GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensic:
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

Enhancing incident response through forensic,
memory analysis and malware sandboxing techniques

GIAC (GCFA) Gold Certification

Author: Wylie Shanks, giac@infosecmatters.com
Advisor: Richard Carbone

Accepted: March 25, 2014

Abstract

This paper examines the important role of digital forensics, memory analysis and
malware sandboxing in enhancing incident response practices. Methods for
successful detection, eradication and recovery efforts will be explored through
forensic and malware analysis techniques using Mandiant Redline, Volatility and
Cuckoo Sandbox.

GCFA GOLD 1

1. Introduction

Almost daily, there are reports of successful data breaches and new threat
vectors including compromised systems or vulnerable software. While patching
applications and operating systems provides moderate improvement in the overall
security posture, adversaries require only one successfully exploited weakness to
obtain their goal. According to (Cole, E., 2012), “A system that is 100% secure has
0% functionality”. Meeting the needs of businesses and clients requires systems to
be readily available for ease of use. As a result, networked and interconnected
systems are inherently less than 100% secure. Therefore, incidents or system
compromise becomes more likely to occur. Consequently, it is important to develop
an incident response strategy to understand, cope with and rectify issues as they
arise.

Understanding the nature of the issue before the appropriate response strategy
is executed is of paramount importance. According to (Cichonski, Millar, Grance &
Scarfone, 2012), an event is something that is observed in a system or network and
may be benign such as sending an email or a connection blocked by a firewall.
Adverse events have negative consequences such as unauthorized access to data or
a system crash. Security incidents are the focus of most incident response plans.
These incidents involve the violation or impending violation of organizational
security policies or practices (Cichonski, Millar, Grance & Scarfone, 2012). Incident
response plans should be executed when an incident is detected.

Through assessment and analysis of event logs and other artifacts, damage can
be assessed and appropriate response and recovery strategies implemented.
Without a strategy, incidents may take longer to resolve, increase the business’
financial cost and impact the name, brand and reputation of the firm.

Effective incident response plans include an understanding of threats affecting
the business. Once threat vectors are known, plans can be made to mitigate or
rectify the issues. Proactive steps can also be taken to reduce the impact, severity

and duration of the incident through pre-planned processes.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 2

In this paper the author examines various aspects of incident response along
with methods to improve incident response practices. In the first section of this
paper numerous facets of incidents response will be discussed. Next, the intrusion
kill chain is discussed and the role it plays in locating and effectively responding to
system intrusions. Important phases are outlined with the crucial role each phase
plays in the response plan. The third and fourth sections examine methods of
forensic and memory analysis within the context of discovering malware or system
compromise. Automated malware analysis using Cuckoo Sandbox is discussed in
section five. The paper concludes by analyzing malware samples using Cuckoo
Sandbox, Volatility and Mandiant Redline before briefly mentioning eradication and
recovery efforts.

The phases of incident response will now be discussed.

1.1. Preparation

Establishing incident response capability within an organization as a means of
preventing incidents is the focus of this phase. Incident handling communication
protocols including contact and escalation information for other team members,
stakeholders and managers need to be documented and maintained. Vital to an
incident response team'’s readiness is a secure facility within which to operate and
access tools including laptops, blank media, evidence collection forms and
equipment (e.g. write blockers, etc.). Incident handlers must be trained in their role
including the detection, analysis, eradication of and recovery from incidents.

While incident response teams are generally not responsible for securing
systems, they can act as advocates for generally accepted security practices. Such
teams may also perform risk assessments, detect gaps and can make

recommendations for remediation.

1.2. Identification
Identification of an incident regarding its scope and magnitude may be quite
difficult for organizations. This is due to the volume of event data received and the

training level and experience of the incident response team.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 3

Incidents may be detected through a variety of means including third-party
notification, intrusion detection systems (IDS), intrusion prevention systems (IPS),
security information and event management systems (SIEMs), anti-virus products,
file integrity checking products and log analysis.

Once the data has been analyzed a determination is made whether a security
incident has occurred. Context Triggered Piecewise Hashing (CTPH) may be used to
find files that are similar by calculating the hash value of portions of a file. Also
known as fuzzy hashing, a percentage is calculated based on how similar the byte
and sequence match is to the original file. Ssdeep is an application that implemented

this technique (Kornblum, 2006).

1.3. Containment

Once an incident has been identified it is possible to implement containment
procedures to limit spread of the issue and prevent further damage to the system.
Considerations include: service availability requirements (e.g. a real-time system
with high uptime requirements), whether evidence needs to be preserved, the
efficacy of the solution (e.g. a temporary solution or workaround) and resource
availability. Once the strategy has been implemented the incident should not spread

or cause further system/network damage.

1.4. Eradication

The eradication process eliminates the cause of the unwanted incident. This
process also implements mitigation controls, removing existing vulnerabilities in a
prioritized, phased approach. Controls may include removing malware, changing
user account permissions and passwords, adjusting firewall rules and patching
exploited software vulnerabilities. In circumstances related to eliminating the
incident, systems may need to be restored from clean backups or rebuilt using
trusted media before current patches are applied. Otherwise, restoring backups or

rebuilding systems from trusted media occurs in the recovery phase.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 4

1.5. Recovery

Restoring the system to normal operation occurs during the recovery phase.
Additional patching may be required in the recovery phase to eliminate future
incidents. New firewall rules and the implementation of additional controls may also
be required in this phase to ensure the newly recovered systems are not vulnerable
to compromise. Additional controls may include the implementation of IDS, IPS, web
content filter and anti-virus signatures designed to address the system weakness.

After recovery, the new system must be monitored to detect new attacks and to

confirm the system is functioning correctly.

1.6. Lessons learned
Lessons learned provide a timely and useful means of updating security and

incident handling practices and procedures with newly discovered insights.
Valuable information surrounding improved awareness and detection of new
threats may also be integrated. Questions that may be asked during a lessons
learned meeting include:

* Were existing procedures adequate and were they followed?

* What inhibited the detection, containment, eradication and recovery

efforts?
* How would the response be different in the future?

* What actions can be taken now to mitigate the risk of future incidents?

1.7. CSIRT

A computer security incident response team (CSIRT) provides incident handling
capabilities within an organization. The objective of the CSIRT, its role, function and
the services it provides to the organization are formalized. Multiple teams may be
involved in the delivery of incident response services. For example, the team
responsible for firewall administration may be responsible for investigating
perimeter security systems, whereas system administrators would investigate host-
based system security issues. An IT security team may partially or exclusively

provide the role and function of a CSIRT (West-Brown et al., 2003).

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 5

A list of common CSIRT services includes:
* Incident handling and response including incident analysis and
coordination.
* Vulnerability and security assessments.

* Forensic evidence collection and analysis.

2. What is the intrusion kill chain?

The kill chain is an integrated process comprised of locating adversary targets
and their location, tracking and observing the target, engaging it and then assessing
the results. This process is referred to as a “chain” because any disruption in the
process affects the entire chain. This concept has been adapted to intrusions. This
model includes breach of the trusted boundary, obtaining access to internal systems
and obtaining the objective. Objectives may include moving within the internal
environment or affecting the confidentiality, integrity or availability of the system
(Hutchins, E. M., Cloppert, M.]., & Amin, R. M., n.d.).

Adversaries research and plan their attack in a phased approach.
Understanding this methodology can aid the detection and prevention of current
and future incidents. According to (Hutchins, E. M., Cloppert, M.]., & Amin, R. M,,
n.d.), “The intrusion kill chain is defined as reconnaissance, weaponization, delivery,
exploitation, installation, command and control (C2) and actions on objectives.”

The authors have defined each phase as follows:

1. Reconnaissance - Targets are identified and selected. Information may be

obtained from websites and email address lists.

2. Weaponization - Automated tools are used to deliver an exploit within a
payload. For example, Adobe PDF or Microsoft Office files may be updated
with weaponized code.

3. Delivery - The transmission of the weaponized code to the selected target.
Methods include website (e.g. watering hole), email (attachments or links) or
removable media (e.g. USB device).

4. Exploitation - The code is executed. Typically, this exploits a software

vulnerability or feature that allows other software to be installed.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 6

5. Installation - On-going access to the target may be maintained through the
installation of a backdoor or remote access software.

6. Command and Control (C2) - The compromised target establishes
outbound communication with a command and control site. Once connected,
the target receives further instructions.

