
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Analysis of an Unknown Binary

SANS GCFA Practical Assignment v.1.2

Part 1

Jacob Cunningham

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

 Syntax Conventions ……………………………………………………………1

 Assignment Part 1 - Analyze an Unknown Binary

 Introduction ……………………………………………………………...1

 Binary Details …………………………………………………………...1

 Program Description and Forensic Details…………………………...6

Program Identification ………………………………………………...12

Program Identification Summary……………………………………..20

Legal Implications…………………………………………..………….21

Interview Questions.…………………………………………..………23

Additional Information ………………………...………………………24

References……………………………………………………………..25

Appendix 1-1: readelf output of unknown binary…………………...31

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

unzip –X binary_v1.2.zip
Archive: binary_v1.2.zip
 inflating: atd.md5
 inflating: atd

Syntax Conventions

The text of the document is in 12 point Arial font

Commands executed at the shell, the output of commands, and
references to files, directories or system binaries are all
in 10 or 12 point Courier New font.

Part 1: Analyze an Unknown binary

Introduction

The security of one of my employer’s systems was compromised recently. The
system administrator who responded to the incident found an unknown binary
named atd that was installed by the intruders. The system administrator created
an MD5 checksum of the binary and stored it in a file named atd.md5.The
binary and associated md5 checksum file were then zipped into a file named
binary_v1.2.zip and given to me for analysis.
I analyzed and identified the purpose of the binary using the forensic and reverse
engineering techniques and tools described below.

I set up a PC running RedHat Linux 7.1 to perform the analysis. I connected the
analysis system’s network card to another Linux system via a 10Base-T cross
over cable to monitor network traffic originating from the analysis systems with
the Snort package during the analysis process. I assigned IP addresses in the
private 192.168.100.0/24 range on both the analysis and monitoring hosts.

Binary Details

The first step in the analysis process was to extract the binary from the zip file. I
used the command unzip –X to extract the files. This command extracts the
files in the zip archive and preserves their original user and group (UID/GID)
information.

Figure 1-1: Unzipping the archive

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

The next step in analyzing the unknown binary was to gather basic information
about the binary such as the MAC times (the date and time the file was last
Modified, Accessed or Changed), file size, owner, and permissions.

debugfs is a Linux utility that can examine and edit an ext2 filesystem. I used
this utility to gather the unknown binary’s size, owner, permissions, and MAC
times as shown in Figure 1-2. I accomplished this by first running ls –i atd
which shows me the inode associated with the file. (See part1 for inode
description). I then used debugfs to display the contents of the inode structure
of the inode (34756) associated with the fi le using the command debugfs –R
“stat <34756>” /dev/had1

Figure 1-2: debugfs output

The output from debugfs provided me with the following relevant information
about the unknown binary. (bolded in Figure 1-2)

• The ctime (create time) of the binary is: Fri Jan 24 09:32:19 2003
This reflects when the binary was created (unzipped from the zipfile) on
my system.

• The atime (last access time) of the binary is: Thu Aug 22 14:57:54 2002
This represents the last time the file was accessed. The time could
indicate when the intruder accessed the file, or when the sys-admin
accessed it to zip it.

• The mtime (last modify time) of the binary is: Thu Aug 22 14:57:54 2002
The represents when the file was last modified. The time could indicate
when the intruder accessed the file, or when the sys-admin accessed it to
zip it.

• The unknown binary, atd, is 15348 bytes in size
• The binary is owned by User 0 (root) and group 0 (root)

ls -i atd
 34756 atd
debugfs -R "stat <34756>" /dev/hda1
debugfs 1.27 (8-Mar-2002)

Inode: 34756 Type: regular Mode: 0644 Flags: 0x0 Version: 1
User: 0 Group: 0 Size: 15348
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 32
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x3e314e73 -- Fri Jan 24 09:32:19 2003
atime: 0x3d653432 -- Thu Aug 22 14:57:54 2002
mtime: 0x3d653432 -- Thu Aug 22 14:57:54 2002
BLOCKS:
196931 196932 196933 196934 196935 196936 196937 196938 196939 196940
196941 196942 196943 196944 196945 196946
TOTAL: 16

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

• The file permissions of the atd binary are 0644.
UNIX file’s permissions contain three attributes.
r – read permission – Allows the user to read the file
w – write permission – Allows the user to write to the file
x – execute permission – Allows the user to execute the file.
There are three categories of users on the system. The user (owner),
users who belong to the same pre-defined group (group) and all other
users on the system (other). Each of these three attributes can be set for
each of the three categories of users. The three permission attributes can
 be represented as letters (r,w,x) or as octal digits (shown below).

Octal: Attribute:

 1 = execute only
 2 = write only
 3 = write and execute
 4 = read only
 5 = read and execute
 6 = read and write
 7 = read and write and execute

The unknown binary file permissions (0644) show that it is read-able and write-
able by the user who owns the file, but is read-only for the group and all other
users.

To ensure that the checksum process didn’t alter the MAC times of the unknown
binary, I verified the MD5 checksum of the binary after gathering MAC time
information with debugfs.
I performed the MD5 checksum of the binary using the /usr/bin/md5sum
program and verified that the value obtained matched the MD5 signature stored
in the atd.md5 file that was packaged with the atd binary. (See Figure 1-3)
This indicates that my analysis so far had not changed the binary.

Figure 1-3: md5sum output

md5sum calculates a hash of binary data using the MD5 hashing algorithm (as
described in RFC 1321) . This MD5 hash or checksum of the data is unique only
to that data. If the data is modified, the MD5 calculation will not match the
previous one. For all intents and purposes it is impossible for two different pieces
of data or files to have the same MD5 checksum. Consistently reproducing the
same MD5 checksum for the same piece of data proves that the data has not

md5sum atd
48e8e8ed3052cbf637e638fa82bdc566 atd

cat atd.md5
48e8e8ed3052cbf637e638fa82bdc566 atd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

file atd

atd: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), stripped

been modified. This concept is extremely important in the field of computer
forensics, and is used to prove the integrity of evidence.

Next, I ran /usr/bin/file on the binary, as shown in Figure 1-4 to determine
the file type.

Figure 1-4 out of file command

The output of file in Figure 1-4 shows the unknown binary is a 32-bit ELF
executable compiled for the Intel 80386 architecture. This also shows the binary
is dynamically linked and stripped. A dynamically linked binary contains
references to external shared libraries, and accesses code within these shared
libraries when it is executed. A stripped binary is one that has had the symbol
table removed. ELF binaries are only supported on UNIX systems, so I knew I
was not dealing with a DOS/Window’s binary.
After determining the binary was an ELF executable, it seemed odd to me that
the execute permission bits were not set on the file, meaning the file could not be
executed. I decided to determine if the system administrator who zipped the
binary changed the file permissions. To do this, I ran zipinfo –v on
binary_v1.2.zip to see what type of system the zipfile was created on. There was
a lot of output generated from the command, but the significant piece of
information about the zipfile is that it was created on a MS-DOS or NT FAT
system. (Shown in Figure 1-5)

Figure 1-5: Output of zipinfo

The zipfile binary_v1.2.zip was created on an MS-DOS based system so the
original UNIX file permissions were not preserved and it also means that the
MAC times on the unknown binary had been modified by the MS-DOS system.

To prove this I ran debugfs –R “stat <34755>” /dev/hda1 to get the inode
contents of the atd.md5 file that the system administrator included with the
unknown binary.
The atime and mtime of the atd.md5 file are both Thu Aug 22 14:58:08,
which is 15 seconds later than the atime and mtime of the unknown binary, atd.
This proves that the MAC times of the unknown binary were modified by the
system administrator who created the zipfile, and do not represent the MAC
times of the binary as it existed on the compromised system.

zipinfo –v binary_v1.2.zip
….
File system or operating system of origin: MS-DOS, OS/2 or NT FAT
….

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

The next step was to run /usr/bin/strings on the binary in order to
determine what the binary contains for ASCII string data. The strings
command parses a file and shows any ASCII text strings such as comments in
the code, error messages, passwords, author information, and sometimes library
information if the file is dynamically linked. I ran strings with the command line
option –n 1, which prints all string data greater than 1 character in length, rather
than the default length of 4 characters.

Figure 1-6 contains a portion of the strings output containing keywords that
were helpful in determining the function of the unknown binary, and my
interpretation of the meaning of the string data. The strings data was produced
by running the command: /usr/bin/strings –n 1 atd

Figure 1-6: Significant strings output

String data found in binary My interpretation of the string

/lib/ld-linux.so.1
The binary uses ld-linux.so.1 shared library indicating
it was compiled on a Linux system

libc.so.5

The binary is compiled against libc.so.5 shared library
- indicates it was compiled on an older Libc5 version
of Linux. More recent versions of Linux use Libc6

lokid: Client database full status message from daemon, indicates it's lokid
2.0
lokid version: %s Indicates the binary is lokid version (2.0)
XOR
active cryptography: %s

Indicates that it uses XOR cryptography in the
communications

lokid: inactive client <%d> expired from list
[%d] status message from daemon, indicates it's lokid

lokid -p (i|u) [-v (0|1)]
"help" instructions on command line options. Indicates
it's lokid

LOKI2 route [(c) 1997 guild corporation
worldwide]

Comment in source code: copyright statement by the
author "route"

lokid: server is currently at capacity. Try
again later status message from daemon, indicates it's lokid
lokid: Cannot add key status message from daemon, indicates it's lokid

lokid: popen
status message from daemon, indicates it's lokid
compiled to use popen() to fork a process.

lokid: client <%d> requested an all kill status message from daemon, indicates it's lokid
lokid: clean exit (kil led at client request) status message from daemon, indicates it's lokid
lokid: cannot locate client entry in database status message from daemon, indicates it's lokid
lokid: client <%d> freed from list [%d] status message from daemon, indicates it's lokid
lokid: unsupported or unknown command
string status message from daemon, indicates it's lokid
lokid: client <%d> requested a protocol
swap status message from daemon, indicates it's lokid
lokid: transport protocol changed to %s status message from daemon, indicates it's lokid

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

The text from the strings output indicates to me that the unknown binary is the
LOKI daemon, which is a well known “covert channel” backdoor program used by
intruders to covertly log into compromised systems. (See Phrack Magazine,
Issue 51)

It has previously been shown that the atime, mtime, owner and group information
is not indicative of the values the binary had on the compromised system. The
process used to retrieve and package the atd and atd.md5 files into the zip file
altered them, so it’s impossible to determine when the binary was last executed.
The strings data found in the file (Shown in Figure 1-6) indicate the binary is
version 2.0 of the LOKI daemon. Figure 1-7 contains a summary of basic
information I gathered about the unknown binary using the methods
demonstrated above.

Figure 1-7: Summary of Binary Details

File Attribute Value
Name Atd
File Size: 15348 bytes
File Permissions: 0644
Ctime Fri Jan 24 09:32:19 2003
Atime Thu Aug 22 14:57:54 2002
Mtime Thu Aug 22 14:57:54 2002
Owner 0 (root)
Group 0 (root)
Md5 checksum: 48e8e8ed3052cbf637e638fa82bdc566
Keywords found in file: (See Figure 1-6)
Filetype: ELF 32-bit LSB executable, Intel 80386,

version 1 (SYSV), dynamically linked,
stripped. Compiled on a Linux system
with libc5.

Program Description and Forensic Details:

So far in my investigation I have gathered basic information about the binary. The
next part of the investigation is to identify exactly how the binary behaves.
The unknown binary is a dynamically linked, stripped ELF binary compiled on a
Linux system that uses libc version 5.
I used the ldd command to identify all the shared libraries the binary has been
linked against as shown in Figure 1-8.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

Figure 1-8: Output of ldd command

The output of ldd confirms that the binary is linked against the
/lib/libc.so.5 shared library. Libc version 5 was used in older versions of
Linux. The current versions of Linux now use Libc version 6.

The ELF binary contains many different sections that are relevant to the structure
and execution of the binary. The .comment section of the ELF binary usually
contains information about the compiler used to compile it.
Dumping the .comment section of the unknown binary using the command
objdump –j .comment –s atd reveals that the binary atd was compiled
using the GNU GCC compiler version 2.7.2.1 as shown in Figure 1-9.

Figure 1-9: output of objdump

This is an older version of the GCC compiler indicating the unknown binary may
have been compiled on a system with an old operating system. This is consistent
with the hypothesis that it was compiled on an older operating system because
the binary is linked against libc5.

All programs have a unique “footprint” when they are executed on a system. This
“footprint” of the execution of a binary has several characteristics including:

• The system calls that the process executes.
• The signals sent/received by the process.
• The files, file descriptors and system devices used by the process.

objdump –j .comment –s atd

atd: file format elf32-i386

Contents of section .comment:
 0000 00474343 3a202847 4e552920 322e372e .GCC: (GNU) 2.7.
 0010 322e3100 00474343 3a202847 4e552920 2.1..GCC: (GNU)
 0020 322e372e 322e3100 00474343 3a202847 2.7.2.1..GCC: (G
 0030 4e552920 322e372e 322e3100 00474343 NU) 2.7.2.1..GCC
 0040 3a202847 4e552920 322e372e 322e3100 : (GNU) 2.7.2.1.
 0050 00474343 3a202847 4e552920 322e372e .GCC: (GNU) 2.7.
 0060 322e3100 00474343 3a202847 4e552920 2.1..GCC: (GNU)
 0070 322e372e 322e3100 00474343 3a202847 2.7.2.1..GCC: (G
 0080 4e552920 322e372e 322e3100 00474343 NU) 2.7.2.1..GCC
 0090 3a202847 4e552920 322e372e 322e3100 : (GNU) 2.7.2.1.

ldd ./atd
libc.so.5 => /lib/libc.so.5 (0x4000040000)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

The program strace in Linux executes a given binary and displays these
characteristics. It is an invaluable tool for investigating the behavior of a running
process.

Before running strace on the binary I had to make the file executable by setting
the execute bits using the command chmod +x atd. I ran strace with the
command line options –ff which creates individual output files for each forked
process. Figure 1-10 shows the output of running the command: strace –o
atd-strace,out –ff atd

Figure 1-10: Output of main process strace

Function Call from execution of unknown binary. Description of Call
execve("./atd", ["./atd"], [/* 28 vars */]) = 0 call execve to execute the program
mmap(0, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40007000

map file descriptor to memory

mprotect(0x40000000, 21025,
PROT_READ|PROT_WRITE|PROT_EXEC) = 0

set read,write,execute access to mapped memory

mprotect(0x8048000, 13604,
PROT_READ|PROT_WRITE|PROT_EXEC) = 0

set read,write,execute access to mapped memory

stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644,
st_size=7473, ...}) = 0

get file status of /etc/ld.so.cache

open("/etc/ld.so.cache", O_RDONLY) = 3 open /etc/ld.so.cache (file descriptor 3)
mmap(0, 7473, PROT_READ, MAP_SHARED, 3, 0) =
0x40008000

map file descriptor 3 to memory (ld.so.cache)

close(3) = 0 close file descriptor 3 (ld.so.cache)
stat("/etc/ld.so.preload", 0xbfff f9e8) = -1 ENOENT (No
such file or directory)

get file status of /etc/ld.so.preload (doesn't exist)

open("/usr/local/qt/lib/libc.so.5", O_RDONLY) = -1
ENOENT (No such file or directory)

open /usr/local/qt/lib/libc.so.5 (doesn't exist)

open("/lib/libc.so.5", O_RDONLY) = 3 open /lib/libc.so.5 (file descriptor 3)
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"..., 4096) =
4096

read from the file descriptor (3)

mmap(0, 786432, PROT_NONE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x4000a000

map info from f ile descriptor to memory

mmap(0x4000a000, 555135,
PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_FIXED, 3, 0) = 0x4000a000

map info from f ile descriptor to memory

mmap(0x40092000, 21344,
PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x87000) =
0x40092000

map info from f ile descriptor to memory

mmap(0x40098000, 204364,
PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0)
= 0x40098000

map info from f ile descriptor to memory

close(3) = 0 close filehandle 3 - libc.so.5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

mprotect(0x4000a000, 555135,
PROT_READ|PROT_WRITE|PROT_EXEC) = 0

set read,write,execute access to mapped memory

munmap(0x40008000, 7473) = 0
unmap memeory at location 0x40008000

(/etc/ld.so.cache)
mprotect(0x8048000, 13604,
PROT_READ|PROT_EXEC) = 0

set read,execute access to mapped memory

mprotect(0x4000a000, 555135,
PROT_READ|PROT_EXEC) = 0

set read,execute access to mapped memory

mprotect(0x40000000, 21025,
PROT_READ|PROT_EXEC) = 0

set read,execute access to mapped memory

personality(PER_LINUX) = 0

set "execution domain". The man page
states"personality is Linux-specific and should not be

used in programs intended to be portable". This is
further proof that the binary was built on and for a

LiNUX SYSTEM.
geteuid() = 0 get the process owner's effective identity
getuid() = 0 get the process owner's UID
getgid() = 0 get the process owner's group ID
getegid() = 0 get the process owner's effective group ID
geteuid() = 0 get the process owner's effective identity
getuid() = 0 get the process owner's UID
brk(0x804c820) = 0x804c820 sets end of data segment in memory
brk(0x804d000) = 0x804d000 sets end of data segment in memory
stat("/etc/locale/C/libc.cat", 0xbffff520) = -1 ENOENT (No
such file or directory)

get file status of /etc/locale/C/libc.cat

stat("/usr/share/locale/C/libc.cat", 0xbffff520) = -1
ENOENT (No such file or directory)

get file status of /usr/share/locale/C/libc.cat

stat("/usr/share/locale/libc/C", 0xbfff f520) = -1 ENOENT
(No such file or directory)

get file status of /usr/share/locale/libc/C

stat("/usr/share/locale/C/libc.cat", 0xbffff520) = -1
ENOENT (No such file or directory)

get file status of /usr/share/locale/C/libc.cat

stat("/usr/local/share/locale/C/libc.cat", 0xbfff f520) = -1
ENOENT (No such file or directory)

get file status of /usr/local/share/locale/C/libc.cat

socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3 open raw socket for ICMP protocol (f ile descriptor 3)
sigaction(SIGUSR1, {0x804a6b0, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0

define action upon receipt of signal

socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4 open raw socket for IP protocol (f ile descriptor 4)
setsockopt(4, IPPROTO_IP3, [1], 4) = 0 set options on the previously defined socket (fd4)
getpid() = 25965 get PID of current process
getpid() = 25965 get PID of current process
shmget(26207, 240, IPC_CREAT|0) = 5 allocate a shared memory segment
semget(26389, 1, IPC_CREAT|0x180|0600) = 4 initialize a semaphore

shmat(5, 0, 0) = 0x40008000
attach the shared memory segment to the address

space of the calling process.

write(2, "\nLOKI2\troute [(c) 1997 guild c"..., 52
writes text "LOKI2 route [© 1997 guild corporation

worldwide]" to STDOUT
LOKI2 route [(c) 1997 guild corporation worldwide]
) = 52
time([1043426226]) = 1043426226 gets time in seconds since the epoch

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

close(0) = 0 close filehandle 0
sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}) = 0 define action upon receipt of signal
sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}) = 0 define action upon receipt of signal
sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}) = 0 define action upon receipt of signal

fork() = 25966
fork off a child process to run as daemon (child inherits

parent's info including shared memeory segments)
close(4) = 0 close file descriptor 4 (raw IP socket)
close(3) = 0 close file descriptor 3 (ICMP socket)
semop(0x4, 0x2, 0, 0xbffff9a4) = 0 set options for semaphore (4)
Shmdt(0x40008000) = 0 detatches shared memory space from calling program
semop(0x4, 0x1, 0, 0xbffff9a4) = 0 set options for semaphore (4)
_exit(0) = ? exit the parent process which forked the child

The fork() system call in the execution of the atd binary creates a child
process that inherits the environment and memory of the parent process and
listens for incoming connections on a network socket (file descriptor) created by
the parent process. The strace of the child process forked off by the atd
program is listed in Figure 1-11.

