an inode: file owner identifier, file type, file access permissions, MACtimes, number of links,
file size and pointers to content blocks.

= Data/content: This is category ferers to structures where the actual content of a file is
stored

= Application: In the case of Ext3 file system we are talking about the journal. The structure
of the journal records the modifications of the file system. Originally was designed for fast
recovery

Traditionally the first four layers are considered essential data structures, while data structures

Gregorio Narvaez 4

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

belonging to the last layer are considered non-essential [Carrier 2005], most techniques and procedures
are focused on essential data structures, but this research will show that the last layer contains
information crucial to a forensic investigation, especially on Ext3 file systems.

A file in Ext2/3 will be composed as shown the following figure:

Directory entry

File name: Inode

Fig 2.1 File name, inode and content blocks relationship

Inode

MACtimes atime,
ctime, mtime, dtime

User & Group ID

Size

File Content

File Content

Direct block pointers

F

Single indirect block

|

Double indirect block

i

Triple indirect block

|

Block Pointers to
File content

File Content

File Content

The information on the application layer on Ext3 is what it’s called journal. This structure stores
changes on the file system and it is the main difference with Ext2. Ext3 offers three modes of
journaling, the difference is what data the journal stores and how, impacting the performance. Let’s
take a quick review of the three modes:

= Journal - Logs all file system data and metadata changes. This journaling mode minimizes the
chance of losing the changes you have made to any file in an Ext3 file system. This approach
has a penalty in performance since data is being written twice (once to the journal, a second
time to the file system), making it the slowest of the three journaling modes.

= Ordered - Only logs changes to file system metadata (inodes), but flushes file data updates to
disk before making changes to associated file system metadata, keeping the journal

synchronized with data writes. This is the default Ext3 journaling mode.

= Write back - Only logs changes to file system metadata but relies on the standard file system
write process to write file data changes to disk. This is the fastest Ext3 journaling mode.

From a forensic point of view the first mode (journal) will be preferred because offers the most
information regarding file system activity and facilitates deleted file content recovery, the other two
options only permits to recover metadata activity on the file system. Unfortunately the default behavior
of Ext3 journal is ordered and thus only metadata changes are recorded. Keep this in mind when

analyzing an Ext3 file system.

Gregorio Narvaez

© SANS Institute 2007,

5

Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

In most cases the journal exists in the same Ext3 file system. It resides in a special area within the file
system. The first structure in the journal is called journal superblock and keeps information
regarding the block size of the journal, total number of blocks that the journal has available for storage,
where the journal actually starts, sequence number of the first transaction, where the first journal
transaction is located and general structure information about the journal. The mechanism of the
journal keeps track of the changes in a file system with the use of transactions sequences. A transaction
sequence is made up of the following components

= Descriptor block: Every transaction initiates with a block that describes the beginning
of the transaction

= Metadata block: There can be one or many metadata blocks for each transaction, this
blocks are where the changes are recorded

= Commit block: Depending on the journal mode, basically this block indicates the end of a
successful transaction.

= Revoke block: If there is an error during the operation a revoke block is created and holds a
list of the file system block that needs to restore during a consistency check.

To better understand how the journal is composed we can observe the following graphic

| Descriptor Commit Descriptor Commit
block block block Metadata Metadata Metadata block

block block block block

Metadata

seql | seq 1 seq 2 seq 2

Fig 2.2: Ext3 Journal general structure

What is interesting is that the journaling mechanism act at the block level, this part of how journaling
works is the core for the concepts discussed in this research, because when a bit of metadata (inode)
of a file system is modified the whole block where that inode resides is copied to the journal. In other
words the neighbor inodes (same block) are copied to the journal. This concept is what Dan Farmer and
Witse Venema named the bystander effect [Farmer and Venema 2007].

2.1 Journal Life Cycle

The life cycle of the journal is also something important to be aware of during an investigation. The
journal is restarted every time the file system is unmount and mounted again, or when the journal
becomes full it start all over itself reusing the first blocks, like a circular list; this will destroy any
evidence within the journal, so its good idea to grab an image of the journal as soon as possible using
the TSK tools or just imaging the suspect file system with dd for later analysis

To make this point clear let’s take a look to a series of snapshots from a journal during different points
of time of an Ext3 file system, to accomplish this we will use the jls tool from TSK. This tool allows
the investigator to browse the journal. If we execute the command jls sda6img.dd on sda6é image
file that holds the Ext3 file system will be mounted with standard options as soon as was initialized by
mke2fs :

Gregorio Narvaez 6

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

Blk Descriptrion

: Superblock (seq: 0)
Unallocated FS Block Unknown
Unallocated FS Block Unknown
Unallocated FS Block Unknown
Unallocated FS Block Unknown
Unallocated FS Block Unknown
Unallocated FS Block Unknown
Unallocated FS Block Unknown
Unallocated FS Block Unknown
: Unallocated FS Block Unknown
10: Unallocated FS Block Unknown
CREMOVEDJ

A~ FwWniueHEOCC

This output shows the journal, right after the file system was created. As we can observe the sequence
number in the superblock is 0 an all the blocks are unallocated without any type of transaction or
information stored. Now the file system is mounted:

JB1lk Descriptrion

0: Superblock (seq: 0)

1 Allocated Descriptor Block (seq: 2)
c Allocated FS Block 183

3 Allocated Commit Block (seq: 2)

L Unallocated FS Block Unknown

5: Unallocated FS Block Unknown

b: Unallocated FS Block Unknown

? Unallocated FS Block Unknown

i) Unallocated FS Block Unknown

9: Unallocated FS Block Unknown
CREMOVEDI

When the file system is being mounted, we can see on journal block 1 that sequence number started to
increase. Then a series of files were copied to the file system:

Blk Descriptrion

: Superblock (seq: 0)

Allocated Descriptor Block (seq: 2)
Allocated FS Block 1.é3

Allocated Commit Block (seq: 2)
Allocated Descriptor Block (seq: 3)
Allocated FS Block 295094

Allocated FS Block 1

Allocated FS Block 295095

Allocated FS Block 295093

: Allocated FS Block 295595

10: Allocated FS Block O

CREMOVEDT

A~ FfFWwUE O

We can appreciate that after copying files, the sequence number has increased sequentially; also it
shows the file system blocks that has been updated during the copy process. Then we unmount and then
mount the file system again:

Blk Descriptrion

: Superblock (seq: 0)

Allocated Descriptor Block (seq: 1lh)
Allocated FS Block 327kac2

Allocated Commit Block (seq: 1k)
Unallocated Descriptor Block (seq: 3)
Unallocated FS Block 295094
Unallocated FS Block 1

CoFfFwiueEococ

Gregorio Narvaez 7

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

7 Unallocated FS Block 295095
b: Unallocated FS Block 295093
9: Unallocated FS Block 295595
10: Unallocated FS Block O
CREMOVEDI

The sequence number keeps increasing but since the file system was unmounted cleanly the journal
restarts and the next transaction begins at block 1 of the journal, the process of overwriting evidence
takes places (journal blocks 2 and 3). Also we can notice that the remaining transactions from the
previous mount are now marked as unallocated. Finally some more operations occur in the device:

Blk Descriptrion

: Superblock (seq: 0)

Allocated Descriptor Block (seq: 1k)
Allocated FS Block 327ké&2

Allocated Commit Block (seq: 1hk)
Allocated Descriptor Block (seq: 17)
Allocated FS Block lacg

Allocated FS Block 1

Allocated FS Block 183

Allocated FS Block 295595

: Allocated FS Block k&3

10: Allocated FS Block 181

CREMOVED]

AP~ FfFWUEOC

Here the overwriting of the journal keeps taking away precious evidences as can be observed on journal
blocks 4 to 10. One must notice that if the journal operation mode is for metadata only (ordered /
write back modes) the blocks shown in the journal are blocks containing some sort of metadata,
such blocks could be part of the inode table, inode bitmaps or block bitmaps. If it’s working in journal
mode (metadata + data) also will include copies of blocks with file content.

Just one last observation regarding the preservation of evidence on the journal: when mounting an Ext3
image file (remember always should be mounted as read only), keep in to account that extra precaution
must be taken otherwise the integrity of the image will be compromised the moment the journal is
being reset and replay against the file system when the file system is mounted (this applies also for
forensic images). Just to give you an idea of what we refer with extreme caution, take the hash value of
a device image, an then mount it, without doing anything else, unmount, an take a second hash to the
device image an compare both values, here is an example:

CrootdAkulal workbenchl# md5Ssum sda?img.dd > sda?img-md5
CrootdAkulal workbenchl# mount -t ext3 -o loop sda?img.dd test
CrootdAkulal workbenchl# umount test

CrootdAkulal workbenchl# mdSsum sda?img.dd > sda?img.md5a
CrootdAkulal workbenchl# more *md5x

2bd?7c92834e839b3k2892kb94510kacd sda?img.dd

83Llckeabklecddi4adde8bch2l9bbeffhd sda?img.dd

Oops, we forgot to put the option “ro” (read only) when mounting the image, immediately we
unmount the image, but it’s already to late; the journal was reset/replay and that causes the hash values
not to match.