7. Actions on Objectives - Depending on the adversary’s objectives, data may
be collected and exfiltrated. Alternatively, data or systems may be modified,
encrypted or made unavailable. The target system may also be used to

compromise additional systems within the environment.

2.1.

Understanding the adversary’s attack methodology allows system owners to

Why is the intrusion kill chain important?

plan, budget for and implement appropriate detective and preventive controls.
Table 1 illustrates common defensive and preventive capabilities, their applicability
to intrusion kill chain phases and their ability to detect, deny, disrupt, degrade,
deceive or destroy an attack.

Table 1: Courses of Action Matrix

Phase Detect Deny Disrupt Degrade Deceive Destroy
Web Firewall
Reconnaissance | analytics ACL
Weaponization | NIDS NIPS
Vigilant Proxy In-line
Delivery user filter AV Queuing
Exploitation HIDS Patch DEP
"chroot"
Installation HIDS jail AV
Firewall DNS
Cc2 NIDS ACL NIPS Tarpit redirect
Actions on Quality of
Objectives Audit log Service Honeypot

Note. Adapted from Intelligence-driven computer network defense informed by
analysis of adversary campaigns and intrusion kill chains, p.5, by Hutchins, E. M.,
Cloppert, M.]., & Amin, R. M,, (n.d.).

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 7

2.2. Kill chain analysis

Analysis of the full kill chain provides information that is relevant to the current
incident. This data can be used to prevent future attacks. Without additional
information from the earlier phases it is difficult to detect and prevent these
incidents from occurring in the future. Unlike traditional incident response that
occurs after the exploitation phase, the goal of kill chain analysis is detection of

incidents much earlier on in the delivery phase.

3. Forensic Analysis

Relevant data needs to be identified, collected and analyzed in a manner that
retains the data’s integrity intact and maintains its chain of custody. Volatile data,
which can change rapidly and is typically lost during a power outage, should be
collected before non-volatile data (e.g. data written to a hard drive). (Lee, R. et al,
2012) provides a step-by-step process to find unknown malware:

1. Prep evidence / data reduction

Anti-virus check
Indicators of compromise search
Automated memory analysis
Evidence of persistence
Packing / entropy check (CTPH/ssdeep)
Review event logs

Super timeline examination

© 0 N o 1ok W N

By-hand memory analysis

Uy
=)

. By-hand third party hash lookups
. Master File Table (MFT) anomalies

(SRS
N R

. File-time anomalies
13. Malware analysis

See Appendix C for links to other resources including software mentioned in this

paper.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 8

3.1. Memory imaging (Windows)

A memory image should be the first step taken in a suspected system
compromise, as memory is the most volatile data within a system. There are many
tools available to image memory including Mandiant Redline, MoonSols Windows
Memory Toolkit Community Edition and commercial tools including EnCase and
FTK. As with any forensic image acquisition, changing the data integrity of the
artifact prior to acquisition should be avoided. According to (Carbone, R., Bean, C,,
Salois, M., 2011) the cold boot attack is a means of volatile data collection that may
be considered in extreme circumstances, as it is not the method of choice.

Mandiant’s Redline is a free Windows-based tool that can be used to collect
memory images from Windows computers and analyze its contents for indicators of
compromise (IOC). This tool is helpful during the triage process when determining if
a system has been compromised.

MoonSols Windows Memory Toolkit Community Edition is another free
memory imaging utility that creates raw memory images for use with many memory
analysis tools.

EnCase Forensic v7 and FTK v5 provides multi-platform memory imaging
capability. Once connected to the suspect machine the forensic analyst can create a

memory image for later analysis.

3.2. File system imaging

Once memory has been imaged the file system should be imaged to separate
storage media using forensically sound techniques. The first step when analyzing a
file system image is reducing the amount of data to be analyzed. Hash values should
be calculated for every file in the image and matched against the National Software
Reference Library (NSRL) hash set to eliminate known files. Many advanced forensic
analysis suites undertake these steps automatically. Unallocated space should be
scanned for executable files and dynamic link libraries. Any files found should be

extracted (e.g. data carving).

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 9

Mounting the image file as read-only allows for multiple anti-virus products to
scan both the extracted files and image for known malware. If malware is found,

files may also be scanned by ssdeep for similar malware.

3.3. Find and collect relevant artifacts

Several areas of the Windows operating system should be examined for relevant
artifacts. These include:

Registry - Unknown or malicious files may run at startup (see run or runonce).

Services - Check the path, name and hash value of executable files.

Scheduled tasks - Malicious tasks may be run via the task scheduler.

Event logs - If sufficient auditing and logging was enabled there may be entries
of interest to include in the overall incident timeline. Several events including logon,
account creation and clearing of the event log are of interest during the review.

Volume Shadow Copy Service (VSS) - Data from the Volume Shadow Copy
Services (VSS) can be extracted and reviewed using an advanced forensic analysis
suite.

Prefetch - The same suite of tools can process the Windows prefetch directory.

3.4. Unknown hash matches

After filtering the files of interest list down to a reasonable number the hash
values of the remaining files should be reviewed against the VirusTotal, Team
Cymru and Bit9 FileAdvisor databases. One suggestion is to consider analyzing
unmatched files in a malware sandbox environment in order to provide additional

information.

4. Memory Analysis using Volatility

Programs in memory have fewer protection mechanisms against analysis and
review. Relevant data is obtained by finding strings (human readable text),
established network connections and through the analysis of running processes.
Process injection, hiding processes, network and socket connections and the
Windows registry are just a few of the many artifacts that can be reviewed or

extracted.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 10

Process injection involves inserting executable code into a running process.
Executable program code may be typically inserted using the Windows application
programming interface (API). The first steps involve connecting to the process then
allocating memory within the process. The executable code is copied into the newly
allocated space. Finally, the process executes the new code (Foundstone, 2013).
Here are a few instructions that may be used in process injection:

Attach - OpenProcess()

Allocate Memory - VirtualAllocEx()

Copy executable - WriteProcessMemory()

Execute - CreateRemoteThread(), NtCreateThreadEx(), RtiCreateUserThread()

Process hiding is a technique found in many rootkits. Programs run in either
user mode or kernel mode - the highest privilege. Applications typically run in user
mode while operating system components run in kernel mode. A single virtual
address space is used to run code in the kernel. Code in this space is not isolated
from each other as it is in user mode. Running in kernel mode allows files, folders,
registry entries, network ports or other information to be hidden using Direct
Kernel Object Manipulation (DKOM).

Running processes use the EPROCESS kernel structure to point to the previous
and next process. To hide a process, the previous and subsequent processes are
linked together bypassing the intermediate process. This hides the process from
products like Task Manager (Elia, 2005).

Network and socket connections are stored in memory. These artifacts may
provide the source of an infection or simply indicate evidence of third-party
communication. Unexpected connections may be benign or used for data exfiltration
or command and control communication.

The Windows registry is loaded into memory upon the startup of Windows. It
stores a vast amount of program and system data used by both applications and the
operating system. Memory analysis of the registry can provide access to many
artifacts including programs run at startup, the most recently used list (programs

recently launched) and programs launched from the desktop, among others.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 11

4.1. Indicators of Compromise (I0C)

Indicators of compromise are forensic artifacts that may be used to determine
whether a system has been breached. Given the varied nature of malware and the
approaches used to compromise systems, there are a wide variety of IOCs including
registry items, browser cookies, event log entries, processes in memory, files on disk
and file download history among others. These I0Cs can be collected to create an
I0C for a particular incident. Scanning systems for these I0Cs is used to determine
whether or not they have been compromised. Similarly, analysis of IOCs can be used
to determine patterns and behaviors used by adversaries. This information may

lead to improvements in detective and preventive capabilities in the future.