Figure 1-11: Strace of child process

Function Call Description of Call
Setsid() = 477 creates a new session for this child process (pid 477)
open("/dev/tty", O_RDWR) = -1 ENXIO (No such device
or address)

open /dev/tty

chdir("/tmp") = 0 change directory to /tmp

umask(0) = 022
set umask of 022, files will be created with permissions

0644
sigaction(SIGALRM, {0x8049218, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0

define SIGALARM signal actions

Alarm(3600) = 0 send SIGALARM to process after 3600 seconds
sigaction(SIGCHLD, {0x8049900, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0

set signal attribute to not notify when child process exits.

read(4, 0x804c78c, 84) = ? ERESTARTSYS
(To be restarted)

read from filehandle (looking for loki client connect)

The strace output in Figure 1-10 and 1-11 shows the atd binary references
several files (listed below) when it executes.

• Loads information from the file /etc/ld.so.cache which contains a list of
directories to search for shared libraries.

• Checks /etc/ld.so.preload which is a list of libraries to load before the
program

• Looks for libc.so.5 in /usr/local/qt/lib (not found) and finds it at /lib/libc.so.5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

sans:~/sans/L2# ./loki -d localhost

LOKI2 route [(c) 1997 guild corporation worldwide]
loki> /stat

lokid version: 2.0
remote interface: 127.0.0.1
active transport: icmp
active cryptography: XOR
server uptime: 46.58 minutes
client ID: 25899
packets written: 5
bytes written: 420
requests: 1
loki>

• Looks for libc.cat in /etc/locale/C, /usr/share/locale/C, /usr/locale/libc/C,
/usr/local/share/locale/C

The child process spawned by fork() attempts to open /dev/tty, and fails,
then executes chdir (change directory) to /tmp.

My research has shown that the unknown binary is LOKID v2.0. There is not
evidence of it containing any malicious code that would cause it to act differently
than expected. I compiled a loki client (See section “Program Identification” for
details) and attempted to connect to the atd process running on the local system
using the command: lokid –d localhost to verify that the unknown binary
could communicate with the loki client. The client was compiled with XOR
encryption enabled to match the encryption type found in the strings output of the
unknown binary.

Figure 1-12: Connecting to atd process with loki client

Figure 1-12 shows the communication between the loki client and the atd
binary which was running as a daemon process on the system. I sent the LOKI
protocol /stat command from the client to show the status of the current
session. The atd binary replied and identified itself as lokid version 2.0, using
XOR encryption and ICMP as a transport protocol.
Communicating with the unknown binary using the loki client is a strong
indicator that the atd binary is version 2.0 of the LOKI daemon.

The LOKI daemon (LOKID2), as described in the Phrack 51 article, is “an
information tunneling program”. It has the capability of tunneling UNIX “shell
commands inside of ICMP_ECHO/ICMP_ECHOREPLY and DNS namelookup
query/reply traffic.”
ICMP (Internet Control Message Protocol) traffic can be a critical part to the
operation of every IP based network. It has several purposes including
determining if a particular host is able to communicate on the network or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

determining if routes to hosts exist. There are 15 ICMP message types, defined
in RFC 792, which serve different purposes for network devices. LOKID2
implements communication between a server daemon and a client using ICMP
types 0 and 8. ICMP type 0 (ICMP_ECHOREPLY) and ICMP type 8
(ICMP_ECHO). Under normal circumstances, the ping command sends an
ICMP_ECHO to a host, which upon receiving it, responds with an
ICMP_ECHOREPLY therefore showing it is connected and communicating on
the network. The LOKID2 client, by default, uses the data portion in ICMP type 0
and 8 packets to transport shell commands, which are interpreted by the LOKID2
daemon, to the remote host running the daemon. It also has the ability to
transport the covert channel communications in the data portion of a DNS reply
packet. The covert channel established by LOKI can often pass traffic through
firewalls undetected and gives the user of the client “back-door” access to the
remote host as if they were logged on to that host with telnet/rlogin/ssh etc.

Program Identification

The evidence I gathered indicates that the unknown binary is the LOKI daemon
and relies on the shared library libc.so.5, which is an older version of libc.
This indicates that the binary was compiled on an older version of Linux. I
downloaded the source code and documentation for LOKID2 at
http://www.phrack.com/show.php?p=51&a=6.
The documentation clearly states that the LOKI 2 program is written for Linux
kernel versions 2.0.x. This also indicates that the binary was compiled on an
older version of Linux. Newer versions of Linux use the 2.2.x, or more recently,
the 2.4.x kernels. I installed Slackware Linux 3.6 on the analysis station, which
has kernel 2.0.35, libc 5.4.46 and includes GCC-2.7.2.3 as the bundled compiler.
I also installed GCC version 2.7.2.1 to compile the LOKI daemon with same
compiler version that compiled the atd binary.

I extracted the source code from the Phrack article using the extract utility
provided by Phrack as shown below:

• Dowloaded gzipped Phrack issue 51, unzipped and un-tarred it. This
created a directory named “phrack” with all the articles as separate files.
gunzip –dc phrack51.tar,gz | tar xvf -

• Copied and pasted the extract utility source code from the Phrack issue

into the file extract.c. and compiled extract.c: gcc –o extract
extract.c

• The LOKI 2 source code was contained in Article 6 of Phrack 51, so I

extracted the source code from the Article 6 file using the extract utility.
./extract p51-6
This created a directory “L2” with the LOIKD2 source code in it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

I then looked at the Makefile included with the source code to see what
compile options were available. LOKI 2 has the option of being compiled with
various type of encryption to encrypt the network traffic. In addition the
Makefile has the option of selecting to use popen() or open an pty to execute
commands. Both XOR and the popen() option is also present in the strings
output of the atd daemon in Figure 1-6, so I editied the Makefile as shown
below to compile the source code with XOR encryption and using popen() to
match the unknown binary.

CRYPTO_TYPE = WEAK_CRYPTO #XOR
SPAWN_TYPE = POPEN

I then compiled the LOKI 2 binaries for Linux using the following command:
/usr/bin/make linux

This compiles and strips the lokid (server daemon) and loki (client) binaries.
The next step was to compare the binary that I compiled from source code with
the unknown binary to confirm that the unknown binary is LOKI 2.
I checked the size, file type and MD5 checksum of the lokid binary to compare
it against the atd binary. (Shown below in Figure 1-13)

Figure 1-13: Gathering basic info about lokid binary.

The lokid binary is a dynamically linked, stripped ELF binary, which matches
with the file type of atd, however, lokid is 15752 bytes is size, which is slightly
larger than the atd binary. As expected the MD5 sum of lokid does not match
the MD5 sum of the atd binary because of the file size difference.
The ldd output shows that lokid is only linked against the shared library libc.so.5
which is consistent with the atd binary.

ls –al lokid
-rw-rw-r—1 root other 15752 Jan 04 14:41 lokid

file lokid
lokid: ELF 32-bit LSB executable, Intel 80386, version 1,
dynamically linked, stripped

#md5sum lokid
52aba5223634695a4332624d5815d01a lokid

ldd lokid
 libc.so.5 => /lib/libc.so.5 (0x4000040000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

I compared the strings output of the two binaries to determine if atd contained
the same strings data as the lokid binary I compiled. The strings output of the two
binaries was very similar. There were additional lines of binary data in the strings
output of the atd binary, which I found by piping the strings output to wc –l to
count the number of lines. (Shown in Figure 1-14)

Figure 1-14: Counting lines in strings output

To further prove that the atd binary is the LOKID v2.0 daemon, I compared the
output of strace that I performed on atd and lokid. using the diff
command. diff compares the two files and outputs the lines (and line numbers)
of the differences between the two file.
Figure 1-15 shown the steps taken to generate and compare the output, and the
differences between the resulting files.
The comparison of these two files shows that there is no difference between the
function calls executed by the atd and lokid processes.
The differences shown in the diff output in Figure 1-15 are all related to the fact
that the two processes have different process id numbers (PIDs) and allocate
different memory locations for themselves during execution.

Figure 1-15: Comparison of strace output

strace –o atd-strace.out –ff ./atd
strace –o lokid-strace.out –ff ./lokid
diff atd-strace.out lokid-strace.out

1c1
< execve("./atd", ["./atd"], [/* 29 vars */]) = 0

> execve("./lokid", ["./lokid"], [/* 28 vars */]) = 0
4c4
< mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0

> mprotect(0x8048000, 13956, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
9c9
< stat("/etc/ld.so.preload", 0xbffff9d4) = -1 ENOENT (No such file or
directory)

> stat("/etc/ld.so.preload", 0xbffff9e8) = -1 ENOENT (No such file or
directory)
20c20
< mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) = 0

> mprotect(0x8048000, 13956, PROT_READ|PROT_EXEC) = 0

strings atd | wc –l
157
strings lokid | wc –l
153

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

30c30
< brk(0x804c820) = 0x804c820

> brk(0x804c9a0) = 0x804c9a0
32,36c32,36
< stat("/etc/locale/C/libc.cat", 0xbffff50c) = -1 ENOENT (No such file
or directory)
< stat("/usr/share/locale/C/libc.cat", 0xbffff50c) = -1 ENOENT (No such
file or directory)
< stat("/usr/share/locale/libc/C", 0xbffff50c) = -1 ENOENT (No such
file or directory)
< stat("/usr/share/locale/C/libc.cat", 0xbffff50c) = -1 ENOENT (No such
file or directory)
< stat("/usr/local/share/locale/C/libc.cat", 0xbffff50c) = -1 ENOENT
(No such file or directory)

> stat("/etc/locale/C/libc.cat", 0xbffff51c) = -1 ENOENT (No such file
or directory)
> stat("/usr/share/locale/C/libc.cat", 0xbffff51c) = -1 ENOENT (No such
file or directory)
> stat("/usr/share/locale/libc/C", 0xbffff51c) = -1 ENOENT (No such
file or directory)
> stat("/usr/share/locale/C/libc.cat", 0xbffff51c) = -1 ENOENT (No such
file or directory)
> stat("/usr/local/share/locale/C/libc.cat", 0xbffff51c) = -1 ENOENT
(No such file or directory)
38c38
< sigaction(SIGUSR1, {0x804a6b0, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT}, {SIG_DFL}) = 0

> sigaction(SIGUSR1, {0x804a810, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT}, {SIG_DFL}) = 0
41,45c41,45
< getpid() = 476
< getpid() = 476
< shmget(718, 240, IPC_CREAT|0) = 13
< semget(900, 1, IPC_CREAT|0x180|0600) = 12
< shmat(13, 0, 0) = 0x40008000

> getpid() = 3242
> getpid() = 3242
> shmget(3484, 240, IPC_CREAT|0) = 16
> semget(3666, 1, IPC_CREAT|0x180|0600) = 15
> shmat(16, 0, 0) = 0x40008000
47c47
< time([1043673566]) = 1043673566

> time([1043777010]) = 1043777010
52c52
< fork() = 477

> fork() = 3243
55c55
< semop(0xc, 0x2, 0, 0xbffff990) = 0

> semop(0xf, 0x2, 0, 0xbffff9a0) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

 while ((c = getopt(argc, argv, "v:p:")) != EOF)
 {
 switch (c)
 {
 case 'v': /* change verbosity */
 verbose = atoi(optarg);
 break;

 case 'p': /* choose transport protocol */
 switch (optarg[0])
 {
 case 'i': /* ICMP_ECHO / ICMP_ECHOREPLY */
 prot = IPPROTO_ICMP;
 break;

 case 'u': /* DNS query / reply */
 prot = IPPROTO_UDP;
 break;

57c57
< semop(0xc, 0x1, 0, 0xbffff990) = 0

> semop(0xf, 0x1, 0, 0xbffff9a0) = 0

An analysis of the child processes also revealed that processes forked off by atd
execute the same system calls as the processes forked by lokid. The system
calls executed by the child processes of both daemons are shown in Figure 1-11.

The next step, after having proved that the binaries execute identical system
calls, was to test if they had the same command line options and behave
similarly when a client connects. I parsed the source code for lokid to
determine the command line options. The snippet of source code that defines the
command line arguments is shown in Figure 1-16.

Figure 1-16:lokid source code with command line args.

According to the source code, the loki daemon has two command line
arguments.

• -v (1|0) - Specifying this option and the number 1 or 0 gives more or
less verbose output when the daemon is running

• -p - Specifies which transport protocol to use for client/server
 communication
o –i use ICMP (ECHO/ECHO_REPLY packets)
o –u use UDP (DNS query reply packet)

I ran the atd binary with a command line option of “-h” to see if it printed out its
command line options. (shown in Figure 1-17)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

./atd

[fatal] invalid user identification value: Success

Figure 1-17: running atd with –h command line argument

The atd binary prints out the available command line arguments that are
expected from the lokid binary as seen in the source code in Figure 1-16. It
also states that the name of the program is lokid when displaying the command
line arguments.

The atd and lokid binaries require that they be run as root. Root, also known
as “Super User” is the highest privilege of user on a UNIX system and is used as
an administrative account to run and control all system processes. The root
account will always have a UID of 0. Line 50 of lokid.c contains the code
below that checks if the UID and EUID of the user is 0.

 if (geteuid() || getuid()) err_exit(0, 1, 1, L_MSG_NOPRIV);

The error message returned when a non-root user executes it is defined on line
239 the loki.h header file shown below.

#define L_MSG_NOPRIV "\n[fatal] invalid user identification
value"

This is an important point because the intruder would have needed root
privileges to start the atd program. Both atd and lokid produced the same
error when I attempted to run them as a non-root user (shown in Figure 1-18)

Figure 1-18: Attempting to run atd and lokid as non-root user

I then started the atd process using the command line arguments to enable
verbose output (-v) and UDP transport (-p u), and connected to the daemon
using the loki client. (See Figure 1-17). From the client, I sent the /stat LOKI
protocol command to get a status of the connection. The /stat confirmed that
the loki client was communicating with the atd process using UDP transport and
XOR encryption.

#./atd -h
 ./atd: illegal option -- h
 lokid -p (i|u) [-v (0|1)]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

netstat -a
….
raw 0 0 *:255 *:*
raw 0 0 *:1 *:*
….

Figure 1-17: Client connect to atd running w/UDP transport

To further determine if the atd and lokid processes behaved identically, I
compared the output of netstat and lsof when each of the programs was
running. The netstat command shows the status of network connections and
listening sockets. The lsof utility lists open files and sockets that specific
processes are accessing. By comparing the output of these utilities, I was able to
determine that the lokid and atd processes both referenced and opened the
same raw sockets as shown in Figure 1-18 and 1-19. Figure 1-18 shows the raw
sockets both processes opened when running with ICMP as the transport
protocol (using netstat). Figure 1-19 shows the raw sockets both processes
opened when running with the UDP transport protocol (using netstat).

Figure 1-18: netstat output with atd and lokid running (ICMP)

Figure 1-19: netstat output with atd and lokid running (UDP)

The output of the lsof command related to the atd and lokid binaries
running (shown in Figures 1-20 and 1-21) also show that the two daemons
execute identically and reference the same raw sockets.

Localhost:# ./atd –v 1 –p u
localhost:# loki -d localhost -v 1 -p u

LOKI2 route [(c) 1997 guild corporation worldwide]
loki> /stat

lokid version: 2.0
remote interface: 127.0.0.1
active transport: udp
active cryptography: XOR
server uptime: 1.58 minutes
client ID: 7977
packets written: 5
bytes written: 420
requests: 1
loki> /quit

raw 0 0 *:17 *:*

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

Figure 1-20 lsof output with atd and lokid

Figure 1-21: lsof output with atd running.