Gregorio Narvaez 8

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

2.2 File Deletion Process: Ext2 Vs Ext3

In this section we’ll review how Ext2 deletes a file and compare it to Ext3 procedure. On Ext2 the
deletion of a file by the OS can be resumed as marking the directory entry, inode and data blocks that
make up a file as unallocated, this marking occurs in the block and inode bitmaps of each block group.
For our example we have a file called “reference.pdf” with a size of 562378 bytes, its structure
looks something similar to the following diagram:

Inode: 224002

Directory entry

Fig 2.3: File before deletion in Ext2 FS
When file “reference.pdf” is deleted on Ext2 the inode and content blocks are marked as unallocated so
the OS can reuse them when needed but basically all the information is still there as shown in the next
figure:

Inode: 224002

Directory entry

Fig 2.4: File after deletion in Ext2 FS

Gregorio Narvaez 9

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

This can be seen on a real life system using two tools from TSK ils and istat. The following is the
output of ils tool on an Ext2 file system with the option —r listing all deleted inodes on the image.

CrootdAkulal workbenchl# ils -r sdaSimg-dd

classlhostldevicelstart_time

ilslAkulall 1119428887k
st_inolst_alloclst_uidlst_gidlst_mtimelst_atimelst_ctimelst_modelst_nlinklst_sizel
st_blockOIst_blockl

CREMOVEDI
2240021f1010111829634211119424939211194282kLk91100k4Y4 1015623781 4628491462850
2240031f10101118296337111194249453111942826691100644 101693301 462988142989
CREMOVEDT

Let’s take the first inode on this list, this inode (224002) shows a probable file with a size of 562378
bytes. Take a look to the stats of inode 224002 using istat.

CrootdAkulal workbenchl# istat sdaSimg-dd 224002
inode: 224002

Not Allocated

Group: 14

Generation Id: 23109470b

uid / gid: 0 /7 D

mode: -rw-r--r--

size: 5L2378

num of links: O

Extended Attributes (Block: k&%)
security-selinux=root:object_r:file_t:s0

Inode Times:

Accessed: Mon Nov 5 0l:5k:32 2007
File Modified: Wed Jun 27 11:57:01 2007
Inode Modified: Mon Nov 5 11:11:09 2007
Deleted: Mon Nov 5 11:11:09 2007

Direct Blocks:

42849 4L2850 462851 4bL2852 4kL2853 4bL2854 4bL2855 4L285E
462857 4bL2858 4bL2859 4b28LO0 4b28LE Y4b28L3 U4b28LY Y4L2ABLS
4b28bkbk 4L28L7 4L28LS 4L28LY9 4L2870 4k2871 4L2872 4kL287?3
4L2874 4L287?5 4Lk287?k Y4k2877 4k2878 4k2879 4kL2880 4L288L
4L2882 462883 4L288Y4 Y4L2885 Y4L288L Y4L2BB87 4L2BBS 4L2B8Y
462890 462891 4k26892 4k2893 4k2894 4k2895 Y4k289k 4kL2897
462898 4L2899 462900 462901 462902 4k2903 4k2904 4k2905
46290k 462907 462908 462909 462910 462911 4k2912 4k2913
462914 462915 46291k 462917 462918 462919 4k2920 4k2921
4b2922 4b2923 4ke2924 4k2925 4k292b 4k2927 4bk2928 4k2929
462930 462931 4k2932 4k2933 4k2934 4k2935 4k293b 4k2937
462938 462939 4k2940 4b2941 4k2942 Y4k2943 Yk2944 Hk2H45
4b294k 462947 4b2948 4kL2949 462950 4k2951 4k2952 4k2953
42954 4L2955 4kL295k 462957 462958 4k2959 4k29k0 4k29k1
4b29ke 462963 4k29k4 Y4k29k5 Y4k29kbk Y4k29k7 Y4k29k8 4k29L9
462970 462971 4k2972 4k2973 4k2974 4k2975 H4k297k 4k2977
462978 462979 462980 462981 4k2982 4b2983 4b2984 4L2985
4b298k 4kL2987

Indirect Blocks:

4b28k1
Croot@dAkulal workbenchl#

Gregorio Narvaez 10

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

As we can see this last output yields a lot of useful information, like MAC times, permission for the
file, and more important for the purpose of recovering the file, the size of the file and the direct and
indirect pointers to the data blocks. If the data blocks have not been overwritten by other files the
recovery becomes quite simple using icat from TSK and just to verify that the file is what we deleted at
the beginning we use file to find out its type:

CrootdAkulal workbenchl# icat -r sdabimg.dd 224002 > recovered
CrootdAkulal workbenchl# file recovered
recovered: PDF document. version 1.3

To make the comparison between both mechanisms will use the same reference.pdf” file as in the
previous example, but this time it’s being copied to an Ext3 file system, with the same size, but
different inode and block pointer because it’s located in sda6, this file has the following structure:

Inode: 144015

Directory entry

Fig 2.4: File before deletion in Ext3 FS

In Ext3 the OS takes some other steps when a file deletion occurs. Inside the inode the size of the file
as well the block pointers (direct and indirect) are zeroed leaving us with out a way to trace back what
data blocks belongs to particular file as shown next diagram:

Inode: 144015

Directory entry

Fig 2.5: File after deletion in Ext3 FS

Gregorio Narvaez 11

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

Now let’s see what really happens on an Ext3 file system. After deleting some files and imaging the
file system on sda6 the process to find and recover a file is repeated:

CrootdAkulal workbenchl# ils -r sdakimg-dd
classlhostldevicelstart_time

ilslAkulall 1194252024
st_inolst_alloclst_uidlst_gidlst_mtimelst_atimelst_ctimelst_modelst_nlinklst_sizel
st_blockOIst_blockl
1440141f€101012294232994 11194231994 11194231994 14075510101010
1440151f10101212942329941119423198211194231994 1100644 10101010
CREMOVEDT

CrootdAkulal workbenchl# istat sdabkimg-dd 144015

inode: 144015

Not Allocated

Group: 9

Generation Id: 3b7045L940

uid 7/ gid: 0 /7 D

mode: -rw-r--r--

size: O

num of links: O

Extended Attributes (Block: 295595)
security-selinux=root:object_r:file_t:s0

Inode Times:

Accessed: Sun Nov
File Modified: Sun Nov
Inode Modified: Sun Nov
Deleted: Sun Nov

2l:0k:22 2007
2l:0k:34 2007
2l:0k:34 2007
2l:0k:34 2007

FTrrrrr

Direct Blocks:
CrootdAkulal workbenchl#

The output confirms what we discussed before, the links to the data blocks and the size of the file has
been zeroed out. This is why recovering a deleted file from Ext3 has always being considered almost an
impossible task. Now let’s discuss an option that a forensic investigator could use in order to recover a
file under Ext3.

Gregorio Narvaez 12

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

3. File Recovery Using Ext3 FS Journal

The first step in this technique is to have the inode of the deleted file; there are several ways to obtain
| this, like using debugfs or using fls or ils from TSK. For simplicity of this discussion let’s say we

already know the file inode and now we verify this information with ils:

CrootdAkulal workbenchl# ils -r sdakimg-dd
classlhostldevicelstart_time
ilslAkulalllllqy25202Y4

st_inolst_alloclst_uidlst_gidlst_mtimelst_atimelst_ctimelst_modelst_nlinklst_sizel

st_blockOlst_blockl
1440141f€101012294232994 121194231994 11194231994 14075510101010
1440151f1010122942319941119423198211194231994 1100644 10101010
1440161f€101012294232994 11182970801 11194231994 1100644 10101010
1440171f1010121294232994 11182970801 11194231994 1100644 10101010
1440181f1010121294232994 11182970801 11194231994 1100644 10101010
1440191f1010121294232994 11182970801 11194231994 1100644 10101010
1440201f10101212942329941119423198211194231994 1100644 10101010

Let’s check stats for first two inodes:

CrootdAkulal workbenchl# istat sdabkimg-dd 1440LY
inode: 144014

Not Allocated

Group: 9

Generation Id: 3k7045L939

uid / gid: 0 /7 D

mode: drwxr=xr=x

size: O

num of links: O

Extended Attributes (Block: 295595)
security-selinux=root:object_r:file_t:s0

Inode Times:

Accessed: Sun Nov
File Modified: Sun Nov
Inode Modified: Sun Nov
Deleted: Sun Nov

2l:0k:34 2007
2l:0k:34 2007
2l:0k:34 2007
2l:0k:34 2007

[=g =g =gl =

Direct Blocks:

CrootdAkulal workbenchl# istat sdakimg-dd 1L440L5
inode: 144015

Not Allocated

Group: 1

Generation Id: 3b7045L940

uid / gid: 0 /7 D

mode: =-rw-r--r--

size: O

num of links: O

Extended Attributes (Block: 295595)
security-selinux=root:object_r:file_t:s0

Inode Times:

Accessed: Sun Nov
File Modified: Sun Nov
Inode Modified: Sun Nov
Deleted: Sun Nov

2l:0k:22 2007
2l:0k:34 2007
2l:0k:34 2007
2l:0k:34 2007

sTrrrrr

Gregorio Narvaez

© SANS Institute 2007,

13

Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

Direct Blocks:
Croot@dAkulal workbenchl#

We can learn that inode 144014 was linked to a directory and inode 144015 contained a file but their
stats and block pointers are lost, also we learned that inode 144015 belongs to block group 9 and now is
marked as unallocated as result of the deletion process. Now we can look the stats of block group 9:

CrootdAkulal workbenchl# fsstat sdakimg-dd | grep -i ‘“group: 9"
Group: 9:
Inode Range: 144001 - 160O0OOOD
Block Range: 294912 - 327L79
Layout:
Super Block: 294912 - 294912
Group Descriptor Table: 294913 - 294913
Data bitmap: 295093 - 295093
Inode bitmap: 295094 - 295094
Inode Table: 295095 - 295594
Data Blocks: 295595 - 327k71

If we take a look closely to the information of group 9 we can see that for this group there are 16000
inodes (Inode range: 144001-160000), and the inode table has a size of 500 blocks (Inode Table:
295095-295594). Each block of the inode table has 32 inodes (16000 divided by 500), thus inode
144015 it’s the 15" entry in the table and its content is located in the first block of the inode table.
Remember the journal works at the block level so the block we must look for in the journal is 295095
(in this case the first block of the inode table). Checking the output from jls, we find out that there are
several references to 295095, lets use the first one, but keep in mind that in the case of multiple
instance of a particular block we might have to analyze each one. One way to decide the chronological
order in case there are multiple references to the block we are interested is to take a look at the
sequence number of the transaction where the block is being referenced. The lower the number the
sequence number is, the older the inode copy will be.