4.2. Locating malware
Volatility is a free memory analysis tool written in Python. It supports 32-bit
and 64-bit versions of Windows, Linux 32-bit and 64-bit kernels (from 2.6.11 -
3.5.x), Mac OS X (10.5 - 10.9) and Android phone (32-bit and 64-bit) memory dumps
(Volatility, 2013a). The focus of this paper is on Windows memory analysis.
Volatility has many plugins that are useful for identifying evidence of infection.
A selection of these includes (Hale Ligh, Adair, Harstein & Richard, 2011):
* apihooks - detects hooks into user and kernel mode processes
* connections - a list of open connections
* connscan - a list of TCP connections
e dlllist - a list of loaded DLLs for each process
* malfind - detects hidden and injected code
* pslist - prints a list of loaded processes
* sockets - alist of open sockets
* sockscan - alist of open TCP sockets
* svcscan - detects hidden services
A sample memory image from the Malware Analyst’s Cookbook was used for the
following review. See Appendix C for the link to this memory file containing the Zeus

malware memory sample.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 12

The following commands were used to analyze the memory image (Malwareninja,
2011):
vol.py -f zeus.vmem imageinfo (result: WinXPSP2x86)
vol.py -f zeus.vmem connections (no results)
vol.py -f zeus.vmem connscan

Offset(P) Local Address Remote Address Pid

0x02214988 172.16.176.143:1054 193.104.41.75:80 856
0x06015ab0 0.0.0.0:1056 193.104.41.75:80 856
A whois lookup was launched to determine the ownership and country of the IP

address. The site http://www.malwareurl.com was consulted to determine whether

the site has hosted malware. The detailed report shows that Trojan Zbot was hosted
at this site. Next, the process ID (PID) was checked to see which process attempted
the remote connection.

vol.py -f zeus.vmem pslist

Offset(V) Name PID PPID Thds Hnds Sess ...

0x80ff88d8 svchost.exe 856 676 29 336 0 ..
The output shows svchost.exe attempted the connection and is indicative of

suspicious activity. Web browsers would normally attempt an outbound connection
on port 80. The malfind plugin is used to determine whether code has been injected
into a process and can be limited to the suspicious process.

vol.py -f zeus.vmem malfind --pid=856

Process: svchost.exe Pid: 856 Address: 0xb70000

Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE

Flags: CommitCharge: 38, MemCommit: 1, PrivateMemory: 1, Protection: 6
0x00b70000 4d 5a 9000 03 00 00 00 04 00 00 00 ffff 00 00 MZ.............

Two noteworthy items appear in the output. First, the process is executable yet
its PrivateMemory is set to 1. This indicates that memory is not shared with other
processes. The second noteworthy item is that its VadS protection is set to
PAGE_EXECUTE_READWRITE. A scan of loaded DLLs indicates that there are no files
loaded at address 0x00b70000. However, there appears to be a PE executable file

header “MZ” at the start of the output (Volatility, 2013b). This code appears to have

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 13

been injected into svchost.exe. The suspected malicious code can be dumped for
later inspection through this command:

vol.py -f zeus.vmem malfind --pid=856 --dump-dir=/tmp

md5sum /tmp/process.0x80ff88d8.0xb70000.dmp

Result: 59f1993ae96c0108f0fa224609f51a2f

VirusTotal reports that this file is identified at Zbot (malware).

5. Automated Malware Analysis — Cuckoo Sandbox

Cuckoo Sandbox is an automated malware sandboxing tool used to perform
dynamic analysis against binary samples. An isolated Windows guest virtual
machine is used to run the sample and analyze the results. As such, executable files,
DLLs, URLs, PDF and Microsoft Office files among others can be analyzed in this
environment. Cuckoo Sandbox has many features including the tracking of any files
created, deleted or downloaded during execution, capturing a memory dump from
the machine and capturing any network traffic created (Oktavianto, D. &
Muhardianto, 1., 2013).

The isolated environment allows the sample to run without adversely affecting
the host or guest system. A guest Windows virtual machine is built and configured
within supported virtual machine (VM) software such as VirtualBox. Once the
desired system state is achieved a system snapshot is taken. This snapshot can be
used to return the system to a known, clean state after the sample has been
analyzed.

A command-line interface is used to perform all tasks within Cuckoo Sandbox.
However, use of the web form may speed up the analysis process from sample
submission through to report reviewing. Data from the report may be exported for

use in other tools or reports and archived using other forensic artifacts.

5.1. Static analysis

Static analysis requires a strong understanding of programming code including
low-level assembly language. Programs must be translated from binary code to
human readable form through disassembly or decompilation. Once translated, the

analyst reviews the numerous lines of code looking for relevant artifacts. This can

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 14

be a time consuming effort/undertaking and may be hampered by anti-debugging
code that is designed to thwart code analysis (Oktavianto, D., & Muhardianto, I,
2013).

5.2. Dynamic analysis

Dynamic analysis involves executing the sample and monitoring its behavior.
Changes to the file system, network and registry are recorded. The sample may
require specific input or values in order to run correctly. It is imperative that these
inputs are in place when executing the sample. In addition, some malware modifies
its behavior if it detects that it is running in a virtual environment. This is a feature
designed to thwart analysis of the sample. See Appendix B for more information

regarding VirtualBox system hardening instructions.

5.3. Integration with Volatility

Cuckoo Sandbox integration with Volatility is optional. However, the reduction
in time required to analyze a sample and the increase in potential indicators of
compromise are worth the additional steps required to integrate the products. See
Appendix A for installation instructions.

Cuckoo Sandbox’s memory.conf configuration file is used to configure which
Volatility options are to be used. Two additional configuration changes are required
to enable this integration. The first change is to set memory_dump = on in file
cuckoo.conf while the second change is to set enabled=yes in the memory section of

file processing.conf.

6. Analysis of a malware sample
Samples may be submitted to the Cuckoo Sandbox once the environment has
been configured. Malware samples used in the analysis below were obtained from

https://zeustracker.abuse.ch.

A test environment was created as follows:
¢ Ubuntu 12.04.4 LTS server running VirtualBox and a Windows XP SP3
guest.

* Windows 7 Enterprise running Mandiant Redline and Volatility.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 15

Cuckoo Sandbox Environment

(192.168.1.0/24 @

192.168.56.0/24 0

vboxnet0
192.168.56.1 (VirtualBox|host-only network)

Ubuntu Server /

Cuckoo Sandbox

(runs VirtualBox)
(192.168.1.90)

WindowsXPVM1
(192.168.56.101)

Figure 1 - Cuckoo Sandbox Environment

Before running Cuckoo Sandbox the Windows XP SP3 guest VM
(WindowsXPVM1) was restored to Snapshot1 to ensure the environment was clean
using this command:

vboxmanage snapshot "WindowsXPVM1" restore Snapshot1

The user ID sandboxuser was used to launch two separate terminal windows to
start Cuckoo Sandbox and to enable the web interface. The following commands
were used:

cd J/opt/cuckoo
python /opt/cuckoo/cuckoo.py
python /opt/cuckoo/utils/web.py

[f additional information is required the cuckoo sandbox process can be run in
debug mode by appending --debug to cuckoo.py on the command line. The web form

can be reached at http://192.168.1.90:8080 as shown below.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 16

‘eo0o6 Cuckoo Sandbox

[« 1>] [2) [+]O 192.168.1.90:8080

cuckeosy”

New Analysis

File to upload (Choose File | "© file selected

Package to use

Priority | Medium
Machine | WindowsXPVM1

Capture Memory | True

Figure 2 - Cuckoo Sandbox new analysis form
Samples may be submitted through the web interface or via a third terminal
window:
python /opt/cuckoo/utils/submit.py <filename>
where <filename> is the name of the sample to be analyzed. For example:
python /opt/cuckoo/utils/submit.py /home/sandboxuser/samples/
virussign.com_8f172d5dedfc25063878cf7ac2a6ed50.vir
Cuckoo Sandbox reports consist of multiple subsections that are discussed below

through the use of the aforementioned virussign.com malware sample.

