
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

GIAC Certified Forensic Analyst (GCFA) Practical Assignment
Version 1.2 (December 30, 2002)

William (BJ) Bellamy Jr. GSEC, GCIH

1. Analyze an Unknown Binary
2. Option 1: Perform Forensic Analysis on a System
3. Legal Issues of Incident Handling
4. References
5. Appendix A – Sanitizing DASD

Abstract

This paper addresses the three-part requirements of the GCFA Practical
Assignment Version 1.2.

The first section is the analysis of an unknown binary file provided by
GIAC for this exercise. Several characteristics of the file and its
operation are to be identified.

The second section is an investigation of a system acquired from an
organization’s department of surplus properties. The purpose was to
determine if surplus systems, specifically personal computers DASD
(Direct Access Storage Device) were properly sanitized before releasing
control of them to the general public. If not properly sanitized, they
would be inspected for confidential, proprietary, or otherwise
inappropriately information.

The third section looks at the legal considerations of an incident
handling scenario involving and ISP and law enforcement officials.

Part 1 – Analyze an unknown binary

In this section the focus is on collecting information about an unknown
binary program file. As with many technicians, I find myself building
assumptions and conclusions with each new piece of information found.
Each new clue or detail reshapes the completed picture I have already
built; leaving the final conclusion based on just the first few
findings. While this approach is helpful in some types of
troubleshooting and investigation, it is consistently misleading in
digital forensics.

So, this “evidence collection” phase was particularly helpful in
practicing to not make any conclusions or assumptions, but simply to
gather raw facts for later evaluation/analysis. The objective is to
take notice of items that will to the collection of information in
areas where you would not normally look.

In this case, since the subject file is an unknown binary, tools like
objdump, strace, and ldd may point to files, devices, or programmatic
functions not otherwise considered. If the subject of investigation
were a disk image harvested with dd, then file system tools would be
used to collect the material to be analyzed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Sanitizing DASD

One of the basic steps in forensic analysis is to sanitize the
analyst’s disks (destructively overwriting any previously store
material) so that the suspect materials being analyzed, and the
subsequent findings, are not contaminated.

However, in this particular project, the assumption was that
recommendations for effective DASD sanitation would need to be
developed for systems owners so they could reduce the risk of leaking
confidential or proprietary digital material through surplus systems.

The document describing the resulting recommendations for sanitizing
DASD is included as an appendix to this paper.

As the sanitizing paper was developed, it was used to prepare the disks
used in this analysis hosts. Rather than devote space here to describe
the process, please refer to the appendix for details.

The Analysis Environment

To prepare to analyze the unknown binaries, first three hosts were
configured, one for each of the following task:

1. Analysis and investigation
2. Monitoring the lab network
3. Harvesting the suspect disk image

The analysis host would be used to perform the analysis and reporting
tasks throughout the project. This system is a dual-boot laptop, with a
fresh install of Redhat 8.0 (1) and MS Windows XP (2). The Linux
partitions were formatted as ext2fs (3) so that ext2fs drivers could be
used to provide read-only access from the Windows side to the Linux
partitions. The ntfs drivers from the ntfs project (4) were used to
provide the Linux side with read-only access to the Windows C:\ ntfs
drive.

Throughout this analysis project, the root account will be used while
in Linux, and the local Administrator account while in Windows. This
will allow maximum access and control of the system. While this also
exposes the system to malicious activity by this unknown binary, and
other attack vectors, sufficient care will be taken to isolate the
material being analyzed and to protect the integrity of the analysis
host.

As you can see in the illustration below, the partition table reports
that this single hard disk contains 5 partitions. The first (hda1) is
the Windows ntfs partition (the C:\ drive). When running under Linux,
the /dev/hda1 device is mounted with an ntfs file system driver. The
third partition (/dev/hda3) is the root directory for Linux. The
Windows ext2 driver referees to it as drive L, partition 3. The fourth
is the extended partition record used to overcome the 4-partition limit
of the partition table. The 31 blocks (522112-522081=31) represent the
area containing the extended partition information. The remaining space
is allocated as the Linux swap partition.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

Device Boot Start End #cyls #blocks Id System
/dev/hda1 * 0+ 1274 1275- 10241 406 HPFS/NTFS
/dev/hda2 1275 1287 13 104422+ 83 Linux
/dev/hda3 1288 3582 2295 18434587+ 83 Linux
/dev/hda4 3583 3647 65 522112+ f Win95 Ext'd (LBA)
/dev/hda5 3583+ 3647 65- 522081 82 Linux swap

3648 cylinders, 255 heads, 63 sectors/track
Units = cylinders of 8225280 bytes, blocks of 1024 bytes, counting from 0

I have worked with DOS and Windows for many years, but am relatively
new to Linux. I chose to use a dual-boot system for several reasons,
including:

• to provide the widest range of tools;
• tools used in one operating system would help validate the

findings of tools used in the other operating system; and
• as an opportunity to learn more about Linux, which is clearly a

superior platform for forensic analysis and other information
security tasks.

The monitoring host was a second laptop configured with a fresh install
of Redhat 7.2. This host was used to observe the traffic on the lab
network, to observe the network activity of this unknown binary and to
watch for signs of any other unexpected activity. The monitoring system
was also used to store copies of the material being analyzed and the
analysis findings in order to better manage the limited disk space on
the analysis host.

The disk-imaging host was used for several tasks. First, it was
obviously used to read the suspect hard disk and create the bit-by-bit
copy that was actually used during the analysis. Second, this host will
be used to execute the unknown binary for observation. And third, it
was used to run long-term, CPU-intensive tasks such as password
cracking and steganography analysis, freeing the analysis host for
reporting and manual analysis tasks.

All three hosts were placed on a stand-alone 10/100 Ethernet network
hub. Neither the hub nor hosts were connected to any other network or
system from the point their operating systems were installed (from the
original CDs). The unknown binary was transferred from an Internet
connected PC onto the analysis host via floppy diskette.

After the analysis was complete, the analysis host was connected to the
Internet and used to integrate the analysis findings and research
material into this final paper.

The analysis host

Gateway 1450SE laptop
• 512 MB RAM
• 1.33 GHz Celeron CPU
• Hard disk 20 GB
• 10/100 Ethernet adapter
• CDROM 4x
• Operating Systems

 Redhat Linux 8.0 with no updated or patches applied. All packages were
installed.

 Microsoft Windows XP home edition.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

 Service pack 1 applied.
The monitoring host Gateway 9550 laptop

• 512 MB RAM
• 700 MHz Pentium processor
• Hardisk 27 GB
• 10/100 Ethernet adapter
• CDROM 4x
• Operating systems

 Redhat Linux 8.0 with no updates or patches applied. All packages were
installed.

 Microsoft Windows 2000 Professional.
 All available patches and service
 packs applied.

The disk-imaging host Gateway 9300 tower
• 128 MB RAM
• 600 MHz Pentium processor
• Hard disk 2.0 GB
• CDROM 4x
• Operating system Redhat Linux 7.3 and Trinux
• 10/100 Ethernet adapter

10/100 network hub SMC EtherEZ Hub 3605T
4 standard ports
2 ports for chaining (not used in this investigation)

A separate system was used to capture an identical copy of the subject
hard disks. The requirement was to make a bit-for-bit identical copy to
use in the actual analysis. Actually, the original hard drives and the
initial copy were all secured and stored in a locked area, and only a
copy of the initial copy was used to create yet another copy on which
the analysis was actually performed. This provided redundant safety
nets in case the copy being worked with became corrupt or tainted and
had to be replaced.

It was necessary to have read-only access to the original hard drive
only once. If one of the copies being worked with became corrupted or
for some reason needed to be replaced, a fresh copy could be produced
from the second-generation copy without having to use either the
original hard disk or the originally harvested image.

Laboratory Layout

All three hosts were connected through a 4-port 10/100 Ethernet hub. A
hub was used rather than a network switch so that monitoring (sniffing)
the lab network would be easier. Network switches create virtual
sessions directly between the two participating hosts, bypassing the
cable runs to all other hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

Physically and logically the lab LAN was isolated, or air-gapped, from
any other systems. There were no physical (cable) connections from any
of these devices to any other network or communications system. The lab
LAN was setup in a low traffic, locked room and all systems were
powered down when not actively involved in the analysis process.

A single crossover cable was used at times to directly connect two
hosts together for file transfers, backups.

Binary Details

It is critical that the newly installed analysis host not be exposed to
other hosts, either through a LAN or the Internet. The zipped file
containing the unknown binary was downloaded directly to a new floppy
diskette using a neutral host equipped with up-to-date virus protection
and host based firewall software.

The zip file was then unzipped (10) from the floppy into a new folder
(C:\practical) on the analysis host. The md5 (Message Digest version 5)
hash of both unzipped files were immediately calculated using md5sum
(11). The floppy was then labeled and locked, using its read-only tab,
and stored for later use if necessary. This floppy was treated as the
original media.

This zip archive contained 2 files, atd and atd.md5. The atd.md5 file
contains the md5 hash value of the atd file. By recalculating the md5
hash of the atd file and comparing it to the hash value in atd.md5 the
unzipped copy was shown to be identical to the original zipped copy.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

In the Windows world some tools and techniques exist for analyzing ELF
(Executable Linkable Format; the binary format for Linux executable
programs) binaries. However, switching to Linux provides several more
tools that would help to analyze this ELF binary file, atd.

At first glance, this appeared to be the stock atd binary, or “at
daemon,” which is a job scheduler similar to the “at” command in
Windows, though crond is more often used today. So one obvious question
is, “is this a trojaned version of crond?”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

L:\etc\rc.d\init.d>ls atd -o
-r--r--r-- 1 user 1176 Jul 24 2002 atd

L:\root\practical\atd\bin>ls atd -o
-r--r--r-- 1 user 15348 Aug 22 2002 atd

The “real” atd daemon checks in at 1176 bytes, while this unknown
binary is 15,348. If they are related, the unknown file is 15 times
larger than the known. If this is the “at” daemon, it will soon become
apparent. If not, then it is likely that the unknown binary has been
renamed to atd as a stealth measure. A file named atd would not catch
an administrator’s attention since it would be expected to be located
in a privileged folder with other binaries. If the file name is a
stealth technique, it also indicates the possible level of
sophistication and familiarity with *nix operating systems of the
person who renamed or planted this file.

The stat tool reports the file’s mode/permissions, along with
confirming the MAC times. In this case, the owner and group is root,
and all accounts have Read-Write permission to this file. The MAC times
indicate the file was last modified on Thu Aug 22, though the date last
changed is the date this file was placed on this system.

The file tool was then used to determine the type of contents in the
atd file. In the Windows world, file types are often determined by
their three-character name suffix. Similar to TCP/IP port assignments,
there is no functional connection between the cosmetic name suffix and
the file’s actual content or format. There is nothing to hinder running
a web service on port 25 and an email on 80. The world has simply
consented to a common list of assignments. The same is true for
Windows/DOS files. I can name a binary file .doc and still execute it.

In the example below, the Windows-based whoami.exe program is copied to
a new filename. The effect is to change this executable file’s name
suffix from .exe to .txt. Afterwards, the .exe version has been deleted
and the .doc version is executed with no problems.

C:\>dir whoami.exe
11/11/1999 01:00 AM 7,680 whoami.exe

C:\>xcopy whoami.exe whoami.doc
1 File(s) copied

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

C:>dir whoami*
11/11/1999 01:00 AM 7,680 whoami.doc
11/11/1999 01:00 AM 7,680 whoami.exe

C:\>del whoami.exe

C:\>whoami.doc
Owner

The file tool, however, directly interrogates different parts and
characteristics of the target file, looking for “magic” signatures and
other characteristics that clearly classify the content of the file
rather than simply imply the content, as with the filename suffix in
the Windows world.

The Linux file (16) stat (17) and ldd (18) tools provide useful information
about this file.

The file tool identifies atd as an ELF binary. Specifically, this is a
32-bit ELF executable binary. The byte layout is identified as LSB, or
Least Significant Bit. This executable has been built for the 80386
Intel processors.

This executable is dynamically linked, meaning that it relies on the
availability of specific code libraries for some portion of its
operation. In the Windows world, DLL (Dynamically Linked Library) files
store code segments that programs can reference during execution as
needed. In the Linux world, shared libraries perform the same function.

One of the advantages of dynamically linking a program, which is an
option at compile time, is a much smaller executable file is built. Of
course, the binary must work from the assumption the libraries of code
segments it requires will, in fact, be available.

Another advantage is the consolidation of function code. Not only can
each unrelated program rely on the one copy of code stored in the DLL
or shared lib, but, as updates to the libraries occur, the update is
effectively applied to all programs that will eventually call the
function.

Finally, the file tool reports that atd is “stripped.” Normally, a
binary contains header and debug information that is helpful when first
building or debugging a program. This header and debug information can
include variable names, comments, version information, and other
structural and descriptive information.

So, it appears that the goal was to produce the smallest version
possible of the program, making the assumption that all required code
libraries would actually be available on whichever host(s) it is
executed. The stripping not only helps reduce the file size, but also
removes much of the descriptive information that would help determine
its purpose and origin.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

The readelf tool was used next to interrogate the ELF binary, providing
a large amount of information about the structure and content of the
compiled executable.

The –a parameter instructs readelf to report on each section found in
the target ELF binary. This is one instance where a functional
familiarity with the C programming language would be critically
helpful. Lacking that familiarity, I have to rely on the obvious items
like keywords. In this case, I first culled out those keywords I
thought relevant, and researched them through the Linux man (manual)
pages.

readelf -a -n atd

ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Intel 80386
 Version: 0x1
 Entry point address: 0x8048db0

Relocation section '.rel.plt' at offset 0x8dc contains 50 entries:
 Offset Info Type Sym.Value Sym. Name
(Several lines deleted for readability)
0804c590 00000607 R_386_JUMP_SLOT 08048ad8 geteuid
0804c594 00000807 R_386_JUMP_SLOT 08048ae8 getprotobynumber
0804c5a4 00000d07 R_386_JUMP_SLOT 08048b28 getpid
0804c5b4 00001207 R_386_JUMP_SLOT 08048b68 getuid
0804c5bc 00001507 R_386_JUMP_SLOT 08048b88 socket
0804c5d4 00001e07 R_386_JUMP_SLOT 08048be8 inet_addr
0804c5d8 00001f07 R_386_JUMP_SLOT 08048bf8 chdir
0804c5e0 00002107 R_386_JUMP_SLOT 08048c18 setsockopt
0804c5ec 00002507 R_386_JUMP_SLOT 08048c48 umask
0804c5f0 00002607 R_386_JUMP_SLOT 08048c58 signal
0804c610 00002e07 R_386_JUMP_SLOT 08048cd8 inet_ntoa
0804c614 00002f07 R_386_JUMP_SLOT 08048ce8 getppid
0804c61c 00003107 R_386_JUMP_SLOT 08048d08 gethostbyname
0804c63c 00003b07 R_386_JUMP_SLOT 08048d88 setsid

The descriptions of the keywords found by readelf begin to paint a
picture of the nature and use of this unknown binary.

Keyword Description

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

geteuid Get the effective user ID of this process, that is the user ID of the set ID
bit associated with the file being run.

getprotobynumber Rather than the common name of a given protocol (ftp, telnet, SMTP)
the protocol’s number is returned. For example; 21/22 for ftp, 23 for
telnet, and 25 for SMTP.

getpid This call returns the process ID (pid) of the current process. It is a
program in execution asking the operating system “what process
number am I?”

getuid This call returns the real user ID associated with the current process. It
is a program in execution asking the operating system “Who launched
me into execution?”

socket The socket call creates an endpoint for communications. Sockets are
the logical components at both the sender and the receiver into which
the transport (on the wire) protocol is plugged in. Sockets can create
these communications between two processes running on the same
host or on two separate hosts.

chdir This call simply changes the current working directory within a file
system.

setsockopt This call allows the program to manipulate or report the options of a
specific socket.

signal This C call creates a new signal handler for a specific signal. The signal
handler responds to the arrival of a signal with the associated signal
number, the handler responds by performing a predefined response
task.

inet_ntoa This call converts the host address from its native network byte order to
a standard number in dot notation.

getppid This call retrieves the process ID of the parent (hence ppid, parent
process ID) of the current process.

gethostbyname This call queries the DNS infrastructure to retrieve the name of a given
host network address.

setsid This call launches a program in a new session.

These keywords would seem to indicate that the atd binary provides some
sort of network service. The program is preoccupied with local system
accounts and processes, along with basic networking tasks. The calls to
network functions paint a picture of a program that intended to wait
for an event (using signal), and that takes a close look at network
packets (using setsockopt, inet_ntoa, getprotobynumber, socket). The “d” in atd
implies that the program is a daemon (service), and these network calls
support that assumption, though they do not prove it.

In the illustration below, objdump is run to further interrogate this
unknown ELF binary. The –x parameter instructs objdump to report on all
section headers found in this compiled binary. The –s parameter
additionally requests the full contents of each section be displayed in
the common hex/ASCII format.

As with most of these type tools, the output can be excessively large.
So, here again, all but the relevant lines have been omitted, and the
items of particular interest bolded.

objdump -x –s atd

The atd file is a 32-bit ELF program compiled for the Intel 386 family of
processors.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

atd: file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048db0

Dynamic Section:
 NEEDED libc.so.5

Going back to our executable, the .interp section simply contains an ASCII
string that is the name of the dynamic loader. Currently this will always be
/lib/elf/ld-linux.so.1 (the dynamic loader itself is also an ELF shared library).
(57 Youngdale)

Contents of section .interp:
 80480d4 2f6c6962 2f6c642d 6c696e75 782e736f /lib/ld-linux.so
 80480e4 2e3100 .1.

Next you will notice 3 sections, names .hash, .dynsym, and .dynstr. This is a
minimal symbol table used by the dynamic linker when performing relocations.
You will notice that these sections are mapped into virtual memory (the virtual
address field is non-zero). At the very end of the image are the regular symbol
and string tables, and these are not mapped into virtual memory by the loader.
The .hash section is just a hash table that is used so that we can quickly
locate a given symbol in the .dynsym section, thereby avoiding a linear search
of the symbol table. A given symbol can typically be located in one or two tries
through the use of the hash table. (57 Youngdale)

Contents of section .dynstr:
 80486ac 006c6962 632e736f 2e35006c 6f6e676a .libc.so.5.longj
 804875c 736f636b 6574005f 5f656e76 69726f6e socket.__environ
 804876c 00627a65 726f005f 696e6974 00616c61 .bzero._init.ala
 804877c 726d005f 5f6c6962 635f696e 69740065 rm.__libc_init.e
 804879c 696c6c00 696e6574 5f616464 72006368 ill.inet_addr.ch
 804882c 67657468 6f737462 796e616d 65005f66 gethostbyname._f

The .rodata code segment is allows to contain constant pointers and strings.
(58 Bierne)

Contents of section .rodata:
 804a8e8 0a6c6f6b 69643a20 436c6965 6e742064 .lokid: Client d
 804a8f8 61746162 61736520 66756c6c 00444542 atabase full.DEB
 804a918 6e6f6e6f 0a00322e 30000a6c 6f6b6964 nono..2.0..lokid
 804a928 20766572 73696f6e 3a090925 730a0072 version:..%s..r
 804a938 656d6f74 6520696e 74657266 6163653a emote interface:
 804a958 73706f72 743a0925 730a0058 4f520061 sport:.%s..XOR.a
 804a968 63746976 65206372 7970746f 67726170 ctive cryptograp
 804a978 68793a09 25730a00 73657276 65722075 hy:.%s..server u
 804a988 7074696d 653a0909 252e3032 66206d69 ptime:..%.02f mi
 804a998 6e757465 730a0063 6c69656e 74204944 nutes..client ID
 804a9a8 3a090925 640a0070 61636b65 74732077 :..%d..packets w
 804a9b8 72697474 656e3a09 256c640a 00627974 ritten:.%ld..byt
 804ab48 5d206e61 6d65206c 6f6f6b75 70206661] name lookup fa
 804ab58 696c6564 00000000 00000000 00000000 iled............

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

 804af98 66617461 6c5d2043 616e6e6f 7420676f fatal] Cannot go
 804afa8 20646165 6d6f6e00 5b666174 616c5d20 daemon.[fatal]
 804afb8 43616e6e 6f742063 72656174 65207365 Cannot create se
 804afc8 7373696f 6e002f64 65762f74 7479005b ssion./dev/tty.[
 804afd8 66617461 6c5d2063 616e6e6f 74206465 fatal] cannot de
 804afe8 74616368 2066726f 6d20636f 6e74726f tach from contro
 804aff8 6c6c696e 67207465 726d696e 616c002f lling terminal./
 804b088 6c6f6b69 64202d70 2028697c 7529205b lokid -p (i|u) [
 804b098 202d7620 28307c31 29205d0a 005b6661 -v (0|1)]..[fa
 804b0a8 74616c5d 20736f63 6b657420 616c6c6f tal] socket allo
 804b0b8 63617469 6f6e2065 72726f72 005b6661 cation error.[fa
 804b0c8 74616c5d 2063616e 6e6f7420 63617463 tal] cannot catc
 804b0d8 68205349 47555352 31004361 6e6e6f74 h SIGUSR1.Cannot
 804b0e8 20736574 2049505f 48445249 4e434c20 set IP_HDRINCL
 804b0f8 736f636b 6574206f 7074696f 6e005b66 socket option.[f
 804b128 74283229 000a4c4f 4b493209 726f7574 t(2)..LOKI2.rout
 804b138 65205b28 63292031 39393720 6775696c e [(c) 1997 guil
 804b148 6420636f 72706f72 6174696f 6e20776f d corporation wo
 804b158 726c6477 6964655d 0a005b66 6174616c rldwide]..[fatal
 804b1d8 6e672065 72726f72 000a6c6f 6b69643a ng error..lokid:
 804b1e8 20736572 76657220 69732063 75727265 server is curre
 804b1f8 6e746c79 20617420 63617061 63697479 ntly at capacity
 804b208 2e202054 72792061 6761696e 206c6174 . Try again lat
 804b218 65720a00 0a6c6f6b 69643a20 43616e6e er...lokid: Cann
(Lines omitted for readability)
 804b3e8 6974000a 6c6f6b69 643a2063 616e6e6f it..lokid: canno
 804b3f8 74206c6f 63617465 20636c69 656e7420 t locate client
 804b408 656e7472 7920696e 20646174 61626173 entry in databas
 804b418 650a000a 6c6f6b69 643a2063 6c69656e e...lokid: clien
 804b428 74203c25 643e2066 72656564 2066726f t <%d> freed fro
 804b438 6d206c69 7374205b 25645d00 2f737461 m list [%d]./sta
 804b498 73747269 6e670a00 0a6c6f6b 69643a20 string...lokid:
 804b4a8 636c6965 6e74203c 25643e20 72657175 client <%d> requ
 804b4b8 65737465 64206120 70726f74 6f636f6c ested a protocol
 804b4c8 20737761 700a0009 73656e64 696e6720 swap...sending
 804b4d8 70726f74 6f636f6c 20757064 6174653a protocol update:
 804b4e8 203c2564 3e202573 205b2564 5d0a006c <%d> %s [%d]..l
 804b4f8 6f6b6964 3a207472 616e7370 6f727420 okid: transport
 804b508 70726f74 6f636f6c 20636861 6e676564 protocol changed
 804b518 20746f20 25730a00 0a257300 to %s...%s.

The comment section is just that – clear-text information about the program.
The only comment included in this binary is the name of the compiler used to
compile it, or so we assume. Since this is just a comment, it can be altered
with a hex editor with no effect on the programs operation, and would also
change any hash value calculated from this file as a simple stealth technique.

Contents of section .comment:
 0000 00474343 3a202847 4e552920 322e372e .GCC: (GNU) 2.7.
 0010 322e3100 00474343 3a202847 4e552920 2.1..GCC: (GNU)

The strings that are highlighted above will be parsed out into a much
more readable format when the strings tool is used later in this
section. For now, objdump gives us a quick look, there will be more to
analyze.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

From this objdump report, several items seem to further reveal the
function of this binary. Each of these pieces either substantiates
previous clues or adds a new clue. Fortunately, there are no items
popping up that contradict the emerging picture of this binary as a
host based network service provider.

Several interesting topics are mentioned in these strings, including:
encryption (XOR), a client database, and changing protocol.

Keyword Description
client database A client database is either maintained and/or referenced.

Strings like “client database full,” “locate client entry in
database,” and “client [%d] freed from list” support the idea
of maintaining a client database. The chdir call indicates an
interest in a specific directory in the file system – possibly
where this database is stored.

IP_HDRINCL socket option A raw socket is used to send and receive raw data-grams
(connection-less packets). Raw sockets do not handle the
headers. This function deals with “IP HeaDeR INCLusion.”

Transport protocol change This is unusual. It refers to a condition where an apparently
agreed upon protocol is changed by both the client and the
server.

XOR active cryptography This binary apparently makes use of encryption (XOR).
Encryption could be applied to the client database
mentioned, the data-grams, or both.

MAC Times

MAC times refer to the three date-time stamps commonly maintained for
each file on many common file systems. MAC stands for Modified, Access,
and Change: when the file itself was last modified, or last accessed,
and when this same type of meta-data was last changed respectively.
This volatile information is critical when constructing a time-line of
relevant events and actions gleaned from the system being analyzed.
This cements the order of events, implying the use (or not) of specific
user accounts, and many other pieces of evidence that help to paint the
complete picture.

Any type of file access, including seemingly benign actions like
running md5sum or dir, changes at least the atime (last-accessed date-
time stamp) of a file.