CrootdAkulal workbenchl# jls sdakimg-.dd
JB1lk Descriptrion

0: Superblock (seq: 0)

1: Allocated Descriptor Block (seq: 2)
2 Allocated FS Block 183

3 Allocated Commit Block (seq: 2)

4 Allocated Descriptor Block (seq: 3)
5: Allocated FS Block 295094

b: Allocated FS Block 1

7 Allocated FS Block 295095

8 Allocated FS Block 2950493

9: Allocated FS Block 295595
CREMOVED]

The output shows that block 7 of the journal contains information regarding an operation on the inode
table of group 9, and since the journal at least records copies of the metadata (default journal mode is
ordered) that has been modified; we can look for a copy of inode 144015 within the journal. There are
cases that checking each instance of a particular block in the journal must be analyzed, but in this case
we just want to recover the earliest one.

As we discussed before the entry we are looking inside the inode table is the 15™ within the inode range
for block group 9, in order to extract the copy of inode 144015 from the journal we will use jcat in
combination with dd and xxd; but before we need to find out the inode size. Usually inode size is 128
bytes on Ext2/3 file systems but we can obtain that information running fsstat or dump2fs on the image

Gregorio Narvaez 14

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

of the file system to verify, here we’ll use dumpe2fs:

CrootdAkulal workbenchl# dumpe2fs sdakimg-.-ddligrep -i "inode size"
dumpedfs 1.38 (30-Jun-2005)

Inode size: 128

CrootdAkulal workbenchl#

By the way dumpe2fs is also an excellent source for file system info. Ok, know execute the following:

jcat sda6img.dd 8 7 | dd bs=128 skip=14 count=1 | xxd

A little explanation on the previous command is in order. The TSK tool jcat takes three parameters, the
first one is the image file, the second is the inode where the journal begins and the third is the entry
within the journal that we are interested (in this case is entry 7), dd is being used to carve one inode
(144015) from journal block 7. As we mentioned before we are interested on the 15" inode from the
inode range that indicates that we need to skip the 14 blocks before getting the one of interest, hence
skip=14, and the size of the inode is 128 bytes. The last part will give hex dump format by sending the
output from the previous two commands (jcat and dd) to xxd. Now let’s get the result:

CrootdAkulal workbenchl# jcat sdakimg.dd 8 7 | dd bs=1l28 skip=1l4 count=1 | xxd
1+0 records in

1+0 records out

128 bytes (128 B) copied- 0.00402034 seconds. 31.-8 kB/s

pD0O0O00O0: a48l O0OD0 cad4 0800 blb3 824k bcl3 2el? coeeeee.... Fl..6
po00010: dd9k &24kL 0O0OOO OOOO OOOO 010D LOOY DOOOD w e eFevevwee. T
DD0O0O020: 0OOOO DDDOOD ODOOD OOOO Yabb O4OO Sbbb OUOOD e v e e v eeneeennn
DD0O0O030: Y9cbb 0400 9dbb 0400 Hebb O4OO Sfbb OUOD c e veneeeennn
DDO0OO40: aObb O4OO0 albb 0400 acbb O4OO a3dbb OUOOD .« eeeneeeennn
0DD0O0O050: a4bb O4OD aS5bb 0400 abbb O4OO0 D000 DOODOD «veeeeveneeeennn
0DD0O00OLO: 0OOOO DODOD becba chda ab&2 0400 D000 DOODD e v e eleveeeceannn
pDD0O0O070: 0OOOO DOOOD OOOD DOOOO DOOOD OODD DOOO DODD v v e e e e e neeeennn
CrootdAkulal workbenchl#

What we have is a copy of what used to be inode 144015 at that time, but we need to interpret this. The
structure of an inode is quite extensive and out of the scope of this research but there are several
sources where a more detailed description can be obtained [Carrier 2005]. Here we’ll focus mainly on
the search for block pointers, it’s important to notice that metadata in our examples is stored by the OS
in little endian notation (in this case a x86 platform) and as such should be read from the hex dumps

Table 3.1; Partial inode structure

Byte Range Description

4t07 Lower 32 bits of file size in bytes
40 to 87 List of twelve direct block pointers
881091 Single indirect block pointer

92 to 95 Double indirect block pointer

95 to 99 Triple indirect block pointers

Now applying this knowledge we have the following:

The size of the file that was linked to inode 144015, at that time was 562378 bytes (0x0894ca):

Gregorio Narvaez 15

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation
0000000: a4l 0000 cad4 0800 blb3 824k bcl3 2e4? wvvevenn... F1..6
There are 12 direct block pointers: 310170 to 310181 (0x4bb9a TO 0x4bbab):

0ooooz20: 0000 0OODO OOOO ODOO Yabb O4OD 9bbb O4DO o v evevveeann.n.
0000030: Y9cbb 0400 9dbb 0400 9Y9ebb O40O0 H9fbb O400 ----voveeean....
0000040: aObb 0400 albb 0400 acbb O400 a3bb 0400 ----veveenan....
0000050: aibb 0400 aSbb 0400 akbb 0400 DOOO 0OODO @ -veveveceannnn.

There is a single indirect block pointer: 310182 (0x4bba6):
0000050: a4bb 0400 aSbb 0400 akbb D400 0000 OOO00 - vveveevnrenenns
There are no double or triple indirect block pointers:

0000050: a4bb 0400 aSbb 0400 akbb O40OO0 0000 0OODO - ---veveeeennnn.
00000LO: 00OO0 0000 bcba chda abBc2 0400 0DOOO 0OODO «-veleveceennnn.

But we are not done yet! We only have the first 12 data blocks. That’s just 49152 bytes of the file, and
according to the information recovered from the copy of inode 144015 the file size is 562378 bytes.
Don’t lose your hope, we still have the single indirect block pointer that indicates block 310182
(Ox4bba6) may contain the pointers to the rest of the file.

So, let’s take a look at the content of block 310182, for that we’ll use dcat:

CrootdAkulal workbenchl# dcat -h sdakimg.dd 310182

0 a7bb0400 a8bb0400 ajbb0400 aabbOuOO
1k abbb0400 acbb0400 adbbO400 aebbO400

32 afbb0400 bObbO400 blbbO400 b2bbO400

48 b3bb0400 b4bb0400 b5bb0400 bkbbOuOD

kLY b7bb0400 b8bbO400 b9bb0400 babbOuOO

80 bbbbO400 bcbb0400 bdbbO400 bebbO40D

9k bfbbO400 cObbO400 clbbO400 c2bbO400

112 c3bb0400 c4bb0400 c5bbO400 chkbbOuOD

128 c?7bb0400 c8bb0400 c9bbO400 cabbOuOD

14y cbbb0O400 ccbb0400 cdbbO400 cebbO40D

1kL0 cfbb0O400 dObbO400 dlbbO400 d2bbO400

17k d3bb0400 d4bb0400 d5bb0400 dkbbOuOO

192 d?7bb0400 d8bbO400 d9bb0400 dabbOuOO

208 dbbb0400 dcbbO400 ddbbO400 debbO400

224 dfbb0O400 eObb0400 elbbO400 e2bbO40O0

240 e3bb0400 e4bb0400 eS5bbO400 ekbbOuOD

25k e?7bb0400 e8bb0400 e9bbO400 eabbOuOD

272 ebbb0400 ecbb0400 edbbO400 eebbO4OD

288 efbb0400 fObbO4DO flbbO40DD f2bbOuOD

30y f3bb0400 f4bb0400 fS5bbO400 fhkbbOuOD

320 f?7bb0400 fBbbO4OO0 f9bbO400 fabbOuOD

33k fbbb0400 fcbbO400 fdbbO40D febbOuOD

352 ffbb0400 OO0bcO400 OlbcO400 02bcO4O0

3L4 03bcO400 O4bcO400 O5bcO400 ObbcO4OD

38y 07bcO400 08bcO400 09bcO400 DabcO4OD

400 ObbcO400 OcbcO400 OdbcO400 OebcO4OD

41k 0fbcO400 10bcO400 1lbcO400 12bcO4OD

432 13bc0400 14bc0400 15bcO400 1lkbcO4O0

4ya 17bc0400 18bcO400 19bcO400 labcO4O0

4bY 1bbcO400 lcbcO400 1dbcO400 lebcO4OD e e e e
480 1fbcO400 20bcO400 21bcO400 22bcO400 T T
49k 23bc0400 24bcO0400 0000DOOD 00000DOO Booo St aa.. .
512 00000000 00000000 00000000 00000000 e

Gregorio Narvaez 16

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

5248 00000000 OoOOOOOO OODODOOO OOOOOOOO
54y 0oooo000 OoOOOOOO OOODODOOO OOOOOOOO
CREMOVEDT

The content of block 310182 is a list of data blocks, we presume that they are part of the file, but keep
in mind that these blocks could have been overwritten. The block range is from 310183 to 310308
(Ox4bbaf to 0x4bc24). Finally to recover what we seems be the file we can carve the data with dd using
the block pointers from the inode copy residing in the journal and either manually or with foremost
recover the file.