6.1. File Details

This section of the report provides basic file information such as file name, size
and various hash values. These values may be useful in identifying this file in the
environment. In addition, the ssdeep value may be used to find similar malware in
the environment based on the similarity of its code. The existence of a packed
executable file (e.g. UPX, ASPack, Themida, etc.) may indicate the file is malicious.
Packers are used to compress files and have the added benefit of obfuscating human
readable strings which makes string analysis much more difficult. The following

information was reported for the sample file:

File name virussign.com_8f172d5dedfc25063878cf7ac2a6ed50.vir

File size 223008 bytes
File type PE32 executable (GUI) Intel 80386, for MS Windows
CRC32 D32D67D6

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 17

MD5 8f172d5dedfc25063878cf7ac2abed50

SHA1 76e9e285ccc11c68d72c48f12d45ba5d74947e0c

SHA256 0222ae7a94b2296471a1ff8e3a90049a86b84828ff3eda0b4c151ae70e52c59a

Ssdeep 3072:L2aACAMfVxHsjqUwkMejsRkudvROFIgHIRXmUa9ITTYIQA3x/EFyWQIKx]6:L2dMQRIROFZXpTTYIQA3xA1IE
PEiD None matched

6.2. Imports

DLLs imported (used) in the submitted program are listed in this section.
Analyzing the functions used by these DLLs can give an indication of the type of
activity performed by this program. A select list of imported DLLs and their function

is shown below:

Library ADVAPI32.d1l: Library WININET.dIl:

0x30001004 - RegEnumKeyExW 0x300012a0 - InternetSetFilePointer
0x30001008 - RegCreateKeyExW 0x300012a4 - InternetOpenUrlW
0x3000100c - RegOpenKeyExW 0x300012a8 - InternetCloseHandle
0x30001010 - RegSetValueExW 0x300012ac - InternetReadFile
0x3000101c - RegQueryValueExW 0x300012b0 - InternetOpenW
0x30001024 - SetServiceStatus 0x300012b4 - InternetGetConnectedState
0x30001030 - RegDeleteValueW 0x300012b8 - InternetCanonicalizeUrlW
0x30001034 - RegisterServiceCtrlHandlerWw 0x300012bc - HttpQueryInfoW

0x30001038 - CryptDestroyHash
0x3000103c - CryptCreateHash
0x30001040 - CryptGetHashParam
0x30001044 - CryptHashData
0x30001060 - RegDeleteKeyW
0x30001064 - SetFileSecurityW

Functions that access, use and manipulate the registry are found in advapi32.dll
along with hash creation and file security. Wininet.dll provides higher-level network

functionality such as Internet access.

6.3. Dropped files

Seven files were dropped onto the file system as the malware sample executed.
A list of these files, their hashes, ssdeep values and other details can be found in
Appendix D. Of note, are the dropped files with the same name as those used by
VirtualBox. Files VBoxDrvInst.exe and VBoxTray.exe are two of the seven dropped

files.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 18

6.4. Behavior Summary
As mentioned in the imports section, this malware sample appears to have the

ability to perform a variety of capabilities. A sample of various file access attempts
is:

C:\WINDOWS\system32\drivers\hmjkhn.sys

C:\DOCUME~1\cuckoo\LOCALS~1\Temp\dixobo.exe

R:\14eeef, S:\14£2f6, T:\14f708

C:\Python27\pythonw.exe

C:\DOCUMENTS AND SETTINGS\ALL USERS\APPLICATION DATA\MICROSOFT\CRYPTO\RSA\MACHINEKEYS*

C:\DOCUMENTS AND SETTINGS\ALL USERS\APPLICATION DATA\MICROSOFT\CRYPTO\DSS\MACHINEKEYS*

C:\Program Files\Oracle\VirtualBox Guest Additions\VBoxDrvInst.exe
C:\WINDOWS\system32\VBoxTray.exe

Several noteworthy items include the location of dropped files (the first two
above-listed entries); drive letters that do not exist in the guest operating system,
access to Python (used to connect with Cuckoo Sandbox), RSA/DSS crypto machine
keys and the VirtualBox guest additions. As noted in Appendix D this malware

sample may be virtual machine-aware.

6.5. Mutexes

The way that multithreaded applications limit access to shared resources is
through the use of mutual exclusion (mutex). This ensures that only one thread has
control of the resource at a time. Thus, mutexes are common in multithreaded
applications. However, malware authors may want to limit the number of running
instances of their application on a computer (so they do not re-infect an already
compromised system) or perform their own multithreaded communication. Unique
mutexes may be used to identify the malware. A sample of the mutexes discovered

in the malware sample is:

C:\Oplmutx9
C:\smss.exeM_372_
C:\csrss.exeM_620_
C:\winlogon.exeM_644_
C:\services.exeM_688_
C:\Isass.exeM_700_
C:\vboxservice.exeM_856_
C:\svchost.exeM_908_
C:\svchost.exeM_984_
C:\svchost.exeM_1068_
C:\svchost.exeM_1124_
C:\svchost.exeM_1188_
C:\spoolsv.exeM_1476_
C:\explorer.exeM_1604_
C:\vboxtray.exeM_1732_
C:\pythonw.exeM_1748_
C:\pythonw.exeM_600_
C:\virussign.com_8f172d5dedfc25063878cf7ac2a6ed50.virM_1696_

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 19

An Internet search of “Op1lmutx9” reported that this mutex has been used in

”n

other malware. The remaining mutexes append M_<process ID>_" to the file where
<process ID> is the process ID of the running process. This will be discussed further

in the process section.

6.6. Registry changes

The following sample of registry keys were noted in the Cuckoo Sandbox report:

HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\Authorized
Applications\List\

HKLM\SOFTWARE\Microsoft\Cryptography\Defaults\Provider\
HKCU\System\CurrentControlSet\Control\SafeBoot\
HKLM\System\CurrentControlSet\Control\SafeBoot\
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\

Reading the firewall policy (authorized application list), default cryptography
providers (e.g. smart cards), safeboot and the registry entry used for persistence

(run) are further indicators of this malware’s potential capabilities.

6.7. Processes

Each of the identified processes in the Cuckoo Sandbox report, when clicked,
opens to display activity conducted. The timestamp, thread, function, arguments,
status and return code are displayed. The processes discovered were:

virussign.com_8f172d5dedfc25063878cf7ac2a6ed50.vir PID: 1696, Parent
PID: 600

netsh.exe PID: 1032, Parent PID: 1696

Explorer.EXE PID: 1604, Parent PID: 1584

VBoxTray.exe PID: 1732, Parent PID: 1604

wscntfy.exe PID: 1988, Parent PID: 1068

netsh.exe PID: 464, Parent PID: 1604

This section provides a wealth of information as to the activities conducted by
the sample. For example, a search for the term firewall in the
virussign.com_8f172d5dedfc25063878cf7ac2a6ed50.vir process shows two
successful registry changes to Firewall Disable Notify (which disables the pop-up

alert in Windows XP) and FirewallOverride. The Windows firewall is then disabled.

Wylie Shanks, giac@infosecmatters.com

23:02:44,334

23:02:44,334

23:02:44,495

1724

1724

1724

RegSetValueExA

RegSetValueExA

CreateProcessInternalW

Handle => 0x000000c4
Buffer => 1

ValueName =>
FirewallDisableNotify
Type =>4

Handle => 0x000000c4
Buffer => 1

ValueName =>
FirewallOverride

Type =>4

ApplicationName =>
Processld => 1032
CommandLine => netsh
firewall set opmode
disable

ThreadHandle =
0x000000d8
ProcessHandle =
0x000000d4

Threadld => 1756
CreationFlags =>
0x00000000

GCFA GOLD 20

SUCCESS 0x00000000
SUCCESS 0x00000000
SUCCESS 0x00000001

The processes list includes the process ID and parent ID. The parent ID denotes

the process that spawned the child process. Interestingly, VBoxTray.exe is spawned

by explorer.exe. By examining data reported on from the integration with Volatility

additional indicators of compromise are obtained.

6.8. Volatility

Using Volatility plugins additional artifacts were located that provided

indication of malicious activity.

6.8.1. Malfind

The malfind plugin detects injected processes. The twelve processes shown

below were identified as possibly injected. The processes will be interrogated in a

later step to confirm whether or not they are injected. As noted earlier, the PID and

process name appears in the mutexes previously discovered.

PID
620
644
644
644
644
644
644
644
644
644
1748
1748

Process name
csrss.exe
winlogon.exe
winlogon.exe
winlogon.exe
winlogon.exe
winlogon.exe
winlogon.exe
winlogon.exe
winlogon.exe
winlogon.exe
pythonw.exe
pythonw.exe

VAD start
0x7f6f0000
0xb790000
0x19c0000
0x475f0000
0x3bc30000
0x15410000
0xfd40000
0x3ce40000
0x66990000
0x6b740000
0x11a0000
0x12b0000

Wylie Shanks, giac@infosecmatters.com

VAD tag
Vad
VadsS
VadsS
VadsS
VadsS
VadsS
VadsS
VadsS
VadsS
VadsS
VadsS
VadsS

GCFA GOLD 21

6.8.2. PSXView

This plugin assists with finding hidden processes. Several processes in the
excerpted list below have a value of “false” including PIDs 600 (pythonw.exe), 1604
(explorer.exe) and 464 (netsh.exe). A value of false in a column indicates that the
process is missing from that source of process listings. For example, netsh.exe does
not appear in a list generated using the pslist plugin. Therefore, these processes may

be hidden and will be analyzed.