The ELF binary structure has several sections (See the document “Tool
interface Standards, Portable Formats Specification, Ver 1.1. “Executable and
Linking Format (ELF)” for specific details.) Every ELF binary begins with a
header that contains information about the binary including the byte order, entry
point, and location of section header table etc. (see Appendix 1-1 for specific
header) The entry point is the virtual address in the binary where the system
transfers control to upon execution of the binary. The section header contains
the byte offset within the file of each of the internal sections. These sections
each contain information for different functions within the ELF binary. The
.comments section for example, contains information about the compiler used
to compile the binary (See Figure 1-9). The .dynsym section contains
information about dynamic linking objects, for example information about how to
resolve references (to local or global functions). By comparing the contents of

lokid 3196 root cwd DIR 3,1 1024 77521
[0301]
lokid 3196 root rtd DIR 3,1 1024 2
[0301]
lokid 3196 root txt REG 3,1 15784 77561
[0301]
lokid 3196 root 1u CHR 4,1 6358
[0301]
lokid 3196 root 2u CHR 4,1 6358
[0301]
lokid 3196 root 3u raw 205621
00000000:0001->00000000:0000 st=07
lokid 3196 root 4u raw 205622
00000000:00FF->00000000:0000 st=07

atd 3085 root cwd DIR 3,1 1024 77521
[0301]
atd 3085 root rtd DIR 3,1 1024 2
[0301]
atd 3085 root txt REG 3,1 15348 48981
[0301]
atd 3085 root 1u CHR 4,1 6358
[0301]
atd 3085 root 2u CHR 4,1 6358
[0301]
atd 3085 root 3u raw 204804
00000000:0001->00000000:0000 st=07
atd 3085 root 4u raw 204805
00000000:00FF->00000000:0000 st=07

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

the sections of the atd and lokid binaries, I was able to gather more evidence
proving that the two binaries were functionally identical.
I ran the readelf –a command to dump the information stored in all sections
both binaries. (The full output of readelf –a atd is shown in Appendix 1-1).
Upon comparing the output of the readelf command on each of the two
binaries, I determined that they contained the same sections, and the references
stored in the all the sections were identical, proving that the binaries were
functionally identical.
There were some notable differences between the two binaries shown in Figure
1-22 (not a complete list of differences, just representative of all the key
differences)

Figure 1-22: Notable differences in readelf output

The entry points were slightly different, and the offset locations of the internal
sections were at different locations within each of the files. Both of these are
acceptable differences and don’t negate the conclusion that the binaries are
functionally identical based on the following facts:

• The Whirlwind Tutorial on Creating Really Teensy ELF Executables for
Linux” document states “…..Almost any [entry] address can be used as
long as it’s above 0x00000000, below 0x80000000 and page aligned.”

• The “Executable and Linking Format(ELF)” document states “sections
and segments have no specified order. Only the ELF header has a fixed
position in the file.”

These differences in the binaries could have been caused by differences in the
compiler, linker or assembler used to compile them both.

Program Identification Summary:

Through the previous analysis, I have determined that the atd binary that was
retrieved from the compromised system is LOKID v2.0. I was unable to compile
the LOKID v2.0 daemon from source code and match the file size and MD5
checksum of the atd binary. I installed the same version of the compiler that was
used to compile the atd binary, and I was still unable to match my compiled

atd bianry:
Entry point address: 0x8048db0
Start of section headers: 14508 (bytes into file)
Dynamic segment at offset 0x3644

Lokid binary:

Entry point address: 0x8048d90
Start of section headers: 14944 (bytes into file)
Dynamic segment at offset 0x36bc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

version to the file size. This slight difference in size may be attributed to
compiling the source with a different version of the libc5 library than was used to
compile atd.
Although I was unable to compile the LOKID source and match the file size of
atd, I am able to prove that the atd binary behaves exactly as the lokid binary
does in the following ways:

• The binaries are both 32-bit ELF executable compiled for the Intel 80386
architecture, dynamically linked, and stripped

• They are both only linked against the /lib/libc.so.5 shared library
• They contain nearly identical strings data.
• The system calls executed by the binaries are identical
• The system calls executed by the child processes of the binaries are

identical.
• The binaries have the same command line arguments, and the atd

process identifies itself as lokid when querying the command line
arguments.

• Both the atd and lokid process must be run as root user (UID 0), and
give the same error when run as non-privileged user.

• The loki client communicates with the atd daemon process with both
ICMP and UDP as it were the loki daemon.

• The output of the netstat command shows identical open raw sockets.
• The output of the lsof command shows identical process and open socket

information
• readelf shows identical information in all sections of the ELF binary

(except for noted acceptable differences)

Legal Implications:

In my forensic analysis I was unable to get forensic information from the
compromised system that would have shown that the unknown binary had been
executed on that system. The process of zipping them up for my analysis altered
the MAC times of the binary, which can sometimes be used to determine if/when
the binary was executed. I was able to prove that the binary is the LOKID2
“covert channel” backdoor, which allows unauthorized access to the system and I
was able to prove that a user needs root privileges to run the daemon.
Executing the binary on the compromised system, could have been a violation of
the Computer Fraud and Abuse Act (18 U.S.C §1030), which criminalizes
“unauthorized access” or “damage” to a “protected computer”.
A protected computer is defined in §1030(e)(2) as computers:

• “Exclusively for the use of a financial institution or the United States
Government”

• “used in interstate or foreign commerce or communication”
Essentially every computer connected to the Internet in the U.S. is
considered a protected computer. The compromised system is not a U.S.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

government system, so in order for the binary running on the compromised
system to be considered a crime under §1030, the intruder would have had
to have done one of the following:
• caused damage in excess of $5,000 dollars in a 1 year period (can be

aggregated to include damage to other systems by same intruder),
• caused impairment of medical records
• caused physical injury to a person
• posed a threat to public safety

Other evidence would have to be gained to determine if the intruder was in
violation of §1030, the presence of the binary on the system is not enough to
prove it.
If the intruder was found to be in violation of §1030 one of the penalties listed in
§1030 (c) would apply. The penalties range from 1 year imprisonment and a fine,
all the way up to a fine and 20 years imprisonment depending on the severity and
number of violations.

The compromised system resides at my employer’s location in Massachusetts,
therefore Massachusetts computer crime laws apply as well.
The individual who installed and ran the LOKI daemon binary would be in
violation of Massachusetts General Law (M.G.L) 266 §120F, which states:
“ Whoever, without authorization, knowingly accesses a computer system by any
means, or after gaining access to a computer system by any means knows that
such access is not authorized and fails to terminate such access, shall be
punished by imprisonment in the house of correction for not more than thirty days
or by a fine of not more than one thousand dollars, or both. The requirement of a
password or other authentication to gain access shall constitute notice that
access is limited to authorized users.”

The intruder would also be in violation of M.G.L 226 §33A, which states:
“Whoever, with intent to defraud, obtains, or attempts to obtain, or aids or abets
another in obtaining, any commercial computer service by false representation,
false statement, unauthorized charging to the account of another, by installing or
tampering with any facilities or equipment or by any other means, shall be
punished by imprisonment in the house of correction for not more than two and
one-half years or by a fine of not more than three thousand dollars, or both. As
used in this section, the words ""commercial computer service'' shall mean the
use of computers, computer systems, computer programs or computer networks,
or the access to or copying of the data, where such use, access or copying is
offered by the proprietor or operator of the computer, system, program, network
or data to others on a subscription or other basis for monetary consideration.”

Based on my research it would be easier to prove that the individual who
installed the atd binary on the system was in violation of M.G.L 226 §33a and
§120F than it would be to prove they were in violation of U.S.C §1030.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

The atd binary allows unauthenticated, unauthorized remote access to the host
computer. In addition, the user has to run the atd program as root, indicating
that they exceeded their privileges on the system and would therefore be in
violation of state law, but none of the criteria for a Federal violation can be
proven.

Interview questions:

As part of my job, I occasionally interview students who have violated our
Computer and Network Acceptable Use Policies as part of the University’s
disciplinary process. Experience from these interviews has taught me that people
respond differently to the interview process and it’s important to be prepared and
well informed before the interview. Furthermore, it’s important to have a plan for
dealing with different scenarios that may come up during the course of the
interview.
In the process of interviewing the individual who installed LOKID2 on the system,
I would take the following approach:

I start the interview off by taking a moment to look over my notes and the
printouts of evidence such as logfiles etc. The interviewees are not allowed to
see the contents of the notes or evidence, but it gives them the sense that I have
concrete evidence against them. I begin by asking simple questions, for
example:
What type of computer is your personal system?,
What operating system are you running on your personal computer ?
These questions give me a sense of their level of knowledge and a sense of how
they might react to the situation. Their answers to the simple questions help me
gauge if they are going to be arrogant, talkative, defensive, combative or helpful
and willing to cooperate. I take different approaches to the interviews depending
on how they respond.

The next step I usually take is to ask an open-ended question such as, “why do
you think I have asked to speak with you today?” Some interviewees know why
they are being interviewed, think I have undisputable evidence against them, tell
me everything, apologize and swear it will never happen again. Those interviews
are easy, but they seldom go that way. When they claim to not know why they
are being interviewed, I often take the approach of: “ I have some evidence here
indicating that you have been involved in an incident on one of our computer
systems and I’d like to speak with you to see if perhaps we’ve misinterpreted this
incident. I appreciate any information you may be able to give me to help sort this
out. Right now it looks pretty bad, but I’m hoping that we can resolve this issue
here so it doesn’t have to go before the Dean of Students Judicial Board or the
University Police.”
This gives the interviewee the sense that it’s bad, and I am there to help. It
perhaps gives them a chance to explain to someone who is willing to listen and
understand.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

I would then proceed to throw out a little information that I know and give the
interviewee a chance to explain. “I found an interesting program in your home
directory, could you please explain why it’s there?” The intention with that
question is to see if the interviewee will tell you he/she owns the binary and if
he/she ran the binary.
Another approach is to say “I’ve found a backdoor program in your home
directory, could you please not run it anymore, it’s causing problems on the
system.” This sets the stage for the interviewee to confirm that he/she ran the
backdoor program.
Some of the more arrogant interviewees have the need to prove their computer
skills, so questions such as “That back door was easy to spot, did you think we
wouldn’t notice? Is that the best you could do?” Sometimes in defending their
knowledge of computers they admit to running the program and may also tell
why.
The key things to keep in mind when interviewing are that you’re going to have to
find the angle to coerce information from the subject. Sometimes it is a matter of
acting understanding as an interviewer, or insist that they can help by telling you
everything, and sometimes you can gain information by making the subject
defensive. It varies depending on the interview subject and it’s important to be
prepared for whatever information may come out of the interview.

Additional information:

I used several online resources to research reverse engineering techniques and
tools that I used to analyze the unknown binary. I found the following URLs,
which describe reverse engineering techniques in detail, on the Honeynet
Reverse Challenge page.
http://www.honeynet.org/reverse/sol/sol-06/analysis.html
http://www.honeynet.org/reverse/sol/sol-21/analysis.html

The following references give great insight into the format of the ELF binary.
Tool interface Standards, Portable Formats Specification, Ver 1.1. “Executable
and Linking Format (ELF)”
http://www.skyfree.org/linux/references/ELF_FORMAT.pdf

Raiter, Brian. “A Whirlwind Tutorial on Creating Teensy ELF Executables for
Linux” 21 Jan 2003
http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

See the References section below for a full listing of sources to gather more
information.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

References:

Card, Rémy. Ts'o, Theodore. Tweedie, Stephen. “Design and Implementation of
the Second Extended Filesystem” http://e2fsprogs.sourceforge.net/ext2intro.html
Dec 13 2002

daemon9 “Project Loki: ICMP tunneling” Phrack Magazine, Issue 49 Aug. 1996
http://www.phrack.com/show.php?p=49&a=6

daemon9 “LOKI2 (the implementation) Phrack Magazine, Issue 51 Sept. 1997
http://www.phrack.com/show.php?p=51&a=6

Fenris Homepage 19 Nov 2002
http://razor.bindview.com/tools/fenris/

M.G.L 226 §120F “Unauthorized Access to computer systems”
http://www.state.ma.us/legis/laws/mgl/266-120F.htm

M.G.L 226 §33A “Attempt to defraud commercial computer service”
http://www.state.ma.us/legis/laws/mgl/266-33A.htm

Owen, Greg. GCFA practical
http://www.giac.org/practical/Greg_Owen_GCFA.zip

Pesch, Roland H., Osier, Jeffery M. and Cygnus Support "The gnu Binary
Utilities" 29 Oct 2002
http://www.skyfree.org/linux/references/binutils.pdf

Postel, John. “RFC 792” Sept. 1981
http://www.ietf.org/rfc/rfc792.txt

Raiter, Brian. “A Whirlwind Tutorial on Creating Teensy ELF Executables for
Linux” 21 Jan 2003
http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

Rekhter, Y., Moskowitz, B., Karrenberg, D., deGroot, G.J., Lear, E. “RFC 1918”
Feb. 1996
http://www.ietf.org/rfc/rfc1918.txt

Rivest R., “RFC 1321” Apr. 1992
http://www.ietf.org/rfc/rfc1321.txt

Smith, Craig. “Academic Underground: The Examiner” 17 Nov 2002
http://www.academicunderground.org/examiner/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

Tool Interface Standards, Portable Formats Specification, Ver 1.1 "Executable
and Linking Format (ELF)" 30 Oct 2002
http://www.skyfree.org/linux/references/ELF_Format.pdf

18 U.S.C §1030
http://www4.law.cornell.edu/uscode/18/1030.html

Zalewski, Michal. 29 Nov 2002
http://lcamtuf.coredump.cx/fenris/reverse.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

Appendix 1-1: readelf output of unknown binary

ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Intel 80386
 Version: 0x1
 Entry point address: 0x8048db0
 Start of program headers: 52 (bytes into file)
 Start of section headers: 14508 (bytes into file)
 Flags: 0x0
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 5
 Size of section headers: 40 (bytes)
 Number of section headers: 21
 Section header string table index: 20

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg
Lk Inf Al
 [0] NULL 00000000 000000 000000 00
0 0 0
 [1] .interp PROGBITS 080480d4 0000d4 000013 00 A
0 0 1
 [2] .hash HASH 080480e8 0000e8 0001a4 04 A
3 0 4
 [3] .dynsym DYNSYM 0804828c 00028c 000420 10 A
4 1 4
 [4] .dynstr STRTAB 080486ac 0006ac 000210 00 A
0 0 1
 [5] .rel.bss REL 080488bc 0008bc 000020 08 A
3 11 4
 [6] .rel.plt REL 080488dc 0008dc 000190 08 A
3 8 4
 [7] .init PROGBITS 08048a70 000a70 000008 00 AX
0 0 16
 [8] .plt PROGBITS 08048a78 000a78 000330 04 AX
0 0 4
 [9] .text PROGBITS 08048db0 000db0 001b28 00 AX
0 0 16
 [10] .fini PROGBITS 0804a8e0 0028e0 000008 00 AX
0 0 16
 [11] .rodata PROGBITS 0804a8e8 0028e8 000c3c 00 A
0 0 4
 [12] .data PROGBITS 0804c528 003528 000038 00 WA
0 0 4
 [13] .ctors PROGBITS 0804c560 003560 000008 00 WA
0 0 4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

 [14] .dtors PROGBITS 0804c568 003568 000008 00 WA
0 0 4
 [15] .got PROGBITS 0804c570 003570 0000d4 04 WA
0 0 4
 [16] .dynamic DYNAMIC 0804c644 003644 000088 08 WA
4 0 4
 [17] .bss NOBITS 0804c6cc 0036cc 00012c 00 WA
0 0 8
 [18] .comment PROGBITS 00000000 0036cc 0000a0 00
0 0 1
 [19] .note NOTE 000000a0 00376c 0000a0 00
0 0 1
 [20] .shstrtab STRTAB 00000000 00380c 0000a0 00
0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor
specific)

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg
Align
 PHDR 0x000034 0x08048034 0x08048034 0x000a0 0x000a0 R E 0x4
 INTERP 0x0000d4 0x080480d4 0x080480d4 0x00013 0x00013 R 0x1
 [Requesting program interpreter: /lib/ld-linux.so.1]
 LOAD 0x000000 0x08048000 0x08048000 0x03524 0x03524 R E
0x1000
 LOAD 0x003528 0x0804c528 0x0804c528 0x001a4 0x002d0 RW
0x1000
 DYNAMIC 0x003644 0x0804c644 0x0804c644 0x00088 0x00088 RW 0x4

 Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .hash .dynsym .dynstr .rel.bss .rel.plt .init .plt
.text .fini .rodata
 03 .data .ctors .dtors .got .dynamic .bss
 04 .dynamic

Dynamic segment at offset 0x3644 contains 17 entries:
 Tag Type Name/Value
 0x00000001 (NEEDED) Shared library: [libc.so.5]
 0x0000000c (INIT) 0x8048a70
 0x0000000d (FINI) 0x804a8e0
 0x00000004 (HASH) 0x80480e8
 0x00000005 (STRTAB) 0x80486ac
 0x00000006 (SYMTAB) 0x804828c
 0x0000000a (STRSZ) 528 (bytes)
 0x0000000b (SYMENT) 16 (bytes)
 0x00000015 (DEBUG) 0x0
 0x00000003 (PLTGOT) 0x804c570
 0x00000002 (PLTRELSZ) 400 (bytes)
 0x00000014 (PLTREL) REL
 0x00000017 (JMPREL) 0x80488dc
 0x00000011 (REL) 0x80488bc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

 0x00000012 (RELSZ) 32 (bytes)
 0x00000013 (RELENT) 8 (bytes)
 0x00000000 (NULL) 0x0

Relocation section '.rel.bss' at offset 0x8bc contains 4 entries:
 Offset Info Type Sym.Value Sym. Name
0804c6d8 00001005 R_386_COPY 0804c6d8 _IO_stderr_
0804c72c 00001405 R_386_COPY 0804c72c optarg
0804c730 00002205 R_386_COPY 0804c730 __fpu_control
0804c6d0 00003d05 R_386_COPY 0804c6d0 _errno