When beginning this analysis, the binary_v1.2 zip archive was unzipped
and immediately listed using the dir command. This caused the atime to
be changed to the current date-time, destroying the original date-time
stamp. The atd files were unzipped a second time, replacing the now
tainted copies with fresh copies containing their original MAC times.
Arne Vidstrom’s macmatch (12) tool was then used to determine the
original MAC times of the subject files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

Later, the Linux unzip (13) and zipinfo (14) tools confirmed these MAC
times and provided additional information about the contents of the zip
archive.

The –v parameter in the unzip tool provided the original date and time,
as well as a CRC-32 checksum.

Given these MAC dates, there are two items that seem unusual:

1. Files in this zip archive have only their read and write bits
set.

2. The file system on which these two files were zipped used version
2.0 of the fat file system.

These two points are unusual and unexpected.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

First the atd file is an executable binary (as confirmed later in this
investigation), but it is not flagged for execution. Rather than having
a mask that includes the “x” attribute, atd has a 0666 mask. A 0666 (-
rw-rw-rw) mask permits the file to be read and written by anyone, but
it does not allow from execution. While a 0666 mode is reasonable and
expected in many cases, it does not make sense for this file or this
situation. One point that comes to mind is the habit of some in the
hacker community to “geek” alphanumeric characters to convey an ethic
to “think outside of the box”, and not to be bound by “syntax rules for
lesser mortals.” Here, the 0666 could be intended as a “got ya” message
rather than a functional file mode.

Second, this binary is an ELF binary (also confirmed later in the
investigation), meaning it is a program that has been compiled
specifically for the Linux platform. The odd point here is that we have
a Linux program being zipped on/by a Windows system.

Conditions this atypical usually are not accidents. We can assume for
the moment that the person who last worked with these files had a
reason(s) for these unusual conditions, and that reason is probably
relevant to the investigation.

An initial hypothesis is that the ELF binary was pulled off a Linux
host onto a DOS/Windows host, where its md5 hash was calculated and
written to the atd.md5 file; finally, both files were zipped into a
compressed archive.

To test this hypothesis, this process was performed step-by-step,
recording the MAC times at each point. A command file (lsmac.cmd)
containing three dir commands, each with one of the MAC time
parameters, was used to run the ls tool (ls -o --time=ctime --full-
time) 3 times, recording the Modified-Change-Access time of the subject
file.

The state of the cat binary was
recorded using the ls, file, and
stat tools. This simply
documents the condition of cat
before this process begins.

The stat program reports a
different date for each of the
MAC times for the atd file.

The cat binary was copied
from an ext2 file system into a
fresh NTFS folder via floppy
diskette.

Once cat is on the ntfs
system, it is queried with the
Windows version of ls to
establish its settings.

ls reports that the both the

#ls –o cat
-rwxr-xr-x 1 root 14812 Aug 14 2001 cat

#file cat
cat: ELF 32-bit LSB executable, Intel 80386, version 1,
dynamically linked (uses shared libs), stripped

#stat cat
 Size: 14812 Blocks: 32 IO Block: 4096
Regular File
Device: 1642h/5698d Inode: 611859 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/root) Gid: (0/root)
Access: Wed Apr 23 10:50:20 2003
Modify: Tue Aug 14 15:47:06 2001
Change: Wed Mar 5 09:02:51 2003

C:\ copy a:\cat c:\

C:\> ls -o --time=atime --full-time a:\cat
modified
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:50:20 2003 a:\cat

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

access and change dates now
match the original modified
date.

change
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:50:20 2003 a:\cat
access
-rw-rw-rw- 1 user 14812 Wed Apr 23 00:00:00 2003 a:\cat

C:\> lsmac
modified
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:50:20 2003 cat
change
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:59:24 2003 cat
access
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:59:24 2003 cat

The md5 hash was calculated
for cat, and the output was
redirected into the cat.md5
file. This did not alter any of
the MAC dates.

C:\>md5sum cat >> cat.md5

C:\> lsmac
modified
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:50:20 2003 cat
change
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:59:24 2003 cat
access
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:59:24 2003 cat

C:\>cat cat.md5
\30bef954ee5b8df11101aa1d7ba531fd *C:cat

These two files were zipped
into a compressed archive.

C:\>zip cat.zip cat cat.md5
 adding: cat (92 bytes security) (deflated 52%)
 adding: cat.md5 (92 bytes security) (stored 0%)

Next the cat file and its md5
log are deleted from this
folder.

This way, only the copy that
has been zipped will exist in
subsequent steps.

C:\>del cat

C:\>del cat.md5

The unzip program is used
with the long format (-l) and
verbose (-v) parameters to list
the contents of the archive file.
Of interest are the date and
time stamps.

C:\practical>unzip -l -v cat.zip
Archive: cat.zip
 Length Method Size Ratio Date Time CRC-32 Name
-------- ------ ------- ----- ---- ---- ------ ----
 14812 Defl:N 7038 53% 04-23-03 10:50 60e1f3de cat
 55 Stored 55 0% 04-23-03 11:00 3c4ed399 cat.md5
-------- ------- --- -------
 14867 7093 52% 2 files

The files are unzipped, and
the MAC time is rechecked.
The change and modified time
continues to remain
unchanged while the access
date has been updated.

C:\practical>unzip cat.zip
Archive: cat.zip
 inflating: cat
 extracting: cat.md5

C:\> unzip cat.zip
modified
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:50:20 2003 cat
change
-rw-rw-rw- 1 user 14812 Wed Apr 23 10:59:24 2003 cat
access
-rw-rw-rw- 1 user 14812 Wed Apr 23 11:01:27 2003 cat

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

This exercise shows that only the access time is altered during this
hypothetical scenario. However, it does not account for the MAC times
seen in the atd files or the change in the permissions.

Once the binary_v1.2.zip was unzipped, the stat tool was used to
capture MAC and other data. While the change time had been set to the
current date-time, the Access and Modify timestamps are the same as
reported by other tools. This does not say anything about the validity
of those timestamps, only that they are consistently reported.

stat MACPreservationZone/*

 File: "MACPreservationZone/atd"
 Size: 15348 Blocks: 32 IO Block: 4096 Regular File
Device: 303h/771d Inode: 1864870 Links: 1
Access: (0666/-rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)
Access: Thu Aug 22 14:57:54 2002
Modify: Thu Aug 22 14:57:54 2002
Change: Tue Apr 22 20:53:31 2003

 File: "MACPreservationZone/atd.md5"
 Size: 39 Blocks: 8 IO Block: 4096 Regular File
Device: 303h/771d Inode: 1864867 Links: 1
Access: (0666/-rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)
Access: Thu Aug 22 14:58:08 2002
Modify: Thu Aug 22 14:58:08 2002
Change: Tue Apr 22 20:53:31 2003

This does show that the hypotheses is supported, that the MAC dates on
the suspect files could have been produced in this way. But it does not
explain why all three MAC dates are identical, 2002-8-22:14.55.

So, what do these MAC times tell us? At this point, very little.
Manipulating a MAC time to any date-time value an intruder wants is
trivial. However, the analysis will establish a degree of trust in this
information based on conditions such as the coloration between these
dates and trusted historic information found on the Internet, along
with internal references to dateable information.

One obvious explanation for the three MAC times being identical is that
the atd file has not been accessed since it was create. Another is that
the file had been moved from one file system to another in such a
combination that the original three MAC times were replaced during the
copy process.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

Since neither of these two possibilities seem likely, a third
possibility should be considered; that the MAC times have been
intentionally altered, which would indicate malicious manipulation and
intentionally altering evidence.

File owner(s) – (user and/or group)

The showacls.exe (15) program from the NT Resource Kit reported the
current owner/group information rather than the original. The help
screen (showacls.exe /?) explained the Access Mask values, which, in
this case, were of no real interest. However, if the initial
indications are correct and this is an ELF binary that was archived
(zipped) on a win32 system, user and group information will probably
have been inadvertently stripped along the way. Metadata such as “file
owner” is usually stored as an ID number that is matched to a local
user account table. In Linux, the root account is 0; while in Windows,
the administrator account is 500. This, along with other metadata field
incompatibilities, would explain the loss of such metadata when moving
a file between these operating systems. So, it is not likely that the
original owner, or similar metadata, can be recovered from this copy of
the binary.

Below are selected portions of the zipinfo.rpt report file. Notice that
atd was zipped on a Microsoft system. Zipinfo also reports that this
zip archive is not encrypted, which saves us from having to crack or
discover its password.

Then again, the modified time is confirmed, and we are told there are
no embedded comments in this zip archive file. These comment areas are
of interest because attackers have been known to include passwords and
useful information in comment areas.

zipinfo -ltv binary_v.1.2.zip
Archive: binary_v1.2.zip 7309 bytes 2 files
 atd
 file system or operating system of origin: MS-DOS, OS/2 or NT
FAT
 version of encoding software: 2.0
 file security status: not encrypted
 file last modified on (DOS date/time): 2002 Aug 22
14:57:54
 apparent file type: binary

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

 There is no file comment.

Keywords Found That Are Associated With The Program/File

Using the Win32 strings (19) tool from System Internals, both the Unicode
and ASCII strings within the atd file were captured.

By default, this version of strings searches for Unicode strings rather
than ASCII. Since this is a Windows tool, and Windows is predominantly
and increasingly using Unicode, an analyst should expect to encounter
Unicode more often than ASCII. This assumes that strings is being run
against binary files (part of or produced by the operating system)
since non-binary files are more likely intended for human viewing and
are consequently ASCII encoded.

When you consider that this is an ELF binary from a Windows file
system, it gets even more convoluted. Which encoding should be
expected, ASCII or Unicode?

This reinforces the fact that this binary cannot be trusted, especially
to conform to my preconceived expectations that only ASCII or Unicode
will exist in this ELF binary. After all, anyone who could code a
program like this, could easily embed material encoded however they
would like. Actually, embedding or injecting Unicode text in an ASCII
environment might satisfy such an attacker’s sense of humor, or ego.

I first compared the difference in results between Unicode and ASCII.
The string “jjj” was the only Unicode string identified (6 times). The
assumption was made that this was an anomaly, and all the actual
strings were in ASCII format.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

While Windows, beginning with NT 4.0, makes extensive use of Unicode, a
Windows executable binary often contains both ASCII and Unicode strings
of interest to an investigator. In the case of Win32 binary files, it
is helpful to parse the ASCII and Unicode strings and then combine and
organize them (sort (5) and uniq (5)) them for manual review. This process
is illustrated and described below.

At this point I had the “raw” strings ready for review. However, to
make the initial review of the strings easier and more likely fruitful,
I first sorted and de-duped (removed duplicate items) the strings’
results. This helped to quickly identify strings of interest for more
focused investigation.

The strings tool pre-appends its own identification information to the
output. So, before sorting and de-duping these files, that
identification material was manually removed with an editor, leaving
only the strings parsed from the binaries.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

The wc (5) (word count) program reported significant distilling of the
strings down to their core items – reducing the background noise during
the initial manual review of the strings. In this case, 50 strings, or
19% reduced the number of strings found in atd.

Given the huge amount of raw data that can be produced by feeding a
subject file into a battery of analysis tools, it is important to
reduce the volume of data to a manageable size while not losing
important clues. A specific string may provide the best clue relevant
to the investigation, but it may also be the frequency of an otherwise
benign string that provides that clue. For example, the presence of a
“noop” command (no operation) may not be suspicious on its own, but to
find dozens of “noop” strung together could indicate a “noop-slide”,
which is an indicator of a buffer overflow exploit.

NOP is 'No Operation' CPU command. It does precisely nothing.
NOP slide (also called NOOP sled) is used in buffer overflow
attacks to compensate for imprecise knowledge of offset to jump
at. Having a string of NOPs in front the actual attack shell code in
the buffer allows one to jump somewhere in the middle of the NOP
slide and still have the shell code executed. (36)

Of these remaining 210 strings, a few jump out as helpful in
identifying the details of this program.

Strings like those below indicate this program uses a network
connection.

Keyword Description
active transport: This refers to the transport layer in the TCPIP and OSI

network models, and has to do with the mechanics of
operating a logical session between two host applications.

server uptime: This appears to be a report field label, that shows the time
this or another server have been active.

sending protocol update: <%d> %s [%d] This appears to be a format strings. The literal text “sending
protocol update:” is followed by the formatted (for display)
values within specific variables.

These strings seem to indicate the display of server status and
operation information. That would make this more likely to be a daemon
(37) rather than a client application.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

Other strings indicate that this file was compiled using the GNU gcc
2.7.2.1 compiler. This will be helpful when attempting to compile a
fresh copy of this program. This version was included in Redhat Linux
4.2 (38)

Keyword Description
GCC: (GNU)
2.7.2.1

This is the GNU (GNU is a recursive acronym for ``GNU's Not Unix''; it is
pronounced "guh-NEW") gcc (GNU Compiler Collection) version 2.7.2.1
compiler for the C language. According to the gnu page, this version was
released on June 29, 1996 (38)

/lib/ld-linux.so.1 Summary: A dynamic loader for a.out format files.

The ld.so package contains the shared library configuration tool, ldconfig,
which is required by many packages. It also includes the shared library
loader and dynamic loader for Linux libc 5. This version was released on
Feb 3, 2000 (39)

Libc.so.5 Contains the standard libraries that are used by multiple programs on the
system. In order to save disk space and memory, as well as to ease
upgrades, common system code is kept in one place and shared between
programs.

This package contains the most important sets of shared libraries, the
standard C library and the standard math library. Without these, a Linux
system will not function. This software was released on Oct 8, 1997 (40)

Given the dates of the above software; while the c compiler is notably
old, the most recent date (Feb 3, 2000) represents the earliest this
binary could have been compiled. So, the binary was compiled between
Feb 3, 2000 and Aug 22, 2002 (the files MAC times). This will make
recreating the binary difficult because the identical library and
compiler files, along with the compiler options must be identical to
the original if there is any chance to recreate an identical copy of
the binary.

Also found were strings that indicate the use of, or options for,
encryption.

Keyword Description
.hash A hash is the process or algorithm that accepts variable length input and

produces a fixed length value that is unique to the input material.
However, the original material cannot be reproduced from the hash value.
Hashes are often used to fingerprint digital material so that at a later time
the hash can be recalculated and compared to the original in order to
verify that both copies of the material are identical at the bit level.

Active
cryptography:

This is presumably a title used to report the cryptographic mechanism
currently in use.

XOR XOR is a very old and established cryptographic algorithm. XOR is well
understood, fast, and though not the strongest, it is strong enough for
many purposes.

Finally, several strings were noted that would help identify the
program itself. “lokid” is mentioned several times, apparently as the
name of the program. For example, the first line appears to illustrate
the program’s acceptable syntax. After that, the label for the
program’s version, a canned error message, and finally a copyright

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

notice all support the hypothesis that the program’s name is “lokid.”
Other strings imply that this is a daemon, which is supported by the
trailing “d” in the name “lokid”.

Keyword Possible Description
LOKI2 Possibly the name of this program.
lokid -p (i|u) [-v (0|1)] Lokid appears to be the program’s name; with the

ending “d” implying this is a daemon service. The
entire string looks like an example of the programs
accepted syntax.

lokid version: This might be a heading used when displaying the
program’s version.

lokid: Client database full This looks like an error or status message either
informing a client why they are not being granted
access, or as a descriptive entry for an administrative
console or log.

lokid: clean exit (killed at client
request)

This looks like a status message for the administrator
or system log.

route [(c) 1997 guild corporation
worldwide]

This is a copyright notice.

This is plenty of data to begin searching the Internet for detailed
information about a network Linux daemon named lokid.

Searching Google.com with the following keywords produced several
useful hits.

1. LOKI2 linux – 222
2. LOKI2 Phrack - 192
3. LOKI2 linux security - 143
4. network Linux ICMP lokid – 72
5. Linux daemon lokid – 65
6. network Linux ICMP lokid "guild corporation" – 43

Not only did these sources provide detailed background information
about the Loki2 program components, including the lokid daemon and
client programs, but also included the source code.

Program Description

What type of program is this?

By the end of this section it will be shown that this atd file is
actually the lokid.c file; the server portion of a client-server covert
communications suite that takes advantage of an exploitable
characteristic of the ICMP (Internet Connection Management Protocol)
protocol.

Loki2 takes advantage of a condition in ICMP, which also happens to
exist in many other protocols in the TCP/IP family of network
protocols. RFC (Request For Comment) 792 (23) defines ICMP. Loki
specifically takes advantage of the fact that ICMP allows for arbitrary
binary material to be injected into each ICMP packets without altering
their operation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

The ICMP RFC defines 15 types of packets. Of those, two are used by
Loki2 to create a covert communications channel between two hosts: one
running as a server and the other as a client. Normally, a type 08 ICMP
packet requests a response (in the form of an ICMP type 00 packet) from
a remote host. This is the ping process common to TCP/IP networks.

A ping is used to verify that a remote host is currently active,
meaning its TCP/IP stack is functioning and the host has connectivity
to the network. Network support staff also use pings to verify the
network path to another host.

A Loki2 client used ICMP request response (type 08) packets to send
commands or other material to a loki2d server. The loki2d server (which
atd appears to be) uses ICMP request response (type 00) packets to
return the results of the client’s commands.

What is this program used for?

From the perspective of a device observing this exchange, one host is
simply pinging another, and it replies.

The covert characteristic exists because ICMP packets are assumed by
network routing and filtering devices (routers, firewalls, IDS agents)
to transport only specific protocol management information.
Consequently, ICMP packets of all types are commonly allowed to
traverse public and private networks unhindered and not inspected.
There exists in each ICMP packet an undefined area in which any type of
payload can be stored and transmitted. For the sake of speed and
efficiency, most network devices choose to ignore this type of
undefined field and interrogate only the control fields.

To better understand how a covert ICMP channel would look, the ethereal
(51) tool does a great job of dissecting network packets and putting them
into “conversational context” for detailed examination. Below, a single
ping echo request followed by the ping echo reply illustrates a covert
ICMP channel. The channel characteristic is seen when large numbers of
these request/reply pairs are used to transmit a digital conversation,
file transfer, or session of some type.

To start the process, 172.24.0.10 issues an ICMP ECHO request (type 08)
addressed to 172.24.0.20.

In the illustration below, you can see a summary panel at the top and a
breakdown of the packet components in the middle panel. The protocol
encapsulation is clearly defined with the lower level of the network
protocol stack listed first, then moving on the deeper Ethernet, IP,
and finally the ICMP protocol.

As you highlight a packet layers in the middle pane, that portions of
the packet is display in the bottom pane and is highlighted to set it
apart from other protocol components. In this illustration, the entire
98 bytes of this packet is highlighted in the bottom panel.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

A closer look at the ICMP portion of this same packet shows that the
encapsulated ICMP portion of the packet is indeed an ICMP type 08 echo
request packet. Notice the \x08 byte, the first byte that is
highlighted, on line 0020.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

A few bytes worth of control information later brings us to an optional
data area that it has no defined use, though it was apparently assumed
vendors would use it for proprietary metrics or other enhancements.

Remember, the entire packet length is only 98 bytes, and here 56 of
those 98 bytes, or 57%, are in the optional data area. In effect, an
ICMP packet addresses and supports its intended function with only its
first 42 bytes, but then hauls another 56 bytes along that have no
effect on the proper function of the packet. This 56-byte area could be
filled with anything and the packet would continue to function as
usual. In this example, beginning at the 3rd byte on line 0030, \x08,
and the remainder of the packet is simply the hex values counting from
\x08 to \x37. Simple filler.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

If the recipient host chooses to reply to this ICMP echo request, it
replies with an ICMP echo response type 00 packet to inform the
initiating host that yes, this host is on the network and functional.

As with the ICMP request packet, the ICMP reply packet is 98 bytes
long. The third byte on line 0020 indicates this is an ICMP echo reply,
type \x00 where this field contained \x08 in the request packet to
identify it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

An ICMP request packet supports the same 56-byte data space.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

Again, the material in the data space is simply the numeric sequence
from \x08 to \x37. Instead of having some functional purpose, it is
simply filler.

Rather than thinking of an ICMP echo request/reply pair of packets as
performing the ping process, think of them as a communications channel,
composed of packets that each have a 46-byte control section, whose
only purpose is to carry its 56-byte payload between two hosts. This is
how the Loki program creates and sustains a covert communications
channel. Not only is this covert session created and maintained, the
payload can optionally be encrypted so that each packet continues what
would appear to be binary white noise.

When was the last time it was used?

Another question is when was this file last executed? The stat and
macmatch utilities previously reported that all three of the MAC times
associated with the atd file were set to “Thur Aug 22 14:57:54 2002.”
An executable program file with the same date in all three MAC times
would seem to indicate that the file had not been accessed since it was
created/compiled.

This makes the assumption that when a binary is compiled from source
code the MAC times are all the same; later, when the executable is run,
only the atime is updated. To test this assumption, a program was
compiled and executed while observing the MAC times at each step.

This is similar to the process earlier that addressed the question of
the MAC times associated with the atd file. Here, however, the question
is about when the program was last executed, and relies on the MAC time
information gathered earlier.

The mac-robber.c file was copied into a new directory, and its MAC
times were recorded using the stat tool.

The file was then compiled, and the MAC times of the resulting binary
were immediately recorded. Notice that all three MAC times are
identical – the date and time the binary was compiled.

stat mac-robber.c
Access: Fri Apr 4 20:46:36 2003
Modify: Mon Jan 21 12:48:27 2002
Change: Sat Mar 1 17:33:44 2003

gcc mac-robber.c –o mac-robber

stat mac-robber
Access: Sun Apr 6 22:52:41 2003
Modify: Sun Apr 6 22:52:41 2003
Change: Sun Apr 6 22:52:41 2003

Next the newly compiled mac-robber binary is executed in order to see
if the action of execution alters any of the MAC timestamps. To
minimize the program’s activity, it is simply run with the –V

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

parameter, which displays its version and author information rather
than performing its primary purpose.

As the last step in this test, the stat tool is again used to display
the current MAC times of the mac-robber binary after it has been
executed.

The modify and change timestamps are unchanged, only the access
timestamp has been updated and set to the time the program was
executed.

./mac-robber –V

mac-robber information:

 version: 1.0

 author: Brian Carrier, @stake Inc.

 url: http://www.atstake.com/research/tools

[root@localhost mac-robber-1.00]# stat mac-robber
Access: Sun Apr 6 22:53:36 2003
Modify: Sun Apr 6 22:52:41 2003
Change: Sun Apr 6 22:52:41 2003

This demonstrates that given the MAC times for the binary file, as
originally received, were all 2002-8-22:14:57 it is reasonable to
conclude that one explanation for the identical timestamps is that this
copy had never been executed. This, of course, makes the assumption
that none of the MAC times were inappropriately altered.

The analysis host and the monitoring host were to a 10 MB hub, with no
connections (logical or physical) beyond these three devices so that
the atd binary could be put into a network-enabled environment,
allowing it to function as it was intended. The victim host (referred
to originally as the disk-imaging host) had a fresh install of all
workstation packages for Linux Redhat 7.2 (no updates) and the atd
binary.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

The monitor host ran tcpdump (8) to sniff the network during this portion
of the analysis. Since there was no DHCP service provided, the IP
information was manually configured.

The following commands were issued at the victim host. The parameters
given to tcpdump would cause it to record all network activity for easy
and detailed review after the test was completed. While tcpdump is
usually used to capture TCP, UDP, and ARP traffic, meaning traffic to
and from TCP port addresses, Loki2 takes advantage of ICMP, which does
not use ports. Passing these parameters to tcpdump insured it would not
exclude any type of packet from its logging.

ifconfig eth0 172.24.0.10 netmask 255.255.255.0 up

tcpdump –I eth0 -x -X -v -e -n -N -w tcpdump.atd

The following command was issued at the analysis host. This simply set
its TCP/IP addressing for use on the lab LAN.

ifconfig eth0 172.24.0.20 netmask 255.255.255.0 up

The ping (41) listing below confirmed the connectivity between the two
hosts. Here the victim host pinged the analysis host. The analysis host
is at 172.24.0.10; the host that will run atd (the victim host) is at
172.24.0.20.

11:39:18.505787 172.24.0.10 > 172.24.0.20: icmp: echo request (DF)
11:39:18.505875 172.24.0.20 > 172.24.0.10: icmp: echo reply
11:39:19.497970 172.24.0.10 > 172.24.0.20: icmp: echo request (DF)
11:39:19.497979 172.24.0.20 > 172.24.0.10: icmp: echo reply
11:39:20.497970 172.24.0.10 > 172.24.0.20: icmp: echo request (DF)
11:39:20.497978 172.24.0.20 > 172.24.0.10: icmp: echo reply

The analysis host then begins a port scan of the victim host.

11:50:27.141049 172.24.0.20.32769 > 172.24.0.10.25290: S 411674623:411674623(0) win 5840
<mss 1460,sackOK,timestamp 641111 0,nop,wscale 0> (DF)
11:50:27.141235 172.24.0.20.32770 > 172.24.0.10.57887: S 407713244:407713244(0) win 5840
<mss 1460,sackOK,timestamp 641111 0,nop,wscale 0> (DF)
11:50:27.141299 172.24.0.20.32771 > 172.24.0.10.44946: S 419387513:419387513(0) win 5840
<mss 1460,sackOK,timestamp 641111 0,nop,wscale 0> (DF)
11:50:27.142520 172.24.0.10.25290 > 172.24.0.20.32769: R 0:0(0) ack 411674624 win 0 (DF)
11:50:27.142585 172.24.0.10.57887 > 172.24.0.20.32770: R 0:0(0) ack 407713245 win 0 (DF)
11:50:27.142652 172.24.0.10.44946 > 172.24.0.20.32771: R 0:0(0) ack 419387514 win 0 (DF)

These tcpdump (8) listings confirmed the connectivity between the two
hosts. In fact, the same ping and port scans were launched from the
victim host to verify that the processes were in fact bi-directional.