PID Process name In In In In In In In

pslist psscan thrdproc pspcid csrss session deskthrd
448 wuauclt.exe TRUE TRUE TRUE TRUE TRUE TRUE TRUE
464 netsh.exe FALSE TRUE FALSE FALSE FALSE FALSE FALSE
600 pythonw.exe TRUE TRUE FALSE TRUE FALSE FALSE FALSE
620 csrss.exe TRUE TRUE TRUE TRUE FALSE TRUE TRUE
644 winlogon.exe TRUE TRUE TRUE TRUE TRUE TRUE TRUE
700 Isass.exe TRUE TRUE TRUE TRUE TRUE TRUE TRUE
1604 explorer.exe TRUE TRUE FALSE TRUE FALSE FALSE FALSE
1748 pythonw.exe TRUE TRUE TRUE TRUE TRUE TRUE TRUE
1836 wscntfy.exe TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Two of the four processes of interest PID 600 (pythonw.exe) and PID 1604
(explorer.exe) could not be dumped as they were paged to disk:

Command: vol.py -f memory.dmp proexedump -p 600 --dump-dir=/tmp

Result: Error: PEB at 0x7ffde000 is paged

Command: vol.py -f memory.dmp procexedump -p 1604 --dump-dir=/tmp

Result: Error: PEB at 0x7ffd4000 is paged
The next process (netsh.exe — PID 464) could not be dumped via neither the process
ID or offset (0x063f8538). The offset was obtained by running the psxview
command from the command line, as it did not appear on the Cuckoo Sandbox
report.

Command: volpy -f memory.dmp vaddump --offset=0x063f8538 --dump-
dir=/tmp

Result: Unable to get process AS for -. [This indicates that volatility was unable
to get the process address space for that file and, therefore, was unable to dump the
process.]

The final process PID 620 is analyzed in section 6.9.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 22

6.9. Analysis of dropped and extracted files
The dropped files from section 6.3 were submitted to virustotal.com for

analysis. Known malware was found in most of the submitted samples.

Filename Result

npeai.exe Win32/Sality
dixobo.exe probably safe
hmkjhn.sys Win32/Sality
VBoxTray.exe Win32/Sality

VBoxDrvInst.exe Win32/Sality

An analysis of the PIDs listed in section 6.8.1 indicates malicious code was
injected into running processes. The following commands were used to dump the
memory of various processes:

volpy -f memory.dmp malfind --pid=1748 --dump-dir=/tmp/7

volpy -f memory.dmp malfind --pid=644 --dump-dir=/tmp/7

volpy -f memory.dmp malfind --pid=620 --dump-dir=/tmp/7
The mutex (pythonw.exeM_1748) appears in the hex dump of the malfind output
from PID 1748. A review of the dumped file names indicates the process was at
0x864cc410.0x12b0000.

The MDS5 hash values were calculated for the dumped processes using the
command md5sum /tmp/7. The calculated hash values were submitted to
virustotal.com to see if they had been previously analyzed. Files were submitted to
virustotal.com where no results were received from the hash value searches. An
excerpt of the dumped files, hash values and virustotal.com results are show below:

PID 1748 (pythonw.exe) - Detected as Sality by VirusTotal.
25def264c460916a18318dea8002dd90 /tmp/7/process.0x864cc410.0x11a0000.dmp
410c6ad62fd24bbd6024471a6a6db452 /tmp/7 /process.0x864cc410.0x12b0000.dmp

PID 644 (winlogon.exe) - VirusTotal did not detect malware in the extracted files.
c5265eae501e49fb83cdalefde6e3323 /tmp/7/process.0x86508b28.0x15410000.dmp
0699a7324afelad2c17c870abe2fcfb7 /tmp/7/process.0x86508b28.0x19c0000.dmp

PID 620 (csrss.exe) - VirusTotal did not detect malware in the extracted files.
d320f3e7b378c50d3122ac0361aabff7 /tmp/7/process.0x86559ce0.0x7f6f0000.dmp

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 23

6.10. Mandiant Redline
Mandiant Redline analyzed the Zeus memory file mentioned in section 4. 2 and
reported the presence of malware in the memory image. The first indication of

malware was reported by the Injected Memory Sections filter.

¥ Mandiant Redline™ - C: sisSession\Zeus VMEM.mans.

Ty ————

e L] CEN 5w [omres | [@ Y |
“ P'G(:“: Review Memory Sections / DLLs PID ProcessName Trust Status Injected Protection Region Size
andles
Memory Sections These views show the memory 4 System B fjected v EXECUTE_READWRITE PrivateMemory MemCommit CopyOnlWrite 152 Kilobytes
Strings sections that each running process is
e “omprised of. Named memory 4 System B njected v EXECUTE READWRITE PrivateMemory MemCommit 152 Kilobytes
Hierarchical Processes sections are those that are mapped to || 4 System B fjected v EXECUTE_READWRITE PrivateMemory MemCommit 152 Kilobytes
files, primarily DLLs. For those
Driver Modules unfamilizr with makware analysis, the 216 algexe B njected v EXECUTE READWRITE PrivateMemory MemCommit 152 Kilobytes
Device Tree best view to start with is "Least
Hooke Ercqueney of Orcunenae (ninsted 432 VMwereTray.exe B fjected v EXECUTE_READWRITE PrivateMemory MemCommit 152 Kilobytes
Timeline Only): unlike system DLLs, malware 452 VMwareUser.exe W njected v EXECUTE_READWRITE PrivateMemory MemCommit 152 Kilobytes.
T DLLs normally are not signed and are
2gs and Comments usually loaded by a single process, 468 wuaucltexe W jected v EXECUTE_READWRITE Priv ory MemCommit SecNoChange... 152 Kilobytes
Acquisition History and thus will often appear in this 632 winlogon.exe B ijected v EXECUTE_READWRITE riv ory MemCommit 152 Kilobytes
view.
676 servicesexe B jected v EXECUTE READWEITE Priv ory MemCommit SecNoChange.. 152 Kilobytes
1 688 lsass.ene B njected v EXECUTE_READWRITE PrivateMemory MemCommit 152 Kilobytes
{Untrusted Oniy)
Shows only Nemed Sections that 84 vmacthip.exe B jected v EXECUTE READWRITE PrivateMemory MemCommit SecNoChange... 152 Kilobytes
occur less than 4 times across all 856 svchostexe W jected v EXECUTE_READWRITE PrivateMemory MemCommit 152 Kilobytes
processes and are untrusted.
838 wscntfyexe B jected v EXECUTE READWRITE PrivateMemory MemCommit 152 Kilobytes
Least Frequency of Occurrence
Shows only Named Sections that 936 suchostere B njected v EXECUTE_READWRITE PrivateMemory MemCommit SecNoChange... 152 Kilobytes
occur less than 4 times across all 1028 svchostexe W jectes v EXECUTE_READWRITE PrivateMemory MemCommit SecNoChange... 152 Kilobytes
processes.
Nomed Sections Onty 1084 TPAutoConnectexe B jected v EXECUTE_READWRITE PrivateMemory MemCommit 152 Kilobytes
Show only Named Sections. 1088 swchostere B jectes v EXECUTE READWRITE PrivateMemory MemCommit 152 Kilobytes
e Wy Corine 1148 swchostexe B jectes v EXECUTE_READWRITE PrivateMemory MemCommit SecNoChange... 152 Kilobytes
Show only Injected Memory 1432 spoolsv.exe B jectes v EXECUTE READWRITE PrivateMemory MemCommit SecNoChange... 152 Kilobytes
Sectic
SO 1668 vmtoolsd.exe W jected v EXECUTE_READWRITE PrivateMemory MemCommit 152 Kilobytes
All Memory Sections 1724 ExplorerEXE B injected v EXECUTE_READWRITE PrivateMemory MemCommit SecNoChange... 152 Kilobytes
Show all Memory Sections.
o el Memory Sections. 1732 wuaucltexe B injected v EXECUTE ¢ MemCommit SecNoCh 152 Kilobytes
1788 VMUpgradeHelperexe [Nl Injected v EXECUTE READWRITE PrivateMemory MemCommit 152 Kilobytes
1968 TPAutoConnSvcexe H jected v EXECUTE_READWRITE PrivateMemory MemCommit 152 Kilobytes

Figure 3 - Injected Memory Sections

The trust status column clearly indicates which processes have been injected. An
additional indication of process injection is listed in the protection column. The
value of EXECUTE_READWRITE_PrivateMemory indicates that the process has

executable private (non-shared) memory allocated to the process.