Relocation section '.rel.plt' at offset 0x8dc contains 50 entries:
 Offset Info Type Sym.Value Sym. Name
0804c57c 00000107 R_386_JUMP_SLOT 08048a88 longjmp
0804c580 00000207 R_386_JUMP_SLOT 08048a98 strcpy
0804c584 00000307 R_386_JUMP_SLOT 08048aa8 ioctl
0804c588 00000407 R_386_JUMP_SLOT 08048ab8 popen
0804c58c 00000507 R_386_JUMP_SLOT 08048ac8 shmctl
0804c590 00000607 R_386_JUMP_SLOT 08048ad8 geteuid
0804c594 00000807 R_386_JUMP_SLOT 08048ae8 getprotobynumber
0804c598 00000a07 R_386_JUMP_SLOT 08048af8 __strtol_internal
0804c59c 00000b07 R_386_JUMP_SLOT 08048b08 usleep
0804c5a0 00000c07 R_386_JUMP_SLOT 08048b18 semget
0804c5a4 00000d07 R_386_JUMP_SLOT 08048b28 getpid
0804c5a8 00000e07 R_386_JUMP_SLOT 08048b38 fgets
0804c5ac 00000f07 R_386_JUMP_SLOT 08048b48 shmat
0804c5b0 00001107 R_386_JUMP_SLOT 08048b58 perror
0804c5b4 00001207 R_386_JUMP_SLOT 08048b68 getuid
0804c5b8 00001307 R_386_JUMP_SLOT 08048b78 semctl
0804c5bc 00001507 R_386_JUMP_SLOT 08048b88 socket
0804c5c0 00001707 R_386_JUMP_SLOT 08048b98 bzero
0804c5c4 00001907 R_386_JUMP_SLOT 08048ba8 alarm
0804c5c8 00001a07 R_386_JUMP_SLOT 08048bb8 __libc_init
0804c5cc 00001c07 R_386_JUMP_SLOT 08048bc8 fprintf
0804c5d0 00001d07 R_386_JUMP_SLOT 08048bd8 kill
0804c5d4 00001e07 R_386_JUMP_SLOT 08048be8 inet_addr
0804c5d8 00001f07 R_386_JUMP_SLOT 08048bf8 chdir
0804c5dc 00002007 R_386_JUMP_SLOT 08048c08 shmdt
0804c5e0 00002107 R_386_JUMP_SLOT 08048c18 setsockopt
0804c5e4 00002307 R_386_JUMP_SLOT 08048c28 shmget
0804c5e8 00002407 R_386_JUMP_SLOT 08048c38 wait
0804c5ec 00002507 R_386_JUMP_SLOT 08048c48 umask
0804c5f0 00002607 R_386_JUMP_SLOT 08048c58 signal
0804c5f4 00002707 R_386_JUMP_SLOT 08048c68 read
0804c5f8 00002807 R_386_JUMP_SLOT 08048c78 strncmp
0804c5fc 00002907 R_386_JUMP_SLOT 08048c88 sendto
0804c600 00002a07 R_386_JUMP_SLOT 08048c98 bcopy
0804c604 00002b07 R_386_JUMP_SLOT 08048ca8 fork
0804c608 00002c07 R_386_JUMP_SLOT 08048cb8 strdup
0804c60c 00002d07 R_386_JUMP_SLOT 08048cc8 getopt
0804c610 00002e07 R_386_JUMP_SLOT 08048cd8 inet_ntoa
0804c614 00002f07 R_386_JUMP_SLOT 08048ce8 getppid
0804c618 00003007 R_386_JUMP_SLOT 08048cf8 time
0804c61c 00003107 R_386_JUMP_SLOT 08048d08 gethostbyname
0804c620 00003307 R_386_JUMP_SLOT 08048d18 sprintf
0804c624 00003407 R_386_JUMP_SLOT 08048d28 difftime
0804c628 00003507 R_386_JUMP_SLOT 08048d38 atexit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

0804c62c 00003707 R_386_JUMP_SLOT 08048d48 semop
0804c630 00003807 R_386_JUMP_SLOT 08048d58 exit
0804c634 00003907 R_386_JUMP_SLOT 08048d68 __setfpucw
0804c638 00003a07 R_386_JUMP_SLOT 08048d78 open
0804c63c 00003b07 R_386_JUMP_SLOT 08048d88 setsid
0804c640 00003c07 R_386_JUMP_SLOT 08048d98 close

There are no unwind sections in this file.

Symbol table '.dynsym' contains 66 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 08048a88 0 FUNC GLOBAL DEFAULT UND longjmp
 2: 08048a98 30 FUNC GLOBAL DEFAULT UND strcpy
 3: 08048aa8 0 FUNC WEAK DEFAULT UND ioctl
 4: 08048ab8 0 FUNC WEAK DEFAULT UND popen
 5: 08048ac8 42 FUNC GLOBAL DEFAULT UND shmctl
 6: 08048ad8 0 FUNC WEAK DEFAULT UND geteuid
 7: 0804c644 0 OBJECT GLOBAL DEFAULT ABS _DYNAMIC
 8: 08048ae8 292 FUNC GLOBAL DEFAULT UND getprotobynumber
 9: 0804c6d0 4 NOTYPE WEAK DEFAULT 17 errno
 10: 08048af8 1132 FUNC GLOBAL DEFAULT UND __strtol_internal
 11: 08048b08 99 FUNC GLOBAL DEFAULT UND usleep
 12: 08048b18 42 FUNC GLOBAL DEFAULT UND semget
 13: 08048b28 0 FUNC WEAK DEFAULT UND getpid
 14: 08048b38 0 FUNC WEAK DEFAULT UND fgets
 15: 08048b48 59 FUNC GLOBAL DEFAULT UND shmat
 16: 0804c6d8 84 OBJECT GLOBAL DEFAULT 17 _IO_stderr_
 17: 08048b58 0 FUNC WEAK DEFAULT UND perror
 18: 08048b68 0 FUNC WEAK DEFAULT UND getuid
 19: 08048b78 47 FUNC GLOBAL DEFAULT UND semctl
 20: 0804c72c 4 OBJECT GLOBAL DEFAULT 17 optarg
 21: 08048b88 94 FUNC WEAK DEFAULT UND socket
 22: 0804c528 4 OBJECT GLOBAL DEFAULT 12 __environ
 23: 08048b98 54 FUNC GLOBAL DEFAULT UND bzero
 24: 08048a70 0 FUNC GLOBAL DEFAULT 7 _init
 25: 08048ba8 0 FUNC WEAK DEFAULT UND alarm
 26: 08048bb8 70 FUNC GLOBAL DEFAULT UND __libc_init
 27: 0804c528 4 NOTYPE WEAK DEFAULT 12 environ
 28: 08048bc8 0 FUNC WEAK DEFAULT UND fprintf
 29: 08048bd8 0 FUNC WEAK DEFAULT UND kill
 30: 08048be8 57 FUNC GLOBAL DEFAULT UND inet_addr
 31: 08048bf8 0 FUNC WEAK DEFAULT UND chdir
 32: 08048c08 36 FUNC GLOBAL DEFAULT UND shmdt
 33: 08048c18 111 FUNC WEAK DEFAULT UND setsockopt
 34: 0804c730 2 OBJECT GLOBAL DEFAULT 17 __fpu_control
 35: 08048c28 42 FUNC GLOBAL DEFAULT UND shmget
 36: 08048c38 0 FUNC WEAK DEFAULT UND wait
 37: 08048c48 0 FUNC WEAK DEFAULT UND umask
 38: 08048c58 84 FUNC GLOBAL DEFAULT UND signal
 39: 08048c68 0 FUNC WEAK DEFAULT UND read
 40: 08048c78 38 FUNC GLOBAL DEFAULT UND strncmp
 41: 08048c88 124 FUNC WEAK DEFAULT UND sendto
 42: 08048c98 146 FUNC GLOBAL DEFAULT UND bcopy
 43: 08048ca8 0 FUNC WEAK DEFAULT UND fork
 44: 08048cb8 79 FUNC GLOBAL DEFAULT UND strdup
 45: 08048cc8 44 FUNC GLOBAL DEFAULT UND getopt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

 46: 08048cd8 67 FUNC GLOBAL DEFAULT UND inet_ntoa
 47: 08048ce8 0 FUNC WEAK DEFAULT UND getppid
 48: 08048cf8 0 FUNC WEAK DEFAULT UND time
 49: 08048d08 292 FUNC GLOBAL DEFAULT UND gethostbyname
 50: 0804a8e0 0 FUNC GLOBAL DEFAULT 10 _fini
 51: 08048d18 38 FUNC WEAK DEFAULT UND sprintf
 52: 08048d28 16 FUNC GLOBAL DEFAULT UND difftime
 53: 08048d38 52 FUNC GLOBAL DEFAULT UND atexit
 54: 0804c570 0 OBJECT GLOBAL DEFAULT ABS
_GLOBAL_OFFSET_TABLE_
 55: 08048d48 42 FUNC GLOBAL DEFAULT UND semop
 56: 08048d58 128 FUNC GLOBAL DEFAULT UND exit
 57: 08048d68 62 FUNC GLOBAL DEFAULT UND __setfpucw
 58: 08048d78 0 FUNC WEAK DEFAULT UND open
 59: 08048d88 0 FUNC WEAK DEFAULT UND setsid
 60: 08048d98 0 FUNC WEAK DEFAULT UND close
 61: 0804c6d0 4 OBJECT GLOBAL DEFAULT 17 _errno
 62: 0804a8d8 0 OBJECT GLOBAL DEFAULT ABS _etext
 63: 0804c6cc 0 OBJECT GLOBAL DEFAULT ABS _edata
 64: 0804c6cc 0 OBJECT GLOBAL DEFAULT ABS __bss_start
 65: 0804c7f8 0 OBJECT GLOBAL DEFAULT ABS _end

Histogram for bucket list length (total of 37 buckets):
 Length Number % of total Coverage
 0 9 (24.3%)
 1 8 (21.6%) 12.3%
 2 10 (27.0%) 43.1%
 3 4 (10.8%) 61.5%
 4 5 (13.5%) 92.3%
 5 1 (2.7%) 100.0%

No version information found in this file.

Forensic Analysis of Compromised Linux Host

SANS GCFA Practical Assignment v.1.2

Part 2 - Option 1

Jacob Cunningham

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

 Syntax Conventions ……………………………………………………………1

 Assignment Part 2 - Option 1: Perform Forensic Analysis of a System

 Introduction ……………………………………………………………...1

 Synopsis of Case Facts………………………………………………...1

 Imaging the Evidence Disk …………………………………………….2

 Analyzing the Image with TASK and Autopsy..………………………4

 Initial Analysis of timeline and Recovery of Deleted Files..……….11

Analyzing the Root Kit ………………………………………………..12

 Timeline: Tracing the path of the Intruder ………………………….17

 Strings Search………………………………………………………….25

 Conclusion ……………………………………………………………..26

 References ..…………..……………………………………………….28

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 1

Syntax Conventions

The text of the document is in 12 point Arial font

Commands executed at the shell, the output of commands, and
references to files, directories or system binaries are all
in 10 or 12 point Courier New font.

Part 2 – Option 1: Perform Forensic Analysis of a System

Introduction

This section of the paper is a write-up of the results of an in depth analysis of a
Linux system that has been compromised. This analysis focuses on using
forensic techniques to image the evidence media, and recovering evidence of the
intrusion using the TASK and Autopsy forensic tools. Some familiarity with UNIX
on the part of the reader is assumed.

Synopsis of Case Facts

The University’s network consists of approximately 25,000 nodes connected to
the Internet via 355mb/s leased circuit. The residential network accounts for
about 50% of the total nodes connected to the campus network. It’s somewhat
rare for us to get contacted by students who think their systems have been
compromised. We, in the networking department often find the compromised
systems first when they start scanning for vulnerabilities or attempt a denial of
service attack.

A user of the University’s residential network contacted me on Oct 10, 2002
because he noticed user accounts on his personal Linux system that he had not
created and suspected it had been hacked. The user who contacted me was not
very computer savvy, but was observant enough to realize that something odd
was happening on his system.

Upon finding the system may have been hacked, the user shut the system down
and contacted me. If given a choice I would have preferred to gather some vital
information about open network ports, running processes, and the contents of
memory on the system before the user shut the system down, but there was still
a plethora of forensic evidence to be gathered from the hard disk. I was
concerned that the shutdown process may have been trojaned to cover the
intruder’s tracks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2

After speaking to me, the user brought his computer system to my office where I
inventoried it, tagged all the components as evidence (See Figure 2-1) and
removed the hard disk for imaging.

Figure 2-1: Evidence listing and description
Evidence Tag # Description

2002-10-10-1 “Home Built” Generic ATX PC 500 Mhz computer system (no
case serial number) with Maxtor 20GB internal hard drive,
3.5" floppy drive, Mitsumi CDROM drive, 3Com 3c905b PCI
Ethernet card, ATI Mach 64 PCI video card.

2002-10-10-2 Maxtor 541DX 20GB Ultra ATA/100 – 5400RPM Hard Drive
S/N 2B020H1110511

2002-10-10-3 Mitsumi CRMC-FX810S CROM Drive S/N: DPU010136
2002-10-10-4 3Com 3c509b Ethernet card - MAC: 00:10:5a:e5:b4:fa
2002-10-10-5 ATI Mach 64 video card
2002-10-10-6 3.5" floppy

The potentially compromised system is a “home built” generic ATX 500MHZ
Pentium II PC that was running RedHat Linux 7.0. The user explained that he set
the system up to learn more about Linux and do some programming for a class
he was taking. He also said he had installed RedHat Linux 7.0 on it, configured it
to obtain an IP address via DHCP, and had it connected to the University
Ethernet network in his room for only a few days before finding the unknown
accounts and suspecting it was compromised. During the course of my
investigation I discovered it was a default installation of RedHat 7.0 using kernel
version 2.2.16-22. The system had been running several default exploitable
daemons and services such as FTP (wu-ftpd-2.6.1) , Telnet, rsh, rlogin, portmap
and statd.

Imaging the Evidence Disk

The system I created to do the forensic analysis is a PC running RedHat Linux
7.3. I performed a fresh install of the OS on a pristine disk to ensure the security
and integrity of the OS before imaging and analyzing the evidence disk. This
system has never been connected to the network, and to further ensure the
security of the forensic system, no network card was installed. All software was
transferred to the system via a known-clean CDROM.
The forensics system has an internal hard disk, a CDROM drive and two
removable hard drive bays in the following configuration:

hda – boot disk (primary IDE Master)
hdb – CDROM (primary IDE slave)
hdc – removable drive bay (secondary IDE Master)
hdd – removable drive bay (secondary IDE slave)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3

The two removable hard drive bays attached to the secondary IDE controller are
used to hold the image storage and evidence drives.
I performed the following tasks on the forensic system to create an image of the
compromised system for analysis.

• Verified that hdc and hdd did not appear in /etc/fstab on the forensic
system, so evidence and storage disks wouldn’t be mounted at boot time.

• Placed a single partition 40gb drive with an ext2 filesystem in hdc

removable drive bay. This hard drive was then sanitized using the
command: # dd if=/dev/zero of=/dev/hdc1

• Set the evidence disk jumper to be a slave and placed the drive in the hdd

removable drive bay. I had already confirmed the filesystem would not be
mounted, therefore minimizing the risk of it getting altered.

• Booted the forensic system with all the disks installed.

• Generated an MD5 signature of the evidence partitions to compare

against the MD5 signature of the resulting images. md5sum calculates a
hash of binary data using the MD5 hashing algorithm (as described in
RFC 1321) . This MD5 hash or checksum of the data is unique only to that
data. If the data is modified, the MD5 calculation will not match the
previous one. For all practical purposes it is impossible for two different
pieces of data or files to have the same MD5 checksum. Consistently
reproducing the same MD5 checksum for the same piece of data proves
that the data has not been modified. It is important to create the md5
checksum before performing any operations on the evidence. Verifying
matching MD5 checksums prove that the operations performed to image
the media did not alter the original evidence in any way.

md5sum /dev/hdd6

 691560c798eb212ec5e750af5753c788 /dev/hdd6
 # md5sum /dev/hdd5
 835ba3f211ede3e529634997aafc7afe /dev/hdd5

• Mounted the sanitized image storage disk. This makes the hdc1 evidence

storage partition available to the filesystem in the directory /images.
mount /dev/hdc1 /images

• Obtained a partition listing of evidence disk using /sbin/fdisk. This

command provides information about the layout and type of the disk
partitions without altering the contents of the disk. The evidence disk is a
20GB Maxtor hard drive (show in Figure 2-2 as hdd) with one large
partition for the OS and a smaller one for swap space.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4

fdisk –l /dev/hdd
Disk /dev/hdd: 255 heads, 63 sectors, 2491 cylinders
Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System

/dev/hdd2 4 2491 19984860 5 Extended
/dev/hdd5 2338 2370 265041 82 Linux swap
/dev/hdd6 4 2337 18747792 83 Linux

Figure 2-2: fdisk output

• Imaged main partition and swap space of the evidence disk to a file on

storage disk using dd. dd is a Unix command used to copy or convert
files from one location or device to another.
dd if=/dev/hdd6 of=/images/sans-hdd6.img
dd if=/dev/hdd5 of=/images/sans-hdd5-swap.img

• Generated an MD5 signature of evidence image file and compared the

hash of the image against the original. The md5 checksums match proving
the image is identical to the original partition.
md5sum /images/sans-hda6.img
691560c798eb212ec5e750af5753c788 sans-hda6.img

md5sum /images/sans-hdd5-swap.img

 835ba3f211ede3e529634997aafc7afe sans-hdd5-swap.img

• I shutdown the forensics system and removed the evidence disk to
minimize chance of corrupting or writing to the original evidence disk and
then rebooted the forensics system to begin the analysis.

To protect the evidence hard drive, I placed it in an anti-static bag, and tagged
the outside of the bag with the same evidence number that was on the drive
(2002-10-10-2) with my signature and the date. I then locked the hard drive in
my media safe, which is only accessible to my department’s security officer and
myself, and signed and dated the log book which is used for tracking all the items
that are housed in the safe. The security officer and I have a clearly established
protocol for adding and removing items from the safe, which includes tracking the
location of the item in the log book. Maintaining this chain of custody ensured
that the evidence disk did not get tampered with and its location was always
known. This is one important piece of maintaining the integrity of the original
evidence if it is questioned in a court of law.