The actions the program takes

To begin seeing how this program would actually behave, the program
would be put into execution in an environment the program would
consider “normal”. This would be accomplished with the strace (22) tool.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

The strace (22) program was run on the host that would next launch atd,
and tcpdump was run on the monitor host. The strace program acts as a
wrapper around another program in order to logs the activities of the
wrapped program.

As the strace home page notes;

strace is a system call trace, i.e. a debugging tool
which prints out a trace of all the system calls made
by a another process/program. The program to be
traced need not be recompiled for this, so you can
use it on binaries for which you don't have source.

System calls and signals are events that happen at
the user/kernel interface. A close examination of
this boundary is very useful for bug isolation,
sanity checking and attempting to capture race
conditions (strace 22)

Copies of the /etc and /usr/sbin directories was made, expecting that
any malware activity, if atd is malware, would likely “touch” or alter
these files. The grave-robber program was also run to create a timeline
of each file on the analysis system. The grave-robber program will be
used later to determine which files were accessed while atd was
executing. It is not expected that this copy will be used, but it might
be helpful to have this information available as the analysis
progresses and these timestamps are altered.

Before launching atd, its mode had to be set to allow execution. The
mode was changed from 0666 (rw-rw-rw-) to 700 (rwx------) allowing the
file owner (root) to read, write and execute the file.

chmod -e 700 atd

Finally, strace was run with the atd host. After all the information
believed necessary had been collected, the kill command was used from
another console (tty2) to terminate the atd process.

The syntax for atd was suggested in one of the strings findings (lokid
-p (i|u) [-v (0|1)]), and then confirmed by the information on the
hackerproof.org site (hackerproof.org/technotes/backdoors/index.html).

Usage:

1. Server-Side (= Target System)
 ~#./lokid -p i -v 1

2. Client-Side (= Attacker's System)

example: ~#./loki -d target_ip -p I -v 1 -t 3

strace -c -ff -o atd.strace -r -s 1024 -v -x ./atd –p i –v 1
LOKI2 route [© 1997 guild corporation worldwide]
Process 1083 attached
Process 1083 detached

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

Looking into the /proc/1083 directory, I was able to find the details
of strace, now that it was in execution and resident in memory. While
strace was running as process 1083, atd was independently executing as
process 1085.

cat /proc/1083/maps
08048000-08063000 r-xp 00000000 03:03 344963 /usr/bin/strace
08063000-0806a000 rw-p 0001a000 03:03 344963 /usr/bin/strace
0806a000-0807e000 rwxp 00000000 00:00 0
40000000-40012000 r-xp 00000000 03:03 2109413 /lib/ld-2.2.93.so
40012000-40013000 rw-p 00012000 03:03 2109413 /lib/ld-2.2.93.so
40013000-40014000 rw-p 00000000 00:00 0
40021000-40022000 rw-p 00000000 00:00 0
42000000-42126000 r-xp 00000000 03:03 1259110 /lib/i686/libc-2.2.93.so
42126000-4212b000 rw-p 00126000 03:03 1259110 /lib/i686/libc-2.2.93.so
4212b000-4212f000 rw-p 00000000 00:00 0
bfffb000-c0000000 rwxp ffffc000 00:00 0

The strace tool provided a detailed activity log of atd while in
execution, and that information will be analyzed in the next section.

As it turned out, tcpdump did not record any traffic related to the
activity of atd while execution. This would make sense if atd is
Loki2d, a daemon (lokid) intended to listen for connection requests
rather than reaching out and indicating sessions. Even if there had
been no expectation that atd would actively access the network, having
a sniffer running while atd is in execution would be wise just in case
the program, network oriented or not, was programmed to “phone home.”

Forensic Details

Examining the services on this host, having just executing atd, the atd
program has been loaded as a daemon and is ready to provide service
when properly requested.

The ps tool clearly identifies the ./atd program running adjacent to
strace. The pid 1085 can be used from this point to identify the
program in process.

ps -aux | grep atd
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1083 0.0 0.1 1532 528 tty1 S 13:01 0:00 strace -c -ff -o
root 1085 0.0 0.0 872 312 ? S 13:01 0:00 ./atd -p i -v 1

When the network sockets are reported (netstat -anp), the atd program
is report as process 1085, with a raw IP socket open at port 255. There
is no “state” with raw mode or UDP, so the state field is often left
blank. In this case, the “lack of state” is labeled “7.”

netstat –anp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN 645/lpd Waiting
tcp 0 0 0.0.0.0:7100 0.0.0.0:* LISTEN 677/xfs
raw 0 0 0.0.0.0:1 0.0.0.0:* 7 1085/atd
raw 0 0 0.0.0.0:255 0.0.0.0:* 7 1085/atd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

What other files are used when the program is executed or implemented?

While atd is in execution, the lsof (list open files) reports the files
that strace and atd have open. In the case of atd, a couple of code
libraries, a couple of terminal devices (tty1), and a couple of raw
devices (the network ports) are open. If lsof had run at the moment atd
was accessing passwd, group, localtime, or any other file it is coded
to access, that file(s) would also be listed here. This illustrates the
need to look at a condition from different points of view and
“triangulate” a more complete and accurate picture of the condition.

lsof
(all but strace and atd omitted)
Proto RefCnt Flags Type State I-Node PID/Program name Path

strace 1083 root cwd DIR 3,3 4096 1635831 /root/practical/atd/bin
strace 1083 root rtd DIR 3,3 4096 2 /
strace 1083 root txt REG 3,3 152927 344963 /usr/bin/strace
strace 1083 root mem REG 3,3 87341 2109413 /lib/ld-2.2.93.so
strace 1083 root mem REG 3,3 1395734 1259110 /lib/i686/libc-2.2.93.so
strace 1083 root 0u CHR 4,1 71796 /dev/tty1
strace 1083 root 1u CHR 4,1 71796 /dev/tty1
strace 1083 root 2u CHR 4,1 71796 /dev/tty1
strace 1083 root 3w REG 3,3 0 1636081 /root/practical/atd/bin/atd.strace
strace 1083 root 4w REG 3,3 0 1636084 /root/practical/atd/bin/atd.strace.1085
atd 1085 root cwd DIR 3,3 4096 212577 /tmp
atd 1085 root rtd DIR 3,3 4096 2 /
atd 1085 root txt REG 3,3 15348 264621 /root/practical/atd/bin/atd
atd 1085 root mem REG 3,3 25386 2109705 /lib/ld-linux.so.1.9.5
atd 1085 root mem DEL 0,4 98307 /SYSV0000052e
atd 1085 root mem REG 3,3 699832 278524 /usr/i486-linux-libc5/lib/libc.so.5.3.12

Below the tty1 device is referenced.
atd 1085 root 1u CHR 4,1 71796 /dev/tty1
atd 1085 root 2u CHR 4,1 71796 /dev/tty1

Below, we see the information netstat reported earlier. the “raw” sockets used by atd and
launched by “root” are assigned ports 1 (:0001) and 255 (:00ff), both in state “07”.

atd 1085 root 3u raw 14497 00000000:0001->00000000:0000 st=07
atd 1085 root 4u raw 14498 00000000:00FF->00000000:0000 st=07

How is the file system affected by the execution of the program?

When atd/Lokid is executed, it makes a few changes to local files. Some
of the changes are side effects, system logs are updated, and access
timestamps are updated on the files this program uses.

The major alterations made to the file system include:

• The program’s actual presence as a file, and
• The process and other local system activity that is logged.

Does the program use, manipulate, or reference any other system files?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

Take a detailed look at any MAC time changes that occurred since atd
was executed.

The strace program does a great job of recording information about a
program’s activity, including file access, while in execution.

The atd program is put into execution with the parameters –p I –v 1.
0.000000 execve("/usr/sbin/atd", ["atd", "-p", "i", "-v", "1"], [/* 27 vars */]) = 0
0.002151 uname({sysname="Linux", nodename="localhost.localdomain", release="2.4.7-10",
version="#1 Thu Sep 6 17:21:28 EDT 2001", machine="i586"}) = 0
brk sets the end of the data segment to the value specified by end_data_segment, when that
value is reasonable, the system does have enough memory and the process does not exceed its
max data size. 0.000775 brk(0) = 0x804c58c

Two files, ld.so.preload and ld.so.cache are opened read-only, though preload is not found.
0.000326 open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
0.000394 open("/etc/ld.so.cache", O_RDONLY) = 3

According the fsstat manpage, “… fstat, that utilize a 64-bit integer status array to return
information about long files.” The structure of the returned information is:
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
0.000261 fstat64(3, {st_dev=makedev(3, 67), st_ino=227379, st_mode=S_IFREG|0644,
st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096, st_blocks=176, st_size=82021,
st_atime=2003/03/03-15:02:55, st_mtime=2003/02/28-06:18:41, st_ctime=2003/02/28-06:18:41})
= 0

According to the mmap manpage, “The mmap function asks to map length bytes starting at offset
offset from the file (or other object) specified by the file descriptor fd into memory, preferably at
address start. This latter address is a hint only, and is usually specified as 0. The actual place
where the object is mapped is returned by mmap. The prot argument describes the desired
memory protection (and must not conflict with the open mode of the file).”
0.001301 old_mmap(NULL, 82021, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40016000

The ld.so.cache file is now closed,
0.000303 close(3) = 0
and lib.so.6 is open read-only.
0.000262 open("/lib/libc.so.6", O_RDONLY) = 3

1 kb of material is read from lib/libc.so.6 and represented below in hex notation.
0.000280 read(3, "\x7f\x45\x4c
 A large amount of hex material has been omitted for readability.
 \x00\x53\x05"..., 1024) = 1024

0.006136 fstat64(3, {st_dev=makedev(3, 67), st_ino=305874, st_mode=S_IFREG|0755,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096, st_blocks=11192, st_size=5716491,
st_atime=2003/03/03-15:02:55, st_mtime=2001/09/04-15:36:31, st_ctime=2003/02/28-05:42:53})
= 0

0.000536 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x4002b000
0.000382 old_mmap(NULL, 1264328, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x4002c000

According to the mprotect manpage, “mprotect controls how a section of memory may be
accessed. If an access is disallowed by the protection given it, the program receives a
SIGSEGV.”
0.000295 mprotect(0x40158000, 35528, PROT_NONE) = 0

0.000213 old_mmap(0x40158000, 20480, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x12b000) = 0x40158000
0.000464 old_mmap(0x4015d000, 15048, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x4015d000
0.000315 close(3) = 0

The memory mapping performed by mmap above is deallocated in the next line.
0.002492 munmap(0x40016000, 82021) = 0

0.000653 brk(0) = 0x804c58c
0.000214 brk(0x804c9a4) = 0x804c9a4
0.000192 brk(0x804d000) = 0x804d000

According to the socket manpage, “Socket creates an endpoint for communication and returns a
descriptor. The domain parameter specifies a communication domain; this selects the protocol
family which will be used for communication.”
0.000262 socket(PF_UNIX, SOCK_STREAM, 0) = 3

Initiate a connection on a socket.
0.000332 connect(3, {sin_family=AF_UNIX, path="/var/run/.nscd_socket"}, 110) = -1 ENOENT
(No such file or directory)
0.000442 close(3) = 0

Open and read the nsswitch.conf file.
0.000375 open("/etc/nsswitch.conf", O_RDONLY) = 3
0.000362 fstat64(3, {st_dev=makedev(3, 67), st_ino=225418, st_mode=S_IFREG|0644,
st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096, st_blocks=8, st_size=1750,
st_atime=2003/03/03-15:02:49, st_mtime=2003/02/28-06:19:25, st_ctime=2003/02/28-06:19:25})
= 0
0.000563 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000

The nsswitch.conf file is opened and 1750 bytes are read.
0.000335 read(3, "#\n# /etc/nsswitch.conf\n
 A large amount of hex material has been omitted for readability.
 "..., 4096) = 1750

0.002063 brk(0x804e000) = 0x804e000
0.000350 read(3, "", 4096) = 0
0.000305 close(3) = 0

0.000208 munmap(0x40016000, 4096) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

Again, open the ld.so.cache file for more material.
0.000419 open("/etc/ld.so.cache", O_RDONLY) = 3
0.000351 fstat64(3, {st_dev=makedev(3, 67), st_ino=227379, st_mode=S_IFREG|0644,
st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096, st_blocks=176, st_size=82021,
st_atime=2003/03/03-15:02:55, st_mtime=2003/02/28-06:18:41, st_ctime=2003/02/28-06:18:41})
= 0
0.000531 old_mmap(NULL, 82021, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40016000
0.000283 close(3) = 0

Open and read libnss_files.so.2
0.000252 open("/lib/libnss_files.so.2", O_RDONLY) = 3
0.000279 read(3, "\x7f\x45\
 A large amount of hex material has been omitted for readability.
 x00\x21\x00"..., 1024) = 1024
0.005844 fstat64(3, {st_dev=makedev(3, 67), st_ino=305899, st_mode=S_IFREG|0755,
st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096, st_blocks=512, st_size=255971,
st_atime=2003/03/03-15:02:55, st_mtime=2001/09/04-15:36:16, st_ctime=2003/02/28-05:42:54})
= 0
0.000594 old_mmap(NULL, 41408, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x40161000
0.000302 mprotect(0x4016a000, 4544, PROT_NONE) = 0
0.000217 old_mmap(0x4016a000, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x8000) = 0x4016a000
0.000413 old_mmap(0x4016b000, 448, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x4016b000
0.000308 close(3) = 0
0.000478 munmap(0x40016000, 82021) = 0

This is disturbing! The passwd file is opened. This is the file that contains most of the control
information for every account on this system.
0.000397 open("/etc/passwd", O_RDONLY) = 3
0.000398 fcntl64(0x3, 0x1, 0, 0x1) = 0
0.000220 fcntl64(0x3, 0x2, 0x1, 0x1) = 0
0.000269 fstat64(3, {st_dev=makedev(3, 67), st_ino=227385, st_mode=S_IFREG|0644,
st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096, st_blocks=8, st_size=1272,
st_atime=2003/03/03-15:02:49, st_mtime=2003/02/28-06:19:25, st_ctime=2003/02/28-06:19:25})
= 0
0.000660 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000

The passwd file is read. In this short example, the root and bin accounts are read. Not that the
second field in each record is an “x”, indicating the password hashes are stored in another file,
shadow.
0.000311 read(3, "root:x:0:0:root:/root:/bin/bash\nbin:x:1:1:bin:/bin:/sbin/nologin\n
 The remainder of /etc/passed has been omitted for readability.
 ", 4096) = 1272
0.001585 close(3) = 0
0.000216 munmap(0x40016000, 4096) = 0

Again, open a socket.
0.000315 socket(PF_UNIX, SOCK_STREAM, 0) = 3
0.000295 connect(3, {sin_family=AF_UNIX, path="/var/run/.nscd_socket"}, 110) = -1 ENOENT
(No such file or directory)
0.000378 close(3) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

Next the group file is read. This will tell the program when user account are members of which
groups.
0.000321 open("/etc/group", O_RDONLY) = 3
0.000287 fcntl64(0x3, 0x1, 0, 0x1) = 0
0.000210 fcntl64(0x3, 0x2, 0x1, 0x1) = 0
0.000216 fstat64(3, {st_dev=makedev(3, 67), st_ino=227389, st_mode=S_IFREG|0644,
st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096, st_blocks=8, st_size=561, st_atime=2003/03/03-
15:02:49, st_mtime=2003/02/28-06:19:25, st_ctime=2003/02/28-06:19:25}) = 0
0.000533 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000
0.000301 read(3, "root:x:0:root\nbin:x:1:root,bin,daemon\n
 The remainder of /etc/group has been omitted for readability.
 ", 4096) = 561
0.000896 close(3) = 0
0.000212 munmap(0x40016000, 4096) = 0

According to the geteuid manpage, “geteuid returns the effective user ID of the current process.
The effective ID corresponds to the set ID bit on the file being executed. Both the user and group
ID# are queried.”
0.000278 geteuid32() = 0
0.000215 getegid32() = 0

According to the setreuid manpage, “setreuid, setregid - set real and/or effective user or group ID
 setreuid sets real and effective user IDs of the current process. Unprivileged users may only set
the real user ID to the real user ID or the effective user ID, and may only set the effective user ID
to the real user ID, the effective user ID or the saved user ID.“
0.000211 setregid32(0, 0x2) = 0
0.000220 setreuid32(0, 0x2) = 0
0.000401 brk(0x8051000) = 0x8051000

According to the time manpage, “time returns the time since the Epoch (00:00:00 UTC, January
1, 1970), measured in seconds. If (t) is non-NULL, the return value is also stored in the memory
pointed to by t.”
0.000369 time([1046721775]) = 1046721775

And now the localtime file is read. The program is continuing to gather information about its
current environment.
0.000290 open("/etc/localtime", O_RDONLY) = 3
0.000343 fstat64(3, {st_dev=makedev(3, 67), st_ino=225417, st_mode=S_IFREG|0644,
st_nlink=1, st_uid=0, st_gid=0, st_blksize=4096, st_blocks=8, st_size=1267,
st_atime=2003/03/03-15:02:55, st_mtime=2003/02/28-06:19:24, st_ctime=2003/02/28-06:19:24})
= 0
0.000538 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000

The local time file is read, and represented here in hex notation.
0.000306 read(3, "\x54\x5a\x69\
 A large amount of hex material has been omitted for readability.
 \x70\x54\x4c"..., 4096) = 1267
0.005855 close(3) = 0
0.000220 munmap(0x40016000, 4096) = 0

0.000408 getpid() = 1453

0.000337 rt_sigaction(SIGPIPE, {0x4010f1c8, [], 0x4000000}, {SIG_DFL}, 8) = 0
0.000392 socket(PF_UNIX, SOCK_DGRAM, 0) = 3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

0.000287 fcntl64(0x3, 0x2, 0x1, 0x40153d87) = 0

A connection is made to the /dev/log file. Then an entry is written to the log file.
0.000224 connect(3, {sin_family=AF_UNIX, path="/dev/log"}, 16) = 0
0.000313 send(3, "<75>Mar 3 15:02:55 atd[1453]: unknown option", 45, 0) = 45
0.000881 rt_sigaction(SIGPIPE, {SIG_DFL}, NULL, 8) = 0
0.000464 _exit(1) = ?

MAC time analysis

Now that the suspect program has been executed, a review of the MAC
times report for the entire system will pinpoint the files that were
accessed while atd was in execution.

After atd had been in execution for a few moments, it was terminated
and grave-robber was again run on the entire system. Once grave-robber
had collected the system information, mactime was used to extract a
listing of the files throughout the system organized by access time.

The atd program is executed within the strace program.
Thu Apr 24 2003 11:14:09 1931 .a. -rw-r--r-- 0 0 1635984
/root/practical/atd/bin/atd.strace.1085
Thu Apr 24 2003 11:15:05 1931 m.c -rw-r--r-- 0 0 1635984
/root/practical/atd/bin/atd.strace.1085
Thu Apr 24 2003 11:18:11 152927 .a. -rwxr-xr-x 0 0 344963 /usr/bin/strace
 1931 .a. -rw-r--r-- 0 0 1635985 /root/practical/atd/bin/atd.strace. 1085
 4096 m.c drwxr-xr-x 0 0 1635831 /root/practical/atd/bin

The operating system validates root’s permissions to execute this file.
Thu Apr 24 2003 11:18:26 643 .a. -rw-r--r-- 0 0 1389952 /etc/pam.d/system-auth
 15294 .a. -rwxr-xr-x 0 0 752231 /lib/security/pam_limits.so
 8836 .a. -rwxr-xr-x 0 0 752242 /lib/security/pam_securetty.so
 14073 .a. -rwxr-xr-x 0 0 752225 /lib/security/pam_env.so
 427 .a. -rw-r--r-- 0 0 1389990 /etc/pam.d/login
 183149 .a. -rwxr-xr-x 0 0 359762 /usr/lib/libglib-1.2.so.0.0.10
 12637 .a. -rwxr-xr-x 0 0 2109495 /lib/libpam_misc.so.0.75
 52235 .a. -rwxr-xr-x 0 0 752222 /lib/security/pam_console.so
 13655 .a. -rwxr-xr-x 0 0 752244 /lib/security/pam_stack.so
 210 .a. -rw-r--r-- 0 0 1389951 /etc/pam.d/other
 63761 .a. -rwxr-xr-x 0 0 359754 /usr/lib/libcrack.so.2.7
 7046 .a. -rwxr-xr-x 0 0 752237 /lib/security/pam_nologin.so
 37114 .a. -rwxr-xr-x 0 0 2109494 /lib/libpam.so.0.75
 25942 .a. -rwxr-xr-x 0 0 948482 /bin/login
 114 .a. -rw------- 0 0 228949 /etc/securetty
 5342 .a. -rwxr-xr-x 0 0 752224 /lib/security/pam_deny.so
 15443 .a. -rwxr-xr-x 0 0 752223 /lib/security/pam_cracklib.so
Thu Apr 24 2003 11:18:31 719 .a. -rwxr-xr-x 0 0 719519 /etc/profile.d/colorls.sh
Five seconds into execution, atd seems to have referenced the gzip program.
 63488 .a. -rwxr-xr-x 0 0 948496 /bin/gzip
This script, gnome-ssh-askpass.sh, exports the ssh password
 70 .a. -rwxr-xr-x 0 0 719919 /etc/profile.d/gnome-ssh-askpass.sh
Quit a lot of the rest reflects the login process.
 4096 .a. drwxr-xr-x 0 0 719491 /etc/profile.d
 756 .a. -rw-r--r-- 0 0 228943 /etc/inputrc
 842 .a. -rw-r--r-- 0 0 228947 /etc/profile
 8580 .a. -rwxr-xr-x 0 0 343474 /usr/bin/tput

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

 23537 .a. -rwxr-xr-x 0 0 343643 /usr/bin/setterm
Opening up a terminal enokes the motd banner.
 0 .a. -rw-r--r-- 0 0 228944 /etc/motd
 170 .a. -rwxr-xr-x 0 0 719520 /etc/profile.d/which-2.sh
Also five seconds into execution, atd references the egrep binary.
 33 .a. -rwxr-xr-x 0 0 948437 /bin/egrep
utmp was updated. A later review using the who tool did not show anything of interest.
 4224 m.c -rw-rw-r-- 0 22 1095624 /var/run/utmp
 223 .a. -rw-r--r-- 0 0 294986 /root/.bashrc
 2434 .a. -rw-r--r-- 0 0 228969 /etc/DIR_COLORS
 1418 .a. -rw-r--r-- 0 0 1439008 /etc/security/limits.conf
 36728 .a. -rwxr-xr-x 0 0 948472 /bin/stty
 4420 .a. -rwxr-xr-x 0 0 49123 /sbin/consoletype
 190 .a. -rwxr-xr-x 0 0 719495 /etc/profile.d/glib2.sh
 153 .a. -rwxr-xr-x 0 0 719647 /etc/profile.d/vim.sh
 267 .a. -rwxr-xr-x 0 0 719563 /etc/profile.d/less.sh
 29266 .a. -rwxr-xr-x 0 0 343532 /usr/bin/wc
 30424 .a. -rwxr-xr-x 0 0 948493 /bin/setfont
 1497 .a. -rw-r--r-- 0 0 228934 /etc/bashrc
 823296 m.c -rw-rw-r-- 0 22 670841 /var/log/wtmp
 19136220 m.c -r-------- 0 0 670436 /var/log/lastlog
 80 .a. -rw-r--r-- 0 0 245998 /etc/sysconfig/i18n
 1426 .a. -rwxr-xr-x 0 0 948494 /bin/unicode_start
 4900 .a. -rwxr-xr-x 0 0 948491 /bin/kbd_mode
 50616 .a. -rwxr-xr-x 0 0 948490 /bin/dumpkeys
 75416 .a. -rwxr-xr-x 0 0 948492 /bin/loadkeys
 2862 .a. -rw-r--r-- 0 0 1439009 /etc/security/pam_env.conf
 279 .a. -rw-r--r-- 0 0 295016 /root/.bash_profile
Thu Apr 24 2003 11:18:37 4096 .a. drwxr-x--- 0 0 294337 /root
Here the lsof and ps reports were created.
Thu Apr 24 2003 11:18:58 26206 m.c -rw-r--r-- 0 0 264634
/root/practical/atd/strace.atd.lsof
Thu Apr 24 2003 11:19:17 2505 m.c -rw-r--r-- 0 0 264635
/root/practical/atd/stace.atd.ps
Thu Apr 24 2003 11:19:30 1931 m.c -rw-r--r-- 0 0 1635985
/root/practical/atd/bin/atd.strace.1085
 84 m.c -rw-r--r—0 0 1636081
/root/practical/atd/bin/atd.strace

Does this file include any additional “leads” for further
investigation?

Other than the strings that were found in the binary, there were no
other items that seemed to provide any clue for further investigation.
These were, however, enough to track down the source code along with
two articles (20) explaining the program in detail.

Program Identification

By searching Google.com for some of the strings found in the atd
binary, several promising references immediately came up.

The strings used in the search were:

1. lokid: cannot locate client entry in database;
2. lokid: unsupported or unknown command string;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 41

3. lokid: client <%d> requested an all kill; and
4. route [(c) 1997 guild corporation worldwide]

While the same was true of many other hits, the URL below caught my
attention, since it referred to a “tunneling program.”