Wylie Shanks, giac@infosecmatters.com

© 2014 The SANS Institute Author retains full rights.

GCFA GOLD

24

The injected processes were carved out of the memory image using the “Acquire

this Process Address Space” command.

¥ Mandiant Redline™ - C:

s UMEM.mans.

Home » Host » Hierarchical Processes

X L

4 Processes
Handles
Memory Sections
Strings
Parts
Hierarchical Processes

Driver Modules
Device Tree

Hooks

Timeline

Tags and Comments

Acquisition History

Host | 10C Reports | Not Collected

started them

Review Processes Hierarchically

This view shows the relationship
between all of the processes and their
parent processes. It also displays the
MRI scores for each of these
processes and the processes which

MRI (Malware Risk Index) scoring uses
avariety of techniques to assess the
risk that a process is malware.
Processes with a high MRI Score (up.
0 100) are more risky; those with a
low score are less. Double click on a
process name to view an MRI report
that describes the reasons for that
process’s rating. MRIis intended as a
guide for investigation; be aware that
it can generate false positives and
false negatives. These can be
corrected in the MRI report.

£ % [lnanfies -‘@ ‘

Process Name

» System 56
» smssexe 47
csrss.exe 57

» winlogon.exe 53
» services.exe a7
algexe 4
vmacthlp.exe 3
swehostexe 47
svchostexe a7

» swchostexe 50
wuaucltexe 50
wsentfy.exe 50
wuaucltexe 50
suchostexe 4
svchostexe 47
spoolsv.exe 50
ymtoolsd.exe a7

VMUpgradeHelperexe 47
» TPAutoComnSveexe 51

TPAutoConnectexe 51

Isass.exe 47

» ExplorerEXE 52
VMwareTray.exe 4
VMwareUser.exe 50

‘ n

MRIScore PID

Arguments

\SystemRoot\System32smss.exe
CAWINDOWS\system32\csrss.exe ObjectDirectory=\Windo,

winlogon.exe
CAWINDOWS\system32\services.exe
CAWINDOWS\System32alg.exe

, | "Ci\Program Files\VMware\WMare Tools\w

CAWINDOWS\system32\svchost -k Dc

CAWINDOWS\system:

t -k rpess

Path
1
544 \SystemRoot\System32
608 \?ACAWINDOWS\system32
Select All
Copy with Headers
Copy
Tags
Search the Web for this Process
Acquire this Process Address Space
1028 CAWINDOWS\System32
468 CAWINDOWS\system32
888 CAWINDOWS\system32
1732 CAWINDOWS\system32
1088 CAWINDOWS\system32
1148 CAWINDOWS\system32
1432 CAWINDOWS\system32
1668 C\Program Files\VMware\VMware Tools
1788 Ci\Program Files\VMware\VMware
1968 Ci\Program Files\VMware\V!
1084 Ci\Program Files\VMware\VMws
688 CAWINDOWS\system32
1724 CAWINDOWS
432 C\Program Files\VMware\Mware Tools
452 CAProgram Files\VMware\VMware Tools

CAWINDOWS\System32\svchost.exe -k netsves

"CAWINDOWS\system32\wuaucitexe”

CAWINDOWS\system32\wscntfy.exe

OWS\sy

ystem32\svchost.exe -k NetworkService
CAWINDOWS\system32\svchostexe -k LocalService
CA\WINDOWS\system32\spoalsv.exe

‘Ci\Program Files\VMware\VMware Tools\mtoolsd.exe”

TPAutoConnect.exe -q - vmware -2 COML -F 30
CAWINDOWS\system32\lsass.exe
CAWINDOWS\ExplorerEXE

"C:\Program Files\VMware\VMware Tools\VMwareTray.exe”

"C:\Program Files\VMware\VMware Tools\VMwareUser.exe™

32\wuaucitexe” /RunStoreAsComSer.

*C:\Program Files\VMware\VMware Tools\VMUpgradeHelp..

"C:\Program Files\VMware\VMware Tools\TPAutoConnSve...

Show Details

24Ttems

Figure 4 - Acquire this Process Address Space

Of the eight injected files the author attempted to acquire from process address

space Symantec Norton 360 Premier Edition blocked them both. The acquired files

were verified to be malicious. These files could have been submitted to VirusTotal

for further analysis had they not been detected as malicious.

® tigh
® tigh
® tigh
® tigh
® tigh
® tigh
® tigh

® igh

Show | Resolved Security Risks M

Severity

Activity

gm2sStrgjqmbnyvsqilh3g (Packed Generic.99) detected by Auto-Protect

2tclwxmigogbmsykipaaaz (Packed.Generic.99) detected by Auto-Protect

4akwicqdmycdwbpovioiz3 (Packed.Generic.99) detected by Auto-Protect

kzlauawgtixengrezcepg4 (Packed Generic 99) detected by Auto-Protect

g5vyAxd2uvabijchifpdyv (Packed Generic99) detected by Auto-Protect

lgad1Ifyd49fwtidjtikta (Packed Generic.99) detected by Auto-Protect

glxtDieqSrucoain37ul7u (Trojan Zbotigen?) detected by Auto-Protect

detected by Auto-Protect

Status

Blocked

Blocked

Blocked

Blocked

Blocked

Blocked

Blocked

Blocked

%) Refresh List
Date & Timev.
2014-02-26
85302 PM
2014-02-26
85302 PM
2014-02-26
85302 PM
2014-02-26
85302 PM
2014-02-26
85302 PM
2014-02-26
85302 PM
2014-02-26
85302 PM

2014-02-26
85302 PM

Goto Page

¥ Norton

Go.

Import Export

& oo

Threat Actions performed: 1

Quick Search Go

Recommended Action

Resolvec

No Action Required

Trojan Zbotigen2

Not Available

[n Activity

More Details

Clear Entries Close

Figure 5 - Security History - Blocked process acquisition

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 25

7. Eradication and recovery efforts

Having discovered malware and additional indicators of compromise it is now
possible to eradicate the problem and recover the system. Eradication can involve
the creation of an anti-virus signature by your anti-virus software vendor. This may
be especially helpful if the infection is wide spread within the organization as the
anti-virus software can be used to scan systems and automatically remove the
infection.

Submission of the malware sample to VirusTotal (or other providers listed in
the appendix) may result in the creation of new malware signatures for your anti-
virus product. In addition, many anti-virus vendors have a malware submission
option via their website. There may be security, confidentiality, or legal
considerations when submitting a sample for analysis. Prior approval should be
obtained before submitting any file.

Restoring the system from a trusted backup may provide higher assurance that
the infection has been removed. If it is not possible to restore from a trusted backup
then the infected system may need to be rebuilt from trusted media and updated to

current patch levels.

8. Conclusion

Incident response practices can be enhanced through forensics, memory image
analysis and malware sandboxing techniques. Forensic techniques can be used to
locate indicators of compromise and find evidence of persistence. Analysis of
memory images may provide additional indicators of comprise including hooked
processes and modified registry keys (e.g. processes to run at startup). Similarly,
malware sandboxing techniques provide behavioral analysis of the sample and
provide additional information including dropped files, changed registry keys and
the disabling of services among many others.

Armed with a means of detecting malicious software, the eradication and
recovery efforts can be completed effectively in order to restore the system to a

known state. In addition, information gathered during intrusion kill chain analysis

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 26

can help protect the organization from future attacks through modification of the

internal defense systems (e.g. patching, HIDS, NIDS, NIPS, anti-virus, firewall etc.).

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 27

References

Carbone, R., Bean, C., Salois, M. (2011). 4n in-depth analysis of the cold boot attack —
Can it be used for sound forensic acquisition. Retrieved from website:

http://cradpdf.drdc-rddc.gc.ca/PDFS/unc108/p534323 Alb.pdf

Cichonski, P., Millar, T., Grance, T., & Scarfone, K. National Institute of Standards and
Technology, (2012). Computer security incident handling guide (Special
Publication 800-61 Revision 2). Retrieved from website:

http://csrc.nist.gov/publications/nistpubs/800-61rev2/SP&00-6 1 rev2.pdf

Cole, E. (2012). Advanced persistent threat: Understanding the danger and how to

protect your organization. Syngress.