Analyzing the Image with TASK and Autopsy

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5

For the analysis of this potentially compromised system, I downloaded and
compiled the latest version of forensics tools that I prefer to use.

Autopsy Forensic Browser v1.62
http://www.atstake.com/research/tools/autopsy/

TASK – The @Stake Sleuth Kit v1.52
http://www.atstake.com/research/tools/task/

The Coroner’s Toolkit (TCT) is a package used for analyzing filesystems, file
system images and recovering deleted files. Although TASK (The @Stake
Sleuth Kit) is built upon TCT, I prefer to use TASK because of the added
functionality it has over TCT. Specifically it has support for analyzing the
Windows filesystems (FAT, NTFS) as well as UFS and ext2, this gives the
examiner the advantage of using the same tools regardless of the filesystem
type being analyzed. The Autopsy Forensic Browser is an HTML based front-
end which employs the web browser as an interface to the TASK tools.

The evidence system disk had been formatted with an ext2 filesystems, which is
common for that version of Linux. In an ext2 filesystem, files on the disk are
described by inodes and the data is stored on the disk in data blocks. A general
overview of inodes is best described by the document “Design and
Implementation of the Second Extended Filesystem” found at
http://e2fsprogs.sourceforge.net/ext2intro.html
This document states:
“Each file is represented by a structure, called an inode. Each inode contains the
description of the file: file type, access rights, owners, timestamps, size, pointers
to data blocks. The addresses of data blocks allocated to a file are stored in its
inode. When a user requests an I/O operation on the file, the kernel code
converts the current offset to a block number, uses this number as an index in
the block addresses table and reads or writes the physical block.”

The tools contained in TASK can be used to view inode information for existing
and deleted files and extract information from the physical disk blocks containing
those existing and previously deleted files. This gives the examiner the ability to
effectively un-delete and view the contents of any file and all of its attributes.

The first step in preparing the image for analysis was to mount the image to a
mount point on the filesystem. To protect from modifying the evidence image and
analysis system, I passed specific options to the mount command using the –o
flag (See Figure 2-3)

ro – mount the image read-only. This disallows anything from writing to
 the image.
loop – mounts the image as a loopback device, which allows the image
to be mounted as a filesystem.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6

nodev – prevents character and block devices in the image from being
treated as devices by the analysis system.
noexec - disallows the execution of any binaries in the image filesystem
on the analysis system.

Figure 2-3: Mounting the image

The next step was to edit the fsmorgue file in the Autopsy working directory to
specify the name of the image, what type of filesystem it is, where it was
mounted, and the time zone the imaged system was configured to use. This
prepares Autopsy for the type of image it is analyzing.

Figure 2-4: fsmorge file

I then started Autopsy with the following command.

usr/local/src/autopsy-1.62/autopsy –m /images 888
localhost

This starts autopsy listening on port 888 of the localhost and uses /images as the
morgue directory where it stores the body and timeline files. The autopsy
sessions was then accessed by pointing a browser at the URL autopsy
generated on the localhost. Although the Autopsy process is operating on a
network port (888/tcp), it is inaccessible to anyone else because there is no
network card in the system.

After Autopsy was running and reading the image, the next step was to first
create a timeline to see what had changed on the system since the OS was
installed. The user claimed to have installed the operating system a few days
before noticing the intrusion, but i t was necessary to verify this and other
information that the user had given me. By verifying this information, such as OS
version and the installation time, I could then generate a timeline to see when the
alleged intrusion occurred.

I created the timeline using the “Timeline” button on the Main Menu in Autopsy.
The timeline created by Autopsy gives a chronological visual representation of
when all the files on a given filesystem were modified, accessed or changed.
The Timeline function of Autopsy executes the following utili ties from TASK
behind the scenes:

fsmorgue file for Autopsy Forensic Browser
sans-hda6.img linux-ext2 / EST5EDT

mkdir /mnt/image
mount –o ro,loop,nodev,noexec /images/sans-hda6.img
 /mnt/image

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 7

• The fls utility collects the MAC times (the date and time the file was last

Modified, Accessed or Changed) of allocated and un-allocated files and
writes it to the “body” file with the command:
fls –m / -f linux-ext2 –r sans-hda6.img > body

• Ils is then used to generate MAC time information for deleted files and

appends that information to the “body” file using the command:
ils –m sans-hda6.img >> body

In Autopsy, I then selected the “Create timeline using body” function. When
selecting this, Autopsy gives you the option of inserting the inode location of the
/etc/password and /etc/group files so the timeline contains user/group
information for files rather than just numerical Ids. I parsed the “body” file using
/usr/bin/grep to locate the inodes of the /etc/password and /etc/shadow
files.

Figure 2-5: Retrieving inode numbers for /etc/passwd, /etc/group from body file

The “Specify” option was used to specify the starting time and ending time of the
timeline. The user claimed to have installed the operating system on Oct 6th, and
the intrusion was noticed on Oct 9th, so Oct 1st was used as the start date and the
current date of Oct. 17th was used as the end of the timeline. I then selected the
timezone of the imaged system (“EST”) to use in Autopsy and pressed the
“Create” button.

Autopsy starts the TASK mactime utility which uses the body, password and
group files plus the given date range to create the chronological timeline file as
shown:
mactime –p 195932 –g 195773 –b /images/body
10/01/2002-10/17/2002 > timeline

The resulting “timeline” file, which is a chronological listing of all the files
modified, accessed and changed on the image has the following format:
Date/time, size (in bytes), mac (specifies which file
attribute M,A,C changed), file permissions, owner, group
owner, inode number, filename

cat body | grep "/etc/passwd"
0|/etc/passwd|0|195932|33188|-/-rw-r—r--|1|0|0|0|939
|1034194213|1034032865|1034032865|4096|0

cat body | grep "/etc/group"
0|/etc/group|0|195773|33152|-/-rw------1|0|0|0|492
|1034032812|1033944837|1034032813|4096|0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8

The example timeline entry in Figure 2-6 shows that the file /tmp/install.log:
was 9829 bytes in size, was accessed on Oct 6th at 10:55:51, had UNIX file
permissions “rw-r-r—“ owned by user/group root/root, was referenced by inode
number 162882

Figure 2-6: Example Timeline entry

Before looking over the timeline in detail, I first used the “File Browsing” function
of Autopsy. The “File Browsing” function of Autopsy allows the examiner to
navigate the disk image as if it were a hierarchical filesystem. I was able to
gather information and view the contents of specific files. My intent in browsing
the filesystemn was to confirm the information the user had given me about OS
version and when the OS was installed, and to gather additional information
about the system that might help in the investigation. To gather this information, I
examined the following files on the evidence image:

• /etc/issue – From this file I was able to verify the OS version given to
me by the user was correct. It contained:

Red Hat Linux release 7.0 (Guinness)
Kernel 2.2.16-22 on an i686

• /tmp/install.log – This file is written when the OS is installed. I

checked the MAC times of this file and verified the operating system was
installed on Oct 6th as told to me by the user.

M: 2002.10.06 11:10:26 (EDT)
A: 2002.10.06 10:56:44 (EDT)
C: 2002.10.06 11:10:26 (EDT)

• /var/log/boot.log – This file contains information about when the

operating system is booted and occasionally contains information about
daemon processes. I noticed odd entries in this file about portmap and
ssh daemon shutdowns. I noted the time and date that the anomalous
events occurred as possible clues to the intrusion.

 Oct 7 19:18:52 localhost portmap: portmap

shutdown succeeded
Oct 7 19:19:10 localhost sshd: sshd shutdown
succeeded

Sun Oct 6 2002 10:56:44
 9829 .a. -/-rw-r--r-- root/boby root 162882 /tmp/install.log

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 9

• /etc/passwd,/etc/shadow – This file contains user account
information for the system. The owner of the system had said that he
noticed a user “bobby” had been added to the system, so I checked
these files and confirmed the users “bobby” and “boby” (with UID 0)
exist. I also took note of the MAC times on the files as additional data
points for the investigation. These files were modified approximately 2
minutes after the strange ssh and portmap daemon entries in
/var/log/boot.log

/etc/passwd:
M: 2002.10.07 19:21:05 (EDT)
A: 2002.10.09 16:10:13 (EDT)
C: 2002.10.07 19:21:05 (EDT)

 Contents:
bobby:x:501:501::/home/bobby:/bin/bash
boby:x:0:0::/root:/bin/bash

 /etc/shadow:

 M: 2002.10.07 19:21:05 (EDT)
 A: 2002.10.09 13:26:23 (EDT)
 C: 2002.10.07 19:21:05 (EDT)

 Contents:
 bobby:1.mlvYnX4$bphcZdcVh8ONBKeM8XrGw0:11967:0:
 99999:7:::
 boby:1he7ZnLoq$/zZydt8zv4ddZs18dMYI2/:11967:0:
 99999:7:::

• /var/log/wtmp – This is a binary file that contains user login session

data. I extracted the file using the “Export Contents” function in Autopsy
and viewed its contents using the /usr/bin/last command. It shows
users “bobby”, “boby” and an anonymous FTP session logging in from
webmaster.de.xxx.edu. The anonymous FTP login indicated that the
intruder potentially gained access using a wu-ftpd exploit.

Figure 2-7: output of last command

last -f sans-hda6.img-var.var.log.wtmp.raw
boby pts/2 webmaster.de.xxx.edu Mon Oct 7 19:46 -
19:57 (00:10)
bobby pts/2 webmaster.de.xxx.edu Mon Oct 7 19:44 -
19:46 (00:01)
ftp ftpd19543 webmaster.de.xxx.edu Mon Oct 7 19:12 -
down (1+20:57)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10

• /var/log/messages - Contains various logging information from the
system and daemons. It is often a significant source of information about
system events. Intruders will sometimes modify or delete this file to
cover their tracks. It turned out to contain information that was key to the
investigation. Figure 2-8 contains a screen shot of a portion of the file
containing the most usable information.

Figure 2-8: Screenshot of /var/log/messages file

The key items shown in Figure 2-8 are the events that happened between
19:12:24 and 19:57:17. In that time frame the system log had recorded the
following suspicious events:

• An anonymous FTP login from webmaster.de.xxx.edu (also seen in
wtmp file)

• Portmap daemon shutdown
• Syslogd restarted several times in quick succession
• sshd shutdown (also noted in /var/log/boot.log above)
• Attempted (refused) FTP login again from webmaster.de.xxx.edu
• Users “bobby” (with UID 0), “boby” and group “bobby” created on the

system (also confirmed in /etc/passwd, /etc/shadow above)
• eth0 – Network interface goes into promiscuous mode indicating a

sniffer may have been started.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 11

• Users “bobby”, “boby” and “root” log into the system from
128.xxx.18.179 using ssh2 on port 3312.

These are good indicators that the system had been compromised. There was no
legitimate reason for these events to have occurred on this system. The
information gathered so far provided some insight into where the intruder had
come from, the approximate timeframe of the intrusion, and some activities the
intruder had done. It is clear from this logfile that the intruder had gained root
access via FTP, created some user accounts, installed a backdoor ssh daemon
on port 3312, logged in from 128.xxx.18.179, and was possibly running a network
sniffer.

Initial Analysis of timeline and Recovery of Deleted files

Before turning to the timeline file to corroborate some of the information I had just
gathered from /var/log/messages and gather more information the intruder’s
activities, I checked and noted the contents of /etc/crontab to establish when
the cron daemon would run and what it would modify. Doing this allowed me to
note the changes made to the system by the cron daemon and possibly
eliminate it as being changes the intruder or user made.

I parsed the timeline file using /usr/bin/less. The beginning of the timeline
showed the date and time of the installation of the OS which were consistent with
both what the user had told me and what was found in /tmp/install.log.
The first instances of suspicious behavior in the time line which weren’t related to
the OS install ,user or cron are shown in Figure 2-9.

Figure 2-9: First Instance of suspicious behavior in Timeline

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12

According to the timeline, at 19:12:23 on Oct 7 th inode 276914 was modified, and
at 19:12:39 ncftpget was executed by root, which created /root/.ncftp It
also shows that the file /etc/rc.d/rc6.d/K83ypbind was deleted as was
the file /var/log/gold.tgz a few moments later.
Inode 1124290 is the same size as the deleted gold.tgz file, so using the inode
browsing feature of Autopsy, I viewed the contents of the inode to determine if it
contained the data of the deleted gold.tgz file. Autopsy identified the contents
of inode 1124290 as “gzip compressed data, from UNIX”. I then extracted the
contents of inode 1124290 out to a file on the forensics box using the “Export
Contents” functionality in Autopsy. After verifying that the MD5 checksum of the
inode contents as reported by Autopsy matched the output of md5sum on the file
that was extracted thus proving the file hadn’t been modified in the extraction
process, I proceeded to uncompress the file, which resulted in a “tar” file. I
checked the contents and paths of the “tar” file using the tvf flags of the
/usr/bin/tar command and then “untarred” i t using the xvf flags so I could
analyze the contents.

Figure 2-10: Dealing with contents of Inode 1124290

Analyzing the Rootkit

“Un-tarring” the “tar” file resulted in a directory named gold being created with
several files in it. It appeared to be a rootkit containing tools that were potentially
used by the intruder. I ran /usr/bin/md5sum on all the files found in the rootkit
to fingerprint them. I then used /usr/bin/file to determine the type of each

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 13

of the files. /usr/bin/strings provided me some insight into the binary files
and I used /use/bin/less to view the text and shell script files.
Figure 1-10 contains the names of the files from the rootkit and a brief
explanation of the files’ purposes based on the information I gathered using
strings and less.

Figure 2-11: Contents of Root kit:
File Name Description

.a a zero length file

.c a file containing Netblocks and domains

.d file containing process names

.inetd.conf.swp
a VIM editor swap file - It's contents indicate it was editing /usr/X11R6/lib/X11/fonts/misc/
/dan/inetd.conf

.p contains a list of the files in the rootkit
.sdc sshd config fi le
.shk sshd private key fi le
.x.tgz gzipped tar file containing ADORE LKM source code (untarred into ".x" directory)

7350wurm
7350wurm - x86/linux wuftpd <= 2.6.1 remote root (version 0.2.2) - remote root exploiter of wu-
ftpd

chattr strings comparison shows it looks like stock chattr (used to change file attributes)
check shell script to unpack .x.tgz in /usr/X11R6/lib/X11/fonts/misc/" "/,compile it and run ./start

cl is "sauber" log cleaner
clean shell script which runs "cl" and passes (yahoo.com, sshd, 208.158.209.235, rotind) as args.

dir a version of dir
du a version of du

encrypt SOLcrypt 1.0 by sensei - to encrypt/decrypt files
fix may try to modify checksums

ifconfig a version of ifconfig - a strings comparison revealed it wouldn't show the PROMISC flag set.

init

shell script to run [dan1,2] -p 3200 -q from /usr/X11R6/lib/X11/fonts/misc/" "/ directory
Runs /usr/X11R6/lib/X11/fonts/misc/" "/ .x/start
Runs ./ava i `/sbin/pidof initd` >>/dev/null

install shell script to install root kit
killall a version of killall

lg shell script to copy trojan version of login to /bin/login
Libproc.so.2.0.6 shared library used by trojaned lsof

login
trojaned version of login with string cocacola, references /bin/sh,/dev/mount (from login
trojaning script "lg")

logn trojaned version of login with string "bebito", references /bin/sh,and /usr/lib/.x
ls a version of ls - references /tmp/extfsRNV23z

lsof a version of lsof
mailme a shell script which emails "smoke@cacanar.com" info about the compromised host

Md5sum a version of md5sum - references /tmp/extfsRNV23z
move shell script to install trojan sshd and others (see timeline)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 14

File Name Description
netstat a version of netstat
patch shell script to patch sshd version (see timeline)

ps a version of ps - references /tmp/extfsRNV23z
pstree a version of pstree (references /tmp/extfsRNV23z)
read perl script to parse output of "LinSniffer"

remove shell script which installs some trojan binaries (see timeline)
sc scanning program

scan statd scanner (looking for vulnerable 111 ports) runs "sc $1 111 $2 $3

sl2
modifed version of "slice" flooder from Knark. "strings" shows: anti-foonet by blizzard - based
on sl2 - Usage: %s srcaddr dstaddr low high. If srcaddr is 0, random addresses will be used

ssh_host_key host key for trojaned version of ssh
ssh_random_see

d random seed file for trojaned ssh
sshd sshd trojan - references /usr/lib/.sdc, /usr/lib/.shk

Sshd_config sshd_config file which references /usr/lib/.shk as Hostkey and /usr/lib/.srs as Random Seed
startfile shell script to modify /etc/rc.d/rc.sysinit, rc.local, boot.local
statdx scanner to exploit vulnerable versions of statd

top a version of top, references /tmp/extfsRNV23z
v Vadim v.Ibeta by Luciffer – udp flooder

vdir version of vdir, references /tmp/extfsRNV23z
write ethernet sniffer - writes to tcp.log
wroot shell script to start wu ftpd vulnerability scanner
wscan wu-ftpd vulnerability scanner
wted strings shows "utzap" to remove login entries from wtmp

Included in the rootkit was a gzipped tar file .x.tgz. Unpacking the tarball and
analyzing the files that were extracted from it into the directory .x revealed it was
potentially the Adore Loadable Kernel Module (LKM).