• http://secinf.net/unix_security/LOKI2__informationtunneling_program_and_description.ht
ml

That URL quickly pointed me to the Phrack.org pages that had originally
introduced the loki suite of covert channel tools. Other sites helped
add to the description of loki and its uses and operation.

Recreating this binary

I was unable to recreate an exact duplicate of the atd, a.k.a. Loki2d.
While atd was successfully compiled, neither the file size or md5 hash
matched the original.

So, I turned to other techniques in an attempt to quantify the
likelihood that the binary was in fact a copy of Loki2d.

First, the strings found in the atd binary were compared with the
source code from Phrack Magazine Volume 7, Issue 51 September 01,
1997, article 06 of 17, "L O K I 2 (the implementation)."(20)

To do this, a list of sorted lines from lokid.c was created and then
edited to remove the “code” strings leaving only the more readable
stings. That left the following 28 strings:

[lokid.c]
[fatal] could not signal parent
[fatal] could not signal process group
[fatal] forking error
[non fatal] truncated write
1996/7 Guild Corporation Worldwide [daemon9]
Cannot set IP_HDRINCL socket option
LOKI2
lokid: %s
lokid: Cannot add key
lokid: client <%d> added to list [%d]
lokid: client <%d> freed from list [%d]
lokid: client <%d> requested a protocol swap
lokid: client <%d> requested an all kill
lokid: computing shared secret
lokid: done.
lokid: extracting 128-bit blowfish key
lokid: packet read %d bytes, type:
lokid: popen
lokid: public key submission and request : %s <%d>
lokid: submiting my public key to client
lokid: transport protocol changed to %s
mfd: %d
Raw IP socket:
sending L_QUIT: <%d> %s
sending protocol update: <%d> %s [%d]
Unknown transport

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 42

v:p:

A quick walk-through confirmed that each of these 28 strings existed in
the atd binary. In fact, the source code showed that each string
harvested from atd was used in the fprintf()(20) function in the source
code.

This gave me a high degree of confidence that atd was, in fact, a
compiled copy of loki2d.c

According to Richard Ginski’s GCFA practical (52) the version of loki
available from Phrack will not compile properly, but there is a version
at hackerproof.org that will.

Next, the atd source codes from phrack and from hackerproof.org were
compared to help determine how identical these two files were.

Below, the difference between the lokid.c code files from Phrack.org (20)
and hackerproof.org (61) are illustrated.

diff –-side-by-side --suppress-common-lines –W 60 lokid.hackproof/ lokid-
Phrack/
Only in loki-hackerproof/: client_db.o
Only in loki-hackerproof/: crypt.o
Only in loki-hackerproof/: loki

diff --side-by-side --suppress-common-lines -W 60 loki-hackerproof/loki.c loki-Phrack/loki.c
fprintf(stderr, "\n[| fprintf(stderr, "\n[
Only in loki-hackerproof/: lokid

diff --side-by-side --suppress-common-lines -W 60 loki-hackerproof/lokid.c loki-Phrack/lokid.c
fprintf(stderr, "\n[| fprintf(stderr, "\n[
err_ | err_exit
Only in loki-hackerproof/: lokid.o

diff --side-by-side --suppress-common-lines -W 60 loki-hackerproof/loki.h loki-Phrack/loki.h
#include <linux/ip.h> <
 > #include <linux/ip.h>
 > #include <linux/signal.h>
#define FIX_LEN(n) (n) | #define FIX_LEN(n) (x)
#ifdef NET3 | #ifdef NET3
if (ldg.payload[0] == | if (ldg.payload[0] ==
else if (ldg.payload[0] == | else if (ldg.payload[0] ==
else if (ldg.payload[0] == | else if (ldg.payload[0] ==
else if (ldg.payload[0] == | else if (ldg.payload[0] ==
else if (ldg.payload[0] == | else if (ldg.payload[0] ==
else if (ldg.payload[0] == | else if (ldg.payload[0] ==
else if (ldg.payload[0] == | else if (ldg.payload[0] ==
else if (ldg.payload[0] == | else if (ldg.payload[0] ==
else if (ldg.payload[0] == | else if (ldg.payload[0] ==
else | else
 > if (prot == IPPROTO_ICM
 > else
if (prot == IPPROTO_ICMP) fp <
 <
Only in loki-hackerproof/: loki.o

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 43

diff --side-by-side --suppress-common-lines -W 60 loki-hackerproof/Makefile loki-
Phrack/Makefile
#CRYPTO_TYPE = | CRYPTO_TYPE =
CRYPTO_TYPE = | #CRYPTO_TYPE =
Addedum | # It is safe to leave this
NET3 = | NET3 =
DEBUG = | DEBUG =
 @(cd .. ; tar cvf l | @(cd .. ; tar cvf l

Common subdirectories: loki-hackerproof/md5 and loki-Phrack/md5
Only in loki-hackerproof/: pty.o
Only in loki-hackerproof/: shm.o

diff --side-by-side --suppress-common-lines -W 60 loki-hackerproof/surplus.c loki-
Phrack/surplus.c
 * LOKI | * LOKI2
 <
Only in loki-hackerproof/: surplus.o

From this report, several conclusions can be drawn.

• According to the strings comparison, there are only minor
cosmetic differences.

• According to lsof, loki opened the same files as atd.
• According to netstat, loki opened the same type of raw socket on

the same port as atd.
• According to ps, loki ran with the same settings as atd.

Based on these findings, I am confident in asserting that this unknown
binary named atd is an instance of the lokid program.

Conclusion

This program, atd, is a copy of the loki2d daemon that provides the
backend of a covert ICMP communications channel.

This program allows a person to direct the operation of a remote
(likely compromised) system while undetected by most network based
security devices unless they are configured to pay special attention to
what is otherwise considered normal ICMP traffic.

The person who placed this file on a company system intended to make
use of that system while likely is circumventing any network security
components. Knowing the content and logical position in the network
would likely reveled the intended use of this covert channel.

Legal Implications

I was unable to prove that this binary had been executed. Neither the
MAC times, nor the metadata within the zip archives, support any
indication the file had been accessed either for execution or any other
purpose since it was created. It is more likely that either the actual
MAC times were altered while moving the file between file systems, or
they were intentionally altered to destroy their value as evidence.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 44

At the very least, this is a violation of enterprise policy. That
policy states that only software approved by the technical support
group can be installed on a company system, and then only by members of
the technical support group or by vendors under the supervision of a
member of the technology support group.

While a good case might be made for a specific use of the functions
provided by a tool like loki within a business environment, approval
would be denied on the basis that as a covert listener released to the
general public, loki would be a desirable target for an intruder, and
one that could not adequately be controlled to insure only authorized
access. Other similar tools that enforce client authentication are
available. The question of vulnerabilities within the program itself
would be another reason use of loki would be denied. Vulnerabilities
and bugs are not likely to be “patched” by the developer in a timely
fashion.

The article in Phrack which announced loki described its purpose as;

“It [loki] can be used as a backdoor into a system by
providing a covert method of getting commands executed
on a target machine. It can be used as a way of
clandestinely leeching information off of a machine. It
can be used as a covert method of user-machine or user-
user communication.” (Phrack 20)

Loki could be used either to;

1. Submit covert commands to be executed by a remote host, or
2. to allow two people to covertly communicate in real-time.

In this case, the only reason a person would place this program on a
system is if they intended to covertly communicate through a network,
which implies unauthorized access. Since a covert communications
channel is “hidden” from the communications infrastructure rather than
the hosts participating in the communications, the effect of lokid is
on the network rather than the network hosts. KRS 434.840 and KRS
434.845 (KRS 53) together make it clear that the issue of “access” is
not limited to the end-point host, but includes the network
infrastructure.

The argument could be made that the lock-pick principle applies here.
“The only reason a person would have possession of a lock picking tool
is that they intended to open a lock without authorization.”

Even if the person using loki were authorized to use both hosts, using
lokid to would seem to violate KRS 434.845 (KRS 53) in that loki is
used to “obtain services [of a computer network] by means of fraudulent
representations.” The violation does not have to do with the hosts
themselves, but with the use through “fraudulent representations” of
the network(s) that connect them.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 45

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 46

Interview Questions

There are a few vectors the questioner can take, depending on the
person being interviewed.

One vector is wrapping the questions in a Boy-I-Admire-Someone-Who-Can-
Do-These-Things delivery. This allows a person to explain their
perspective and capabilities regarding the topic. In this case, the
topic is “covert communications daemons.” While this is an appeal to
the ego, the focus is more on camaraderie.

1. I don’t know about you, but I am not comfortable with the way
some of our network communications are sent across the wires in
clear text. For that matter, it is too easy for some of the
“computer nazis” around here to identify private communications.
How would you suggest I get around that?

2. There are not many folks around here who are sharp enough to get
a daemon running on a Linux host, let alone without crashing the
system! I hear you have had some success doing that on your own.
Can you give me any tips?

Another vector would be a direct appeal to the person’s ego.

1. We found this atd program and need some help responding to the
situation. Can you help?

2. My boss said you probably could not help, because you are not
smart enough, but something tells me you can. What about it? If
you help me; it proves you are ore capable than the boss things.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 47

One other vector is the FUD (Fear, Uncertainty, and Doubt) factor.

1. This is serious. The boss is talking about calling the cops. If
there is anything you know about this, I would rather we take
care of it privately (and maybe recruit a new hacker to our
security department).

2. This happened once before. We think you might know something
about it and expect to know for certain from the evidence
shortly. I can give you this one chance to help me. What can you
tell me?

3. The boss really believes you are involved with this. I cannot
promise anything; if you helped out by telling me what this is
all about, and how we can “fix” it, he might not want to make a
big deal of it. That is a promise I cannot make; but it is what I
think.

Additional Information

Additional information on the analysis of unknown binary files is
available at the following sites:

1. Phrack at www.Phrack.org;
2. The Honeynet project at www.honeynet.org especially reviewing the

results of each “scan of the month”, found at
www.honeynet.org/scans/; and

3. “Analysis of ‘the-binary’” available at
laad.altervista.org/tuts/anbin.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 48

Part 2, Option 1 - Perform forensic analysis on a system

Synopsis of Case Facts

This section describes the forensic analysis performed on two hard
disks taken from a single desktop system.

A large number of PC class computers had been sent to surplus.
Enterprise policy is clear and states each system must be effectively
wiped of all electronic material, without respect to the type of
material, before leaving the control of the department or sent to
surplus.

It was suspected the wiping of the hard disks had not been properly
performed. To verify the policy was both being followed and was
effective, a forensic audit of a sample machine would be preformed. The
goals were to answer the following questions:

1. Is confidential or proprietary information being unintentionally
leaked through the surplus of system?

2. Do these systems show signs of having been compromised, either by
an unauthorized intruder, or undetected malware (malicious
software, viruses, or adware)?

3. And, do these systems show evidence of inappropriate use.

Time and resources permitted the analysis of only a single desktop
system.

When the sample system was acquired, nothing was known of its history,
contents, uses or operational condition. The system consisted of the
desktop case and internal components. There was no keyboard, display,
power cord, mouse, or other peripherals.

When selecting the sample host, each case was inspected. Specifically,
the screws holding the case closed were inspected for signs of
excessive ware (striped screws, missing screws, mismatched screws,
screw driver marks on the case). The assumption was that this would
indicate the case had been opened excessively and that the internal
components were more likely to have been altered or physically accessed
due to hardware failure, upgrading, or scavenging of parts. The boxes
that showed this type of wear were excluded from selection.

Each potential sample system was opened to verify that it contained a
hard disk(s) that “appeared” to be functional. Again, the internal
screws were inspected for wear and the arrangement of wires and bus
cables was checked for indications of “tinkering”. The age of the
system, based on dates stamped on the case and components, was also
taken into consideration. The assumption was the older the disk, the
more use, and the larger the variety of uses, it was likely to have
seen.

There seems to be a pattern where a host is initially used for more
“critical or important” tasks; then as the host ages, it is moved to
areas or tasks of decreasing importance. With that hypothesis, while a
host may have been of minor “security interest” when taken out of
service, it may unknowingly still contain highly sensitive material or
artifacts (portions of files) from prior usage.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 49

There was no requirement for other components, such as network adapters
or removable media, since the intention was to move the hard disk(s)
from this sample system to a trusted host that would be used to make a
byte-for-byte identical copy of the entire disk. Any other components
were of no value to the investigation.

Using these criteria, a desktop system was selected for forensic
analysis.

Describe the system(s) you will be analyzing

There was no external indication of the type of operating system, file
system, primary use or other descriptive information. An attached
property tag did identify the owning department.

The system was acquired from a surplus property warehouse where it was
found in a stack of about 100 PC cases of varying age, maker, model,
and type (desktop, tower).

There were other similar stacks of hardware; all were similarly a
mixture of desktop computers. As individual systems had been sent to
surplus over time, they were gradually bundled into these stacks for
bulk auction to the public or other disposal.

Most of these systems contained a single and relatively small hard
disk, ranging in size from 800 MB to 4 GB. The system that was selected
contained two physical hard disks, one configured as the IDE master and
the other as the IDE slave. This offered the safeguard that, if one
disk was not operational, the other might be.

Hardware

This system was labeled Unit1.

Suspect system hardware inventory
Analysis Case Identification – Unit1

Gateway P5-133 (133 MHz Pentium)
128 MB RAM
Desktop class machine
Inventory tag #081318
Internal 6x CDROM player
Internal 3.5” 1.44 MB high density floppy
Internal 10/100 NIC
Internal “Sound Blaster” audio card
System Manufacture date: 12/10/96
FCC ID #hwythp5133batc

#1 - Western Digital – configured as the master drive according to the
illustrations on the disk case.
 Model Caviar 11000
 2046 cyl
 16 heads
 63 spt
 1055.9 MB
 MDL: WDAC11000-00H
 P/N: 99-004222-000
 CCC: H0 18 NOV 96

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 50

 DCM: ANAARBL
This disk was recognized by Trinux Linux (9) as hda1.dd
md5: 00d284e2b73ccdbd8313a57bd1e2fafb

#2 – Maxtor – configured as the slave drive according to the illustrations on
the disk case.
 Model 81750A4
 4099 MB
 cyl 3400
 heads 16
 sectors 63

This disk was recognized by Trinux Linux (9) as hda2.dd
md5: 628f2390a359da96a6d6127137744d84

During the analysis of this system, the same components and
configurations were used as during the analysis of the atd binary in
part 1 of this paper.

Image Media

First the two hard disks were removed - one at a time - from the host
case. As each disk was removed, the following steps were taken:

1. An identifying “label” was written on its case in permanent ink.
For this investigation the labels were Disk1 for the IDE master
disk and Disk2 for the IDE slave disk.

2. All identifying information present on each disk was recorded
into a Hardware Inventory file that is unique for each
investigation.

3. The jumper settings were documented. In this case the jumper on
the IDE slave disk (Disk2) would later be changed to
single/master while being imaged/copied.

4. Each disk was placed in a static free plastic bag, and each bag
was clearly marked to identify its contents.

5. The power cables and the ribbon cable connected to each disk was
labeled and documented.

6. The physical drive bay that each had been removed from was
documented.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 51

The host components, minus the hard disks, were labeled and sealed in
plastic bags and stored in a restricted access locked room. Though
these components were not expected to be part of any subsequent
investigation, they were treated as evidence just as the hard disks
were.

This illustrates a point learned during this investigation. The analyst
may have a vague idea of the scope and severity of the alleged
incident, and those around the analyst usually share their own
assumptions, expectations, and speculations. Still, the analyst must
work from the start with the assumption that the investigation will go
completely through the criminal prosecution process. An analyst never
knows when a “routine” investigation might uncover unexpected evidence
of much more serious activities, criminal or otherwise.

Next, Disk1 was connected to the ribbon and power cables of the disk
image host. Its own hard disk had been disconnected from the bus and
power, allowing Disk1 to “take its place.” Disk1 was not bolted into
the case; it simply laid along side the open workstation case. The BIOS
configuration of the disk-imaging host had been confirmed to boot from
floppy diskette, CDROM, and fixed disk – in that order.

A Trinux (9) boot diskette was firmly seated in the floppy drive and the
system was powered up. Using a Linux boot floppy insured that
accidental or unintended access to the hard disk from within the
controlled Linux environment would not be able to alter the disk
contents. Powering up the processor and properly mounting the hard disk
with Trinux would not alter any of the content of the fixed disk being
analyzed.

Illustrating the Trinux boot process in detail would not significantly
add to the value of this report. All that needs to be mentioned is that
during the process, the operator is prompted for any additional
“packages” that should be loaded. These packages are compacted archives
of common software tools. This provides a great deal of customization
in selecting what software the system will contain. It also allows the
operator to conserve space (specifically the RAM used to store the
contents of the virtual file system) and speed the boot process.

When prompted for additional packages, a diskette containing the
diskutl.tgz (9) archive (available at the Trinux web site) was swapped
for the boot diskette. This package provides the sfdisk and fdisk
utilities.

As Trinux successfully booted from the diskette, one hard disk (hda) was
located and found to contain a single NTFS (Net Technologies File
System) partition. This implied that this disk was used by a Microsoft
Windows NT, or above, operating system.

From the Trinux console, sfdisk was run to scan the system for hard
disks, their reported geometry, and the partition table’s record(s).
The sfdisk tool reported finding one fixed disk it labeled had, which
contained one NTFS partition it labeled hda1.

At this point, it was assumed that none of the proceeding steps had
altered the disk or its contents in any way. But the next steps would
begin to open the possibility of inadvertent alteration, which would

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 52

contaminate the disk destroying the credibility of any finds the
analysis might produce.

So, before attempting any (other) type of access to the disk/partition,
the unique md5 (11) (Message Digest version 5 (33)) hash value of this
disk had to be calculated and documented. Because the md5 hash value of
each thing (a disk, a file, an email, or any digital material) is
unique, the analyst can be sure that the disk image file actually being
analyzed is identical to the original. This also allows the integrity
of the findings to be validated at a later date by repeating them on an
identical copy of the original. Comparing the md5 hash values of an
original and its copy prove that they are in fact identical.

At this point, the drive was simply a device and had not yet been
identified to the system as a file system. In other words, the disk had
not yet been mounted so there was no change access in place, only read
access.

The command run is illustrated below.

md5sum /dev/hda
00d284e2b73ccdbd8313a57bd1e2fafb /dev/had

The md5sum (11) tool processes the subject file through the md5 algorithm
producing a hash value. A hashing algorithm specifically accepts
digital material of variable length and produces a value that uniquely
identifies the input material such, that if any alteration is made to
the material, the resulting hash value will be significantly different.
In effect, the hash value is an extremely unique fingerprint of that
material. This fingerprinting allows an analyst to demonstrate that the
material being analyzed is an identical copy of the original and that
it has not been altered from the original. In some cases, the point
might be to prove that some alteration has actually occurred.

By md5 hashing the /hda disk rather than a specific partition (/hda1),
the hash value would represent the entire disk surface, including the
partition table, master boot record, and all other addressable sectors.

Even the file documenting the md5 hash of Disk1 was itself hashed. This
is an example of the principal of defense in depth. This layering of
safety nets is seen repeatedly in digital forensics. The idea being
that, rather than defending against an intruder, you are defending
against mistakes, accidents, system failures, and other unexpected
events that could damage the integrity of the investigation. This also
provides a buffer for responding to unexpected criticism or questions
raised later in the process. Why didn’t you have a backup of your
backup?

Since all of the information being collected at this point exists only
in the virtual Trinux RAM filing system, a blank formatted diskette was
mounted (in place of the Trinux boot and package diskettes) and the
Disk1.md5 file, along with others, were copied onto it. From there,
these files were copied into the investigation’s file folder.

After completing the md5 hash process a byte-for-byte identical copy of
the suspect disk was made. This is commonly referred to as imaging the
disk.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 53

The disk imaging system was connected directly to an Ethernet 10/100
hub (not a switch), as was the analysis host. No other devices were
connected to the hub at this time, and no other vectors existed between
this lab LAN and any other systems. This LAN was air-gapped, physically
and logically isolated from any other network.

On both the disk imaging and analysis hosts, the IP configurations were
manually set using the ifconfig tool, since there was (intentionally)
no DHCP service available. In the next two examples, ifconfig is given:

• the network interface to be configured (eth0);
• the IP address to be assigned to that interface;
• the netmask for that IP address; and
• finally ifconfig is instructed to set the interface status to

“up,” or active.

This command was run at the disk-imaging host.

ifconfig eth0 172.24.0.10 netmask 255.255.255.0 up

This command was run at the analysis host.

ifconfig eth0 172.24.0.11 netmask 255.255.255.0 up

Running ifconfig with no parameters produces a report of the current
settings that is used to confirm that the intended action has taken
effect.

The ping program was run from each of the two machines at the other to
verify successful connectivity. Initially, pings from the disk-imaging
host to the analysis host failed due to the strong firewall settings on
the analysis host. Since this process was being performed within an
air-gapped LAN, the IPTables firewall was disabled.

Now the actual disk imaging process was begun.

The disk imaging host was going to sequentially read the entire hard
disk sector by sector and send the data across the LAN to the analysis
host, which would spool the incoming data stream to a single disk file.
At the disk imaging host, the sender, the following command was issued.

dd /dev/hda bs=512 | nc 172.24.0.10 8841

While at the analysis host, the receiver, this command was issued.

nc –l –p 8841 –v –n –w 30 > Disk1.dd.img

The first command instructs the host to read directly from the disk
device hda in blocks of 512 bytes each. The stream of data being read
is piped (the | symbol) directly to the nc (27) (netcat; network
concatenation) program that would build a network session to port 8841
on the receiving host (172.24.0.10).

The receiving host reverses the process. A nc listener (-l) is setup on
the local TCP port 8841 (-p 8841). Additionally, the nc listener is to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 54

verbosely (-v) display its status and not look up any inbound hostnames
(-n). Finally, the listener is to continue listening until 30 seconds
have lapsed (-w 30) with no inbound data received before terminating.
Since nc works with raw packets and streams, it does not have a EOF
(end of file) delimiter or flag with which to signal the receiver that
the transmission is complete. To compensate for this, the receiver is
told to automatically terminate the connection after a period of
silence.

As the byte stream flows in from the sender, the receiver directs it to
the local disk file Disk1.dd.img.

Initially, parameters such as –w 30 were given on the sender, but that
failed. Trial and error showed that this version of the Busybox (24) nc
program (Busybox provides the functions of many of the programs
available to the console) did not support arguments other than host and
port. To adjust to this, the commands at the sender are stark, and all
of the options were placed on the receiver.

At first there were several false starts. The send-receive process
would begin and successfully process several megabytes of data but
would always abend (abnormally terminate) at different points in the
process.

These failures occurred at very different byte counts and time
durations. This implied that the problem was not an unreadable disk
sector, but something else. A third host was setup on the hub running
tcpdump, a network communications sniffer, in hopes of finding some
clue to the problem. After two more failed attempts, the sniffer host
had not logged any data that indicated a problem with the hub or the
integrity of the hosts’ ability to communicate.

Troubleshooting indicated the hub was the source of the problem. In
order to keep this investigation on track, and since it would have no
impact on the content of the process, a replacement hub was ordered and
the two hosts were directly connected with a crossover cable. The
crossover cable created a virtual network between these two hosts that
would function just as a hub-based network would. Later in the
investigation, the replacement hub was put in place and operated as
expected.

The send-receive process took over two hours to complete. Since there
was no obvious indicator of progress, other than “the blinky lights” on
the hub, a second terminal was opened on the receiving host and the “ls
–o” command was run on the folder that Disk1.dd.img was being spooled
into. This gave me an accurate gauge of the transfer’s progress, since
I could compare the size reported by sfdisk and the amount received in
the folder.

Once the disk imaging process was complete, the listener gracefully
closed the connection (after waiting 30 seconds with no additional
reception as instructed with netcat’s “–w 30” parameter).

The byte counts were compared to ensure the entire disk had been
successfully imaged. But a byte count is only an indicator and not
proof. So, the md5 hash of the Disk1.dd.img file was generated and
compared character by character to the original md5 hash of the suspect

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 55

disk. The hash values matched, proving that the disk image was an
identical byte copy of the original.

Once each disk image file was saved to the analysis host’s local disk,
the read-only bit was set to help prevent unintentional alteration
either by the operator, the tools used for the analysis, or even the
local operating system.

The second disk was now imaged.

Both hosts were gracefully powered down and rebooted. The suspect disk,
Disk1, was disconnected and returned to its plastic bag.

Disk2 had been configured as the slave drive in the original system.
Before connecting it to the disk-imaging host, the proper jumper block
on the disk case was moved from the slave position to the master
position. This does not alter the disk contents in anyway. Once this
disk had been processed, the jumper was moved back to its original
position. Fortunately, there was a diagram on the disk case that
illustrates the different jumper placement options.

Disk2 was connected to the disk-imaging host just as Disk1 had been.
The same environment (systems, hardware) with the exception of swapping
Disk1 with Disk2, software, and configuration) were used to image
Disk2. As before, rather than using the Ethernet 10/100 hub, a
crossover cable was used to connect the sending and receiving hosts in
order to transfer the harvested disk image.

Here again, there were problems.

Several attempts were made to harvest an image of Disk2, but
input/output errors, reported by dd on the disk-reading host,
prematurely terminating the transfer. Unlike the problem with the hub,
each attempt consistently failed after approximately 4.9 MB were
transferred.