Elia, F. (2005). When malware meets rootkits. Retrieved February 17, 2014 from

https://www.symantec.com/avcenter/reference/when.malware.meets.rootkits.pdf

Foundstone (2013). Windows dll injection basics. Retrieved on February 17, 2014 from

http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

Hale Ligh, M., Adair, S., Harstein, B., & Richard, M. (2011). Malware analyst's
cookbook and dvd: Tools and techniques for fighting malicious code. Indianapolis,

Indiana: Wiley Publishing Inc.

Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (n.d.). Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill
chains. Retrieved from

http://www.lockheedmartin.ca/content/dam/lockheed/data/corporate/documents/L

M-White-Paper-Intel-Driven-Defense.pdf

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise
hashing. Retrieved February 14, 2014 from http://dfrws.org/2006/proceedings/12-

Kornblum.pdf

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 28

Lee, R. et al (2012). Digital forensics and incident response poster: finding unknown
malware - step-by-step. Retrieved February 8, 2014 from
https://blogs.sans.org/computer-forensics/files/2012/06/SANS-Digital-Forensics-

and-Incident-Response-Poster-2012.pdf

Malwareninja. (2011). Zeus analysis in volatility 2.0. Retrieved February 17, 2014 from

http://malwarereversing.wordpress.com/2011/09/23/zeus-analysis-in-volatility-2-0/

Oktavianto, D., & Muhardianto, . (2013). Cuckoo Malware Analysis. Packt Publishing.

Sikorski, M., & Honig, A. (2012). Practical malware analysis: The hands-on guide to
dissecting malicious software. No Starch Press.

Special Report - The Department of Energy's July 2013 Cyber Security Breach. (2013,
December). Retrieved February 8, 2014, from
http://energy.gov/sites/prod/files/2013/12/£5/1G-0900.pdf

Volatility (2013a). The volatility framework. Retrieved February 9, 2014 from

https://code.google.com/p/volatility/

Volatility (2013b). Volatility framework-commandreferencemal23. Retrieved February
14, 2014 from https://code.google.com/p/volatility/wiki/CommandReferenceMal23

West-Brown, M. J., Stikvoort, D., Kossakowski, K., Killcrece, G., Ruefle, R., &
Zajicek, M. (2003, April). Handbook for computer security incident response teams
(CSIRTs). Retrieved February 2, 2014, from http://www.cert.org/archive/pdf/csirt-

handbook.pdf

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 29

Appendix A: Deploy Cuckoo Sandbox on Ubuntu 12.04

References:

http://docs.cuckoosandbox.org/en/latest/
http://santi-bassett.blogspot.ca/2013/01/installing-cuckoo-sandbox-on-virtualbox.html
http://santi-bassett.blogspot.ca/2013/01/setting-up-windows-guest-on-virtualbox.html
https://media.readthedocs.org/pdf/cuckoo/latest/cuckoo.pdf
https://www.virtualbox.org/wiki/Linux_Downloads

Download the latest the long-term support (LTS) version of Ubuntu 12.04:
http://www.ubuntu.com/download/server

Install Ubuntu 12.04 and allow SSH login (if remote console access is desired)

Login then switch to root access to install the software. Open terminal if console access is
not already present.

To login as root: sudo su —

apt-get update

apt-get dist-upgrade

(install the XFCE4 or other GUI environment if desired: apt-get install xfce4)
apt-get install unzip

Install VirtualBox

Add the following line to /etc/apt/sources.list:

deb http://download.virtualbox.org/virtualbox/debian precise contrib

wget -q http://download.virtualbox.org/virtualbox/debian/oracle_vbox.asc -O- | sudo apt-
key add —

apt-get update

apt-get install virtualbox-4.3

/etc/init.d/vboxdrv setup

Set static [P address (example):
vi /etc/network/interfaces

The primary network interface
auto eth0
iface ethO inet static
address 192.168.1.90
netmask 255.255.255.0
gateway 192.168.1.1
dns-nameservers 192.168.1.1 8.8.8.8

auto vboxnet0
iface vboxnet0 inet dhcp

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 30

Install VirtualBox Extension Pak

wget

http://dlc.sun.com.edgesuite.net/virtualbox/4.3.6/Oracle VM_VirtualBox Extension Pac
k-4.3.6-91406.vbox-extpack

vboxmanage extpack install Oracle. VM _VirtualBox Extension Pack-4.3.6-91406.vbox-
extpack

Install Python

apt-get install python python-dpkt python-jinja2 python-magic python-pymongo
mongodb python-libvirt python-bottle python-pefile python-mako python-sqlalchemy
apt-get install ssdeep python-pip dwarfdump

apt-get install build-essential git libpcre3 libpcre3-dev libpcre++-dev

cd /opt

apt-get install subversion python-pyrex libfuzzy-dev libcap2-bin tcpdump
svn checkout http://pyssdeep.googlecode.com/svn/trunk pyssdeep

cd pyssdeep

python setup.py build

python setup.py install

pip install pydeep

Configure tcpdump

setcap cap _net raw,cap net admin=eip /ust/sbin/tcpdump
getcap /ust/sbin/tcpdump

Install Yara

cd /opt

git clone https://github.com/plusvic/yara.git yara
cd yara

apt-get install libtool automake

chmod +x build.sh

./build.sh

Install Volatility: https://code.google.com/p/volatility/wiki/LinuxMemoryForensics

cd /opt

wget https://volatility.googlecode.com/files/volatility-2.3.1.tar.gz
tar -zxvf volatility-2.3.1.tar.gz

rm volatility-2.3.1.tar.gz

Cuckoo Sandbox must run as the same user that creates the virtual machines. New user
“cuckoo” was created. Since we are using VirtualBox the new user must be assigned to

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD

the “vboxusers” group. This is the group used to run VirtualBox.
Create a new user

adduser cuckoo

sudo adduser cuckoo sudo

usermod —G vboxusers cuckoo

usermod —G libvirtd cuckoo (if KVM or any libvirt based module is used)

Install Cuckoo Sandbox

cd /opt
git clone git://github.com/cuckoobox/cuckoo.git

Set Cuckoo Sandbox configuration

vi /opt/cuckoo/conf/virtualbox.conf
[virtualbox]

mode = headless

path = /usr/bin/VBoxManage
machines = WindowsXPVM1
[WindowsXPVMI1]

label = WindowsXPVM1

platform = windows
ip=192.168.56.101

Configuring integration with Volatility

vi /opt/cuckoo/conf/processing.conf

[memory]

enabled = yes

Change memory disabled (no) to enabled (yes)

vi conf/memory.conf
Enable or disable settings as desired.

vi conf/cuckoo.conf
memory dump = on
To enable dumping of memory to a file for analysis

Create a directory to store the Windows XP install media then change ownership to

cuckoo ID

mkdir /opt/cuckoo/ISO
chown —R cuckoo /opt/cuckoo

Wylie Shanks, giac@infosecmatters.com

31

GCFA GOLD 32

To enable the IP address configured earlier:

ifdown ethQ
ifup ethO

Transfer the Windows XP installation media (ISO) into the Ubuntu host. sSFTP may be
used if openssh was installed earlier. Otherwise, the media may be installed from a USB
device. The ISO file was stored as follows: /opt/cuckoo/ISO/windowsxp.iso.