I looked in all files in the .x direcotory for a software version number so I could
download the Adore LKM source code from the Internet and compare it. The
Makefile had the following entry CFLAGS+=-DCURRENT_ADORE=42 and the
Changes file listed the latest version as 0.42. Both of these files indicated that it
was version 0.42
A quick Google search showed I could download the adore-0.42 source code
from http://packetstormsecurity.nl/groups/teso/adore-0.42.tgz

I downloded the Adore LKM source, and compared md5 sums of files found in
rootkit and files downloaded from net. Figures 2-12 and 2-13 are a comparison of
the files in the .x directory and the source files downloaded from the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 15

Figure 2-12: Adore LKM files from
rootkit

md5sum Filename
60a6b90f32d8387457c0357ffe33605e .x/Changelog
8b35274c9f833c760738cd5765a5c1ba .x/LICENSE
2d0c11e5237baac55759118567901e72 .x/Makefile
e4346f1a3a5fed10786e49b65fab7e6c .x/Makefile.gen
9d626bf8f6874e63a64403ff24757b9d .x/README
13d8ca70a0ca77b62c44c903c7d961d4 .x/TODO
9c1b9c8551e4ccfdfe2eb66a88588f69 .x/adore.c
7ae6abeb0db8e2ac4cb8f7b46613c8cf .x/adore.h
a8af09fd53d76d218b3fadeb70d1fc09 .x/ava.c
3cb6c54561a78dd9c555cc3cbbf95ebc .x/cleaner.c
03e0e705646ba77d7a399d952f15d6a6 .x/configure
ca37049245b51319ddc068f23882c3f9 .x/dummy.c
26e38f23062df4037a287303ea021484 .x/libinvisible.c
8af11813c20a544a60d2ba2d9f8f3f67 .x/libinvisible.h
158e51f5f2ceb287a4658257c9895f40 .x/rename.c
3de6dd6e7688f525e21d951fdf300e80 .x/start

Figure 2-13: Adore source from ‘net

download
md5sum Filename

60a6b90f32d8387457c0357ffe33605e adore/Changelog
8b35274c9f833c760738cd5765a5c1ba adore/LICENSE
e4346f1a3a5fed10786e49b65fab7e6c adore/Makefile.gen
9d626bf8f6874e63a64403ff24757b9d adore/README
13d8ca70a0ca77b62c44c903c7d961d4 adore/TODO
4ae10ffd24d3038d555bbcd068e4db5b adore/adore.c
b3b405ae9d97d68234208cda2f4a195b adore/adore.h
a8af09fd53d76d218b3fadeb70d1fc09 adore/ava.c
3cb6c54561a78dd9c555cc3cbbf95ebc adore/cleaner.c
55dbe55097ec9cbda701de95c084eec2 adore/configure
ca37049245b51319ddc068f23882c3f9 adore/dummy.c
26e38f23062df4037a287303ea021484 adore/libinvisible.c
8af11813c20a544a60d2ba2d9f8f3f67 adore/libinvisible.h
158e51f5f2ceb287a4658257c9895f40 adore/rename.c
92a334f54cf6f2ea67c3ac2c134ccef9 adore/startadore

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

diff adore.c ../.x/adore.c
543c543
< if (strcmp(current->comm, "netstat") == 0) {

> if ((strcmp(current->comm, "netstat") == 0) ||
(strcmp(current->comm, "lsof") == 0)){

The MD5 checksums of the files highlighted differ between the source code and
the rootkit indicating that the source code of the kit on the compromised host had
been modified. By using /usr/bin/diff of the files in question it was
determined that the files had indeed been tailored to this particular install.

Figure 2-14: Diffs of adore.c

For this rootkit installation: line 543 of adore.c has been modified from the
original to check if the process to hide matches netstat or lsof.

Figure 2-15: Diffs of adore.h

Line 83 of adore.h found with the rootkit has also been modified to account for
processes and ports specific to this rootkit (initd,xbnc,write and ports
25330, 48744).

Figure2-16: Diffs of configure

diff adore.h ../.x/adore.h
83c83
< {":hell", ":2222", NULL};

> {":initd", ":25330", ":48744", ":xbnc", ":write", NULL};

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2

In the configure script found with the rootkit, a print statement with instructions
was removed and the password compiled into adore and ava was statically
defined as “electricreality”, This was most likely done so that the compile process
could be automated and would not produce output or require user intervention.

Figure 2-17: Diffs of start/startadore

The startup file in the rootkit was not only renamed from startadore to
start, it was modified to rename the adore.o loadable module to xC.o and
also automate the starting of the ava program to hide the initd and write
processes.

diff configure ../.x/configure
18a19
> $pass = "electricreality";
24,30c25
< print "\n\nSince version 0.33 Adore requires 'authentication' or\n".
< "its services. You will be prompted for a password now and this\n".
< "password will be compiled into 'adore' and 'ava' so no further
 actions\n".
< "by you are required.\nThis procedure will save adore from
 scanners.\n".
< "Try to choose a unique name that won't clash with normal calls to
 mkdir(2).\n";
<
< print "Password (echoed):"; my $s = <STDIN>;

> print "Password (echoed):"; my $s = "electricreality";

diff startadore ../.x/start
5d4
< # insmod adore without $0 but then its visible.
7,9d5
< insmod adore.o
< insmod cleaner.o
< rmmod cleaner
10a7,21
> if [-f adore.o] ;then
>
> mv adore.o xC.o
> fi
>
> if [-f xC.o] && [-f cleaner.o];then
>
> /sbin/insmod xC.o
> /sbin/insmod cleaner.o
> /sbin/rmmod cleaner
> ./ava i `/sbin/pidof initd`
> ./ava i `/sbin/pidof write`
> fi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3

Timeline Analysis: Tracing the path of the intruder

At this point in the investigation, I had a relative idea of when the intruder got
access to the system and identified the tools that were downloaded on to the
system. The next step in the investigation was to piece together specifically how
and when the intruder gained access, and determine exactly what the intruder
modified on the system.
Figure 2-18 contains a complete timeline of significant events and modifications
that occurred on the system from October 6th – 9th. I pieced together this timeline
by analyzing the timeline file I generated with Autopsy, tracing through the install
script included with the rootkit and correlating these sources with each other and
log file entries I retrieved from the system. The Time column is the date and time
the event occurred, the Timeline Entry was taken from the timeline generated by
Autopsy, and the Description column is my interpretation of the specific event.
(See page 7 and Figure 2-6 for an explanation of Timeline Entry syntax)

Figure 2-18: Complete Timeline of significant events

Time Timeline Entry Description
Sunday October 6th 2002

10:55:51
till
11:18:21

• 0 mac ---------- root/boby root 1 <sans-hda6.img-alive-1>
• 16384 m.c d/drwxr-xr-x root/boby root 11 /lost+found
• 4096 mac d/drwxr-xr-x root/boby root 32577 /proc
• 9829 .a. -/-rw-r--r-- root/boby root 162882 /tmp/install.log

Operating System installed by user
(too many files accessed/created
/modified to list – I’ve just listed the
first few from the timeline here)

17:00:13 • 46300 .a. -/-rwxr-xr-x root/boby root 537524 /sbin/depmod
• 1331 .a. -/-rw-r--r-- root/boby root 211812 /etc/sysconfig/harddisks

User boots system. User logs in and
X windows starts (too many files
accessed to list – I’ve just included
the first few from the timeline here.)

18:52:49 • 3077 .a. -/-rw-r--r-- root/boby root 260941
/usr/lib/linuxconf/help.eng/notices/10-welcome.help

User starts linuxconf application
(too many files accessed/changed
to list them all)

18:53:57 • 4096 m.c d/drwx------ jimmy jimmy 33001/home/jimmy User creates valid user account
“jimmy” using Linuxconf application

Monday October 7th 2002
19:12:39 • 111548 .a. -/-rwxr-xr-x root/boby root 668586 /usr/bin/ncftpget

• 4096 m.c d/drwxr-xr-x root/boby root 81855 /root/.ncftp
Intruder gains access to the system.
/usr/bin/ncftp is executed to
download the rootkit.

19:17:28
till
19:17:49

• 826817 ..c -/-rw-r--r-- root/boby root 1124290 /var/ftp/gold.tgz
(deleted)

rootkit tarball: /var/ftp/gold.tgz
deleted

• 4096 m.c d/drwxr-xr-x root/boby root 537505 /sbin install script from rootkit run from
/var/ftp/gold directory. Install runs
./remove which modified /sbin

• 89601 .ac -/-rwxr-xr-x root/boby root 1954978 /usr/sbin/lsof remove script replaces lsof

• 37984 ..c -/-rwxr-xr-x root/boby root 1954988 /lib/libproc.so.2.0.6 remove script replaces
libproc.so.2.0.6

• 38425 .ac -/-rwxr-xr-x root/boby root 1954987 /usr/bin/md5sum remove script replaces md5sum

19:18:51

• 38477 ..c -/-rwxr-xr-x root/boby root 1954960 /sbin/ifconfig remove script replaces ifconfig

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4

Time Timeline Entry Description
• 61125 m.c -/-rwxr-xr-x root/boby root 1954959 /bin/netstat remove script replaces netstat
• 69893 m.c -/-rwxr-xr-x root/boby root 1954957 /bin/ps remove script replaces ps

• 40965 .ac -/-rwxr-xr-x root/boby root 1954958 /usr/bin/top remove script replaces top
• 19313 .ac -/-rwxr-xr-x root/boby root 1954956 /usr/bin/pstree remove script replaces pstree
• 46669 .ac -/-rwxr-xr-x root/boby root 1954974 /usr/bin/dir remove script replaces dir
• 162437 .ac -/-rwxr-xr-x root/boby root 1954971 /usr/bin/vdir remove script replaces vdir
• 28279 ..c -/-rwxr-xr-x root/boby root 1954972 /usr/bin/killall remove script replaces killall
• 121821 .ac -/-rwxr-xr-x root/boby root 1954975 /usr/bin/du remove script replaces du
• 162435 m.c -/-rwxr-xr-x root/boby root 1954973 /bin/ls remove script replaces ls

• 25624 .a. -/-rwxr-xr-x root/boby root 537508 /sbin/chkconfig
• 17 ..c l/lrwxrwxrwx root/boby root 2313169

/etc/rc.d/rc4.d/S13portmap -> ../init.d/portmap (deleted)
• 17 ..c l/lrwxrwxrwx root/boby root 2182802

/etc/rc.d/rc2.d/K87portmap -> ../init.d/portmap (deleted)
• 17 ..c l/lrwxrwxrwx root/boby root 2085239

/etc/rc.d/rc0.d/K87portmap -> ../init.d/portmap (deleted)
• 17 ma. l/lrwxrwxrwx root/boby root 49243 /etc/rc.d/rc5.d/S13portmap -

> ../init.d/portmap (deleted)
• 17 ..c l/lrwxrwxrwx root/boby root 2247965 /etc/rc.d/rc3.d/S13

portmap -> ../init.d/portmap (deleted)
• 17 4096 m.c l/drwxr-xr-x 30 root 81663

/etc/rc.d/rc6.d/K87portmap (deleted-realloc)

remove script executes
/sbin/chkconfig --del portmap to
shutdown portmap daemon

• 250 ..c -/-rw-r--r-- root/boby root 1954969 /usr/include/file.h remove script copies .p to
/usr/includefile.h

• 161 ..c -/-rw-r--r-- root/boby root 1954967 /usr/include/hosts.h remove script copies .c to
/usr/include/hosts.h

• 120 ..c -/-rw-r--r-- root/boby root 1954950 /usr/include/proc.h remove script copies .d
/usr/include/proc.h

• 93 m.c -/-rw------- root/boby root 195923 /etc/ftpusers move script (called from install)
executes:
echo anonymous >> /etc/ftpusers
echo ftp >> /etc/ftpusers

• 19464 ..c -/-rwxr-xr-x root/boby root 293292 /usr/lib/.x /usr/lib/.x created by "lg" script
called from "move" script

• 10717 .ac -/-rwxr-xr-x root/boby root 1954954 /bin/login "lg" script (called from "move")
replaces /bin/login

• 6 .ac -/-rw-r--r-- jimmy jimmy 765952 /usr/X11R6/lib/X11/f
onts/misc/ /.x/CVS/Repository

install script executes:
 mkdir -p
/usr/X11R6/lib/X11/fonts/misc/" "/

19:18:52

• 1345 ..c -/-rwxr-xr-x root/boby root 1954966 /usr/X11R6/lib/X11/
fonts/misc/ /cl

• 13297 ..c -/-rwxr-xr-x root/boby root 1954970 /usr/X11R6/lib/X11/
fonts/misc/ /wted

• 14796 ..c -/-rw-r--r-- root/boby root 1954989 /usr/X11R6/lib/X11/
fonts/misc/ /.x.tgz

install script executes:
• mv -f wted cl .x.tgz

/usr/X11R6/lib/X11/fonts/misc/"
"/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5

Time Timeline Entry Description
 • 18445 ..c -/-rwxr-xr-x root/boby root 1954953

/usr/X11R6/lib/X11/fonts/misc/ /statdx
• 13297 ..c -/-rwxr-xr-x root/boby root 1954945

/usr/X11R6/lib/X11/fonts/misc/ /write
• 982 ..c -/-rwxr-xr-x root/boby root 1954962 /usr/X11R6/lib/X11/

fonts/misc/ /scan
• 11657 ..c -/-rwxr-xr-x root/boby root 1954946 /usr/X11R6/lib/X11/

fonts/misc/ /v
• 4060 ..c -/-rwxr-xr-x root/boby root 1954949 /usr/X11R6/lib/X11/

fonts/misc/ /read
• 13505 ..c -/-rwxr-xr-x root/boby root 1954963 /usr/X11R6/lib/X11/

fonts/misc/ /sc
• 1187 ..c -/-rwxr-xr-x root/boby root 1954947 /usr/X11R6/lib/X11/

fonts/misc/ /wroot
• 13313 ..c -/-rwxr-xr-x root/boby root 1954948 /usr/X11R6/lib/X11/

fonts/misc/ /wscan
• 23749 ..c -/-rwxr-xr-x root/boby root 1954944 /usr/X11R6/lib/X11/

fonts/misc/ /sl2

• mv -f statdx write scan sc sl2
wroot wscan v read
/usr/X11R6/lib/X11/fonts/misc/
" "/

• 716993 m.c -/-rwxr-xr-x root/boby root 2117771
/usr/X11R6/lib/X11/fonts/misc/ /dan1

install script executes:
cp -f sshd
/usr/X11R6/lib/X11/fonts/misc/"
"/dan1

• 716993 m.c -/-rwxr-xr-x root/boby root 2117772
/usr/X11R6/lib/X11/fonts/misc/ /dan2

install script executes:
cp -f sshd
/usr/X11R6/lib/X11/fonts/misc/"
"/dan2

• 998 ..c -/-rw-r--r-- root/boby root 1954983 /usr/lib/.sdc
• 541 .ac -/-rw------- root/boby root 1954981 /usr/lib/.shk

Install script executes:
mv -f .sdc .shk /usr/lib/

• 523 m.c -/-rw------- root/boby root 749927 /usr/lib/.shk2 Install script executes:
cp -f ssh_host_key /usr/lib/.shk2

• 512 mac -/-rw------- root/boby root 749928 /usr/lib/.srs Install script executes:
cp -f ssh_random_seed /usr/lib/.srs

• 121180 .a. -/-rwxr-xr-x root/boby root 668500 /usr/bin/make
• 307 .a. -/-rwxr-xr-x root/boby root 81873

/usr/X11R6/lib/X11/fonts/misc/ /.x/start

The install script executes "check"
script which unzips .x.tgz, and
compiles it. There's too many files
created and accessed to list here.
I've shown make being invoked and
the "start" script to load Adore LKM
from the check script:
make >> /dev/null
./start >> /dev/null
The make process takes until
19:19:11 when the Adore LKM
“start” script is run

19:18:57 • 306 ..c -/-rwxr-xr-x root/boby root 1954976 /etc/rc.d/init.d/init install script calls “startfile” script to
copy init file from rootkit to
/etc/rc.d/init.d/init to activate LKM
and start Trojan ssh daemons at
boot

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6

Time Timeline Entry Description
• 401748 .a. -/-r-sr-xr-x root/boby root 1140314 /usr/sbin/sendmail "mailme" script is executed by

"install" It gathers information about
the system from ifconfig,
hostname,w, /proc/meminfo,
route -n ,/proc/cpuinfo and emails it
to smoke@cacanar.com

• 3777 mac -/-rw------- root/boby root 1661574 /var/spool/mail/root The email sent from the "mailme"
script is bounced back to root since
sendmail is not configured correctly

19:19:01

• 945 m.. -/-rw-r--r-- root/boby root 2117778 /var/log/maillog /var/log/mail.log is updated to report
bounced mail

19:19:09 • 38651 .a. -/-rw-r--r-- root/boby root 2117775 /var/log/cron
• 2880 .a. -/-rw-r--r-- root/boby root 2117786 /var/log/secure
• 3394 .ac -/-rw-r--r-- root/boby root 2117776 /var/log/dmesg
• 4941 .a. -/-rw-r--r-- root/boby root 2117774 /var/log/boot.log
• 0 .ac -/-rw-r--r-- root/boby root 2117781 /var/log/htmlaccess.log
• 945 .ac -/-rw-r--r-- root/boby root 2117778 /var/log/maillog
• 81072 .a. -/-rw-r--r-- root/boby root 2117783 /var/log/messages
• 282 .ac -/-rw-r--r-- root/boby root 2117784 /var/log/netconf.log
• 0 .ac -/-rw-r--r-- root/boby root 2117791 /var/log/statistics
• 0 .ac -/-rw-r--r-- root/boby root 2117787 /var/log/spooler
• 0 .ac -/-rw-r--r-- root/boby root 2117790 /var/log/xferlog

install calls "clean" shell script which
runs "cl" with args to attempt to
clean log files in /var/log

19:19:10 • 40028 .a. -/-rwxr-xr-x root/boby root 537567 /sbin/ipchains install calls "clean" which shuts
down sshd and executes ipchains

• 716993 mac -/-rwxr-xr-x root/boby root 1140266 /usr/sbin/sshd install calls "clean" which replaces
the sshd and restarts the new
daemon

19:19:11

• 0 mac d/drwxr-xr-x root/boby root 1954941 /var/ftp/gold (deleted) install script executes:
rm -rf gold*

19:20:12 • 4096 m.c d/drwxr-xr-x root/boby root 374625 /home
• 4096 m.c d/drwx------ bobby bobby 146960 /home/bobby