In the case that the files to recover were fragmented an option would be to carve out the blocks
manually using dd or a similar tool into a single file and then run foremost to see if it figure out what
type of file is and recover it. In this example, luck was on our part and the file was not fragmented, as
can be seen in the block pointers recovered:

CrootdAkulal workbenchl# dd bs=409b skip=3101kL4& count=141 if=sdakimg.dd
of=recover.dd

141+0 records in

141+0 records out

87?753k bytes (578 kB) copied. D0-0031.0458 seconds. 18k MB/s

CrootdAkulal workbenchl# foremost -b 409k -o recovery -t pdf recover-.dd
Processing: recover.dd

| x|

LCrootdAkulal workbenchl# cd recovery

LCrootdAkulal recoveryl# more *.txt

Foremost version 1.5.1 by Jesse Kornblum. Kris Kendall. and Nick Mikus
Audit File

Foremost started at Mon Nov 5 19:59:13 2007

Invocation: foremost -b 409k -o recovery -t pdf recover.dd
Qutput directory: /media/workbench/ext3default/recovery
Configuration file: /usr/local/etc/foremost.conf

File: recover.dd

Start: Mon Nov 5 19:59:13 2007

Length: 5kY4 KB (57753k bytes)

Num Name (bs=409k) Size File O0ffset Comment

0: oooo0oo02.pdf 553 KB 8192
Finish: Mon Nov 5 19:59:13 2007

1 FILES EXTRACTED

Foremost finished at Mon Nov 5 19:59:13 2007

In this case we carved out some blocks before and some blocks after from where the information says
the file could be, foremost will take care of the rest. In figure 3.1 we can see a graphical resume of this
technique:

Gregorio Narvaez 17

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

Fig 3.1: Deleted file recovery using Ext3 journal

Gregorio Narvaez 18

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

4. Special Case: When Ext3 Journal is an External Device

Most of the time you will find the journal was created within the file system but the administrator could
decide where the journal will be, in other words it’s possible that the journal resides in an external
device or file system. Under this scenario tools such as jcat, jls will not work, they will send a
message that says “Cannot determine file system type “.

In this case the administrator has two devices one is sda8 that will be the Ext3 file system; the other
sda9, will be the journal for sda8. To create this configuration a two step process is required; the
administrator will first create the journal with something like this:

CrootdAkulal workbenchl# mke2fs -0 journal_dev -L journal_dev /dev/sda“
mke2fs 1.38 (30-Jun-2005)

Filesystem label=journal_dev

0S type: Linux

Block size=409k (log=2)

Fragment size=409k (log=2)

0 inodes. 722917 blocks

0 blocks (0.00%) reserved for the super user
First data block=0

0 block group

327k8 blocks per group- 327k& fragments per group
0 inodes per group

Superblock backups stored on blocks:

Zeroing journal device: done
CrootdAkulal workbenchI#

The option -0 journal_dev and the option —L set up the label for this device (sda9). As we can see in
this output there are no inodes or block groups, the block size for the journal is 4096 bytes and the
journal is 722917 blocks long, giving us in theory a size of 2.76 GB (722917 by 4096).

The second step creates the actual ext file system on sda8, indicating that its journal will be on sda9.

CrootdAkulal workbenchl# mke2fs -J device=/dev/sdafd -L ext3dexternal /dev/sdaéd
mke2fs 1-38 (30-Jun-2005)
Filesystem label=ext3external
0S type: Linux
Block size=409k (log=2)
Fragment size=409k (log=2)
3L8000 inodes. 7349L5 blocks
36748 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=754974720
23 block groups
327k8 blocks per group- 327k& fragments per group
1L000 inodes per group
Superblock backups stored on blocks:
327k8-. 98304. 1k3840-. 22937k. 294912

Writing inode tables: done

Adding journal to device /dev/sda9: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 29 mounts or

Gregorio Narvaez 19

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

180 days~ whichever comes first- Use tune2fs -c or -i to override.
CrootdAkulal workbenchl#

If you want to recreate this scenario just remember that both devices must be created with the same
block size value, this fact is mentioned in the man page for mke2fs [Ts’o0 2002].

Now a forensic investigator might not know the exact configuration of the system being analyzed, so
he or she will have to find out where the journal resides. There are several options at hand. One is to
use fsstat from TSK on the device or image, another option is use dumpe2fs also over the
device/image. Here’s the output from dumpe2fs:

CrootdAkulal workbenchl# dumpe2fs sda9img.dd
dumpe2fs 1.38 (30-Jun-2005)

Filesystem volume name: journal_dev

Last mounted on: <not available>

Filesystem UUID: 52559687-e4a5-U4c?9-bBal-fbccOOkafOck
Filesystem magic number: 0OxEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: journal_dev

Default mount options: (none)

CREMOVED]

Journal block size: 409k

Journal length: 722917

Journal first block: =

Journal sequence: Ox00000D031

Journal start: 0

Journal number of users: 1

Journal users: fd?dekbe-490b-4Yaka-alak-9d093a09170d

CrootdAkulal workbenchl# dumpe2fs sdadimg.dd
dumpe2fs 1.38 (30-Jun-2005)

Filesystem volume name: ext3external

Last mounted on: <not available>

Filesystem UUID: fd?dekbe-490b-4aka-alak-9d093a09170d
Filesystem magic number: 0OxEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: has_journal ext_attr resize_inode filetype sparse_super
large_file

CREMOVED]

Journal UUID: 52559687-e4ab-4c7?9-bBal~-fbccOOkafOck
Journal device: OxD&09

Default directory hash: tea

Directory Hash Seed: c2c2cecbl-ddal-47c9-9k2c-3e5f45b?789b
CREMOVED]

This output shows us that sda9 is the journal of sda8. We know learn this by comparing the Journal
UUID from sda8 with Filesystem UUID from sda9. They match!

4.1 Journal Structure

Well, don’t despair if you encounter an scenario like the one described above, Brian Carrier author of
File System Forensic Analysis [Carrier 2005] has done a superb job of detailing the structures and inner
workings of most common file systems in use, including Ext2/Ext3. From this reference it’s possible to
obtain a detailed description of the journal structure. But there is a caveat: these structures are focused
on a journal inside of an Ext3 file system. If we recall the output from the creation of the external
journal there are no inodes to speak of, so how this type of journal is structured? To start answering that
question lets execute the following command:

Gregorio Narvaez 20

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

blkid

/dev/sdal: LABEL="workbench" UUID="5c?fe035-0eb3-4bb0-9337-2987dbkbkklcf"
TYPE="ext2"

/dev/sdabk: LABEL="baseline"” UUID="balb82clb-93e5-459f-8db5-k7eclcaae3dcl”
TYPE="ext2"

/dev/sdak: LABEL="ext3default"™ UUID="L2a95b00-514b-4918-84fL=-7?731dlatld2a"
SEC_TYPE="ext2™ TYPE="ext3"

/dev/sda?: LABEL="test" UUID="d25lckbk9-91dk-442f-bacf-3f8a2330L5fa"
SEC_TYPE="ext2"™ TYPE="ext3"

/dev/sdad: LABEL="ext3external"™ UUID="fd?dekbe-490b-4Yaka-alak-9d093a09170d"
SEC_TYPE="ext2™ TYPE="ext3"

/dev/sdaf: LABEL="journal_dev"™ UUID="52559k87-e4a5-U4c?9-bB8al-fbccO0OkafOcu"
TYPE="jbd"

As we can see sda9 is being reported as “jbd”. JBD stands for Journal Block Device. Ext3 actually does
not interact directly with the OS, instead there is a mechanism called JBD. Sovani makes a clear

definition on this: “A journaling filesystem first records all the operations it has
performed in the journal. Once the set of operations that is part of one single
atomic operation has completed and been recorded in the journal, only then is it

written to the actual block device.” [Sovani 2006]. The JBD structure described in
Sovani’s article is at the core the same as an Ext3 file system. The difference between a standard Ext3
with the journal as part of the file system and a journal in an external device is basically that the
external device contains only the journal and no other structures but the journal structures in both are
the same.

In order to decode this external journal a series of scripts were developed, the source is included for
revision, and comments. The analysis the first script does, is to automate the process to decode each
block from the journal. The script is written using awk and takes as input a hex dump from the device
that acts as journal.