As before, the dd command illustrated below was run at the disk-imaging
host.

dd if=/dev/had bs=1024 | nc 127.0.0.37 8841

Several different values were tried for the bytes per sector (bs=1024)
parameter (512, 1024, 4096...) with no significant improvement.

This implied there was a physical problem with the surface of Disk2
that prevented dd from sequentially reading the entire disk from
beginning to end. So, rather than imaging an intact byte copy of the
entire hard disk, dd was used to make two images; one an identical copy
of the disk from its beginning to the point of damage, and a second
that was an identical copy of the disk from just past the point of
damage until the end of the disk. These images could not be remounted
or analyzed as an intact file system, but could still provide important
findings.

The skip=10000 parameter was used with dd to begin reading just past
the apparent point of damage on the disk when creating the second image

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 56

of the disk just past the point of damage and on to the end of the
disk.

The above “skip=10000” parameter instructs dd to begin reading 10,000 *
512 (5,120,000) bytes from the beginning of the disk. This effectively
skipped over the first 4.9 MB that had already been harvested along
with the point of damage on the disk, and begin imaging the remainder
of the hard disk.

dd if=/dev/hda bs=512 skip=10000 | nc 127.0.0.37 8841

The analysis host receiving this byte stream did so with the following
command.

nc –l –p 8841 –v –n –w 30 > Disk2.2.dd.img

From this point, the two segments of Disk2 were treated as separate
images, rather than a partitioned functioning file system, that
logically represent the image of Disk2 minus the 220,000 (5,120,000 –
4,900,000) bytes containing the damaged portion of the disk surface. If
this approach did not offer clues, then a more exact slicing would be
performed to more exactly isolate the point of damage. The two slices
would be concatenate and the damaged sector(s) would be “back filled”
in an attempt to provide enough integrity to the image to allow it to
function as a file system.

Still treating each portion of disk2 as a file, each portion was hashed
and verified to the material captured at the receiver was identical to
the material read from the hard disk. In the examples below, the first
portion of disk2 was read with dd and piped to the md5sum program. Next
the second portion of the disk, beginning 10,000 blocks of 512 bytes
each from the beginning of the disk and running to the end, was read
and hashed.

dd if=/dev/hda bs=512 | md5sum

dd if=/dev/hda bs=512 skip=10000 | md5sum

Disk1 Master
1 MB
Partition table
One fat-16 partition

Disk2 Slave
4 MB
Partition table
On NTFS partition

Disk1.dd Imaged as 2 files
Disk2 – first half
Disk2.2 – second half

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 57

The exercise of creating a disk image helped make clear the concept of
a file system as an abstraction layer placed over a logical partition
which is itself a abstraction layer placed over the binary contents of
a physical disk.

The logical file system

At the point where
people and files
interact, a logical file
system (NTFS, FAT, ext2,
ext3…) provides an
organized view of the
content of each files
and its metadata, which
includes; date and time
stamps, file size, other
attributes.

The file system acts
like a database
management system,
presenting the logical
data (which is actually
organized for efficient
access and management by
low-level language
routines) appear to be
organized in the easy to
digest (for people)
structures of drives,
mount points, folders,
and files.

The logical partition

As the file system
presents a digestible
view of the organization
of files, a logical
partition presents a
digestible view of the
more physical aspects of
a hard disk to the file
system so a human can
better interact with it.

This type of “hardware abstraction layer” allows the upper layer (the
file system) to focus on the tasks of a file system without having to
deal with the differences and variations between hard disk products.

In this illustration, Windows XP reports finding four logical
partitions on this one hard disk. The last in the list is the first in
the associated graphic. This is the 9.77 GB NTFS partition used by
Windows XP as the C: drive.

The other three partitions, which XP does not recognize because it does
not provide native (built-in) support for ext2 or other *nix file
systems, are the ext2 file system /boot (102 MB), /(logical root 17.58

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 58

GB), and /swap (510 MB) partitions used by Linux on this dual-boot
system.

XP has gotten this information from the partition table on this disk.
Each physical hard disk has a partition table that an operating system
(Linux, Windows, DOS, Solaris…) relies on to describe the logical
partitions that the hard disk has been divided into.

The physical disk

Even at this lowest
layer, the hard disk
itself is managed and
accessed through firmware
on the Disk Controller
Board (DCB).

Usually, this firmware is
hardware-specific and
resides in chips that are
physically integrated
into the hard disk
chassis (as seen below).

At this layer of
abstraction, the physical
characteristics of a hard
disk are masked from the
software executing on the
host.

Media Analysis of System

The analysis system

Normally, a desktop system with ample resources would be used for this
type of work.

• A desktop system allows for easy access to the internal
components, such as the hard drive bus and power cables, that are
used to connect a “suspect” hard disk.

• A desktop system is usually kept in an easy to secure location
with environmental controls (rather than the trunk of your car).

• Desktop systems and their resources (RAM, disk, SCSI controllers,
external tape drives._._.) are comparatively less expensive than
the laptop versions.

• Desktop systems are usually more comfortable to work at for
extended periods of time due to larger and crisper video displays
and more ergonomic input device (keyboard and mouse).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 59

However, due to resource and budget restraints, a laptop host was used
for the analysis system.

The system was configured to dual-boot Redhat Linux 7.3 and Windows XP.
It contained 256 MB of RAM, an internal 10/100 Ethernet NIC, modem (not
used during this project), 3.5 internal floppy drive, and CDRW drive.

During the investigation, frequent backups were made of the files
generated during the investigation. These backups were encrypted and
burned to CD-ROM.

The 20 GB disk was portioned as follows:

1.One 9.77 GB NTFS boot partition for Windows XP
2.One 102 MB boot partition, formatted for the ext2 file system
3.One 17.58 GB logical root (/) partition
4.One 510 MB ext2 /swap partition

Rather than keep duplicate copies of the disk image files on both the
Linux and XP partitions, read-only access was established from one
operating system to the other’s partition.

On xp, the ext2fs (3) file system support was installed to provide read-
only access from XP to the Linux ext2 file system partitions. As
illustrated below, from an XP console, the ext2fs batch file, followed
by the mount command, establishes a mount point to the ext2 partitions.

The ext2fs batch file initializes the ext2 file system driver for
Windows, and the mount command makes an ext2 file system accessible to
Windows as a drive letter. In this case, the mount command is
instructed to associate a drive letter “mount point” labeled l:\ with
the third partition on the local hard drive 0, which is actually the
ext2 root (/) partition on this drive. From this point, the ext2 root
partition l: on this disk is available to the Windows operating system
as the l: drive.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 60

The ext2fs.bat file (shown below) is used to install and initialize the
file system driver for XP. Since the installation need only be run
once, the rundll32.exe line is commented out, leaving only the net
start line to actually be called from this batch file.

Now Windows and its applications have line-of-sight, read-only access
to the contents of the ext2 partitions.

Establishing read-only access for Linux to the ntfs partition is simply
a matter of mounting that partition, /dev/hda1 in this case.

mount /dev/hda1 /mnt/ntfs -r -o ro,noatime,nodev,noexec

mount
/dev/hda3 on / type ext2 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda2 on /boot type ext2 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
/dev/hda1 on /mnt/ntfs type ntfs (ro,noexec,nodev,noatime)

Using a laptop allowed for analysis work to be performed during non-
office hours and at locations other than the office – something
normally a violation of accepted forensic practices. An analyst must

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 61

maintain the integrity of the chain-of-evidence that includes, not only
the original material (in this case the physical disks), but also for
the working copies on which the actually analysis is performed. Moving
the material being analyzed on an easy to lose/steal laptop computer is
simply unacceptable.

When a forensic investigation begins, you do not know what you might
find, regardless of your expectations or the initial details of the
situation. Your task may simply be to recover a file accidentally
deleted by a trusted employee, only to find that the system contains
confidential or illegal material the employee has no knowledge of. Any
benign situation has the possibility of unexpectedly becoming a
criminal matter. So, every investigation must be performed from the
start as if it was a serious criminal matter that would be fully
scrutinized in a court of law, or worse, the court of public opinion.

In this case, that principle was disregarded, since the outcome was
already known. Still, forensic analysis best practices needed to be
acknowledged and followed.

So the following conditions were observed.

1. Access control – With no exceptions, only the analyst was allowed
physical or logical access to the physical and logical components
of the investigation.

2. Encryption – All of the material (files) being analyzed were kept
encrypted when not actually being analyzed. The encryption was
performed using gpg (25) with a 2048-bit key created specifically
for this project. At the end of each session, the unencrypted
material was destructively overwritten with the wipe (26) utility.

3. Physical security – when not in use, all components were kept in
a locked desk drawer, in a locked office.

4. Encrypted copies of the material being analyzed, working notes,
and the findings were backed up to removable media (Iomega (27) 100
MB zip) and CD-ROM.

The characteristics of each of the disk image files were then
documented.

Notice that the read-only bit is set for each disk image file. This is
another layer in the defense in depth intended to protect the integrity
of the material being analyzed and any subsequent findings.

ls *.dd –o
-r-------- 1 root 1055899648 Mar 6 14:44 disk1.dd
-r-------- 1 root 2148302848 Mar 6 10:26 disk2.2.dd
-r-------- 1 root 4934656 Mar 6 15:29 disk2.dd

md5 *.dd
00d284e2b73ccdbd8313a57bd1e2fafb disk1.dd
01ce1e7a82928a960133331f68f4fff3 disk2.2.dd
2499a815c217055468da0941d823de6e disk2.dd

Because the disk image files are just that, identical copies of
functional disks supporting functional file systems, the sfdisk tool
can be used to interrogate an image file as if it were a physical disk.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 62

Below, sfdisk is used with the –l (list all discoverable disks and
their partition tables) parameter to document each image. These reports
are also compared to sfdisk’s reports of the original disks.

Of particular interest to the analyst, the partition table can help
identify each logical volume, along with any unallocated portions of
the disk. This maps out the file systems to be analyzed and the “raw”
portions of the disk that need to be analyzed for material that may not
be associated with a file system. This is done by correlating the
aggregate block sizes with the total disk size and noting any
unallocated gaps between partitions.

The reports for the Disk2 are unusual, but fully accounted for by the
fact these image files are actually the two slices of a single disk.

Describe each tool used to examine the system and why that tool was
used.

There were many tools used in this analysis, each selected for the
quality and usability of its results. Usability generally refers to how
well the output presents its findings, or lends itself to further
processing with other tools. For example, grep is very useable because
its output can easily be passed to other text tools for additional
processing or formatting. Usability also means how well the tool can be
used from a command line or scripted.

While there are some very useful GUI (Graphical User Interface) tools
available, the fluid nature of the analysis process and the necessity
for granular control of the environment calls for more flexibility of
than a GUI generally permits.

A specific exception to this is Brian Carrier’s Autopsy (50). Unlike many
GUI/browser-based tools that generate lots of data and reports, Autopsy
enhances the analyst’s granular access to data, while providing results
presented in a clear and accurate context.

Show how your tools did not modify the evidence when performing your
examination.

For the most part, confidence in the integrity of the tools used in
this investigation was based on the observations and testing of others.

However, each tool was acquired from a trusted source and the md5 hash
of each was validated from a second trusted source. In addition, many
of these tools are available for both the Windows and Linux operating
systems. When possible, the findings of a tool in one operating system
is compared and validated using the same tool in the other operating
system (using the same data of course).

At several points during the analysis, the MAC times and md5 hash
values of the suspect disk image files were compared to the original
values to verify that the material being analyzed had not been altered
by the analysis process.

1.Examine file system for modification to operating system software or
configuration

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 63

To begin analysis of the file system on Disk1, the file (16) utility was
used to help identify the file types. Trinux had reported finding
specific file systems, but those reports need to be confirmed by a
second tool: in this case, the file tool.

The report produced by the file program below illustrates that disk1 is
recognized to have a valid boot sector. Disk2 also contains a valid
boot sector, though its logical file system will be unusable due to
splitting of disk2 into two parts. Because Disk2.2 is the second part
of a partitioned file system and does not contain header information
such as a boot sector, it is reported to be data; accessible but unable
to be classified.

file *.dd

disk1.dd: x86 boot sector
disk2.dd: x86 boot sector, FAT (32 bit)
disk2.2.dd: data

The fsstat (42) (file system statistics) tool performed a deeper
interrogation of each disk image. As noted below, disk1.dd contains a
FAT16 file system. This report provides a few clues worth noting. The
OEM is MSWIN4.0 implying Win NT 4.0. The volume ID is another piece of
correlating information that identifies this unique instance of the
file system. The geometry reported in the CONTENT-DATA INFORMATION
section helps map out the disk image before digging into it with a
sector editor.

fsstat -f fat32 disk2.dd

FILE SYSTEM INFORMATION
--
File System Type: FAT
OEM: MSWIN4.1
Volume ID: 402135417
Volume Label: WIN-95
File System Type: FAT32

META-DATA INFORMATION
--
Range: 2 - 134424578
Root Directory: 2

CONTENT-DATA INFORMATION
--
Sector Size: 512
Cluster Size: 4096
Sector of First Cluster: 16458
Total Sector Range: 0 - 8417995
FAT 0 Range: 32 - 8244
FAT 1 Range: 8245 - 16457
Data Area Sector Range: 16458 – 8417995

Since Disk2 had been sliced into two pieces, the second half was an
incomplete portion of a file system, and not usable by file system
utilities, since most of the file system management data is at its

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 64

beginning. The first portion of the disk contained that management
data, which could be successfully queried, but appears to be corrupted.

In the illustration of fsstat below, you can see that several items
seem to expect text data, but actually contain binary material.
However, even though the logical file system may be damaged and
inaccessible, the raw (disassociate) data it contains is assessable
with tools like strings, grep, and hexdump.

fsstat -f fat16 disk2.2.dd
FILE SYSTEM INFORMATION
--
File System Type: FAT
OEM: ?䏀|??P
Volume ID: 1962949760
Volume Label: ????u???
File System Type (super block): µ?L????

META-DATA INFORMATION
--
Range: 2 - 3355604354
Root Directory: 9

Next, fsstat reports that an ntfs file system has been identified on
this partition. An interesting option that was not mentioned earlier is
to include the parameter show_sys_files=TRUE to the option list in the
mount program. This option reveals the many files in the C:\root, and
elsewhere that are normally locked by the Win32 operating system and
unavailable to an operator while Win32 is running.

fsstat -f ntfs disk1.dd

FILE SYSTEM INFORMATION
--
File System Type: NTFS
Volume Serial Number: EC6721A2EC6721A2
Version: Windows NT

META-DATA INFORMATION
--
Range: 0 - 20492
Root Directory: 5

CONTENT-DATA INFORMATION
--
Sector Size: 512
Cluster Size: 512
Total Cluster Range: 0 - 2062303

Attribute Defs (MFT Entry: 4)
$STANDARD_INFORMATION: 16
$ATTRIBUTE_LIST: 32
$FILE_NAME: 48
$VOLUME_VERSION: 64
$SECURITY_DESCRIPTOR: 80
$VOLUME_NAME: 96

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 65

$VOLUME_INFORMATION: 112
$DATA: 128
$INDEX_ROOT: 144
$INDEX_ALLOCATION: 160
$BITMAP: 176
$SYMBOLIC_LINK: 192
$EA_INFORMATION: 208
$EA: 224

Before mounting the disk images and accessing their contents through
their file systems, the first sector (512 bytes) was displayed. Both
seem to support the previous findings. The hexdump tool compliments dd
when it comes to working with binary files. Hexdump provides a granular
view of the file, helping to identify the specific byte(s) you want to
parse out with dd.

hexdump –C -n 512 disk2.dd

00000000 eb 5b 90 4e 54 46 53 20 20 20 20 00 02 01 00 00 |.[.NTFS |
00000010 00 00 00 00 00 f8 00 00 3f 00 20 00 3f 00 00 00 |........?. .?...|
00000020 00 00 00 00 80 00 80 00 e0 77 1f 00 00 00 00 00 |.........w......|
00000030 d9 1b 02 00 00 00 00 00 f0 bb 0f 00 00 00 00 00 |................|
00000040 02 00 00 00 08 00 00 00 a2 21 67 ec 36 67 ec 84 |.........!g.6g..|

Now that the disk image files have been documented and many of their
attributes (size, file system type) are now known, the image files can
be mounted for direct review.

In the example below, two directories (/mnt/vfat and /mnt/ntfs) were
first created to act as the mount points for these disk images.

Because disk2 is an ntfs file system, the show_sys_files=true option is
included in its mounting. This will make visible many otherwise hidden
files used by the OS to manage the file system.

The third mount command, having no parameters, report on all currently
mounted mount-points. This is used to confirm that the intended
settings are in fact in place and operating. This is to make sure that
the intended read-only access is in force before proceeding.

mount disk1.dd /mnt/vfat t vfat -r –o ro,loop,noatime,noexec,nodev
mount disk2.dd /mnt/ntfs t ntfs -r -o ro,loop,noatime,noexec,nodev,show_sys_files=true

mount
/dev/hda3 on / type ext2 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda2 on /boot type ext2 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
/dev/hda1 on /mnt/ntfs type ntfs (ro,noexec,nodev,noatime)
/root/morgue/disk1.dd on /mnt/vfat type vfat (ro,noexec,nodev,noatime,loop=/dev/loop0)
/root/morgue/disk2.dd on /mnt/ntfs type ntfs
(ro,noexec,nodev,noatime,loop=/dev/loop0,show_sys_files=true)

Later, from XP, disk1.dd file was examined using Hex Workshop (6) to
inspect the disk image file directly. This confirmed the findings of
the file utility.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 66

In determining the OS version, the initial observations clearly
indicated Windows NT. Remember that earlier, the Linux mount tool
identified the file systems as fat and NTFS, indicating NT or higher as
the OS.

•The file systems were fat on the master disk and NTFS on the slave.
•The master disk included the NTLDR, boot.ini, and pagefile.sys

files, along with a WINNT folder. All of the expected files and
folder for the NT OS were present on disk1, indicating that it
was, in fact, an NT boot and system disk (it contained the OS and
the partition table, indicating it was the active partition).

In order to inspect the file system contents on Disk1, the analysis
host was booted into Linux so that it could mounted using a loopback
device.

The parameters used when mounting a partition are critical. An analyst
must adhere to the forensics prime directive not to alter the subject
material in any way or degree. However, the Heisenberg Uncertainty
Principle can loosely be applied here. Paraphrased, the Heisenberg
Uncertainty Principal states, “The simple action of observing the
subject will, in fact, alter the subject.” In the case of digital
forensics, simply querying if a file exists can alter the files
metadata such as the time last accessed stamp. In this case, the atime
(last access time) can be critical in building a timeline of activity
on the suspect system. Considering that this is a Windows system, there
is always the chance that the OS will “do us the favor” of upgrading or
refreshing file components without first notifying us. An example would
be Windows feather that automatically replaces certain missing OS
files. To observe this, rename c:\winnt\system32\user.exe to
user.exe.old. An immediate dir will show that the file has been renamed
as expected. However, after a few moments, another dir will report that
the user.exe file has reappeared.

So to protect the original state of the material being imaged or
analyzed, it is mounted with implicit controls to prevent any
alteration to the file system.
The parameters used in this example are interpreted as:

1. -t ntfs informs mount of the type of file system to be mounted.
2. o is followed by a comma-delimited list of options.
3. ro is the read-only option, instructing the file system interface

to allow no changes to be made to the file system.
4. noatime instructs (redundantly) the file system interface to

allow no updating of the access time metadata associated with
each file in the partition. Since simply listing the existence of
a file can alter its date time last accessed meta-data.

5. loop the loop device is used to create a layer of abstraction
between hardware and software. In fact, this is so abstract that
there is no hardware. Any software that attempts to access this
loop device must do so as if it were an actual physical device,
while the device itself acts as if it were hardware.

6. nodev declares that no code libraries stored on this mount point
are to be used by programs in execution.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 67

7. noexec is the last option in this example and instructs the file
system interface to allow no executables stored on this mount
point to be executed for any reason.

8. show_sys_files=yes will display many system files that are not
usually visible, and that are used by the OS to manage the file
system.

At this point, the investigation begins to shift from the collection of
potential evidentiary material the analytical sifting of this material
in search of clues and evidence. Since this system being analyzed is
Win32, throughout the searching tasks information from The Riddler’s
paper Microsoft’s Really Hidden Files: A New Look at Forensics (46) is
used to help locate files of interest.

With the logical file system now accessible, an inventory of its files
can be created. This list will not include any deleted files or file
fragments, only the files considered viable by the file system. This
file.inventory file will serve several purposes.

First this file inventory will document each file and its attributes as
they were went when received for analysis.

Second, rather than search through the raw file system itself, which
requires it be mounted, the grep tool can be used to search through
this one file much faster. One disadvantage is the disk space required
to duplicate this information. While the file inventory may not create
a problem, keeping a copy of the strings output, or the unallocated
sectors can more then double the size of the original disk image file.
Then space is a problem; just fall back on a full stringing or greping
each time it is needed.

Finally, the atime stamps that will be included in this report can be
used to collaborate the timeline that will be generated later with
other tools.

The following ls command is used to build the file.inventory file.

The first parameter instructs ls to create a detailed, one-file-per-
line list that omits the group owner of each file, making each line a
bit shorter.

The –-full-time parameter instructs ls to include the entire timestamp
of each file, rather than just a simple date. The –-time=atime
parameter specifies the access time, rather than the modified or
changed timestamps, is to be displayed in the reported.

Finally, the –R parameter tells ls to process each file in each folder
recursively. This is accomplished by drilling down through the entire
directory structure beginning at the current directory point, which, in
this case, is the logical volume’s root. In other words, report on
every file in the file system.

To complete the process, the output of the ls command is redirected
from the screen to the disk1.file.inventory file.

ls –o –-full-time –-time=atime –R > disk1.file.inventory

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 68

wc disk1.file.inventory
 48349 351465 3656521 disk1.file.inventory

The ls command has identified and documented 48,349 individual files.
Below the WINNT\repair folders illustrate the detail of information
recorded about each file.

./WINNT/repair:
total 324
-r-------- 1 root 438 1999-07-19 09:56:12 -0400 autoexec.nt
-r-------- 1 root 2510 1999-07-19 09:56:12 -0400 config.nt
-r-------- 1 root 18283 1999-06-25 16:44:03 -0400 default._
-r-------- 1 root 16606 1999-06-25 16:44:08 -0400 ntuser.da_
-r-------- 1 root 3336 1999-06-25 16:44:05 -0400 sam._
-r-------- 1 root 6991 1999-06-25 16:44:04 -0400 security._
-r-------- 1 root 50726 2001-09-22 12:42:14 -0400 setup.log
-r-------- 1 root 130453 1999-06-25 13:56:42 -0400 software._
-r-------- 1 root 93036 1999-06-25 16:43:59 -0400 system._

The file inventory is now used to identify files of potential interest.
The contents of the filehunt file are cat’ed (concatenated, displayed)
to the screen, showing the filename fragments that will be fed to grep.
Grep will search through the inventory file, noting every instance of a
filename that matches these fragments.

Rather than manually browse through the entire file system, grep is
used to examine the name of each file in the file system, creating a
list of the files that are of the most interest.

Note that for convenience, the disk1.file.inventory was edited (search
and replace) to remove the “.000000000” string, which was at the end of
each timestamp. This simply shortened the lines for easier viewing.

The strings in filehunt are formatted specifically as input for the
grep tool. The “\.” Portion is interpreted as a literal period (.).
Normally, the period can have special meaning as a meta character (a
character that implies information about information), but by preceding
the period with a backslash, grep will clearly understand the the
period is to be treated as part of the literal string rather than a
meta-character.

The dollar sign ($) at the end of each string signifies the string
being searched for must occur at the end of a logical line rather than
the beginning or end of the line. In other words, \.pst$ says find all
lines that end with the string literal .pst.

Note that not all lines are identical in regular expression syntax.

• The .tgz string does not require that it be at the very end of the
line, this allows files like file.tgz.gz to be identified.

• The sam$ string does not require the preceding period as the
others do,

• And the passwd$ and shadow$ files can be preceded by anything.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 69

Finally, the wc tools is used to provide a total. Often, the output of
any number of piped programs is run through wc at the end simply to
give a numeric indication of the aggregate results; was anything found,
and if so, how many?

Here, grep identifies 4551 instances of one of these strings being
matched in the file list.

C:\practical>cat filehunt
\.pst$
\.mbx$
\.dbx$
\.zip$
\.tar$
\.tgz
\.pwl$
\.pgp$
\.gpg$
\.chk$
sam$
\.bak$
\.tmp$
\.log$
\.mdb$
\.xls$
\.doc$
passwd$
shadow$
\\Windows\\sysbckup
C:\practical>grep -i -f filehunt disk1.file.inventory > files.of.interest

C:\practical>wc files.of.interest
 4984 39892 403715 files.of.interest

At this point, the contents of the /mnt/disk1 loopback mount-point are
copied to a regular folder on this ext2 drive. The copy will be
accessible to XP through the ext2fs driver for analysis performed with
Win32 tools.

A forensic analysis is continually presented with much more data than
can manually be reviewed. One of the goals throughout this
investigation was to identify not just the objects of interest such as
log files or password files, but to also cull out those hits that are
most likely to be relevant to the analysis.

For example, 100 log files might be found, but only one may be
pertinent. The trick is to put all of the easy to gather information
(the lists of files, lists of strings, or lists of processes) into
context so that items with the most potential return on the investment
of time and effort can be identified early in the process.