User bobby created by intruder

 • 4096 m.c d/drwx------ bobby bobby 146960 /var/log/sa (deleted
-realloc)

/var/log/sa which was deleted by
"patch" script gets reallocated to
/home/bobby

19:20:50 • 688 m.c -/-rw-r--r-- root/boby root 521616 /root/.emacs
• 24 m.c -/-rw-r--r-- root/boby root 521424 /root/.bash_logout

user boby created with uid 0 and
/root as home dir

19:20:56 • 13536 .a. -/-r-s--x--x root/boby root 668868 /usr/bin/passwd /usr/bin/password executed to set
password for user bobby

19:27:57 • (see /var/log/messages file) eth0 put in promiscuous mode
19:46:49 • (see /var/log/messages)

• 146584 m.c -/-rw-r--r-- root/boby root 276898 /var/log/lastlog
user root logs in from
webmaster.de.psu.edu

19:47:59 • 64604 .a. -/-rwxr-xr-x root/boby root 668167 /usr/bin/ftp /usr/bin/ftp executed to download
psyBNC source code

19:50:36 • 224 .ac -/-rw-rw-r-- root/boby root 1987406
/usr/X11R6/lib/X11/fonts/misc/ / /xbnc/

/usr/X11R6/lib/X11/fonts/misc/ /
/xbnc/ directory created when
psybnc kit is untarred into this
directory - too many files created to
list here.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 7

Time Timeline Entry Description
• 524596 .a. -/-rwxr-xr-x root/boby root 1726721 /usr/X11R6/lib/X11/

fonts/misc/ / /xbnc/xbnc
• 524596 .a. -/-rwxr-xr-x root/boby root 1726721 /usr/X11R6/lib/X11/

fonts/misc/ / /xbnc/psybnc (deleted-realloc)

psybnc program renamed to xbnc 19:51:16

• 2075 .a. -/-rw------- root/boby root 2199405 /usr/X11R6/lib/X11/
fonts/misc/ / /xbnc/log/psybnc.log

• 6 mac -/-rw------- root/boby root 1726723 /usr/X11R6/lib/X11/
fonts/misc/ / /xbnc/psybnc.pid

xbnc program started creating
psybnc.pid and psybnc.log

19:52:24 • 4096 m.c d/drwxrwxr-x root/boby root 2199403 /usr/X11R6/lib/X11/
fonts/misc/ / /xbnc/log

Intruder logs into IRC as “andrei”
from 81.196.65.132

19:55:41 • 37884 .a. -/-rwxr-xr-x root/boby root 1140325 /usr/sbin/in.telnetd telnet connection attempted to host
20:07:42 • (see psybnc.log) User andrei logged off IRCfrom

81.196.65.132
Tuesday October 8th 2002

2:52:59 • 4096 m.c d/drwxrwxr-x root/boby root 1319728 /usr/X11R6/lib/X11/
fonts/misc/ / /xbnc/motd

/usr/X11R6/lib/X11/fonts/misc/ /
/xbnc/motd/USER1.MOTD changed
by IRC user.

4:20:13 • 13297 .a. -/-rwxr-xr-x root/boby root 1954945
/usr/X11R6/lib/X11/fonts/misc/ /write

write program (sniffer) is accessed

05:46:
25

• (see psybnc.log) Failed Authentification for ravens
from host 62.231.98.76 via IRC

5:50:22 • 3651 .a. -/-rw-r--r-- bobby bobby 147118 /home/bobby/.screenrc
• 230 .a. -/-rw-r--r-- bobby bobby 147115 /home/bobby/.bash_profile
• 124 .a. -/-rw-r--r-- bobby bobby 147116 /home/bobby/.bashrc
• 24 .a. -/-rw-r--r-- bobby bobby 147114 /home/bobby/.bash_logout

Intruder logs in as bobby

Wednesday October 9th 2002
13:25:43 • 70216 .a. -/-rwxr-xr-x root/boby root 668310 /usr/bin/gnome-

linuxconf
User - who is logged in ran
linuxconf – sees user “bobby”,
“boby” – suspicious someone has
hacked in

16:10:11 • 14460 .a. -/-rwxr-xr-x root/boby root 537556 /sbin/shutdown User initiated shutdown

In the process of compiling the complete timeline shown in Figure 2-18, I came
across additional evidence related to the intruder’s activities on the system.
Specifically, I discovered a bounced email message and that the user was using
an IRC bouncer.
Using Autopsy’s “File Browsing” function, I recovered the email that the mailme
script (called from the rootkit install script) attempted to send. This email,
shown in Figure 2-19 was intended to provide the recipient smoke@cacanar.com
information about the system that had been compromised.
The email, however, was never sent because sendmail wasn’t configured on
the system. Instead, the it bounced back to root’s inbox
/var/spool/mail/root from which I extracted it using Autopsy.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8

Figure 2-19: Contents of Email sent by intruder (full email headers not shown)

I also discovered that at 19:47:59 on Oct 7th the intruder had run /usr/bin/ftp
on the system to download the psyBNC IRC bouncer into the directory
/usr/X11R6/lib/X11/fonts/misc / /psybnc

From: root <root>
Message-Id: <200210072319.g97NJ1i19847@localhost.localdomain>
To: smoke@cacanar.com
Subject: root:cpu MHz : 501.143:localhost.localdomain

 inet addr:128.119.x.xx Bcast:128.119.x.xx Mask:255.255.255.x
 inet addr:127.0.0.1 Mask:255.0.0.0
localhost.localdomain
Linux localhost.localdomain 2.2.16-22 #1 Tue Aug 22 16:49:06 EDT 2000
i686 unknown
 7:18pm up 1 day, 2:19, 2 users, load average: 0.39, 0.08, 0.03
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty1 - Sun 6pm 25:05m 1.11s 0.03s sh
/usr/X11R6/b
root pts/0 :0 Sun 6pm 24:24m 0.04s 0.04s bash
 total: used: free: shared: buffers: cached:
Mem: 263716864 133496832 130220032 157261824 35594240 42483712
Swap: 271392768 0 271392768
MemTotal: 257536 kB
MemFree: 127168 kB
MemShared: 153576 kB
Buffers: 34760 kB
Cached: 41488 kB
BigTotal: 0 kB
BigFree: 0 kB
SwapTotal: 265032 kB
SwapFree: 265032 kB
PING yahoo.com (66.218.71.198) from 128.119.x.xx : 56(84) bytes of data.
64 bytes from w1.rc.vip.scd.yahoo.com (66.218.71.198): icmp_seq=0 ttl=244
time=84.765 msec
64 bytes from w1.rc.vip.scd.yahoo.com (66.218.71.198): icmp_seq=1 ttl=244
time=84.673 msec
--- yahoo.com ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/mdev = 84.673/84.719/84.765/0.046 ms
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use
Iface
128.119.xx.xx 0.0.0.0 255.255.255.0 U 0 0 0
eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0
lo
0.0.0.0 128.119.x.xx 0.0.0.0 UG 0 0 0
eth0

--g97NJ1h19875.1034032741/localhost.localdomain--

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 9

I concluded by looking at the directory /usr/X11R6/lib/X11/fonts/misc
/ / with Autopsy that the psybnc directory had been renamed to xbnc.
The psybnc directory was marked as (deleted-realloc) and it shared the same
inode as the xbnc directory. In addition, the binary psybnc was also marked as
(deleted-realloc), was the same size (524596 bytes) and shared the same inode
(1726721) and the same MD5 checksum as the xbnc binary indicating the
program itself had been renamed from psybnc to xbnc.
The intruder likely renamed it because xbnc is one of the processes that
appeared in .x/adore.h for the Adore LKM to hide.
After parsing several of the source code files in the xbnc directory, I determined
it was the psyBNC IRC bouncer version 2.3 source code. Using Google, I was
able to find and download the source code to psyBNC v2.3 from
http://www.psychoid.lam3rz.de/psyBNC2.3.tar.gz and compared it to the source
code the intruder left behind. Goolge also referred me to
http://www.netknowledgebase.com/tutorials/psybnc.html , which is a great tutorial
on psyBNC. Essentially psyBNC allows IRC users to “bounce” through a host
system (in this case the compromised box) and hide their real IP address from
other IRC users.
To gather more clues about the IRC habits of the user I extracted the
psybnc.conf file, which configures the IRC Bouncer, from
/usr/X11R6/lib/X11/fonts/misc / /

Using http://www.netknowledgebase.com/tutorials/psybnc.html as a reference for
interpreting psybnc.conf, I was able to determine information about the IRC
configuration outlined in Figure 2-20.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10

Figure 2-20: Contents of psybnc.conf (My notes included with arrows)

The logfile psybnc.log , shown in Figure 2-21 that I extracted from
/usr/X11R6/lib/X11/fonts/misc / /xbnc/log/ contains a history
of the intruder’s IRC activity. This confirms the date and time the xbnc process
was started, which I had already seen in the timeline generated by Autopsy. This
also showed that the intruder “andrei” was logging in via IRC from 81.xxx.65.132
(and several failed attempts by user “ravens” from 62.xxx.98.76). I’m unable to
tell from this whether those IPs are other bounce point the intruder is using, or
their originating IP addresses. psyBNC does have the ability to be one of many
hops in an IRC bounce.

PSYBNC.SYSTEM.PORT1=40401 ------------à xbnc process operates
PSYBNC.SYSTEM.HOST1=* on port 40401
PSYBNC.HOSTALLOWS.ENTRY0=*;*
USER1.USER.LOGIN=andrei ------------à intruder’s IRC name is
USER1.USER.USER=Mr.BIG “andrei”
USER1.USER.PASS==0z0t`Q`K0v0e'4'Y`h -----------à Encrypted password for user
USER1.USER.RIGHTS=1
USER1.USER.VLINK=0
USER1.USER.PPORT=0
USER1.USER.PARENT=0
USER1.USER.QUITTED=0
USER1.USER.DCCENABLED=1
USER1.USER.AUTOGETDCC=0
USER1.USER.AIDLE=0
USER1.USER.LEAVEQUIT=0
USER1.USER.AUTOREJOIN=1 ------------à If the user is kicked off
USER1.USER.SYSMSG=1 the IRC channel, it will
USER1.USER.LASTLOG=0 log back in automatically
USER1.USER.NICK=andrei
USER1.SERVERS.PORT1=6667 ------------à port 6667 on IRC server
USER1.SERVERS.SERVER1=Oslo1.NO.EU.undernet.org --à IRC server
USER1.SERVERS.SPASS1=6667 ------------à Password to join channels
USER1.CHANNELS.ENTRY1=#Slick ----|
USER1.CHANNELS.ENTRY0=#gold ----|--------à Channels intruder joins

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 11

Figure 2-21: Contents of psybnc.log

Throughout the course of the investigation I had recovered several deleted files
with Autopsy which were significant pieces of evidence. Using the “Show All
deleted” function on Autopsy I was able to generate a list of all the deleted files
found on the evidence image. At this point in the investigation I had already
found and recovered all the significant deleted data. The only other deleted files
that Autopsy turned up when I listed them all were files deleted and reallocated
by cron jobs. As stated earlier the user performed a clean shutdown before
notifying me the system was compromised. As a result, the /proc filesystem was
cleared of all information (the /proc filesystem exists only in memory, not on
disk).

Strings Search

The swap partition on the disk contains the all that remains of what was in the
memory of the system. The swap space contained on disk contains data that was

Mon Oct 7 19:51:16 :Listener created :0.0.0.0 port 40401
Mon Oct 7 19:51:16 :Error Creating Socket
Mon Oct 7 19:51:16 :Can't create listening sock on host * port 40401
Mon Oct 7 19:51:16 :Loading all Users..
Mon Oct 7 19:51:16 :No Users found.
Mon Oct 7 19:51:16 :psyBNC2.3-cBtITLdDMSNp started (PID :20963)
Mon Oct 7 19:52:24 :connect from 81.xxx.65.132
Mon Oct 7 19:52:25 :New User:andrei (andrei) added by andrei
Mon Oct 7 19:52:34 :User andrei () has no server added
Mon Oct 7 19:54:22 :User andrei () has no server added
Mon Oct 7 19:54:40 :User andrei () trying Oslo1.NO.EU.undernet.org port 6667 ().
Mon Oct 7 19:54:41 :User andrei () connected to Oslo1.NO.EU.undernet.org:6667 ()
Mon Oct 7 19:56:30 :Hop requested by andrei. Quitting.
Mon Oct 7 19:56:30 :User andrei got disconnected from server.
Mon Oct 7 19:56:45 :User andrei () trying Oslo1.NO.EU.undernet.org port 6667 ().
Mon Oct 7 19:56:45 :User andrei () connected to Oslo1.NO.EU.undernet.org:6667 ()
Mon Oct 7 20:07:42 :User andrei quitted (from 81.xxx.65.132)
Tue Oct 8 02:52:52 :User andrei () got disconnected (from Oslo1.NO.EU.undernet.
org) Reason: Closing Link: dick-66 by Oslo1.NO.EU.undernet.org (Ping timeout)
Tue Oct 8 02:52:55 :User andrei () trying Oslo1.NO.EU.undernet.org port 6667().
Tue Oct 8 02:52:56 :User andrei () connected to Oslo1.NO.EU.undernet.org:6667 ().
Tue Oct 8 05:46:25 :connect from 62.xxx.98.76
Tue Oct 8 05:46:25 :Failed Authentification for ravens from host 62.xxx.98.76
Tue Oct 8 05:46:25 :Lost Connection from 62.xxx.98.76 (ravens)
Tue Oct 8 05:46:28 :connect from 62.xxx.98.76
Tue Oct 8 05:46:29 :Failed Authentification for ravens from host 62.xxx.98.76
Tue Oct 8 05:46:29 :Lost Connection from 62.xxx.98.76 (ravens)
Tue Oct 8 05:46:32 :connect from 62.xxx.98.76
Tue Oct 8 05:46:32 :Failed Authentification for ravens from host 62.xxx.98.76
Tue Oct 8 05:46:32 :Lost Connection from 62.xxx.98.76 (ravens)
Wed Oct 9 16:10:28 :Program Context : src/p_socket.c/socketdriver Line 1229
Wed Oct 9 16:10:28 :Received TERMINATE signal from terminal

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12

paged out from memory, and the data is not in any logical order. Parsing the
image with strings command is the most efficient way to view its contents. The
file is about 265 MB so I used the command fgrep –f GREPFILE to match
specific patterns, contained in GREPFILE, which appeared in other evidence I
had gathered from the system.
GREPFILE contains the strings:
bobby,boby,psybnc,andrei,xbnc,ftp,gold,xC,ava,cleaner,initd
,write,PROMISC,webmaster.de.xxx.edu,62.xxx.98.76,81.xxx.65.132,r
avens

Figure 2-22: strings of swap image

This strings search matched some data that was on the swap partition, but
nothing that was related to the intrusion, or the trojaned processes running on the
system. I ran strings again without piping to the pattern matching “fgrep”, so that
I could parse the output by hand. This also didn’t turn up any additional info
related to the intrusion.

Autopsy has a “String Search” functionality build in that allowed me to enter
some search criteria and a regular expression to match on the Linux filesystem
image. I was able to search in both the allocated files and un-allocated files
(deleted files) using the same patterns I entered in GREPFILE. The Autopsy
“String Search” generates the output such that you can see the pattern matched
and the inode/disk block that it appeared in. I reviewed the contents of all the
inodes and disk blocks returned by Autopsy and didn’t find any additional
information.

Conclusion:

I was able to determine that the host had been broken into on Oct 7th 2002 at
19:12:24 from webmaster.de.xxx.edu. The intruder most likely used the wu-ftpd
file globbing heap corruption vulnerability exploit to gain entry and leverage root
privileges. I arrived at this conclusion based on the fact that the system was
running a version of wu-ftpd (2.6.1) that was vulnerable only to the file globbing
exploit, and the first sign of attack was an anonymous FTP login with root
privileges. Once the intruder gained root access to the system via FTP, he/she
immediately downloaded a rootkit into /var/ftp, which is the FTP user’s home
directory.
The rootkit installed by the attacker contained several trojaned versions of
system binaries and daemons, programs to gather information about the current
system, utilities to hide their presence on the system and tools to attack other
systems. The attacker also installed the psyBNC IRC bouncer for communicating
via IRC.

strings sans-hdd5-swap.img | fgrep –f GREPFILE | less

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 13

I can only speculate as to the intention of the intruder. The installed rootkit
included tools to scan and compromise other systems via statd or wu-ftpd
exploits, and perform Denial of Service attacks. Though there is no evidence that
these tools were actually used on this system, it is likely that the intruder
intended on using them. The intruder achieved minimum success by gaining
access to this system though his ultimate goals were most likely halted by the
quick response of the user who found the intrusion early on and removed the
system from the network.