There are five types of blocks that a journal could have, the first four are administrative and are known

| as: Superblock, Descriptor, Commit and Revoke blocks. The fifth type is the one that stores
the metadata or data that is recorded in the journal depending on the journal operation mode. Each
administrative block type holds information related to its type, but all four administrative blocks share
the same format on the first 12 bytes. This common structure receives the name of “header”. The fifth
type can be either metadata blocks that holds copies of the inodes being modified in the file system, if
the journal is using ordered/write back modes and content blocks if the journal is in journaled mode.
The internal structures for the different types of block are resumed on the following tables and are
based from Carter’s work on Ext3 forensics [Carter 2005]. For simplicity only the fields that were of
interest in the development of the scripts are shown:

Table 4.1: Journal administrative block standard header

Byte Range Description Values
0-3 Signature 0xc03b3998
4-7 Block type 1 Descriptor
2 Commit
3 Superblock Versionl
4 Superblock Version 2
5 Revoke
8-11 Sequence number Any
Gregorio Narvaez 21

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

Table 4.2: Journal Superblock

Byte Range Description

0-11 Standard Header

12-15 Journal Block Size

16-19 Number of Journal blocks

20-23 Journal block where the journal actually start
24-27 Sequence number of first transaction

28-31 Journal block of first transaction

Table 4.3: Journal descriptor block

Byte Range Description Values

0-11 Standard Header See table 1

12-15 File system block Any

16-19 Entry flags 0x01 Journal block has escaped
(Note 1)

0x02 Entry has the same UUID as

the previous (SAME_UUID)

0x04 Block was deleted by current

transaction (currently not in use)

0x08 Last entry in descriptor block
20-23 UUID (Does not exist if

SAME_UUID flag is set)
Note 1: The value 0x01 it is to indicate that the block has the same value as the signature

Table 4.4: Journal commit block

Byte Range Description
0-11 Standard Header

Table 4.5: Journal revoke block

Byte Range Description

0-11 Standard Header

12-15 Size in bytes of revoke data

16-SIZE List of 4-byte file system block addresses being revoked

Before we start with decoding it’s necessary to mention that the notation used by the journal for storing
the information of all administrative blocks is big endian and it’s not platform dependent, but
remember that if you are looking to one of the metadata/content blocks the notation will depend on the
system that originates it. Here are some examples of how to apply the information on the tables to
manually decode different types of journal blocks.

Gregorio Narvaez 22

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

In the first example we are reading the first block that is part of the journal skipping block 0 from the
file system:

CrootdAkulal ext3externall# dd bs=409k skip=1 count 1 if=sda9img.dd | xxd | less
000D000: cbD3b 3998 0000 DDO4 OODOD ODOO DOOD 1000 -39« ceeecnnenn

0000010: O0O0b O7e5 OOOO DOO2 OOOO OO31 0OOOO ODOO e eeveenenn. L....
0ooo0=20: 0000 OOOO OOOO DOOO OODO OODOOY1 OOCD 0000 e e eveeeeeeneenn
0000030: 5255 9687 eda5 4c?9 bBal fbcc OD0Oba fOc4 RU.-..Ly-.-.. EE
ooooo4o: 0OOO OOODOY1 OOOO ODOO OOOO OOOO DOOO 0OODO v eveveeeceennnns
CREMOVED]

00000a0: 0OOOO OOOO OOCOO DOOC OOODOO OOOO OOOD 0000 - e e eveeeeeaneans
00000b0: 0OOOO OOOO OOCOO DOOC OOODOO OOOO OOOD 0000 - e e e v e eeenaneans
00000cO: 0OO0OO0 OOOO OOOO DOOC OOODOO OOOO OOOD 0000 e e eveeeeecaneens
00000d0: 0000 0OOOO OOOO DOOC OODOO OOOO OOOD 0000w e e eveeeencneens
00000e0: OOOO OOODO OOOO DOOO OODO OODOO OOCD 0000 e eeveeeeeennene
ooooofo: 0000 OOOO OOOO DOOO OODO OOOO OOCD 0000 e e v e eeeneene
0000100: fd?d ebbe 490b Yaka aOak 9d09 3a09 170d .}..I.dj.---:...
CREMOVEDT

As the table at the beginning of this section indicates the first 4 bytes (0-3) will always contain a
specific signature (0xc03b3998), this indicates that this is an administrative block in the journal. In
bytes 4 and 7 we can find out what type of administrative block we are looking at. Here the value is
0x04, and according to the tables it’s the journal superblock

Next is a descriptor block, again we can observe the signature in bytes 0 to 3 and the type in bytes 4 to
7. The value of 0x01 in these bytes gives us the type of block; in this case we are dealing with a
descriptor block. The following 4 bytes gives us the sequence number in this case is 47 (0x2f).

CrootdAkulal ext3externall# dd bs=409k skip=2 count 1 if= sdaﬁlmg dd | xxd | less
0000000: cb3b 3998 00DO0 OO0l OOOO DO2f 0OOOO OOb? -539-..-.... /.

00000L0: ODOO DOO& OOODD DOOO OODOD DODOO OOOD 0000« v e e v e e enennenn

0000020: 0OD0O0 DOOD OODD DOOO OODD ODOO DODD 0000 e e e v e e neeennens

0000030: OD0D0 DOOD OODD DOOO OODD DODOO DOODD 0000 e e e v e e eneennens

000OD0O40: ODOO DOOD OODD DOOO OODD DODOO DODD 0000 e e e v e e e e e annens

000OD0D50: ODOO DOOD OODD DOOO OOODD DODOOD DODD 0000 e e e v e e neeennens

0D00OD0OLO: ODOO DOOD OODOD DOOO OODD DODODOD DOODD 0000 e e e v e e e e e ennens

0DDO0O0OY0: OODOO DDOO OOOD DOOO DOOODOD DODODO DOOD 0000 e e e v e e eenennenn

CREMOVED]

Also we can observe that the FS block being modified and hence copied to the journal is 183 (0xb7)
and the following 4 bytes indicates that this is the last entry for this transaction (0x08).

A commit block is very simple because only uses the standard header (bytes 0 to 11). Here it shows
the signature (c03b3998), type (2) and sequence number (0x2f).

CrootdAkulal ext3externall# dd bs=409k skip=4 count 1 if= sdaﬂlmg dd | xxd | less
pooooOo0: <cO03b 3998 0000 0002 DODD DO2f OOOO OODD -539.-ceee.. /-

DD0O0O0X0: 0OOOO DDOD OOOD DOOO DDODOOD OOOD DOOO D000 e v e e e eveeeeeennn

DDO0O020: 0OOOO DDOD OOOD DOOO DDOOD OOOD DOOO D000 e v e e e eveeeeeennn

0D0O0030: 0000 DOOD ODOOD OOOO DOOOD OODOD DOOOO DODD e v e e e e eeeeeeennn

p00O0O0O40: 0OOOO0 DOOD ODOOD OODOO DOOOD OODOD DOOO DODD e v e e e e eeeneeennn

0DO0O0OO050: OOOO DOOOO OOOODO OOOO OOODO OOOOD DOOOO D000 e e e e eveeneeennn

0D00O0O0LO: OOOO DOOOO OOODO OOOO ODOODO OOOOD OOOO DOOD0 . e e e e v evneeennn

pDOO0OOY0: 0OOOO DODDOO OOOD OOOO ODODO OOOD DOOO D000 e v e e v eeneacnns

CREMOVEDT

The last example shows a revoke block. Here we can see the signature, type and transaction sequence

Gregorio Narvaez 23

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

number. What is interesting is that shows on bytes 12 to 15 the size in bytes of data being revoked, in
this case 248 bytes (0xf8), the rest is a list of 4 byte block addresses that will be revoked.

CrootdAkulal ext3externall# dd bs=409k skip=k count 1 if=sda9img.dd | xxd | less
000D000: cD3b 3998 0OOO0 DOOS5 OODOD DOD2c DODD ODf8 -539-..ee... aeen
00D00L0: DOOb 1556 0O0O0a ef55 0O0OO0b 1957 DOOa eb54 ...V... .
0o00020: DOOb Ods4 0OOOb 2b94 DO0O0e f?57 DOOb 1155 ...T..&.. ..
0000D030: DODa f35L 0O0O0Ob 0552 0O00Ob 2292 DODa e35F ...V...R.."....
c..S.. .
S

0
=
T N e

0000040: D00OOb 0953 000b 2b93 000a df50 00D0a c5dO
0000050: 0OD0a e?53 000a e352 0000 O7cb 000D Obcc

D0000OLO: DODOa ff59 0ODO0O0 Obcd ODDOa fb5as 000b ld58 .- oYeroo... XX
poooo70: 0OOOb 2159 OOOO L3d4 ODDO L7d5 0ODDa bé&0O - - !'Yereeoeooonns
D0000&0: 0000 17de DDOa b&0d 0ODDa ckud 000a bcOf e eenean.. Meouo
0o000090: 000a cauf O00a c5cf D0O0a bcOe 0OD0a cale +eeQeeceeennan. N
D0000a0: DOD0O0a clce DOD0a 81Lfb ODDO 1823 0000 lc2d4 e veeeann. H...5%
D0000bO: 0ODOOO0 lc25 O0DO0 Dekd DODO D3ed 0ODODOO 129 - e Zeeehewoaona. i
D0000cD: 0000 l2ka 0O0Da d9a5 D0O0a dS5ad4 000b 3424 .« e e jeeeewneans s
pD0000d0O: DOD0a ddak 0O0O0Ob 3022 0O0D0a cdal 000b 3423 - - ... [A, y#
D000De0: 0ODO0a dla3d 0O0O0a dlace 0O00b 2dec 0O0O0Ob 29ea -cveveeens —ee)