While this is much more efficient than searching through a file system
interface, there are still over 4,000 hits to review. But this can be
pruned back more, eliminating the background noise.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 70

The distribution of file types may point to some specific files that
warrant attention first. So using the grep tool, now with its –c for
count parameter, I created a simple breakdown of the type of files just
identified.

By greping with the –c (count) parameter, a quick-and-dirty
distribution of the type of files of interest can be built. Then, after
a quick review of these findings, the .pst (Outlook email storage)
files appear to be a good place to focus.

C:\ > grep –i –c “\.pst$” files.of.interest
2

C:\ > grep –i –c “\.zip$” files.of.interest
20

C:\ > grep –i –c “sam$” files.of.interest
10

C:\ > grep –i –c “\.bak$” files.of.interest
5

C:\ > grep –i –c “\.tmp$” files.of.interest
4448

C:\ > grep –i –c “\.log$” files.of.interest
36

C:\ > grep –i –c “\.mdb$” files.of.interest
2

C:\ > grep –i –c “\.xls$” files.of.interest
12

C:\ > grep –i –c “\.doc$” files.of.interest
16

This helps to focus on the files that are more likely to be of forensic
value. There are likely others, not to mention those files and file
fragments that reside in unallocated sectors, but this provides a
practical place to start.

Using grep with the –B 5 argument, the 5 lines immediately locate the
archive.pst file – the first of two .pst files. The –B 5 argument
instructs grep to additionally display the 5 lines just prior to each
“hit.” By manipulating the –B and –A (lines after the hit) the line can
be put into context; specifically, the folder in which it resides.

According to the timeline shown later in this paper, 2001-12-03 14:47
is when the system was shutdown for the last time.

C:\practical>grep -i "\.pst" disk1.file.inventory
-r-------- 1 root 271360 2001-12-03 14:46:35 -0500 outlook.pst
-r-------- 1 root 655360 2001-08-15 15:40:13 -0400 archive.pst

The outlook.pst requires more than 5 previous lines to discover its
folder. After some trial and error, piping a large (overkill) number of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 71

–B lines into the less utility made it easy to make grep’s results
useful.

C:\PRACTICAL> grep –I outlook.pst -B 200
l:\root\practical\morgue\disk1.file.inventory | less

Actually, using the “less” program and its internal search feature,
these file names could have been found quicker. An effective analyst
has a through knowledge of the available toolset and makes imaginative
use of the tools both alone and in combination. This is the tinker-toy
principle. Any kid can play with those colored sticks and round wheels
with all the holes, but it takes a real engineer to combine all those
little, fixed-function pieces into complex, yet stable, systems.

The next step is to open each .pst in the Outlook client for direct
review. First, each .pst file must be copied out of the read-only
loopback device onto a read-write file system, so that the Outlook
client program will accept the file. Each .pst is also hashed with md5
to help demonstrate the integrity of the copy being analyzed.

At that point, the .pst files can be opened using a Microsoft Outlook
client program, which will act as a front-end to the proprietary file
format of the .pst files.

Here we see begin to see the contents of this .pst email archive file.
This information helps to identify the people involved with this
system, their behavior in using this system, and the names of others
who may provide additional evidence or insight.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 72

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 73

Below the sent items folder in the outlook.pst file can be accessed.

Note that according to the time line, these messages are dated as being
sent just before the system was shutdown for the last time.

This Outlook archive.pst file reported that it contained no Deleted
email items. However, a new (new to me) technique described by HTCIA
International in their September 2002 issue (29) raises the possibility
that items that have been deleted from the Deleted Items folder can be
recovered, even after the Deleted Items folder has been emptied.

When first viewing the Deleted Items
folder, it contained no items.

In fact, each folder in this archive
was examined. There were only a few
emails in the inbox and a few
calendar events.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 74

The first step is to open the .pst
file in a hex editor so that you have
byte level editing capabilities. Most
editors automatically “handle” non-
printable characters on the
assumption that the file content
should be made as digestible as
reasonable. A hex editor makes no
such assumption, displaying the
hexadecimal value of each byte, its
printable character, and a dot (.)
for non-printable characters.

Here you can see the original hex
content beginning at sector offset
0000:0000

Using a hex editor, change bytes 7-13
to ASCII spaces (0x20) and save the
changes. In this example, the hex
values that were changed are shown in
red.

This small change effectively
corrupts the .pst as far as the
proprietary file format is concerned.
While no damage is done to the email
or other items within this archive,
the structure itself is damaged as
far as the client program
(outlook.exe) is concerned, though
easily “fixed” to Outlook’s
satisfaction.

In fact, the next step is to use the
scanpst.exe tool to repair the
artificially corrupted .pst file.

Once repaired, the client program
will happily read and use the archive
file just as intended.

However, the repair process that
scanpst.exe performs assumes there
has been significant damage to the
file and its internal format. So
rather than simply correct the
alteration we made above, scanpst.exe
assumes that “deleted” items were
deleted as part of the corrupting
event, so it restores all deleted
items it can.

This also illustrates the technique
of using client tools and application
management tools for forensic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 75

purposes rather than esoteric attack
techniques in order to recover or
revile potential evidence.

The repaired .pst is then opened for
review, and the previously empty
Deleted Items folder now contains a
fully available message along with
its attachment.

This example may seem contrived, but
it is not. People really do protect
things by saying, “don’t show anyone
else.”

Another file of interest is the Dr. Watson dump log.

Below several lines that appear suspicious have been pulled from the
Dr. Watson dump log on the possibility they might indicate the presence
of malware or attack. Malware or attack is important because, if
successful, the inappropriate activity could actually have occurred,
though performed by an unauthorized intruder rather than an authorized
staff member. The goal of analysis is to discover what actually
happened, which is a much broader question than simply did it happen.

Regardless of any indications of malware, other useful information
found in this log includes the dates of the first and last events,
3/17/1999 through 8/14/2001 in this case, along with snapshot views of
the processes running on this system, user account names are correlated
with date and time stamps (placing a person at this system at specific
times).

Microsoft (R) Windows NT (TM00 DrWtsn32
Copyright (C) 1985-1996 Microsoft Corp. All rights
reserved.

Application exception occurred:
 App: outlook.dbg (pid=125)) Version 4.
 When: 3/17/1999 @ 16:25:41.126
 Exception number: c0000005 (access violation)

----> System Information <----

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 76

 Number of Processors: 1
 Processor Type: x86 Family 5 Model 2 Stepping 12
 Windows Version: 4.0
 Current Build: 1381

----> Task List <----
 0 Idle.exe
 2 System.exe
 20 smss.exe
 30 csrss.exe
 34 WINLOGON.exe
 40 SERVICES.exe
 43 LSASS.exe
 69 SPOOLSS.exe
 86 RPCSS.exe
 94 PSTORES.exe
 107 NDDEAGNT.exe
 57 explorer.exe
 113 FINDFAST.exe
 103 MSOFFICE.exe
 105 OSA.exe
 125 OUTLOOK.exe
 64 mapisp32.exe
 90 DRWTSN32.exe
 0 _Total.exe

The FINDFAST program is reported in operation. This feature of Windows
can create a database of files and their contents in order to allow the
operator to perform a quick search of the disk by filename or content.
Later in the investigation, these database files will be specifically
located and analyzed.

Also of interest are OUTLOOK.exe and MSOFFICE.exe because they are
common attack vectors of hacker exploits. Malicious scripts
(javascript, vbscript, wsh, java) can be embedded in emails and
documents and then automatically launched into operation when opened.
This is an example of the attack vector these two programs provide and
that attackers take advantage of.

Application exception occurred:
 App: (pid=231)
 When: 8/25/1999 @ 10:7:12.112
 Exception number: c0000005 (access violation)

----> System Information <----
 Number of Processors: 1
 Processor Type: x86 Family 5 Model 2 Stepping 12
 Windows Version: 4.0
 Current Build: 1381
 Service Pack: 4
 Current Type: Uniprocessor Free

----> Task List <----
 0 Idle.exe
 2 System.exe
 20 smss.exe
 30 CSRSS.exe
 34 WINLOGON.exe
 40 SERVICES.exe
 43 LSASS.exe
 71 SPOOLSS.exe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 77

 90 inojobsv.exe
 83 LogWatNT.exe
 96 RPCSS.exe
 104 NDDEAGNT.exe
 117 PSTORES.exe
 119 EXPLORER.exe
 141 systray.exe
 113 realplay.exe
 143 LOADWC.exe
 145 tsystray.exe
 147 realmon.exe
 152 FINDFAST.exe
 154 MSOFFICE.exe
 156 OSA.exe
 170 OUTLOOK.exe
 175 mapisp32.exe
 190 WINWORD.exe
 200 EXCEL.exe
 221 NTVDM.exe
 213 IEXPLORE.exe
 231 spinner.exe
 251 ssstars.scr.exe
 254 DRWTSN32.exe
 0 _Total.exe

----> Raw Stack Dump <----
0284f5f8 b4 23 e7 77 ee 00 99 00 - 80 00 00 00 00 00 00 00 .#.w............
0284f608 f2 03 95 02 00 00 00 00 - ad 02 00 00 01 00 00 00
0284f618 79 f7 84 02 80 00 00 00 - 5c 22 42 00 64 f6 84 02 y.......\"B.d...
0284f628 66 6f 42 00 4c f6 84 02 - 6c 27 e7 77 c0 8e 6b 00 foB.L...l'.w..k.
0284f638 80 00 00 00 00 00 00 00 - f2 03 95 02 01 00 00 00
0284f648 66 6f 42 00 00 00 00 00 - c7 43 41 00 ee 00 99 00 foB......CA.....
0284f658 80 00 00 00 00 00 00 00 - f2 03 95 02 95 f8 84 02
0284f668 46 6d 42 00 30 22 42 00 - 75 74 69 6c 2e 63 70 70 FmB.0"B.util.cpp
0284f678 23 36 37 09 2d 41 75 64 - 69 6f 41 64 41 6c 65 72 #67.-AudioAdAler
0284f688 74 0a 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00 t...............
0284f698 48 00 00 00 d8 53 f6 77 - 48 05 14 00 3a 07 db 00 H....S.wH...:...
0284f6a8 c4 04 14 00 8c 1c f1 77 - 00 00 14 00 08 20 3e 02 w..... >.
0284f6b8 3c 07 db 00 5d 4d e8 01 - 14 00 00 00 01 00 f8 1f <...]M..........

Of interest in this event, an access violation occurred to an unnamed
process (with process id 231). Processes running at the time included:

• Inojobsrv.exe
• Realplayer.exe
• Loadwc.exe
• MSWord.exe
• Outlook.exe
• MS Internet Explorer
• Ssstars.exe

Though the cause of many of these types of error events is bad data,
each of the .exe files listed here were located using the find command
to search through the loopback view of the file system. Once located,
their MAC times were checked with the stat tool to verify that they
were likely there at the time of this error event; all did. All three
MAC times were inspected to make sure they made logical sense and that
those time stamps were in sync with other files known to be in the same
application distribution.

Each of the programs was then scanned for viruses (again), parsed for
visual review using the strings tool. When possible, the md5 hash of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 78

each program file was compared to copies retrieved from original CDs.
Only a few could be validated this way, but none showed any signs of
tampering.

The last entry in the Dr. Watson log was dated 8/14/2001 @
12:45:47.515, providing more context to the evolving timeline.

Another area to look into is the pagefile.sys, Window’s swap file.

While a registry setting can be set to wipe (over write) the
pagefile.sys each time Windows is shut down, that setting is seldom
used, which makes the pagefile.sys swap file a potential gold mine of
possibly relevant information.

Below is a list of the strings of interest harvested from pagefile.sys.

LOGONSERVER=\\SERVER1
COMPUTERNAME=PC69
OS=Windows_NT
rvice Pack 4
ADPA Security Package
DPA
SicSSPCSecret
*-0369<?B
&33nop_$%
@8x8p
sword.
The passwo

The strings harvested from pagefile.sys are also a good source of
possible passwords. These strings were placed in a text file, cleaned
up, and later used as a wordlist for at least two brute force password-
cracking tool. In fact, this technique is best performed using the
entire strings output of the disk image, again both ASCII and Unicode.

C:\practical>sort pagefile.sys.strings > sorted

C:\practical>uniq sorted > uniq

C:\practical>wc *
 14217 22359 364745 pagefile.sys.strings
 14217 22359 364745 sorted
 6474 11585 224679 uniq
 34908 56303 954169 total

C:\practical >cut -b -10 uniq > wordlist

Thumbs image database files

Each disk image was searched for files named thumb*, hoping to locate
the thumbnail picture database files that Windows stores in directories
containing image files. These hidden thumbnail files are then used to
support the thumbnail view provided by Windows Explorer and other
similar programs. However, no thumbnail files were found.

The Windows SAM file

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 79

Even though the entire contents of the disk image is directly available
in this analysis environment, it could be helpful to know the logical
local administrator password, or other passwords that might provide
hints to other passwords. Along with the fact that most user passwords
are trivial to crack is the fact that people tend to use the same or
similar password across several authentication systems. So it is likely
that any passwords that can be discovered will open the way to other
password-protected environments.

Note that the guest account has no password. While this is not an
intrusion or attack, identifying a well-known attack vector is
noteworthy and could become a critical clue, if actual signs of
intrusion are discovered.

To do this, the samdump (45) program is fed the raw SAM file and it
produces the hash values for each account in that SAM file, in this
example, samdump's output is piped to a file which will be fed into
John-the-ripper (44). These hash values are generated with the algorithms
in Microsoft's NTLM (NT LAN Manager) authentication system that is
native to Windows NT/2k/xp.

C:\PRACTICAL>samdump SAM > sam.hash
SAMDump 1.04. Created by Dmitry Andrianov

C:\PRACTICAL>cat sam.hash
Administrator:500:31D6CFE0D16AE931B73C59D7E0C089C0:
00000000000000000000000000000
000:Built-in account for administering the computer/domain::
Guest:501:NO PASSWORD*********************:NO
PASSWORD*********************:Built
-in account for guest access to the computer/domain::

With the NTLM (often referred to as LANMAN) hash values acquired, the
disk-imaging host (which has been idle since harvesting the original
disk image) is given the task of brute force password cracking these
hashes using john-the-ripper, a popular and powerful password-auditing
tool.

John-the-ripper is given a wordlist file, consisting of the strings to
try as a password. In this case, there are 1,402,823 words. This
wordlist was created earlier by concatenating the strings output of the
disk image to a generic dictionary word list. The resulting file was
then sorted and duplicate lines were removed. Before using a list of
all strings pulled from the image file, files that would more contain
the password in clear-text was used for a much quicker brute-force
cracking session. Those files included pagefile.sys, everything from
the temp directory, and everything from the recycle bin folders.

After the wordlist has been exhausted, john-the-ripper was launched in
its Incremental Mode. As the documentation distributed with john-the-
ripper states,

“This [Incremental mode] is the most powerful cracking
mode, it can try all possible character combinations
as passwords. However, it is assumed that cracking
with this mode will never terminate because of the
number of combinations being too large (actually, it

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 80

will terminate if you set a low password length limit,
or make it use a smaller character set), and you'll
have to interrupt it earlier.”

wc bfwordlist.txt
1402823 1481730 14913986 bfwordlist.txt

./john -wordfile:bfwordlist.txt sam.hash

Loaded 2 passwords with no different salts (NT LM DES [24/32 4K])
guesses: 0 time: 0:00:00:03 21% c/s: 130944 trying: CETERIS - CETUC
guesses: 0 time: 0:00:00:14 100% c/s: 149899 trying: ZZVOLUM – ZZZZZZZ

./john I:Lanman sam.hash
 Loaded 2 passwords with no different salts (NT LM DES [24/32 4K])

guesses: 0 time: 0:01:01:14 c/s 68131 trying: LMINB07 – LCCUMY9
guesses: 0 time: 4:02:43:50 c/s 91814 trying: LPWVBDT – ZLHGLBW
guesses: 0 time: 5:21:48:11 c/s 111045 trying: HJ0PW7U – EJ0PW7U
Session aborted

./john status
guesses: 0 time: 5:21:48:12 c/s 111045

After 5 days (432000) and 21 hours (75600) and 48 minutes (2880) of
password cracking at a rate of 111,045 passwords attempts per second,
john-the-ripper had tried over 56 billion possible passwords without
finding the correct one.

 (432000 + 75600 + 2880) * 111,045 = 56,686,251,600

As the search for evidence continues, in this case with nothing of
obvious interest, it is important to understand that evidence does not
always consist of a single glaring item. Evidence can also consist of
the combination of several seemingly unrelated items, the order or
timing of normal items, and the absence of items. Not having found that
glaring smoking gun does not indicate anything, until all the relevant
data is gathered and put into an objective context.

Verify the integrity of the OS binaries

To verify that the OS binaries (Window NT 4.0) had not been altered or
replaced with malicious versions, the md5 hash values of each binaries
file (.exe and .dll) in the WINNT\SYSTEM32 folder was compared to the
known good hash values from a system freshly installed from the
original CDs.

The first round showed that none of the hash values matched. After
installing the first service pack for NT 4.0, many did. Installing the
first service pack to MSIE 5.x created a few more matches. It had not
been expected that all files could be validated this way due to the
large number of patches issued by Microsoft and the haphazard way/order
they could have been applied – the permutations made finding a complete
match improbable. Still enough of the core operating system was
validated that a reasonable level of trust could be established that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 81

the integrity of the operating system being analyzed had not been
compromised (other than by sloppy programming).

Guarded trust was reasonable because NT/Win2k Trojan programs have only
recently appeared in public, and this system was in production until
2001, and not after.

Trojan files are “hacked” versions that replace the authentic copies
and then provide all of the expected services, while masking all clues
to the presence of an intruder and possible providing additional
services to an intruder. For example, a trojaned login.exe program will
function properly just as the user expects. But in addition, it may
also send the typed user names and passwords on to the intruder.

Scanning for viruses, spyware, adware, and backdoors

While the people who actually used this hard disk may not have done
anything inappropriate, it is possible that the system had been
successfully compromised without their knowledge. A virus/worm could
have infected the system, an intruder could have created a backdoor or
installed trojan software, or some type of spyware/adware could be
gathering information for any number of purposes.

Each of these possibilities is intended to function without making
their activity known. So, there are two types of inappropriate activity
we are looking for – one performed by a person who is authorized, and
the other, by a person who is not. This means there are two distinct
types of activity, each with different methods of obscuring, hiding, or
destroying the indications of that activity.

So, at this point, the system is “scanned” for signs of external
intrusion using the same types of methods employed in Incident
Handling.

It would damage the investigation’s integrity to “activate” the
operating system contained in the disk image and have it scan its own
files. Instead, the files are kept inert and are scanned remotely from
a trusted operating system. A convenient side effect is that, since the
files being scanned are on a read-only file system, a virus scanner
cannot alter any tainted files it might identify.

More specifically, while operating in the Linux operating system, the
disk image file is mounted and its contents are copied from the mount
point into a regular folder on the Linux system (ext2 file system in
this case). The computer is then booted into Windows, where the Linux
ext2 partition is mounted in read-only mode. At this point, the Windows
operating systems and the applications running under it have read-only
access to the logical files and their contents. This allows the Windows
based malware scanners to interrogate the files from the disk image
(again without being able to alter them).

An odd problem occurred while scanning for computer viruses. Each virus
scanner used reported read errors soon after the scan began. The virus
scanners and their virus signature files were all current and
functioned properly when scanning other disks (removable and not). Both
virus scanners, Symantec (Symantec 59) and McAfee (McAfee 60) AVS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 82

(Anti-Virus Scanners) failed, but at different points during their
scans.

After some troubleshooting, what finally worked was while in Linux,
burn the Linux folder containing these files onto a new blank CD, then
switch to Windows and scan the CD for viruses and other malware.

Rather than launch the scans from the GUI interfaces, the command line
was used to pass several parameters directly to the scanners. Below is
an example of running Norton’s AntiVirus program in this way.

C:\PRACTICAL>navw32 D:\disk1.fs\ /B- /S+ /HEUR:3

Even though the files harvested from the disk image did not seem to
have any virus infection, the C:\Alert folder on the disk image
contained 102 “event data” files. These appear to have been generated
by the system’s antivirus, one file per event.

These event files were concatenated into a single file for review using
the strings, grep, and tail tools. This showed that there had been 50
separate incidents of virus infection identified by the local antivirus
software. The original dates for these files ranged from Oct 6, 1999 to
Mar 23, 2000.

C:\PRACTICAL>strings -a dat.files | grep -c "detected"
50

C:\PRACTICAL>strings -a dat.files | grep -c "Melissa"
50

C:\PRACTICAL>strings -a dat.files | grep "Melissa" | tail –n 1
Real-time on MyHost: The W97M/Melissa virus was detected in

C:\INOCULAN\VIRUS\SISTER PRAYER.DOC.
Machine: MyHost.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 83

User: ServerNT\joeuser,
Action: Canceled - Virus is in the Move Directory.

The process illustrated above was to search the entire group of log
files for what appeared in the first instance to be a keyword that
identified actual infection events and excluded normal housekeeping and
maintenance reports.

Seeing that the first event had to do with the Melissa virus, Melissa
was used as the keyword in the next search. In both, there were 50
lines that matched. By displaying the last line of the search results,
the details of the event are shown. This is also an example of chaining
tools together to produce granular results. The strings tool parses out
the ASCII encoded (-a) strings from the dat.files file, passing the
results to grep to filter out the lines that did not include the case
sensitive string “Melissa,” and finally, those results are passed to
the tail tool, which then displays on-screen only the last line (-n 1)
of the results.

By listing the files in this folder with the ls tool, sorted in reverse
order (-r) by date (-T) in a moderately detailed format (-o) the date
range is clearly shown. To verify this, the stat tool is run on these
same files to verify the MAC time stamps that ls is reporting.

C:>ls *.dat –tor
-r--r--r-- 1 user 328 Oct 6 1999 ev2.dat
-r--r--r-- 1 user 328 Oct 6 1999 ev1.dat
(Most lines omitted for readability)
-r--r--r-- 1 user 328 Mar 23 2000 ev108.dat
-r--r--r-- 1 user 328 Mar 23 2000 ev107.dat

2. Examine file system for back doors, check for setuid and setgid
files

The first task was to identify the user accounts. However, the account
metadata and file permissions in a Windows system (this is actually a
file system issue, rather than an operating system issue, but that
line, normally very clear in Linux, is very blurred in the Windows
world) are organized and managed very differently than in Linux.

In effect, the user account metadata is washed out when the file system
is viewed through Linux. That metadata is still present in the disk
image, but is not properly represented by Linux tool. This is not a
failure of the Linux environment; instead it reflects an inability to
translate one logical data structure to another. This is the basic
“fitting a square peg into a round hole” dilemma. Both make sense in
its own context, but the elements of one do not necessarily align with
the elements of the other.

From the information gathered below, correlating the MAC times of the
account folders with other files in the system implies the user account
owns a given file. This approach is fine when constructing an
approximation, but comparing them to the metadata in the actual file
system would validate these findings.

This can be accomplished by writing the disk image file (the byte-for-
byte representation of the suspect disk) to a clean hard disk that is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 84

then used to boot a test system. Booting with this disk will alter the
time stamps and log file contents all over the file system, not to
mention the registry, but it would create an environment where an
analyst could query the file system for owner, group, permission, and
restriction information.

ls –to
total 0
dr-x------ 1 root 4096 Mar 20 2000 joeuser
dr-x------ 1 root 4096 Jun 25 1999 Default User
dr-x------ 1 root 4096 Feb 25 1999 Administrator
dr-x------ 1 root 0 Feb 25 1999 All Users

ls RECYCLER/ -tro --time=ctime
total 0
dr-x------ 1 root 45056 Mar 1 1999 S-1-5-21-72424920-1370634877-1703228666-1254
dr-x------ 1 root 4096 Mar 1 1999 S-1-5-21-72424920-1370634877-1703228666-500
dr-x------ 1 root 4096 Mar 20 2000 S-1-5-21-72424920-1370634877-1703228666-1148
dr-x------ 1 root 4096 Sep 29 2000 S-1-5-21-72424920-1370634877-1703228666-1385

stat *
 File: "S-1-5-21-72424920-1370634877-1703228666-1148"
 Size: 4096 Blocks: 0 IO Block: 4096 Directory
Device: 700h/1792d Inode: 7209 Links: 1
Access: (0500/dr-x------) Uid: (0/ root) Gid: (0/ root)
Access: Tue Nov 6 16:29:31 2001
Modify: Tue Nov 6 16:29:03 2001
Change: Mon Mar 20 16:19:26 2000

 File: "S-1-5-21-72424920-1370634877-1703228666-1254"
 Size: 45056 Blocks: 0 IO Block: 4096 Directory
Device: 700h/1792d Inode: 3825 Links: 1
Access: (0500/dr-x------) Uid: (0/ root) Gid: (0/ root)
Access: Sat Sep 22 12:24:03 2001
Modify: Wed Mar 15 15:16:52 2000
Change: Mon Mar 1 11:22:34 1999

 File: "S-1-5-21-72424920-1370634877-1703228666-1385"
 Size: 4096 Blocks: 0 IO Block: 4096 Directory
Device: 700h/1792d Inode: 16358 Links: 1
Access: (0500/dr-x------) Uid: (0/ root) Gid: (0/ root)
Access: Sat Sep 22 12:24:03 2001
Modify: Fri Sep 29 13:45:10 2000
Change: Fri Sep 29 13:40:38 2000

 File: "S-1-5-21-72424920-1370634877-1703228666-500"
 Size: 4096 Blocks: 0 IO Block: 4096 Directory
Device: 700h/1792d Inode: 3828 Links: 1
Access: (0500/dr-x------) Uid: (0/ root) Gid: (0/ root)
Access: Sat Sep 22 12:24:03 2001
Modify: Wed Jan 24 16:22:41 2001
Change: Mon Mar 1 11:38:03 1999

C:\practical>regdmp -h software HKEY_USERS > software.users

C:\practical>grep -i -f sids.txt -A 5 -B 5 software.users

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 85

(Only a few relevant lines are displayed below.)