Installing the Windows XP guest

Switch user to cuckoo before continuing with these steps. Type:
sudo su cuckoo

Create the Windows XP VirtualBox guest:

vboxmanage createvm --name "WindowsXPVM1" --ostype WindowsXP --register
vboxmanage modifyvm "WindowsXPVM1" --memory 1000 --acpi on --boot1 dvd --nicl
nat

vboxmanage createhd --filename "WinXP.vdi" --size 20000

vboxmanage storagectl "WindowsXPVM1" --name "IDE Controller" --add ide --
controller PIIX4

vboxmanage storageattach "WindowsXPVM1" --storagectl "IDE Controller" --port 0 --
device 0 --type hdd --medium "WinXP.vdi"

vboxmanage storageattach "WindowsXPVM1" --storagectl "IDE Controller" --port 0 --
device 1 --type dvddrive --medium /opt/cuckoo/ISO/windowsxp.iso

Remote Desktop must be used to connect to 192.168.1.90 from another machine if the
virtual machine is started “headless”. To start the headless virtual machine and install
Windows XP type:

VBoxHeadless --startvm "WindowsXPVM1"

vboxmanage controlvm "WindowsXPVM1" poweroff

mkdir -p /home/cuckoo/shares/WindowsXPVMI1

vboxmanage sharedfolder add "WindowsXPVMI1" --name "WindowsXPVM1" --
hostpath /home/cuckoo/shares/WindowsXPVMI --automount

vboxmanage sharedfolder add "WindowsXPVMI1" --name setup --hostpath
/home/cuckoo/shares/setup --automount --readonly

vboxmanage modifyvm "WindowsXPVMI1" --nictracel on --nictracefilel
/home/cuckoo/shares/WindowsXPVM1/dump.pcap

vboxheadless --startvm "WindowsXPVMI1"

Ismod | grep vboxnetadp # module needed to add a new host-only interface at the host
vboxmanage list hostonlyifs # checks host-only interfaces at the host

vboxmanage hostonlyif create # leaving default IP 192.168.56.1/24

vboxmanage list dhcpservers # checks dhep servers

vboxmanage list vms # checks virtual machines

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 33

vboxmanage showvminfo "WindowsXPVM1" # checks NICs information
vboxmanage controlvm "WindowsXPVM1" poweroff

vboxmanage modifyvm "WindowsXPVM1" --nicl hostonly

vboxmanage modifyvm "WindowsXPVM1" --hostonlyadapter] vboxnetO
vboxheadless --startvm WindowsXPVM1

vi /etc/rc.local file

iptables -A FORWARD -o ethO -i vboxnet0 -s 192.168.56.0/24 -m conntrack --ctstate
NEW -j ACCEPT

iptables -A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT
iptables -A POSTROUTING -t nat -j MASQUERADE

sysctl -w net.ipv4.ip_forward=1

Windows XP guest configuration can be found here:
http://santi-bassett.blogspot.ca/2013/01/installing-cuckoo-sandbox-on-virtualbox.html

Ensure the following are completed:
* Disable Windows Firewall.
* Disable Automatic Updates.
* Install Python 2.7.6 (download and copy to shared folder)
¢ Install PIL (for Python 2.7 — download and copy to shared folder)

* Copy /opt/cuckoo/agent/agent.py to the WindowsXPVMI1 shared folder. From the
Windows XP guest copy agent.py to a startup folder. Rename the file agent.pyw.

* Activate Windows. It may be necessary to temporarily enable Internet access in

order to do so. Ensure Internet access is disabled after Windows activation.

* Enter the static IP address of the guest OS as 192.168.56.101 and 192.168.56.1 as
the gateway. Enter your DNS address or 8.8.8.8.

* Ping 192.168.56.1 to confirm that network is working as intended.
* Enable Autologon.
* Reboot the Windows XP guest.

* Ensure agent.pyw begins at startup and is running before taking the virtual

machine snapshot.

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 34

Appendix B: Hardening Cuckoo Sandbox (VirtualBox)

Some malware will check to see if it is running in a virtual environment and may change
how it runs as a result. To avoid detection by virtual machine-aware malware running in a
VirtualBox environment please see the following resources:

Read the instructions found at this site:
http://www.alienvault.com/open-threat-exchange/blog/hardening-cuckoo-sandbox-
against-vm-aware-malware

Implement all file changes (in green) listed here:
https://github.com/jaimeblasco/AlienvaultLabs/blob/master/cuckoomon_hardened/cucko
omon_vbox_hardened.patch

Additional hardening instructions are located here:
http://Oxmalware.blogspot.ca/2013/10/cuckoo-sandbox-hardening-virtualbox.html

The cuckoomon.dll file can be compiled using the instructions found here:
http://blog.michaelboman.org/2013/05/cross-compiling-cuckoomon-under-linux.html

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 35

Appendix C: Other resources

The Honeynet Project: http://honeynet.org/project

VirusSign (Malware research & data center): http://www.virussign.com

Clearing house for incident handling tools:
http://www.enisa.europa.eu/activities/cert/support/chiht

Request tracker for incident response: http://www.bestpractical.com/rtir/index.htmi
Mandiant Redline: https://www.mandiant.com/resources/download/redline
MoonSols Windows Memory Toolkit Community Edition:
http://www.moonsols.com/windows-memory-toolkit/

URL review / categorization:

BlueCoat WebPulse Site Review: http://sitereview.bluecoat.com/sitereview.jsp
Symantec Safe Web: http://safeweb.norton.com/

Websense CSI: ACE Insight: http://csi.websense.com

FortiGuard Center: http://www.fortiguard.com/ip_rep.php

The Anti-Abuse Project: http://www.anti-abuse.org/multi-rbl-check

Spamhaus (SPAM block list): http://www.spamhaus.org/sbl

NoVirusThanks: http://www.novirusthanks.org/services/

MalwareURL: http://www.malwareurl.com

Online file/URL scanners:

Anubis (Online malware scanner): https://anubis.iseclab.org
Online Cuckoo Sandbox: https://malwr.com/

Metascan online: https://www.metascan-online.com/en
VirusTotal: www.virustotal.com

Wepawet: http://wepawet.iseclab.org

Threat Expert: http://www.threatexpert.com

Free URL scanner: https://urlquery.net/

File / hash value verification:

Bit9 FileAdvisor: http://fileadvisor.bit9.com/services/search.aspx

Malware Hash Registry: http://www.team-cymru.org/Services/MHR/

National Software Reference Library (NSRL): http://www.nsrl.nist.gov/Downloads.htm
WinMHR (beta): http://www.team-cymru.org/Servicess MHR/WinMHR

Indicators of Compromise (I0Cs):

OpenlOC: http://openioc.org/

Malware Analysts Cookbook (Zeus memory sample):

https://malwarecookbook.googlecode.com/svn-history/r4/trunk/17/1/zeus.vimem.zip

Wylie Shanks, giac@infosecmatters.com

GCFA GOLD 36

Appendix D: Analyzed malware sample (dropped files)

File name hmjkhn.sys

File size 5669 bytes

File type PE32 executable (native) Intel 80386, for MS Windows

MD5 8ac1e580cf274b3ca98124580e790706

Ssdeep 96:eYtNnOTXtPVSDHawANDfq4bV1f7fn/33dMg7D:eYDOTXNVCLANT /b7n9Mg/

Filename dixobo.exe
File size 2188928 bytes
File type PE32 executable (native) Intel 80386, for MS Windows

MD5 0c89243c7c3ee199b96fcc16990e0679

Ssdeep 24576:501Y011021/BjEhDhgc8AR7CLVu/xheKyPSuKV94I1J1H4c9jXHb4MYc7P5e9E4Dc:St109YvwDpjk85A
T2EYNRqZjWwH+P

Yara e shellcode (Matched shellcode byte patterns)

Filename SYSTEM.INI

File size 267 bytes

File type ASCII text, with CRLF line terminators

MD5 70f7a2124f43bad7d78553154d4eb6ab

Ssdeep 6:aQ44VvYlieOxTqFbqSQpH3BYf1fyBcfjfcUG:F4Yv1iwqFeSQN30UBqOUG

File name VBoxTray.exe
File size 1381648 bytes
File type PE32 executable (GUI) Intel 80386, for MS Windows

MD5 a827dc1e052878ed19f3f06a228be306
Ssdeep 24576:Ej/81Q/hUanJPOyYVialkRVtrldx5XeKN1xQIb:Ej/8e5UantOyYViNVRIdrXeKN1p
Yara e shellcode (Matched shellcode byte patterns)

o vmdetect (Possibly employs anti-virtualization techniques)

File name npeai.exe
File size 146944 bytes
File type PE32 executable (GUI) Intel 80386, for MS Windows

MD5 9609b9868c42aed0f5487bfc70efb5a6
Ssdeep 3072:INQKPWDyXIOfF]ItZrpReFX3YPVcjFQi]JFjzd HKmFU:INSDyXIkFthpb+FQezd HKmq
Yara e shellcode (Matched shellcode byte patterns)

File name = VBoxDrvInst.exe
File size 214288 bytes
File type PE32 executable (console) Intel 80386, for MS Windows

MD5 a57d551e146e8d4e9d9440d88286f478
Ssdeep 6144:yvDkagYNgSUKEaun/NSIwzvKArT4mqljoj:sDINgbKEaulr2vrf4mqL
Yara e shellcode (Matched shellcode byte patterns)

Wylie Shanks, giac@infosecmatters.com

© 2014 The SANS Institute Author retains full rights.