00000f0: 0O0Ob 2deb 0O00a bead 0000 OOOO 0OOCD 0000 «e=cveeeencnnnnn
0000100: 0OOOO OOOO OOCOO DOOC OOODOO OOOO OOOD 0000w e e eveeeeaaneann
0000110: OOOO OOOO OOCOO DOOC OOOO OOOO OOOD 0000« e e v eeeeecneenn
0000120: 0000 0OOOO OOOO DOOC OODOO OOOO OOOD 0000 « e e eveeeeecneens
CREMOVED]

4.2 How to Automate Journal Decoding

Now applying the information on how to read the administrative blocks of a journal manually, a script
named journal.awk was developed and here it is:

#Ver 1.00
#November L 2007
#Author: Gregorio Narvaez Jr

#Initialize variables

¥ <sig> contains the signature that every administrative block has in the first Y4
bytes of the header

<rec>: is the counter of the lines in the output

<descriptor>: its a flag that indicates that indicates two things:

#1. That a descriptor block has been found

#2. What analysis case the script will be considered

#If <block> is set to 1 will print the corresponding header and will set the
variable

#<ind> which will help to make the math for printing the second column as the
number of bytes

or as blocks. For the examples if "block=1". <ind> is being set to 409k (block
size of our

examples)

BEGIN {

sig="c03b3998"

flags=0

rec=0

descriptor=0
#Prints the value of option block (0/1) that is passed when the script is invoked
with -v block

print "Signature " sig

printf "Options: block=%s\n". strtonum(block)

if (block==1) {

Gregorio Narvaez 24

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

print "Rec: JBDblkoff: Description:"
ind=409k
factor=1
}
else if (block==0) {
print "Rec: JBDbyteoff: Description:™3 ind=1l3 factor=409k

}
else {
print "Not a Valid parameter use -v block=011"3
exit
}
¥

#For deployment the script should be changed so ind is passed as a parameter or to
#obtain the block size by other means like calling dumpe2fs

#Here is where the decoding process takes place for each line of input
#Remeber the input should be a dd stream of blocks formated as a hex dump or
#a file that contains such output

Example 1:

dd if=/dev/sda’ | xxd > test.xxd

awk -v block=0 -f journal.awk test.xxd | less

Example 2:

dd if=/dev/sdad9 | xxd | awk =-v block=1l -f journal.awk | less

In a future a small shell script will be created to hide the complexity of
the use of this script and act more like a single command

R ettt D atadaiale bl Analysis -GG -———————mmmmmmmmm e e
<JBD> contains the offset in bytes where the 1line begins. this 1is field
position 1 (%1)

#<test> holds the values of the fields 2 and 3 to check if we are looking at the
signature

#of an administrative block (Oxc03b3998)

#If comparison is true then we have found the beginning of an Administrative block
<type> contains the value of field 5 on the hex dump- this field allows to
decide what type

of administrative block we have found

{

test=52%3

if (test==sig) {
JBD="0x"%1
JBDo=strtonum(JBD)/strtonum(ind)
type=55

seqn="0x"shbs?
Type 1 is a Descriptor block
if (type=="0001")
{

printf "Z%d 7Zs Descriptor block (seqg Z%s)\n"a
strtonum(rec). JBDo. strtonum(segn)

rec++

fsblk="0x"s8%9

jblkc=1

printf "xd Zs FS Block Z%s\n". strtonum(rec),

JBDo+(jblkcxfactor) . strtonum(fsblk)
#Set descriptor flag indicating the first case of analysis for a descriptor block
descriptor=1
jblkc++
}
Type 2 is a Commit block
else if (type=="0002")
{

Gregorio Narvaez 25

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

printf "xd Zs Commit block (seq Z%s)\n"a
strtonum(rec). JBDo. strtonum(segn)
descriptor=0

}
#Type 3 and 4 indicates a Journal Superblock
else if (type=="0003") printf "Zd Zs Superblock Ver 1 (seq
%Zs)\n". JBDo. strtonum(segn)
else if (type=="0004") printf "Zd Zs Superblock Ver 2 (seq

%Zs)\n". strtonum(rec) . JBDo. strtonum(seqgn)
#Type 5 Indicates a revoke block
else if (type=="0005™)
{
printf "xd Zs Revoke block (seq “s)\n"-
strtonum(rec) . JBDo. strtonum(seqgn)
descriptor=0
}
#Failsafe in case we find something unexpected
else printf "%d: OPSSS Not recognized: %s\n". strtonum(rec). JBDo
rec++
}
Try to find the flags that indicates we already read the last block entry in a
descriptor block
else if (descriptor==1) {
flags=%3
if (flags=="0008" Il flags=="0009" I flags=="000a" Il
flags=="000b") descriptor=0
#Set descriptor flag indicating the second case of analysis for a descriptor block
else descriptor=2
}
else if (descriptor==2) {
fsblk="0Ox"s4s5

flags=s7

printf "xd Zs FS Block “s\n". strtonum(rec)s
JBDo+(jblkcxfactor)a strtonum(fsblk)

rec++

jblkc++

if (flags=="0008" Il flags=="0009" Il flags=="000a" I

flags=="000b") descriptor=0
#Set descriptor flag indicating the third case of analysis for a descriptor block

else {
fsblk="0x"%8%9
printf "Z%d Zs FS Block %s\n". strtonum(rec)-
JBDo+(jblkcxfactor)a strtonum(fsblk)
rec++
jblkc++
descriptor=3
¥
}
else if (descriptor==3) {
flags=%3
if (flags=="0008" Il flags=="0009" I flags=="000a" Il
flags=="000b") descriptor=0
else {
fsblk="0Ox"sUs5
printf "Z%d Zs FS Block Zs\n". strtonum(rec)a
JBDo+(jblkcxfactor)a strtonum(fsblk)
rec++
jblkc++
flags=s7?
if (flags=="0008" || flags=="0009" || flags=="000a" |II
flags=="000b") descriptor=0
else {
fsblk="0x"%8%9
printf "Z%d Zs FS Block Zs\n".
Gregorio Narvaez 26

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

strtonum(rec). JBDo+(jblkcxfactor). strtonum(fsblk)
rec++
jblkc++
}

}
}
#Let”s clarify the analysis of the Descriptor block:
#By analyzing a lot of blocks from the external journal it was noticed two things:

#The Descriptor block contains a list of the FS block that were being updated by
that transaction

#The Descriptor block present three analysis cases:

#Case 1l: For the second 1k (Lk-31) bytes of the block (line 2 in the hex dump) we
look if the FS block read in

#bytes 1l2-15 is the last entry in the Descriptor being analyzed using field %3
#Case 2: Is to analyze bytes (32-47) the third line of hex dump. We look for flags
that indicates

the last entry on descriptor has been read- We use field %7 for comparison-
Block address are located at

fields $U-%5 and 8-%9

#Case 3: to analyze from byte 48 and onwards until a flag that indicates the last
entry on the Descriptor. From

#the fourth line until the end of the block in the hex dump a pattern is repeated.
This pattern is

field %$3:flags- fields sU4s5 FS block. field %7 flags- fields FS block

#The reason to discard field %2 and field %k for the flags is that maximum value
under for the flags combining

all of them is OxO0f. hence the first 2 significant bytes (field %2 or filed %3)
will be D000 making them

redundant.

#The possible combination for the flags that indicates a last entry condition are:
D008 Last entry in Descriptor

0009 Last entry (0x08) + Journal block has been escaped (0x01)

D00a Last entry (0x08) + Entry has the same UUID (0Ox02)

000b Last entry (0x08) + Entry has the same UUID (Ox02) + Journal block has been
escaped (Ox01)

#Any combination <considering the value 0Ox0O4 (Block was deleted by this
transaction) was not considered
to check is last entry condition occurred because is not currently in use

To invoke the scripts it is necessary to pass a parameter —v block=0]1. It is a flag to activate a
format option for the output if block is set to 1 the script will show the offset from the beginning of the
file system in blocks in the second column, if set to O will display the offset in bytes in the second
column,

The input source can be the result of a device being read with dd and formatted with xxd or a file that
received that treatment previously. Here is the output of the script against sda9 image (the external
journal)

CrootdAkulal workbenchl# dd bs=409t count=10 if=sdaf9img.dd | xxd | awk -v block=1l
-f journal.awk

10+0 records in

10+0 records out

40960 bytes (4l kB) copied. 0-0001k3428 seconds. 251 MB/s

Signature c03b3998

Options: block=1l

Rec: JBDblkoff: Description:

Gregorio Narvaez 27

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

Superblock Ver 2 (seq 0)
Descriptor block (seq 47)
FS Block 183

Commit block (seq u7)
Commit block (seq 43)
Revoke block (seq uiy)
Descriptor block (seq u4)
FS Block kL&8130

AN FwWwnueEO
o0 ~NTrnnFfwniue

FS Block O
0 FS Block b8&lL28

10 11 FS Block 1

11 12 FS Block k88129
= 13 FS Block 72089k
13 Ly FS Block 181

14 15 FS Block k&3

15 1k FS Block 183

Croot@dAkulal workbenchl#

And finally we have a way to read an external journal! Now the same steps to recover a deleted file can
be applied on a case that involves an external journal.