ProfileImagePath = REG_EXPAND_SZ %SystemRoot%\Profiles\Default User
SCentralProfile = S-1-5-21-72424920-1370634877-1703228666-1148

ProfileImagePath = REG_EXPAND_SZ %SystemRoot%\Profiles\All Users
CentralProfile = S-1-5-21-72424920-1370634877-1703228666-1254
 S
ProfileImagePath = REG_EXPAND_SZ %SystemRoot%\Profiles\joeuser
CentralProfile = S-1-5-21-72424920-1370634877-1703228666-1385

ProfileImagePath = REG_EXPAND_SZ %SystemRoot%\Profiles\administrator
CentralProfile = S-1-5-21-72424920-1370634877-1703228666-500

From this information, we can assume that:

Administrator = S-1-5-21-72424920-1370634877-1703228666-500
All Users = S-1-5-21-72424920-1370634877-1703228666-1254
joeuser = S-1-5-21-72424920-1370634877-1703228666-1385
Default User = S-1-5-21-72424920-1370634877-1703228666-1148

These associations hinge on the fact that a Windows administrator is
always 500, while the user account numbers increment beginning at 1000.
By associating the account number with a name, and the date of each
account’s RECYCLER folder (container for deleted files) to the date of
the folders in the \Profiles folders (there is only one profile per
user account), and noting the incrementing pattern of account numbers
you begin to get a picture of whose deleted files are in while RECYCLER
folder. Even so, these assumptions could be incorrect, especially if
the system is actually used by several different accounts.

3.Examine file system for any sign of a sniffer program

To determine if a network sniffer was present on the system, specific
strings were looked for on the entire disk, not just the regular files.

In other steps, something unambiguous is searched for, such as a
keyword, items in log and history files, or files of a specific content
(pornographic pictures). In this case, no one characteristic will
clearly identify a sniffer program. Here we want to look for a program
file that has a specific purpose, in this case covertly capturing data
that an intruder can use to their advantage. But that type of
program/condition does not necessarily fit into any of the categories
(keywords or size) that can easily be searched for. If filenames alone
are searched, then a sniffer program that is renamed will not be
identified. Unless there is a clear-text string such as “PROMISCUOUS
MODE” or “sniffer”, string searching will not help.

It may be possible to develop a signature database that identifies
binary material unique to sniffer programs, such as the binary
representation of the code used to set a NIC into promiscuous mode.
However, there are legitimate reasons for putting a NIC into
promiscuous mode, and not all programs used to do this are in binary
format. Pretty soon, the return on investment (ROI) of time and effort
outweighs the possible benefit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 86

Instead a three-pronged approach would seem to be more effective. In
this approach are three vectors to walk through when looking for a type
of program.

1. what is it; its name
2. what it contains; strings/keywords
3. what it does: executes on the local system

The first step was to search the file inventory for the relevant
filenames or fragments. The same technique was used here as in many
other steps in this paper: a text file was created containing relevant
keywords, and the grep tool was used that list of strings to search the
file inventory and report any matches. This produced no findings, which
was not surprising. Rename a file from its easy-to-identify name to a
name that is unlikely to attract attention is a common stealth
technique.

The second tactic is to search the entire disk image for keywords that
indicate the existence of a sniffer. Since we are looking for a
sniffer, the keyword “promiscuous” is probably the most identifiable.
Network sniffers often rely on putting the network adapter into
promiscuous mode in order to observe and capture all network traffic.
Finding a network card to be in promiscuous mode is unusual, so any
such reference would an important clue.

Here, each file in the file system is checked for the “promiscuous”
keyword. However, each hit appears to be benign. This same process was
then performed on the disk image so that its unallocated sectors
(deleted files) were also checked.

While this is redundant (searching the disk image includes searching
the files already checked), splitting this task this way will quickly
identify an existing file of interest. If there were no findings in
this first scan, but the keyword “promiscuous” was found in the second
grep, it would indicate that the suspicious file had been deleted.

C:\PRACTICAL>grep -i --recursive "promiscuous" d:*

d:\WINNT/$NtServicePackUninstall$/oemnadma.inf: else-ifstr(i) $(ValueName) == "PromiscuousModeX"

d:\WINNT/$NtServicePackUninstall$/oemnadma.inf: {Promiscuou sModeX, $(NoTitle),
$(!REG_VT_DWORD), $(StatsFlag)})

d:\WINNT/$NtServicePackUninstall$/oemnadma.inf: DeleteRegValue $(KeyParameters) PromiscuousModeX

d:\WINNT/system32/OEMNADMA.INF: else-ifstr(i) $(ValueName) == "PromiscuousModeX"

d:\WINNT/system32/OEMNADMA.INF: {PromiscuousModeX, $(NoTitle), $(!REG_VT_DWORD),
$(StatsFlag)})

d:\WINNT/system32/OEMNADMA.INF: DeleteRegValue $(KeyParameters) PromiscuousModeX

Binary file d:\WINNT/system32/glossary.hlp matches

The third tactical prong is to investigate the points where an
executable would have the opportunity to automatically go into
execution. It is likely that a program would be automatically launched
from one of a few specific points. These include; the startup folder, a
registry key (such as RUNONCE), the autoexec.bat/nt file, or by a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 87

program that is itself automatically launched by a program at one of
these points.

So the batch files automatically launched at boot-up and the registry
keys that run programs will be checked. Any programs that are
automatically launched will be validated.

At the end of this investigation, no indications of a sniffer program
had been found.

4.Internet history file and other history files

Initially, the standard history files were examined, but, later in the
analysis when reviewing the strings harvested from the disk image, it
was discovered that a local proxy program had been installed and had
logged a large amount of activity relevant to this study. But for now,
the stock history files will be addressed.

Each time a user visits a web site, Windows operating system records
that event in a file named index.dat. Actually, there are usually
several index.dat files scattered throughout the disk, making it
necessary to search the entire file system to identify every instance.

There is always the possibility that a person might rename the file,
but that is unlikely. Most people are not familiar enough with their
Windows system to know the index.dat files exist or how they are used.
Those who are that familiar would simply switch to a browser that does
not covertly record and hide the person’s activities, but rather allows
the person to manage that information.

One trivial use for these records is to identify for the browser which
hyperlinks, the blue underscored text, should instead be colored as
purple underscored text as a visual indicator that the link has
recently been visited.

To perform this task, the file inventory was searched for every
instance of a file named index.dat. Once identified, the full path of
each file was recorded in a batch file.

C:\practical>grep -i "index\.dat" disk1.file.inventory
-r-------- 1 root 32768 2001-10-13 09:53:31 -0400 index.dat
-r-------- 1 root 49152 2001-10-13 09:53:32 -0400 index.dat
-r-------- 1 root 32768 2001-01-11 15:14:38 -0500 index.dat
-r-------- 1 root 32768 2001-01-11 15:14:38 -0500 index.dat
-r-------- 1 root 147456 2001-10-13 09:53:31 -0400 index.dat
-r-------- 1 root 147456 2001-10-13 09:53:31 -0400 index.dat
-r-------- 1 root 114688 2001-12-03 14:29:49 -0500 index.dat
-r-------- 1 root 2654208 2001-12-03 14:31:26 -0500 index.dat
-r-------- 1 root 49152 2001-11-27 08:07:59 -0500 index.dat
-r-------- 1 root 65536 2001-11-26 11:31:11 -0500 index.dat
-r-------- 1 root 49152 2001-11-27 08:07:59 -0500 index.dat
-r-------- 1 root 65536 2001-11-26 11:31:11 -0500 index.dat
-r-------- 1 root 65536 2001-12-03 09:48:45 -0500 index.dat
-r-------- 1 root 65536 2001-12-03 14:31:32 -0500 index.dat
-r-------- 1 root 65536 2001-12-03 14:31:32 -0500 index.dat
-r-------- 1 root 65536 2001-12-03 09:48:45 -0500 index.dat
-r-------- 1 root 1736704 2001-12-03 08:45:00 -0500 index.dat
-r-------- 1 root 1736704 2001-12-03 08:45:00 -0500 index.dat

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 88

There each line is expanded into a command to run the iehist.exe
program on each of these files and redirect its output to a single text
file named url.history.recover for further review.

iehist "l:\root\morgue\disk1\WINNT\Profiles\joeuser2\Cookies\index.dat" >> url.history.recover
iehist "l:\root\morgue\disk1\WINNT\Profiles\joeuser2\History\index.dat" >> url.history.recover
iehist

(lines omitted)

iehist "l:\root\morgue\disk2\Windows\History\History.IE5\MSHist012001090720010908\index.dat" >>
url.history.recover

This batch file was then launched. As it ran, iehist.exe reported the
number of URLs identified in each index.dat file. By running the wc
(word count) program on the url.history.recover report file, it was
determined that there were 8,108 URLs identified in this process.

C:\practical>recover.url.history.cmd

C:\practical>iehist "l:\root\morgue\disk1\WINNT\Profiles\joeuser2\Cookies\index.dat
Urls retrieved 6

C:\practical>iehist "l:\root\morgue\disk1\WINNT\Profiles\joeuser2\History\index.dat"
1>>url.history.recover
Urls retrieved 7

(lines omitted)

C:\practical>iehist
"l:\root\morgue\disk2\Windows\History\MSHist012000070620000707\index.dat"
1>>url.history.recover
Urls retrieved 3

C:\practical>iehist
"l:\root\morgue\disk2\Windows\History\History.IE5\MSHist012001090720010908\index.dat"
1>>url.history.recover
Urls retrieved 75

C:\practical>wc url.history.recover
 8108 17886 833146 url.history.recover

Of the 8,108 URLs recorded, 1,262 of them did not contain a date time
stamp. These were redirection records, which occur when a web page
automatically pointing the browser to another page that is to be
displayed in its place. The remaining 6847 contained date time stamps.

Since each record was dated, sorting the list by the date field
revealed the range of dates for these records. The date range was
1998/12/16 through 2001/12/3.

Having gathered a detailed listing of visited URLs, a search could be
performed to identify any keywords that would indicate directions for
further investigation. Several lists of keywords were individually fed
to grep, each focusing on a type of inappropriate activity, including;
online gambling, predatory/stalking/threatening, in-house proprietary
data/resources, and others. None identified anything of interest,
except the list of sexual related terms. While this step identified
only a relatively few number of “hits,” it established a type of
inappropriate activity, which could be investigated further. In fact,
in later steps, significant findings were discovered.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 89

cat grepterms
sex
slut
singles
adult

grep -i -f grepterms url.history.recover
URL|2001/10/31
17:47:45|http://dps1.travelocity.com/airgcobrand.ctl?smls=Y&Service=YHOE&.resform=YahooF
lightsR&.intl=us&trip_option=roundtrp&module=calendar&adult_pax_cnt=1&chld_pax_cnt=0&sen
ior_pax_cnt=0&dep_arp_cd%281%29=Louisville&arr_arp_cd%281%29=Nevada&dep_dt_mn_1=Nov&dep_
dt_dy_1=21&dep_tm_1=9%3a00am&dep_dt_mn_2=Nov&dep_dt_dy_2=23&dep_tm_2=5%3a00pm&cls_svc=YR
&pref_aln=all&aln_cd%281%29=&aln_cd%282%29=&aln_cd%283%29=&num_cnx=2&tm_range=+&SEQ=&dep
_arp_range%281%29=150&arr_arp_range%281%29=150
URL|2001/11/27 20:52:22|http://us.rmi.yahoo.com/js/postproc/singleSignon.64585.js
URL|2001/11/27 19:50:13|https://us.rmi.yahoo.com/js/postproc/singleSignon.64585.js
REDR|
|http://www.hit.stats4all.com/asp/hit.asp?sSiteName=superlaugh&nav=MSIE&version=400&scre
ensize=800*600&colors=16&sver=13&java=y&rf=bookmark&navlan=&plug=&sUrl=file%3A//C%3A%5CW
INDOWS%5CTEMP%5CSuperLaugh%2520Greetings%2520and%2520Fun%2520Pages.htm&sExtra=None

This was noteworthy, but not quite a smoking gun or body on the floor.

5.System Registry or /proc examination

Once the disk image of the NT boot volume has been mounted, the
complete contents of the winnt\system32\config folder are available for
inspection. The files are the system’s actually registry files. While
normally protected by the operating system, there is no such protection
when the operating system is not running and in full control of its
resources, such as the registry.

C:\practical>dir
 Volume in drive C has no label.
 Volume Serial Number is 6C4D-8BCC

 Directory of C:\practical

04/03/2003 03:16 PM <DIR> .
04/03/2003 03:16 PM <DIR> ..
04/01/2003 03:03 PM 393,216 AppEvent.Evt
04/01/2003 03:03 PM 86,016 default
04/01/2003 03:03 PM 1,024 default.LOG
04/01/2003 03:03 PM 81,920 default.sav
04/01/2003 03:03 PM 0 default.tmp.LOG
04/01/2003 03:03 PM 0 DEFAUL~1.LOG
04/01/2003 03:03 PM 0 deftnew.LOG
04/01/2003 03:03 PM 16,384 SAM
04/01/2003 03:03 PM 1,024 SAM.LOG
04/01/2003 03:03 PM 16,384 sam.sav
04/01/2003 03:03 PM 65,536 SecEvent.Evt
04/01/2003 03:03 PM 32,768 SECURITY
04/01/2003 03:03 PM 1,024 SECURITY.LOG
04/01/2003 03:03 PM 28,672 security.sav
04/01/2003 03:03 PM 0 softnew.LOG
04/01/2003 03:03 PM 6,193,152 software
04/01/2003 03:03 PM 1,024 software.LOG
04/01/2003 03:03 PM 4,382,720 software.sav
04/01/2003 03:03 PM 0 software.tmp.LOG
04/01/2003 03:03 PM 0 SOFTWA~1.LOG
04/01/2003 03:03 PM 393,216 SysEvent.Evt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 90

04/01/2003 03:03 PM 1,306,624 system
04/01/2003 03:03 PM 1,306,624 SYSTEM.ALT
04/01/2003 03:03 PM 1,024 system.LOG
04/01/2003 03:03 PM 1,228,800 system.sav
04/01/2003 03:03 PM 0 system.tmp.LOG
04/01/2003 03:03 PM 0 SYSTEM~1.LOG
04/01/2003 03:03 PM 0 systnew.LOG
04/01/2003 03:03 PM 77,824 userdiff
04/01/2003 03:03 PM 90,112 userdifr
04/01/2003 03:03 PM 1,024 userdifr.LOG
 31 File(s) 15,706,112 bytes
 2 Dir(s) 2,164,035,584 bytes free

The grep tool was then used to check these dump files for registry
entries of interest. Of the 36 reported, none appeared to be of any
interest.

6.Show start up files and processes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 91

The illustrations below are of the files and links that are activated
each time this Windows system is booted. The boot process is well
understood, so dissecting it is straightforward. In addition to the
system wide items, each account can activate programs and settings
unique to it.

The autoexec.bat script contains three lines having to do with the
sound blaster audio card. Note that the original host contained a sound
blaster audio card, so these lines would appear benign.

C:\AUTOEXEC.BAT
SET SOUND=C:\PROGRA~1\Creative\CTSND
SET MIDI=SYNTH:1 MAP:E
SET BLASTER=A220 I5 D1 H5 P330 T6

The config.sys file existed, but had no content.

C:\CONFIG.SYS
Empty

The joeuser account was the only one of interest. In its startup
folder, several items were automatically launched when this user logged
onto the system.

[/WINNT/Profiles/All Users/Start Menu/Programs/Startup] # ls -o
total 0
-r-------- 1 root 444 Aug 13 1999 InoculateIT Realtime Monitor.lnk
-r-------- 1 root 532 Mar 1 1999 Microsoft Find Fast.lnk
-r-------- 1 root 514 Feb 25 1999 Office Startup.lnk

[/WINNT/Profiles/joeuser/Recent]# ls -o
total 0
-r-------- 1 root 473 Nov 6 2001 2nd request.lnk
-r-------- 1 root 473 Nov 2 2001 # 2 request.lnk
-r-------- 1 root 471 Aug 14 2001 addresses.lnk
-r-------- 1 root 445 Nov 6 2001 address.lnk
-r-------- 1 root 471 Aug 15 2001 August 11.lnk
-r-------- 1 root 471 Aug 15 2001 August 13.lnk
-r-------- 1 root 435 Aug 15 2001 db1.lnk
-r-------- 1 root 452 Oct 19 2001 employee notification main office.lnk
-r-------- 1 root 452 Nov 6 2001 May 25.lnk
-r-------- 1 root 410 Oct 9 2001 New Microsoft Excel Worksheet.lnk
-r-------- 1 root 501 Sep 20 2001 nofind form letter.lnk
-r-------- 1 root 481 Nov 6 2001 nofind letter.lnk
-r-------- 1 root 317 Sep 20 2001 Rescued Document.lnk
-r-------- 1 root 467 Aug 14 2001 Vows etc.lnk
-r-------- 1 root 503 Aug 15 2001 wedding addresses.lnk

[/WINNT/Profiles/joeuser/Start Menu/Programs/Gnucleus]# ls -o
total 0S
-r-------- 1 root 455 Jul 27 2001 Downloads.lnk
-r-------- 1 root 459 Jul 26 2001 Gnucleus.lnk
-r-------- 1 root 463 Jul 26 2001 Uninstall.lnk

[/joeuser/Start Menu/Programs/Gnucleus]# cat Gnucleus.lnk
L?F? `|????`????`|???????O? ?:i?+00?#C:\?%1?*:~Program

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 92

FilesPROGRA~11?*<~Gnucleus2??*f& Gnucleus.exeU-T?!g?C:\Program
Files\Gnucleus\Gnucleus.exe5..\..\..\..\..\..\Program Files\Gnucleus\Gnucleus.exeC:\Program
Files\Gnucleus

[/joeuser/Start Menu/Programs/Gnucleus]# cat Downloads.lnk
L?F??D?????? }??`?A????O? ?:i?+00?#C:\?%1?*:~Program
FilesPROGRA~11?*<~Gnucleus!1?*<~DownloadsDOWNLO~1R-Q?!g?C:\Program
Files\Gnucleus\Downloads2..\..\..\..\..\..\Program Files\Gnucleus\DownloadsC:\Program
Files\Gnucleus

One item that jumps out is the Gnuclus program. Gnuclus is an open-
source “Gnutella” Client.

What is Gnutella?
Posted by adminAngelo Sotira on December 3, 2001 at 7:47 PM
Since its inception, the entire premise of the Internet centered
on file sharing. ... To put it simply, Gnutella puts the personal
interaction back into the Internet. When you run Gnutella
software and connect to the Gnutella Network, you bring with you
the information you wanted to make public. And you choose what
information to share. You can choose to share nothing; you can
choose to share one file, a directory, or your entire hard drive
(we do not recommend this option). (http://www.gnutella.com/)

Oddly, this was posted about 5 hours after this system was shutdown for
the last time, 2001-12-03 14:47.

This shows that the system was configured to share its disk space
across the Internet with other Gnutella clients. However, when looking
back at the list of processes in the Dr. Watson system dump files,
there is no indication that Gnuclus was active.

In addition, the dates of the .LNK files (July 2001) are near the end
of this system’s operational life. That implies that Gnuclus was not
operational for most of the system’s life, and that any vulnerabilities
Gnuclus may have created did not exist during the life of most of the
material being analyzed.

Timeline Analysis

The goal of a timeline is to illustrate a person’s activities; more
accurately, the use the system was put to over a period of time, to
prove or disprove a pattern or event.

This timeline was initially created with the fls tool. The bulk of that
initial report represented normal operations, which have been omitted.
Additional entries were gathered from different sources throughout this
analysis.

Timeline
The first dated item representing installation of the OS.
Sun Oct 13 1997 21:38:00 3 m.. -/-rwxrwxrwx 48 0 1028-128-1
/WINNT/WINFILE.INI

34 lines of files in the same folder omitted.

Mon Oct 14 1997 01:30:50 43539 m.. -/-rwxrwxrwx 48 0 409-128-4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 93

/WINNT/system32/oemnade2.inf (deleted-realloc)

1300 lines representing the end of the OS installation process.

Below is the first indication of the user accounts.
Mon Oct 14 1997 02:38:00 829 m.. -/-rwxrwxrwx 48 0 1835-128-5
/WINNT/Profiles/joeuser/Start Menu/Programs/Accessories/Hyperterminal/MCI Mail.ht
 945 m.. -/-rwxrwxrwx 48 0 4306-128-5
/RECYCLER/S-1-5-21-72424920-1370634877-1703228666-1254/DC844.HTM (deleted-realloc)
 829 m.. -/-rwxrwxrwx 48 0 1470-128-4
/WINNT/Profiles/Default User/Start Menu/Programs/Accessories/Hyperterminal/AT&T Mail.ht
 829 m.. -/-rwxrwxrwx 48 0 1769-128-5
/WINNT/Profiles/Administrator/Start
Menu/Programs/Accessories/Hyperterminal/CompuServe.ht
 829 m.. -/-rwxrwxrwx 48 0 4328-128-5
/RECYCLER/S-1-5-21-72424920-1370634877-1703228666-1254/DC847.HTM (deleted-realloc)
 945 m.. -/-rwxrwxrwx 48 0 1474-128-4

A full year of uneventful lines omitted.

The installation of NT service pack 4
Thu Oct 15 1998 12:04:00 166672 m.. -/-rwxrwxrwx 48 0 9138-128-4
/WINNT/$NtServicePackUninstall$/winsrv.dll

(Several lines omitted)

This represents the completion of installing NT SP4
Thu Oct 15 1998 17:15:12 102316 m.. -/-rwxrwxrwx 48 0 9315-128-4
/WINNT/$NtServicePackUninstall$/readme.sp4

On the following date, there was apparently a significant file system / disk
event. The highly protected system files used to manage the file system were
recreated.
Thu Feb 25 1999 02:56:46 0 mac -/-r-xr-xr-x 48 0 8-128-2 /$BadClus
 0 mac -/-r-xr-xr-x 48 0 9-128-1 /$Quota
 1055899648 mac -/-r-xr-xr-x 48 0 8-128-1
/Program Files/Microsoft Office/Office/Forms/CLAP.WMF:$Bad (deleted-realloc)
 4194304 mac -/-r-xr-xr-x 48 0 2-128-1 /$LogFile
 8192 mac -/-r-xr-xr-x 48 0 7-128-1 /$Boot
 0 mac -/-r-xr-xr-x 48 0 3-128-3 /$Volume
 1055899648 mac -/-r-xr-xr-x 48 0 8-128-1
/$BadClus:$Bad
 257792 mac -/-r-xr-xr-x 48 0 6-128-1 /$Bitmap
 36000 mac -/-r-xr-xr-x 48 0 4-128-1 /$AttrDef
 131072 mac -/-r-xr-xr-x 48 0 10-128-4 /$UpCase
 4096 mac -/-r-xr-xr-x 48 0 1-128-1 /$MFTMirr
 20984832 mac -/-r-xr-xr-x 32 0 0-128-7 /$MFT
 0 mac -/-r-xr-xr-x 48 0 8-128-2 /Program
Files/Microsoft Office/Office/Forms/CLAP.WMF (deleted-realloc)

40 minutes later, the system is "worked on" via a telnet session.
Thu Feb 25 1999 03:35:19 1253 m.. -/-rwxrwxrwx 48 0 1754-128-4
/WINNT/Profiles/Administrator/Start Menu/Programs/Accessories/Telnet.lnk

Worked continued until 2 pm later that same day.
Thu Feb 25 1999 15:57:42 42448896 m.. -/-rwxrwxrwx 32 0 10347-128-0
/Program Files/State Business Directory/B/ba_ph.99

This is the first dated event in the Dr. Watson error log.
Application exception occurred:
 App: outlook.dbg (pid=125)) Version 4.
 When: 3/17/1999 @ 16:25:41.126
 Exception number: c0000005 (access violation)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 94

Six months of regular activity lines omitted.