I reported my findings to the owners of the IP addresses from which the intruder
accessed this system and asked that they secure their systems. I notified the
user that his system had indeed been compromised and recommended that he
format the hard drive, re-install a newer version of the the OS, apply the most
recent security patches and disable unnecessary services (such as FTP) before
connecting it to the University network again.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 14

References

Card, Rémy. Ts'o, Theodore. Tweedie, Stephen. “Design and Implementation of
the Second Extended Filesystem” http://e2fsprogs.sourceforge.net/ext2intro.html
Dec 13 2002

Computer Privacy and Security (CoPS) Lab at the University of North Texas.
"Analysis for the reverse engineering Challenge." 23 Oct 2002
http://www.honeynet.org/reverse/results/sol/sol-21/analysis.html

Dittrich, Dave
http://staff.washington.edu/dittrich/misc/largefiles.txt

Google. 02 Dec. 2002
 http://www.google.com

grugq <grugq@lokmail.net>, scut <scut@team-teso.net>. “Armouring the ELF:
Binary encryption on the UNIX platform” Phrack 59. 28 Nov. 2002
http://www.phrack.com/show.php?p=58&a=5

Guidance on New Authorities that Relate to Computer Crime and Electronic
Evidence Enacted in the USA Patriot Act of 2001 (October 2001) U.S.
Department of Justice 30 Nov 2002.
http://www.usdoj.gov/criminal/cybercrime/usapatriot_redline.htm

IANA. “Port Numbers” 15 Nov 2002
http://www.iana.org/assignments/port-numbers

“Interception and Disclosure of Wire, Oral or Electronic Communications
Prohibited” 18 U.S.C. §2511 30 Nov 2002.
http://www.usdoj.gov/criminal/cybercrime/usc2511.htm

Jestrix. “Introduction to psyBNC” 18 Nov 2002.
http://www.netknowledgebase.com/tutorials/psybnc.html

Libpcap Homepage. 03 Nov 2002
http://freshmeat.net/projects/libpcap/?topic_id=809

Miller, Toby. “Detecting Loadable Kernel Modules.” Incident-response.org 30 Nov
2002
http://www.incident-response.org/LKM.htm

Miller, Toby. “Analysis of Knark Rootkit”
http://online.securityfocus.com/guest/4871 Mar 12 2001 6:00PM GMT

Moolenaar, Bram “VIM REFERENCE MANUAL” 27 Oct 2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 15

http://www.polarhome.com/vim/manual/v58/recover.html

Pesch, Roland H., Osier, Jeffery M. and Cygnus Support "The gnu Binary
Utilities" 29 Oct 2002
http://www.skyfree.org/linux/references/binutils.pdf

Psychoid “the most psychoid” 25 Oct 2002
http://www.psychoid.lam3rz.de/

Rivest R., “RFC 1321” Apr. 1992
http://www.ietf.org/rfc/rfc1321.txt

tcpdump homepage Tcpdump Group, The. 22 Oct 2002
http://www.tcpdump.org

Tool Interface Standards, Portable Formats Specification, Ver 1.1 "Executable
and Linking Format (ELF)" 30 Oct 2002
http://www.skyfree.org/linux/references/ELF_Format.pdf

Venema, Wietse., Farmer, Dan. “The Coroner’s Toolkit (TCT)” 10 Nov. 2002
http://www.porcupine.org/forensics/tct.html

Vonck, Tjerk “IRC FAQ” 07 Nov. 2002
http://www.mirc.co.uk/ircintro.html

“Wu-ftpd File Globbing Heap Corruption Vulnerability” Feb 14, 2002
http://online.securityfocus.com/bid/3581

 Legal Issues of Incident Handling

SANS GCFA Practical Assignment v.1.2
Part 3

Jacob Cunningham

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 1

Part 3: Legal Implications

Recently a law enforcement officer contacted me and informed me that an
account on a system in my administrative domain was used to hack into a
government computer. On the phone he asked me to verify the activity by
reviewing the log files on the system and determine if the logs indicate the
activity was initiated by the user on my system or from an upstream provider.
I was able to determine from the log files that a valid user had logged in a dialup
account during the period of suspicious activity. I have a pre-existing relationship
with the law enforcement officer, so I have already verified his credentials and I’m
sure that this is not an instance of social engineering.

When given this situation, I would immediately seek the advise of the company’s
legal counsel to protect my rights, the company’s, and the rights of the
subscriber. Without having done so, I’ve stated my opinion below of how I would
handle the situation based on research that I have done.

There are several state and federal laws that apply to fraudulent and illegal
activities on computers and computer networks. Most unauthorized “cracking”
activities on computers and networks tend to be in violation of Federal Law under
the Computer Fraud and Abuse Act (Title 18 U.S.C. §1030), the Wiretap Act (18
U.S.C. §2511), or the Electronic Communications Privacy Act (18 U.S.C. §2701).

The Electronic Communications Privacy Act (ECPA) 18 U.S.C §2702(a) outlines
among other things, the privacy rights for customers of Internet service providers
and dictates what information and under what circumstances ISPs can turn over
information to law enforcement.

The ECPA distinguishes between two types of Internet service providers, public
and private. The following definition of public and non-public providers as
outlined in the ECPA is provided in Section III B of the Department of Justice
document “Searching and Seizing Computers and Obtaining Electronic Evidence
in Criminal Investigations”:

“Services are available to the public if they are available to any member of the
general population who complies with the requisite procedures and pays any
requisite fees. For example, America Online is a provider to the public: anyone
can obtain an AOL account.
(It may seem odd at first that a service can charge a fee but still be considered
available "to the public," but this mirrors commercial relationships in the physical
world. For example, movie theaters are open "to the public" because anyone can
buy a ticket and see a show, even though tickets are not free.) In contrast,
providers whose services are open only to those with a special relationship with
the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2

provider are not available to the public. For example, employers may offer
network accounts only to employees. See Andersen Consulting LLP v. UOP, 991
F. Supp. 1041, 1043 (N.D. Ill. 1998) (interpreting the "providing . . . to the public"
clause in § 2702(a) to exclude an internal e-mail system that was made available
to a hired contractor but was not available to "any member of the community at
large").

There are different limitations around what public and private providers can
disclose to law enforcement. The restrictions the ECPA places on the disclosure
of information to law enforcement for the most part do not apply to non-public
providers. The company that I work for is a public Internet service provider
therefore certain statutory exceptions from 18 U.S.C §2702(b) must be met
before I can disclose certain information to law enforcement officials.

The ECPA also defines several different types of information that Internet Service
providers may possess and law enforcement may request relating to customers
or subscribers.

• Transactional data from §2703(c)(1): “record or other information

pertaining to a subscriber”. This has been interpreted to include "a log
identifying the date, time, user, and detailed internet address of sites
accessed" in H.R. Rep. No. 103-827, at 10, 17, 31 (1994), reprinted in
1994 U.S.C.C.A.N. 3489, 3490, 3497, 3511; United States v. Allen, 53
M.J. 402, 409 (C.A.A.F. 2000)

• Subscriber, billing and session specific information from §2703(c)(2):
“name, address…telephone number or other subscriber number or identity
 and length of service of a subscriber to customer of such service and the
 types of services the subscriber or customer utilized”

• Stored content of communications that is defined in 18 U.S.C § 2510(8)

In my initial conversations with the law enforcement officer, I am able to confirm
that my employer is a public Internet Service provider and disclose information
about the company’s operational practices such as what sort of transactional and
system logging is performed, and how long the logfiles are kept. In order for me
to legally disclose subscriber information or transactional data contained in
logfiles to the law enforcement officer about a customer or subscriber, one of the
following exceptions stated in 18 U.S.C §2702(c) or 18 U.S.C §2702(b) must
apply to the situation. 18 U.S.C §2702(b) provides exceptions for the disclosure
of contents and 18 U.S.C §2702 (c) provides exceptions for the disclosure of
other non-content customer records.

• Under §2702(c)(2) records can be disclosed: “with lawful consent of the
customer or subscriber.” Login banners and user agreements have been
considered legitimate consent by the user.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3

• Under §2702(c)(3) records can be disclosed for: “the protection of the
rights or property of the provider of that service”

• Under §2702(c)(4) records can be disclosed: “if the provider reasonably
believes that an emergency involving immediate danger of death or
serious physical injury to any person justifies disclosure of the
information”

In this situation, none of the exceptions allowed in §2702(b-c) apply. The law
enforcement officer did not feel that there is the threat of death or serious injury,
my company’s user policy didn’t provide me the authority to disclose their
information, and the log files did not indicate that there was any threat to my
company. The law enforcement officer must get the required legal authority
before I can provide him with subscriber information or log files. If the officer is
unable to get the documents for legal authority in a timely manner, during the
phone call or subsequent phone calls the law enforcement officer can request me
to “freeze” stored records and communications as outlined in 18 U.S.C
§2703(f)(1) which states:
“A provider of wire or electronic communication service or a remote computing
service, upon the request of a government entity, shall take all necessary steps
to preserve records and other evidence in its possession pending the issuance of
a court order or other process”
Section 2703 (f)(2) mandates that when the law enforcement officer issues a
2703f freeze order, the records he requested “shall be retained for a period of 90
days, which shall be extended for an additional 90-day period upon a renewed
request by the government entity.”

There are no provisions governing how effectively the ISP logs user activities or
how effectively the ISP complies with the §2703(f) order. One l imitation of the
§2703(f) request discussed in the document “Searching and Seizing Computers
and Obtaining Electronic Evidence in Criminal Investigations” is that it
“cannot order providers to preserve records not yet made. If agents want
providers to record information about future electronic communications, they
must comply with electronic surveillance statutes”.

As stated above, in order for me to send the law enforcement officer my secured
log files related to this particular incident, the officer must get legal authority
requesting the information as mandated in 18 U.S.C §2703(d):
“A court order for disclosure under subsection (b) or (c) may be issued by any
court that is a court of competent jurisdiction described in section 3127(2)(A) and
shall issue only if the government entity offers specific and articulable facts
showing that there are reasonable grounds to believe that the contents of the
wire or electronic communication, or the records or other information sought, are
relevant and material to an ongoing criminal investigation.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4

The document “Searching and Seizing Computers and Obtaining Electronic
Evidence in Criminal Investigations” list the following options for legal authority to
request information:

• Subpoena:
“Investigators can subpoena basic subscriber information”. The scope of
“basic subscriber information” is listed in §2703(c)(2).

• Subpoena with prior notice to the subscriber or customer
“Agents who obtain a subpoena, and either give prior notice to the
 subscriber or comply with the delayed notice provisions of § 2705(a), may
 obtain:

1) everything that can be obtained using a subpoena without notice;
2) "the contents of any wire or electronic communication" held by a provider

 of remote computing service "on behalf of . . . a subscriber or customer of
 such remote computing service." 18 U.S.C. § 2703(b)(1)(B)(i),
 § 2703(b)(2); and

3) "the contents of a wire or electronic communication that has been in
 electronic storage in an electronic communications system for more than
 one hundred and eighty days." 18 U.S.C. § 2703(a).

• §2703(d) court order
Law enforcement agents who possess an order under 18 U.S.C §2703(d)
can get access to:
“1) anything that can be obtained using a subpoena without notice; and
2) all "record[s] or other information pertaining to a subscriber to or
customer of such service (not including the contents of communications
[held by providers of electronic communications service and remote
computing service])." 18 U.S.C. § 2703(c)(1).”

• §2703(d) Order with prior notice to the subscriber or customer:

 “Agents who obtain a court order under 18 U.S.C. § 2703(d), and either
give prior notice to the subscriber or else comply with the delayed notice
provisions of § 2705(a), may obtain:
1) everything that can be obtained using a § 2703(d) court order without

notice;
2) "the contents of any wire or electronic communication" held by a

 provider of remote computing service "on behalf of . . . a subscriber or
 customer of such remote computing service," 18 U.S.C.
§ 2703(b)(1)(B)(ii), § 2703(b)(2); and

3) "the contents of a wire or electronic communication that has been in
 electronic storage in an electronic communications system for more
 than one hundred and eighty days." 18 U.S.C. § 2703(a). “”

• Search warrant:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5

“Investigators can obtain the full contents of an account with a search
warrant. ECPA does not require the government to notify the customer or
subscriber when it obtains information from a provider using a search
warrant.”

After the law enforcement officer contacted me and notified me that a
customer or subscriber may have been involved in criminal activity, I reviewed
the relevant logs on the system to determine it was a valid user who logged in via
a dialup account. Upon reviewing the log files, I did not find any evidence that the
user was doing anything wrong. Because there was no evidence that the user
was doing anything wrong, in accordance with the law, I as the system
administrator cannot monitor the activities of that user to find proof of wrongdoing
based solely on suspicion or curiosity. The user’s rights pertaining to being
monitored in real-time are protected by the Wiretap Act (18 U.S.C. §2511), which
prohibits, among other things, the interception and monitoring of computer
communications unless a specific exception applies to the situation. There are
several exceptions stated in §2511 that permit the interception and monitoring of
computer communications. The exceptions that pertain most to system
administrators are:

• §2511(2)(a)(i) is referred to as the “provider exception”:

“It shall not be unlawful under this chapter for an operator of a
switchboard, or an officer, employee, or agent of a provider of wire or
electronic communication service, whose facilities are used in the
transmission of a wire or electronic communication, to intercept, disclose,
or use that communication in the normal course of his employment while
engaged in any activity which is a necessary incident to the rendition of his
service or to the protection of the rights or property of the provider of that
service, except that a provider of wire communication service to the public
shall not utilize service observing or random monitoring except for
mechanical or service quality control checks.”

• §2511(2)(c) is referred to as the “consent exception”:

“It shall not be unlawful under this chapter for a person acting under color of law
to intercept a wire, oral, or electronic communication, where such person is a
party to the communication or one of the parties to the communication has given
prior consent to such interception.”

• §2511(2)(i) is referred to as the “computer trespasser exception”:

If the logs disclosed that the hacker had gained unauthorized access to my
system, created an account and used that unauthorized account to hack into the
government computer, then a few of the exceptions apply and I would legally be
able to monitor the activities of the user. The provider exception §2511(2)(a)(i)
allows the system administrator to investigate the matter to protect the provider’s

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6

assets and prevent “theft-of-service” The D.O.J document “Searching and
Seizing Computers and Obtaining Electronic Evidence in Criminal Investigations”
states: “…system administrators can track hackers within their networks in order
to prevent further damage. Cf. Mullins, 992 F.2d at 1478 (concluding that need to
monitor misuse of computer system justified interception of electronic
communications pursuant to § 2511(2)(a)(i)) …..United Sates vs. McLaren, 957
F. Supp. 215, 219 (M.D. Fla. 1997) determined there must be a “substantial
nexus” between the monitoring and the threat to the provider’s rights and
property.”

Although I as the system administrator can monitor to protect my company’s
rights and assets, I cannot be asked to monitor by law enforcement for the
purpose of collecting evidence for a case without the law enforcement officer
having legal consent to do so. Legal consent can be in the form of the court
documents listed previously, or consent may be granted through the “computer
trespasser exception” in 18 U.S.C §2511(2)(i) which states: “Computer
trespassers have no reasonable expectation of privacy on the systems”.
18 U.S.C §2510(21) states that a computer trespasser “does not include anyone
known to the provider to have an existing relationship with the provider.”
 In this case, it is not known whether or not the user is know to have an existing
relationship with my employer. Therefore the individual who set up the
unauthorized account is considered a trespasser and can be monitored by the
system administrator in conjunction with law enforcement under the trespasser
exception as long as the following criteria are met:

• The owner or operator computer must authorize the monitoring of the
trespasser's communications as stated in 18 U.S.C. § 2511(2)(i)(I)

• The person who intercepts the communications must be "lawfully engaged
in an investigation." as stated in 18 U.S.C. § 2511(2)(i)(II).

• The person who intercepts the communications must have "reasonable
grounds to believe that the contents of the computer trespasser's
communications will be relevant to the investigation." as stated in 18
U.S.C. § 2511(2)(i)(III).

• The monitoring should only intercept communications transmitted to or
from the computer trespasser as stated in 18 U.S.C. § 2511(2)(i)(IV).

The law enforcement officer and I would be able to meet all the above criteria
and therefore could monitor the user under the computer trespasser exception of
the Wiretap Act and any evidence gathered could be used in a court of law.

My research was focused around the Federal laws that govern the various
aspects of dealing with the given situation, however there is one state law that
also applies. Massachusetts General Law 272 §99 governs the “Interception of
wire and oral communications.” It is modeled after the federal Wiretap Act, and
contains similar language for prohibiting and allowing the interception of
computer communications.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 7

The notable difference between the exceptions listed in M.G.L 272 §90 D and
ECPA 2511(2)(c) is that in Massachusetts, in order for the “consent exception” to
apply, both parties of the communication must consent to the interception of
information. Also, in M.G.L. 272 §90(D)(c) it clearly states that intercepting
communications is permitted when the investigator is in compliance with the
federal wiretap laws: “for investigative and law enforcement officers of the United
States of America to violate the provisions of this section if acting pursuant to
authority of the laws of the United States and within the scope of their authority.”

In Summary, the Electronic Communications Privacy Act (18 U.S.C. §2701)
regulates what information and under what circumstances ISPs can turn over
information to law enforcement. I, as an employee of a public provider, cannot
disclose subscriber or customer information to law enforcement unless one or
more exceptions allowed in 18 U.S.C §2702(b-c) apply. In this case, the law
enforcement official would have to issue a §2703(f) freeze order on the log files
and obtain a court document (subpoena, search warrant) to gain access to the
customer or subscribers information and log files etc.
In order for me the system administrator or the law enforcement officer, to
conduct real-time monitoring of communications, they are bound by the
provisions outlined in the Wiretap Act (18 U.S.C. §2511). To legally intercept
real-time computer communications, one of the many exceptions listed in
§2511(2) must apply. Several exceptions are made which would allow me, the
system administrator to monitor intruders on the system to protect the provider’s
rights and property. However when I, the system administrator am working in
conjunction with law enforcement (under the color of law), I must adhere to the
guidelines mandated in §2511(2)(i), which relate to monitoring computer
trespassers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8

References:

18 U.S.C §1030
http://www4.law.cornell.edu/uscode/18/1030.html

18 U.S.C §2510
http://www4.law.cornell.edu/uscode/18/2510.html

18 U.S.C §2511
http://www4.law.cornell.edu/uscode/18/2511.html

18 U.S.C §2702
http://www4.law.cornell.edu/uscode/18/2702.html

18 U.S.C §2703
http://www4.law.cornell.edu/uscode/18/2703.html

SEARCH, The National Consortium for Justice Information and Statistics.
“Investigation of Computer Crime” 1998

Schwartz, Kurt N. Assistant Attorney General Deputy Chief, Criminal Bureau
“Obtaining Transactional Records and Stored Communications from Electronic
Communications Services (Telephone Companies, Paging Services and Internet
Service Providers)” March 1,2000

US D.O.J – July 2002
Searching and Seizing Computers and Obtaining Electronic Evidence in Criminal
Investigations.
http://www.cybercrime.gov/s&smanual2002.htm

M.G.L Chapter 272, Section 99
“Interception of wire and oral communications”
http://www.state.ma.us/legis/laws/mgl/272-99.htm