4.3 Verification against jls on Ext3 Internal Journal (sda6)

Other way to check the validity of this script was applying it to an Ext3 file system with internal log;
we use sda6 to test it. Here are the two outputs side by side; on the left the journal obtained via jls, on
the right what our script yield.

Table 4.6: jls vs journal.awk on sda6

jls /dev/sdak lless dd bs=409k count=1000 if=/dev/sdabk | xxd |
awk -v block=0 -f journal-awk | less

JBlk Descriptrion Signature c03b3998

0: Superblock (seq: 0) Options: block=0

L: Unallocated Descriptor Block (seq: | Rec: JBDbyteoff: Description:

1k) 0 282214y Superblock Ver 2 (seq

2: Unallocated FS Block 327ka2 0)

3: Unallocated Commit Block (seq: 1h) 1 282ka2u0 Descriptor block (seq

4: Unallocated Descriptor Block (seqg: | 1k)

17) = 283033k FS Block 327k&2

5: Unallocated FS Block 1l&2 3 2634432 Commit block (seq 1hk)

b: Unallocated FS Block 1 Yy 2838528 Descriptor block (seq

7 Unallocated FS Block 143 1?)

a: Unallocated FS Block 295595 5 2éu2key FS Block a2

9: Unallocated FS Block k&3 b 284k720 FS Block 1

10: Unallocated FS Block 181 ? 285081k FS Block 183

1L: Unallocated FS Block 1712k 8 2854912 FS Block 295595

le2: Unallocated FS Block 17185 9 2459008 FS Block k&3

13: Unallocated Commit Block (seq: 17) 10 c8k310Y FS Block 181

Ly: Unallocated Commit Block (seq: 1.8) 11 cék7200 FS Block 1712k

15: Unallocated Commit Block (seq: 19) 12 287129k FS Block 17185

1b: Unallocated FS Block Unknown 13 2879488 Commit block (seq

17: Unallocated FS Block Unknown 1?7

18: Unallocated FS Block Unknown Ly 2883584 Commit block (seq

19: Unallocated FS Block Unknown 14)

20: Unallocated FS Block Unknown 15 28487L480 Commit block (seq

2l: Unallocated FS Block Unknown 19)

31: Unallocated FS Block Unknown 1k 29k550Y4 Commit block (seq 3)

32: Unallocated FS Block Unknown 17 29k9k00 Descriptor block

33: Unallocated FS Block Unknown (seq W)

34: Unallocated Commit Block (seq: 3) 18 2973k9k FS Block 295095

35: Unallocated Descriptor Block (seq: W) 19 2977792 FS Block 183

3k: Unallocated FS Block 295095

37: Unallocated FS Block 143

Gregorio Narvaez 28

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

The script gave us the same information in terms of type of block and transaction sequence number,
where it diverge is that ils gives the status of the journal block being displayed (allocated/unallocated)
and the script at the time of this writing does not, but the script gives the offset in bytes/blocks of the of
the administrative blocks or the copy of data/metadata blocks where they can be found (2" column);
that information is very helpful to extract any of the blocks and get more information from them.

For example, if we require extracting the copy of the inode table as in the example of section 3 we can
use the following shell script:

ejcat-sh ver 1.0

Script to extrac an specific inode from an external journal transaction

Author: Gregorio Narvaez Jr

November b 2007

<skiplblk> offset in blocks within the journal where the block was copied (2nd

col value from awk script)

<blksize>. <isize> block and inode sizes in bytes
<skipi> offset in blocks for the inode table

<device> the source to analyze

skipblk=51
blksize=%2
isize=%3
skipi=%((s4-1))
device=%5

echo "This script need the following information: Transaction starting and ending
blocks."

echo "journal block size- inodesize. inode entry. and device/dd image to read-
echo "example:

echo "./ejcat 49 409k 128 15 /dev/sdafd"

echo "will result in the following command:"™

echo "dd bs=%blksize skip=%skipblk count=1 if=%device | dd bs=%isize skip=%skipi
count=1 | xxd"

dd bs=%blksize skip=%skipblk count=1 if=sdevice | dd bs=%isize skip=%skipi count=1
I xxd

The script is named ejcat.sh and stands for external jcat, and the idea is to extract a specific inode from
the inode table copy in the journal. This script requires the offset in blocks where there’s an entry in the
journal with a block that is part of the inode table and holds the inode of interest; then the inode and file
system block sizes, and finally the inode entry and device/image to read.

To make it clear and validate its use let’s resolve the same problem described in section 3 (pagel14-15),
where we were recovering a file whose inode was 144015, as we discussed before the block in the
inode table where inode 144015 is located was block 295095 which is the beginning of the inode table
and the inode 144015 it’s the 15" entry in the table and we need to retrieve that inode.

CrootdAkulal workbenchl# dd bs=409k count=10000 if=sdabkimg.dd | xxd | awk =-v
block=1 -f journal.awk

Signature c03b3998

Options: block=1

Rec: JBDblkoff: Description:

0 L&9 Superblock Ver 2 (seq 0)

1 k90 Descriptor block (seq 2)

2 b9l FS Block 183

3 k92 Commit block (seq 2)

4 k93 Descriptor block (seq 3)

Gregorio Narvaez 29

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

5 B9y FS Block 295094

b k95 FS Block 1

? b9k FS Block 295095

8 k97 FS Block 295093

9 k98 FS Block 295595

10 bL99 FS Block O

1l 700 FS Block 303104

12 701 FS Block 183

CREMOVED]

CrootdAkulal workbenchl# sh ejcat.sh b9k 409k 128 15 sdakimg-dd
CREMOVED]

0000000 : au48l D0OOD cafd4 D800 blb3 824k bcecl3 2eld? +veevnen... Fl..6
0000010: dd9t &24bL 0000 DOOO OODOOD DOLO0 LOOY ODOO « v eFewewween T

0000020: 0000 0OOOO OOOO DOOC 9abb 0400 9bbb OO0 «eecveeeeecnnan.
0000030: 9cbb 0400 9dbb 0400 9ebb 0400 9fbb O4OO0 «cecveeeeneena..
0000040: aObb 0400 albb 0400 acbb 0400 a3bb O4HOO ..o veeeeeanna.n
0000050: adbb 0400 aSbb 0400 akbb 0400 0000 0000 @ «cecveeveaennnnn
00000LO: DODOO 0OODO0 bcba chda abBc2 O400 DOOO 0OODO «-veleveceennnn.
ooooo?0: 0OOO OODO OOOO ODOO OOOO OOOO DOOO OODO v eeeveeeceennnn.

If we compare this result with the output on page 15 it is the same result, and now the inode can be
decoded using the same way technique as we did in section 3.

Gregorio Narvaez 30

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

5. Time Machine Reloaded: File Historical Activity with Ext3
Journal

As we are going to discuss in this section there is an advantage when we are talking about MACtime.
(mtime, atime, ctime, dtime)inan Ext3 file system. Just to refresh the memory the MACtimes
are the time values on every file on Ext2/Ext3. Here is a small description of each one:

= Mtime (Modify time): This value is updated when the content of a file/directory is changed

= Atime (Access time): This value is updated every time the content of a file/directory is read, or
copied or moved to a new volume.

= Ctime (Change time): This value represents the last time the metadata (inode) of a file has
changed. Events that can trigger an update of this value are the creation of a file and when the
permissions or ownership of a file are changed.

= Dtime: (Delete time): This value is set only when the file is deleted, and cleared when the
inode is allocated.

By analyzing a file’s MACtimes it’s possible to reconstruct the activity of such file within the file
system. For example when a file is created the mtime, atime and ctime are updated with the time of
creation and dtime is set to zero, and the parent directory’s mtime and ctime are updated. Another good
example is when a file is deleted; the mtime, atime and ctime are the same as the dtime which is set
with the time of deletion.

On Ext2 this values represents a good piece of evidence that could give the forensic analyst a timeline
of the events that occurred during an incident, unfortunately in Ext2, MACtimes only shows the most
recent activity (the last) and any prior indication is lost. But in an Ext3 file system the journal becomes
an historical file activity archive,

As we have learned the journal at least records the metadata changes, in other words inodes. And as we
all know inodes stores among other things the MACtimes of a file. Hence another opportunity arises to
take advantage of the journal. If we could recover all the inode copies for a particular file, then we
could see the historical activity of that file, not only the last one [Farmer & Venema. 2007].

One tool that is quite helpful is debugfs, traditionally this tool has been used for data recovery in a
corrupted file system; but let’s see how this tool can help us with this particular task. For this part we
use an Ext3 file system on sda6 and we take a look on the file “reference.pdf”. To maintain evidence
integrity it is advisable to run debugfs with the —c option, which makes to act with the file system or
image in a read only mode.

If we execute debugfs —c —R "logdump -i <144015>" sda6img.dd | grep atime the
debugfs will show us al the metadata related to a file named reference.pdf whose inode was 144015
(example from section 3) on /dev/sda6 image, then this output is filtered using grep to look for the
atime, in the same way we obtained ctime, mtime and dtime.

CrootdAkulal workbenchl# debugfs -c -R 'logdump -i <1u4401l5>' sdakimg-ddligrep atime
debugfs 1.38 (30-Jun-2005)
sdakimg-dd: catastrophic mode - not reading inode or group bitmaps

atime: Ox4kA2b3bl -- Wed Jun 27 1L4:00:01 2007

Gregorio Narvaez 31

© SANS Institute 2007, Author retains full rights.

atime:
atime:
atime:
atime:
atime:
atime:
atime:

Ox4k&2b3bl
Ox47?2eladD
Ox47?2eladl
Ox47?2eladl
Ox47?2eladld
Ox47?2ebdBae
Ox47?2edBae

Taking advantage of Ext3 journaling file system in a forensic investigation

CrootdAkulal workbenchl#
debugfs 1.38 (30-Jun-2005)
catastrophic

sdabkimg.dd:
mtime:
mtime:
mtime:
mtime:
mtime:
mtime:
mtime:
mtime:

Ox4bk&29kdd
Ox4k829kdd
Ox4k829kdd
Ox4k829kLdd
Ox4k829kdd
Ox4k829kdd
Ox4k829kLdd
Ox47?2ebBba

CrootdAkulal workbenchI#
debugfs 1.38 (30-Jun-2005)
catastrophic

sdakimg.dd:
ctime:
ctime:
ctime:
ctime:
ctime:
ctime:
ctime:
ctime:

Ox47?2el3kc
Ox47?2el3kc
Ox47?2el3kc
Ox47?2el3kc
Ox47?2el3kc
Ox47?2el3kc
Ox47?2el3kc
Ox47?2ebBba

CrootdAkulal workbenchl#

debugfs 1-.38 (30-Jun-2005)
catastrophic mode - not

Ox4?2ebd8ba -- Sun Nov Y4

sdabkimg.dd:
dtime:

Wed Jun 27
Sun Nov Y4
Sun Nov 4
Sun Nov 4
Sun Nov 4
Sun Nov 4
Sun Nov 4
debugfs -c

mode - not
Wed Jun 27
Wed Jun 27
Wed Jun 27
Wed Jun 27
Wed Jun 27
Wed Jun 27
Wed Jun 27
Sun Nov Y4
debugfs -c

mode - not
Sun Nov 4
Sun Nov 4
Sun Nov 4
Sun Nov 4
Sun Nov 4
Sun Nov Y4
Sun Nov Y4
Sun Nov Y4
debugfs -c

1y:
13:
13:
13:
13:
2l:
2l:

-R

reading inode or group bitmaps
11:
11:
11:
11:
11:
11:
11:
2l:

-R

reading inode or group bitmaps
le:
l1e:
1e:

reading inode or group bitmaps

00:
17:
17:
17:
17:
Ok:
Ok:
"logdump =-i <L440L5>'

57:
587:
587:
B87:
587:
g87:
g87:
Ok:
"logdump -i <Lu44015>'

4k:
4k:
4k:
tyL:
t4yk:
tY4k:
HETY S
:0bk:
"logdump -i <Luu401L5>'

01
3k
3k
3k
3k
c2c
cc

01
0l
0l
0l
0l
0l
0l
34

o4
o4
o4

34

2007
2007
2007
2007
2007
2007
2007

2007
2007
2007
2007
2007
2007
2007
2007

2007
2007
2007
2007
2007
2007
2007
2007

2l:0k:34 2007

sdakimg-ddligrep mtime

sdakimg-ddligrep ctime

sdakimg-ddlgrep dtime

Now we can see when the activity on the file “reference.pdf”, this output shows that the file was
accessed several times during Sunday noon of November 4 (atime), and finally deleted the same day at
21:06 (dtime). Note how dtime only appears once and mtime, atime and ctime are the same as dtime
when the deletion occurred. All this information was recovered from all the copies that are inside the
journal. If the file system involved was an Ext2 instead of Ext3 we only could_have observed the last
set of MACtimes, in this case when the file was deleted, and miss the prior access events of the file.

Unfortunately there are some limitations with the use of debugfs that we must have present:

= The standard version of debugfs only permits to check one file at the time.

= Sometimes debugfs does not recognize the end of the journal and starts throwing garbage.
= Debugfs does not recognize an external journal.

For the first problem, a patch exists for debugfs [Farmer & Venema. 2004] that allows display all the
MACtimes for multiple files, for the third one even though it’s not possible to use it against an external
journal, it’s feasible to develop a program or script to get the MACtimes, as previously demonstrated

with the journal.awk script used to read the transactions from an external journal.

Gregorio Narvaez

© SANS Institute 2007,

32

Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

6. Conclusions

One benefit of knowing the internals of a file system is that it allows analysis without specialized tools
at hand or we can develop our own if we find a scenario where the actual tools are not working. An
| example is the case of an external journal.

As the research demonstrates Ext3 file systems offers several possibilities that are not available with
Ext2 in terms of forensic evidence:

= File recovery based on the metadata copies from the journal.

= Historical file activity; now it is possible to see repeated activity of files across time as
demonstrated with the use of debugfs.

= |t is possible to analyze an external journal, if the analyst has access to the internal structures
that make up the journal.

But as all things in life everything comes with a compromise. The journal due its cyclic nature tends to
overwrite itself either because the device is being remounted or because it runs out of space and starts
using the beginning of the journal to keep recording changes. This makes the life expectancy of the
content of the journal very short, especially if we consider that the size of the journal in most cases it’s
fixed to 128 MB, keep in mind that in theory the maximum size can be 102400 file system blocks or
400MB if block size is 4096 bytes. That makes the use of the journal useful for cases where the time of
the incident is recent. A possible exception to this is when the file system under examination has its
journal on an external device. In this scenario that external device in theory could be of any size (The
lab external journal sda9 has a size of 2.76GB) giving a little bit of margin to maneuver to a forensic
analyst.

The script journal.awk demonstrated that the internal structure of the journal it’s mostly the same as in
the internal version, but the script is in early stages of development and needs a more through testing,
also there are improvements to be made as showing the list of file system block being revoked. In the
area of performance, because it’s a script and not a program written on ¢ when dealing with large
amounts of data in the magnitude of Gigabytes, it becomes extremely slow. This was tested against a
2.76GB external journal.

And finally at least in one scenario (external journal) tools like TSK will not work at all, leaving the
forensic investigator to look for other venues. This is resumed in the following table:

Gregorio Narvaez 33

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

Table 6.1: Functionality of tools against different sources

Tool Ext3 FS Ext3 FS External Ext3 FS Ext3 FS External
internal external journal internal external journal
journal journal (device) journal journal (image)
(device) (device) (image) (image)

fsstat (TSK) Y Y N (notel) Y Y N (note 1)

ils (TSK) Y Y N (notel) Y Y N (note 1)

img_cat (TSK) Y Y Y Y Y Y

jIs (TSK) Y N (note2) N(notel) Y N (note 1) N (note 3)

jcat (TSK) Y N (note3) N(notel) Y N (note 3) N (note 1)

dcat(TSK) Y Y N (notel) Y Y N (note 1)

dstat(TSK) Y Y N (notel) Y Y N (note 1)

dumpe2fs Y Y Y Y Y Y

tune2fs Y Y N (noted) Y Y N (note 4)

debugfs Y Y Y Y Y Y

Note 1:Cannot determine file system type

Note 2: Inode value is too small for image (1)

Note 3: Invalid walk range (ext2fs_jblk_walk: end is too large)

Note 4: tune2fs: Filesystem has unsupported feature(s) while trying to open /dev/sda9
Couldn't find valid filesystem superblock.

Note 5: TSK ver 2.09

There is still a lot of thing to do in terms of forensic research on Ext3, among those we could mention
three of them:

= Analysis and forensic impact of the other two Ext3 modes: journaled and write back.

= Data hiding on Ext3 journals. Even doe this type of data will have a very limited life span due
the cyclic nature of the journal, its possible to store some information in the last bytes of the
administrative blocks, specially the commit for a transaction and the journal super block.

= Development of a tool that helps to automate the collection of historical activity contained in
the inode copies in the journal (MACtimes)

| In the hope that this research becomes useful, | wish a happy hunting to all forensic practitioners.

Gregorio Narvaez 34

© SANS Institute 2007, Author retains full rights.

Taking advantage of Ext3 journaling file system in a forensic investigation

7. References
Carter, B. (2005). File system forensic analysis. Ext2 and Ext3 Concepts and Analysis, 437-441.

Carter, B. (2005). Why Recovering a Deleted Ext3 File Is Difficult . . .and why you should back
up important files. Retrieved June 3, 2007 from http://linux.sys-con.com/read/117909.htm

Farmer, D., & Wietse, V (2004). Forensic Discovery. Journaling File Systems and MACtimes,
31-34

Farmer, D., & Wietse, V (2007). Forensic Discovery. 19" Annual FIRST Conference, Retrieved
August 26, 2007 from http://www.first.org/conference/2007/program/presentations.htmi

Linux Ext3 FAQ (2004) Retrieved March 25, 2007 from Linux Ext3 FAQ (2004) Retrieved
March 25, 2007 from http://batleth.sapienti-sat.org/projects/FAQs/ext3-fag.html-

Sovani, K. (2006). Linux: The Journaling Block Device. Retrieved July 15, 2007 from
http://kerneltrap.org/node/6741

Ts’0, T. (2002). mke2fs man page. Retrieved July 20, 2007 from
http://www.netadmintools.com/html/8mke2fs.man.html

Gregorio Narvaez 35

© SANS Institute 2007, Author retains full rights.