Another NT service pack installed
Thu Aug 05 1999 09:14:55 56 m.c d/dr-xr-xr-x 48 0 8973-144-9
/WINNT/$NtServicePackUninstall$

Again from Dr. Watson, an error occurred.
Application exception occurred:
 App: (pid=231)
 When: 8/25/1999 @ 10:7:12.112
 Exception number: c0000005 (access violation)

The first dated entry in the INOCULAN C:\ALERTS log folder.
Oct 6 1999 ev2.dat

In the next section of this paper, evidence will be found of browsing
pornographic web sites. The entries in the WinProxy cache gave dates when
pornographic websites were visited. The following example illustrates the
weekly pattern of habitual activity. While there was some diviation, the pattern
was to usually spend about 45 minutes, beginning at 4 P.M. most weekdays,
and spending the most time on Fridays. This pattern held for just over 18
months. Using 260 minutes per week as an average, over a 72-month period
this person spent approximately 18,720 minutes, or 312 hours (39 work
days) browsing pornographic websites.
First date; 2000-01-10
 Monday 4:00-4:41 41 min (2000-01-10 16:01:56 until 2000-01-10 16:41:58)
 Tuesday 10:20-11:02 42 min (2000-01-11 10:20:04 until 2000-01-11 11:02:32)
 Thursday 4:25-4:37 12 min (2000-01-13 16:24:00 until 2000-01-13 16:37:40)
 Friday 1:45-4:30 165 min (2000-01-14 15:45:26 until 2000-01-14 16:31:56)
Last date; 2001-07-10

The last dated entry in the INOCULAN C:\ALERTS log folder. It would appear
that soon after this, the system was switched over to another virus protection
product.
Jul 23 2001 ev107.dat

Here Gnucleus, a Guntilla client is installed. From this point the file system is
available to unknown Internet based clients.
Jul 26 2001 Gnucleus.lnk

Throughout the last day the system was in operation (12/02/2002), it was
used for web browsing.
Mon Dec 02 2002 08:37:00 1024 .a. -/-rwxrwxrwx 48 0 993-128-4
/WINNT/system32/config/SECURITY.LOG

The system is shut down for the last time at Mon Dec 03 2002 14:47:29.
Mon Dec 02 2002 14:46:52 439824 .a. -/-rwxrwxrwx 48 0 975-128-4
/WINNT/Media/Windows NT Logoff Sound.wav
Mon Dec 02 2002 14:47:29 1306624 mac -/-rwxrwxrwx 32 0 994-128-0
/WINNT/system32/config/SYSTEM.ALT

Recover Deleted Files

The fls tool was used to report the files that had been deleted, but
that still retained file names or other meaningful associations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 95

#fls -d -l -f ntfs -p -r disk1.dd > disk1.fls.deleted

#fls -d -l -f fat32 -p -r disk2.dd > disk2.fls.deleted

#wc *fls.deleted
3767 64885 610313 disk1.fls.deleted
4682 79292 824199 disk2.fls.deleted

To determine whether any well known malware, such as network sniffers
or hacker tools, had been on this system and then deleted, the list of
deleted files was searched for the “.exe” string. If any suspicious
.exe files were found, they could be undeleted using the dd method
illustrated earlier in this paper. While an entire intact binary may
not be recovered to a functional condition, the strings embedded in it
might reveal its identity and/or purpose.

C:\PRACTICAL>grep –I “\.exe” disk1.fls.deleted >
exe.deleted

C:\PRACTICAL>grep –I “\.exe” disk2.fls.deleted >
ositis.deleted

C:\PRACTICAL>wc *.deleted
 142 2317 23253 exe.deleted
 11 184 1956 ositis.deleted
 153 2501 25209 total

So there were very few deleted files identified by fls, and none that
stood out as red flags.

Below is a portion of the disk1.fls.delete report file created with fls
above.

disk1.fls.deleted.files:r/r * 7093-128-4(realloc):
 Inoculan/WINTDIST.EXE 1997.06.01 13:30:12 (EDT) 1999.08.13
14:40:31 (EDT) 2001.09.22 12:17:48 (EDT) 63850 0 48

disk1.fls.deleted.files:r/d * 6939-144-6(realloc):
 Mobius/DDR/RDSWIN.EXE 2001.07.26 11:49:57 (EDT) 2001.12.03
08:44:29 (EST) 2001.07.26 11:49:57 (EDT) 56 0 48

disk1.fls.deleted.files:r/r * 9377-128-1(realloc):
 Mobius/DDR/VBLOCK.EXE 1998.04.08 03:16:22 (EDT) 1999.12.16
21:33:29 (EST) 2001.09.22 12:19:57 (EDT) 362 0 48

disk1.fls.deleted.files:r/r * 3774-128-1(realloc):
 Mobius/DDR/VDRCFG.EXE 2001.06.28 09:56:56 (EDT)

String Search

While there have been a few indications that this system has been used
in violation of policy, there has been nothing to support a prolonged
pattern of inappropriate activity. This is, until this point!

There are 48 pages of preparation preceding this point in the
investigation. It may seem that an analyst could simply jump to this
type of point, find the evidence and be done. However, the different

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 96

data gathering and detailed reporting tasks were performed before any
type of analysis for several reasons, including:

• To establish foundation that would support the integrity of the
findings. Each of the little tasks, such as creating and
comparing md5 hashes or documenting disk and file system
characteristics make a statement either in support of against the
items the analyst reports. This is a puzzle that demands
completion. Any pieces left over or that do not quite fit
invalidate or distort the picture the analyst provides.

• To methodically comb through the system without overlooking items
that are obscure, but prove to be critical. Bad behavior is
systemic rather than focused. While there may be solid evidence
of one type of activity that was discovered through one task
(inspecting the web browser history files), the same task may not
identify other solid evidence normally discovered through another
task (manually reviewing deleted word-processing documents that
the analyst was able to undelete).

• Document the process in support of the final report. A forensic
analysis usually takes several days, or weeks, to complete. The
operative word is complete. Without detailed notes made
throughout the process, facts will be forgotten and the analyst’s
rationale will be lost. When the time comes to write the final
report, without detailed notes taken throughout the entire
process, it will be extremely difficult to effectively report or
rationally support the analyst’s finding

During the string searching, evidence emerged that this system has been
used to visit a large number of pornographic web sites over a
relatively long period of time. While the determination of criminal
activity is ambiguous (more on that at the end of this document), there
is no question that this is a significant violation of policy that will
be referred to the appropriate department for action. Previous cases of
this type have led to dismissal, putting the seriousness of this
investigation into concrete perspective for the first time.

To this point, the analysis tended to focus on the areas known to often
hold clues or suggestions of where next to look. This has provided a
detailed view of this system, along with many aspects of the operator’s
activities. Frequently, the strings and grep tools have been used in
combination to ferret out any existing hints of inappropriate activity,
though nothing of significance has been identified to this point.

The routine inspection of these well known locations is a very
effective first step in analysis because:

• they are easy to check;
• they are likely to contain clues or evidence of the activities

being investigated; and
• the average user is not sophisticated enough to sanitize these

areas.

So, the entire disk image will be searched for the same types of
keywords used before when analyzing individual files, or groups of
similar files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 97

First the raw disk image is processed with the strings tool. Since this
disk image is from a Win NT system, is assumed that a large portion of
the content could be in Unicode format, along with ASCII. Since the
Linux version of strings does not support Unicode, a Windows version
was used. The first strings pass looked for Unicode, while the second
used the –a parameter to change the default Unicode encoding to ASCII.
Each pass redirected its results to separate files that were then
tallied with wc.

An added advantage of running strings on the entire disk image, rather
than just the files in the file system, is that many file systems
support alternate data streams (ADS), which allows for the branching of
a filename to include other unrelated files. There are several reliable
tools available that can scan an entire file system and identify any
ADSs. However, in this case Disk1 uses FAT, which does not support ADS,
and Disk2 uses NTFS, which does support ADS. But the NTFS disk image is
broken into to pieces that do not constitute a functional file system.
Fortunately, the contents of an ADS file are just as visible to strings
as the primary data stream (the stream that contains the contents of
the given filename).

C:\PRACTICAL>strings disk1.dd > disk1.strings

C:\PRACTICAL>strings -a disk2.dd > disk1.a.strings

Rather than being subtle, a small list of unambiguous words that are
often associated with malware (greets, 31337, hack) and adult web
content (horny, slut) were fed into grep for searching through the
strings culled from the raw disk image.

C:\PRACTICAL>cat hackwords.txt
greets
31337
hack
horny
slut

C:\PRACTICAL>wc *.strings
34680083 50425618 448478010 disk1.a.strings
5067489 6965337 65715866 disk1.strings
39747572 57390955 514193876 total

C:\PRACTICAL>grep –i –f hackwords.txt disk1.strings >
disk1.strings.of.interest

C:\PRACTICAL>grep -i -f hackwords.txt disk1.a.strings | wc
 450 5285 59257

C:\PRACTICAL>grep -i -f hackwords.txt disk1.strings | wc
 471 1230 15879

While the initial results contained lots of digital white noise
(material that met the grep search criteria in letter, but not in
spirit) it quickly became obvious that there were significant findings
here.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 98

After a quick review of the disk1.strings.of.interest file, it is
obvious that this system had been used to browse a large number of
adult web sites. While there was hundreds of these sites listed, each
with clearly adult themes, none of them appeared in the IE logs.

But why was there no indication of this in the browser history logs?
The answer was found in the Unicode strings. Most of the strings that
included these keywords also included the string “Program Files\Ositis
Software\WinProxy Lite\Cache\”. This was a reference to a directory.
After a quick check, this directory was located. It contained a web
proxy that had filtered the inappropriate URLs before they could be
recorded by the IE browser. (OSITIS SOFTWARE, WinProxy (47))

This local proxy program accounted for the absence any suspicious
entries in the browser’s logs, it was interesting that no other logging
mechanism, error reporting, or the file system seemed to be aware of
this local proxy software, or its activities. The only proof of the
proxies’ existence and operation is from the deleted .jpg files
recovered by jpg-recovery.pl and the many, descriptively named files in
its cache folder. The fact the proxy software itself had been deleted
is possibly evidence itself. That sort of “leave no footprints”
behavior does make sense, considering why this person appears to have
used a local proxy.

The ls tool was used to create a report that clearly illustrates the
contents of this folder sorted by their creation dates. This will show
the time frame during which this activity occurred, along with a rough
distribution of this activity.

#ls --time=ctime --sort=time -o --time-style=full >
/root/morgue/ositis.cache

The \Cache folder contains 238 log entries, with 131 referring to
clearly pornographic web sites, and most of the others implied sexual
explicit names that were not clearly such. These 131 log entries ranged
in date from 2000-01-10 until 2001-07-10.

Rather than being subtle, a small list of unambiguous sexually explicit
words was used to again search the raw disk image with the grep tool.
These proxy cache items were clearly smoke, but the location and
characteristics of the fire still had to be pinpointed.

Working on the assumption that at least some of these image files had
existed on this disk, the jpg-recover.pl script was used to read
through the disk1.dd image file and attempt to recover every .jpg
picture file that could be found.

This script had been found on the Internet while searching for
“forensic script undelete.” Jpg-recovery.pl had been coded to recover
.jpg files from digital camera memory sticks.

After about 12 hours (at 99% CPU usage), the script reported
identifying and recovering 83 jpg files, none were of interest. After
24 hours, 300 more images had been recovered, a few of which were
hardcore pornography and seemed to match the topics implied in the
URLs. After about 48 hours, jpg-recovery.pl had processed the entire
disk image and recovered 10,461 .jpg files. A few randomly selected

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 99

samples were viewed while the process ran. The majority turned out to
be pornographic.

While the majority were pornographic and clearly in violation of
policy, a large number were the ancillary images that are scattered
over most web pages; navigation buttons, ads, and logos. In may cases
these otherwise benign images were themselves pornographic. A large
number of the images were thumbnails of larger versions. Often the
larger version of the image was listed soon after the thumbnail
version. This indicates the person was actively selecting specific
images (thumbnails) and downloading the larger version. There are
instances where a person can stumble onto a pornographic site that
immediately displays explicit images, but these images are almost
always small thumbnail versions. When the person clicks to leave the
site, a cascade of other pornographic sites begin popping up on the
screen completely beyond the person’s control. This would account for a
noticeable number of pornographic thumbnail images, but not for an
equally large number of full sized image files. This shows the is not a
fluke, but a deliberate and sustained behavior.

Below is a portion of the display while jpg-recovery.pl is running.
Notice that it reports its progress by the byte offset it is passing.
Especially useful is the byte offsets of the start of an identified
.jpg and the number of bytes considered to make up the file.

perl jpg-recovery.pl
Scanning 'disk2.dd' looking for pictures...
Passing byte 102400 of disk2.dd ...
Passing byte 204800 of disk2.dd ...
Passing byte 307200 of disk2.dd ...
(lines omitted)
Passing byte 37785600 of disk2.dd ...
Image #2: start found, dumping to lostpic002.jpg ...
Passing byte 37888000 of disk2.dd ...
Passing byte 37990400 of disk2.dd ...
Done -- wrote ~170986 bytes to lostpic002.jpg (JPEG end @ 38031339)
Passing byte 38092800 of disk2.dd ...
(lines omitted)
Passing byte 1941606400 of disk2.dd ...
Passing byte 1941708800 of disk2.dd ...
Passing byte 1941811200 of disk2.dd ...
Done -- wrote ~3638272 bytes to lostpic10461.jpg (EOF @ 1941827584.)
Finished scanning disk2.dd.

Created 10461 file(s) -- check 'em out!

ls lost* -o
-rw-r--r-- 1 root 370909 Apr 21 14:42 lostpic001.jpg
-rw-r--r-- 1 root 170987 Apr 21 14:42 lostpic002.jpg
(lines omitted)

The rdjpgcom (49) was used to get both the comments and the jpg image
dimensions. Room is reserved within each .jpg file for comments,
usually provided by the software creating the .jpg. This can help
identify the software used to create or modify an image and, in some
cases, is used by an intruder to “brand” the image as theirs.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 100

rdjpgcom -verbose lostpic001.jpg

APP12 contains:
Ducky\000\001\000\004\000\000\000\026\000\000
JPEG image is 86w * 57h, 3 color components, 8 bits per sample
JPEG process: Baseline

rdjpgcom -verbose lostpic002.jpg
Adobe ImageReady
APP12 contains:
Ducky\000\001\000\004\000\000\0001\000\000
JPEG image is 65w * 65h, 3 color components, 8 bits per sample
JPEG process: Baseline

The dd tool can be used to manually salvage a single file. Using
lostpic002.jpg as an example, the starting byte offset and the byte
count of the file is all that dd needs in order to copy that portion
out of the raw disk image to a .jpg picture file.

endpoint – size = startpoint

38031339 – 170986 + 1 = 37860353

The +1 simply align the first and last bytes from the perspective of
the dd program.

Here the lostpic002.jpg that jpg-recovery.pl identified and recovered
is likewise recovered by manually using dd. Not to be too simplistic,
the process that jpg-recovery.pl or the manual dd methods use is to
search the disk image file for the header information that identifies
that start of a .jpg formatted file, which is “JIFF.” There are then
several possible binary strings that represent the end of the file.

Having located the start, you would harvest everything until either
identifying one of the terminating signatures, or you had reached a
volume beyond what you would expect the file size to be. Knowing then
the start and end byte offsets, you simply copy them to a new file with
a .jpg suffix.

dd if=disk2.dd of=pic2.jpg bs=1 skip=37860352 count=170987

ls *2.jpg -o
-rw-r--r-- 1 root 170987 Apr 21 14:42 lostpic001.jpg
-rw-r--r-- 1 root 170987 Apr 21 19:58 pic2.jpg

md5sum lostpic002.jpg pic2.jpg
32decd4e1ca88a19220c58fd0b97753a lostpic002.jpg
32decd4e1ca88a19220c58fd0b97753a pic2.jpg

After using dd to pull out the .jpg file, its byte count and md5 hash
are compared to the version jpg-recovery.pl found, validating the
process. Of course, both image files are viewed to determine if they
are meaningful or damaged.

C:\PRACTICAL> grep –I "Ositis Software" disk1.unicode.strings >
disk1.grep.Ositis

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 101

C:\PRACTICAL>wc 64.byte.ascii
 2901 2901 305513 64.byte.ascii

This file was then opened in a text editor where several "clutter"
strings were removed using search-and-replace, all characters were
changed to uppercase. This was to begin shaping these findings into a
list of URLs. It was hoped that the basic statistics of these URLs
would be a clue themselves.

The .jpg files that had been recovered did not include MAC time
information, so these could not be correlated with the proxy logs. It
is possible that other file recover tools could have been used that
would have included data from the file system metadata files such as
the FAT or super block.

Having this raw data, the pornographic URLs, shows what the activity
was, but that activity needs to be put into meaningful context. In a
murder case, the prosecutor does not focus on the fact a murder
occurred (this is the what question), but rather on presenting the
timeline of events, motive, and other items that address the who, when,
why, and how questions. The what question (a murder) is not the focus.
Answers to the who, what, when, why, and how questions will support the
who premise.

First the raw data is captured for analysis. The fact these are clearly
pornographic web sites is not the focus. Instead, the characteristics
of these items will provide a context that is just as important.

All of the proxy cache files are captured into a file (disk1.Ositis).

C:\PRACTICAL> grep -i "Ositis Software" disk1.unicode.strings > disk1.Ositis

After inspecting a few of these cache files, it is clear that each can
be treated as a variable length logical record. The cut tool is used to
parse out the pertinent fields to an extraction file for further
manipulation. In this example, the cut tool is instructed to use the
hyphen (-d “-“) as the field delimiter. The fields to be parsed out are
fields 3 through 50 (-f 3-50).

This data is piped into the sort program, and from the sort program
into a results file (disk1.ositis.sorted).

C:\PRACTICAL> cut -d "-" -f 3-50 disk1.Ositis | sort > disk1.ositis.sorted

Now that the data is organized in this way, each line was then tallied,
using uniq. After sorting the output file of the command below, the
format listed URLs by their visit frequency.

C:\PRACTICAL> uniq -c disk1.ositis.sorted > disk1.URLs.count

At this point, there were:

• 14,599 URLs (showing the volume of surfing);
• 1,148 unique (showing the range of sites visited);
• 348 sites had been visited 15 or more times; and
• 80 of the visited sites were clearly pornographic.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 102

Steganography

Being “inappropriate,” these images are pertinent to the study. But,
their content (the picture they portray) is not the end of the
analysis. One more step is necessary.

Taking into account the apparent source of these images (adult web
sites), they may contain material that has been embedded using
steganography (hidden writing) techniques. Until 9/11, steganography
was widely understood in the underground, but not in the general
public. Since the technique of “hiding” material within an image file
without altering its perceptible content was seen as “secure” since it
was not perceptible, it is arguable that weaker passwords were used.

The subject of steganography is widely and well documented, especially
in the SANS Reading Room (32), so I will not take time here to describe
steganography in any detail. Suffice it to say that steganography is a
family of techniques for injecting new material or replacing exiting
portions of a file with new material, typically an image format file,
in such a way that the perception and functionality of the original is
not perceptible altered and so the new material can be retrieved later.
A good analogy that is often used is to say encryption is putting a
message in an envelope and marking the envelope secret, while
steganography is mixing the message into the text on a postcard. An
observer would instantly know that the envelope contained a secret
message, but would not notice anything unusual or enticing about the
postcard, though both contain the same sensitive message.

In the example below, the stegdetect (30) tool is run to determine the
probability that an image has been altered. In this example, the
Windows version of stegdetect was run, though the Linux version tends
to be faster on the same system.

In the following example, the parameters “tjpoi” are used. The t
parameter sets the tests to be performed to jpoi. These letters each
represent a distinct tool available on the Internet for embedding
material into .jpg images, specifically outguess, jphide, and jsteg-
shell.

The “s1.000” parameter sets the sensitivity of the analysis; the higher
the number the more sensitive and more prone to false positives. When
run with the default value of 1.000, stegdetect identifies nine images
as having been tampered with.

To reduce the white noise, the stegdetect results are piped to grep in
order to filter out all of the negatives and display only those images
suspected of tampering. By reducing the sensitivity to one-half
(0.500), the borderline or questionable positives are filtered out,
leaving only the most likely positives.

After some trial and error, a sensitivity setting of 0.250 produced
only 2 strong positives. These two will be subjected to brute force
password cracking using the stegbreak (31) tool that is bundled with
stegdetect (30).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 103

Before starting the stegbreak session, the subject .jpg files were
converted (using the –c parameter as seen below) into a much smaller
representation that contained all of the material stegbreak needed to
attempt to guess the passwords. In effect, the image material was
removed leaving only the authentication (password) framework that
stegbreak would attempt to crack.

./stegbreak -c /root/morgue/*.jpg

/root/morgue/lostpic926.jpg: converted to .jph
/root/morgue/lostpic932.jpg: converted to .jph
Converted 2 files.

The same wordlist that was used earlier in john-the-ripper is reused
here. In fact, the configuration file for john-the-ripper that fine
tunes its operation is also used verbatim (which is a nice feature of
stegbreak).

wc bfwordlist.txt
1402823 1481730 14913 986 bfwordlist.txt

./stegbreak –t p –r rules.ini –f bfwordlist.txt /root/morgue/*.jph

Loaded 2 files…
Status: 0.000%, 761.1 c/s: 0bumb1247i0n
Status: 28.947%, 346.7 c/s: koppel4
Status: 36.298%, 324.8 c/s: platterful.
/root/morgue/lostpic926.jpg : negative
/root/morgue/lostpic932.jpg : negative
Processed 2 files, found 0 embeddings.
Time: 251888 seconds: Cracks: 83229784, 330.4 c/s

Running a 330.4 crack attempts per second, stegbreak was unable to
guess the password after 2.9 days nonstop, or approximately 83,223,795
attempts. While on the subject of encryption, the raw disk image file
was checked for blocks of ASCII armored material.

There are no indications of encryption programs, at least by file name.
None of the existing files end with a common encryption suffix such as
.pgp or .gpg. Indications of encryption programs might take the form of
chunks of encrypted (large groups of consistently random characters)
and/or ASCII armored material on the disk. While ASCII armoring is
encoding, not encryption, it is often used with encrypted for
transmitting binary material over communications systems that do not
support 8-bit bytes.

ASCII armoring is the process of converting binary material, which
likely contains nonprintable characters, into a material that is
equivalent, though composed entirely of the standard printable
characters. One common use of ASCII armoring is to prepare a binary
file for transmission across a communications network where a
nonprintable character(s) in the binary might be interpreted as a
command-bearing control character causing the communications components
to take unintended action.

In some cases, the character space of a binary may not be supported by
the transmission medium. ASCII encoding has a range of 256 possible

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 104

characters (0-254, or 28), each represented with an eight-bit byte.
Standard, universally supported ASCII makes use of the first seven
significant bits of the eight. This gives a minimum of 127 characters
(27). By making use of the eighth bit, an additional 129 characters can
be represented. For the most part, it is these additional 129
characters that some communications systems do not support. So ASCII
armoring re-encodes the material that has a 28 character set to a
character set of 27

To get an overview of the presence of any ASCII armored files or
artifacts, the strings and grep tools were again used.

Two common characteristics of ASCII-armored material are a fixed-line
length of 64 bytes and the absence of spaces.

The strings command would simply identify strings that were at least 64
characters long and passes them to the grep tool. Grep inspects each
line and drops those containing even one space character. These final
lines are then redirected to the 64.byte.ascii file for review.

After reviewing these results, did not appear that any meaningful use
of ASCII armoring was found on this disk.

Conclusions

This project began with three specific goals. To conclude the answers
to each question will be summarized.

1. Is confidential or proprietary information being unintentionally

leaked through the surplus of system?

Regarding this one sample system, no confidential or proprietary
information was identified. However, there appears to have been no
steps taken to prevent the disclosure of confidential, proprietary, or
any other type of information. Documents, email, and applications
dating back several years were recovered demonstrating a failure to
follow relevant policies or procedures and the likelihood of sensitive
material unknowingly being released.

2. Do these systems show signs of having been compromised by an

unauthorized intruder, or of previously undetected malware
(malicious software, viruses, or adware)?

This one sample system had indications of both virus attacks and system
crashes. But there was no indication of the actual presence of malware.

3. And, do these systems show evidence of inappropriate use.

C:\>strings -a -n 64 disk1.dd | grep -v -b "\ " > 64.byte.ascii

C:\>strings -n 64 disk1.dd | grep -v -b "\ " > 64.byte.Unicode

C:\practica>wc 64.byte*
 291629 291627 26051224 64.byte.ascii
 166954 1266451 16301542 64.byte.unicode
 458583 1558078 42352766 total

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 105

There is clear evidence this host has was used for approximately 18
months for extensive browsing of pornographic web sites. In addition,
an unauthorized local proxy program had been installed (also against
policy and procedure) and used in an attempt to hide or obscure this
activity.

This also indicates a failure on the part of network administration to
recognize a large and consistent volume of clearly identifiable
activity. This increased the risk of exposure due negligently allowing
such activity, and by the attack vector this created for the malware
pervasive through such sites.

The failure to prevent or detect the installation of a local proxy
program is another significant finding.

To conclude, the results of this project brings to light several highly
significant findings of risk both to the technical infrastructure and
company exposure to legal action. Remediation can be addresses by

1. Revising policy and procedures to address these findings,
2. informing staff of the policies, and educating staff on how to

adhered to them,
3. regular validation of the effectiveness of these policy and

procedures, and by
4. consistently enforcing the consequences of violation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 106

Part 3 - Legal Issues of Incident Handling

The scenario

You are the system administrator for an Internet Service Provider that
provides Internet access to paying customers. You receive a telephone call
from a law enforcement officer who informs you that an account on your
system was used to hack into a government computer. He asks you to verify
the activity by reviewing your logs and determine if your logs reflect whether
or not the activity was initiated there or from another upstream provider. You
review your logs and can only determine a valid user account logged in via a
dialup account during the period of the suspicious activity.

NOTE: For the purposes of this scenario, assume you validated the identity of
the law enforcement officer and this is not social engineering.

This being a rather ambiguous scenario with more being implied than
stated, several assumptions will first be made in order to better put
the answers into context.

• As a system administrator I am competent to perform all

of the technical tasks involved in this situation.

• As system administrator, while I have had some training
regarding the legal requirements involved with
technology, at each step I will have consulted with the
appropriate legal counsel.

• “An account on my system” refers to a user account that

I, as an ISP, provided to a customer. This rather than a
local user account on my local host system.

• The attacking account is known by at least an IP

address, and possibly a DNS name. Having only
Hostname=joe and domain=ACME.ISP.NET seems too vague for
law enforcement to actually begin requesting
information.

There are several pieces of Federal law which address information technology. When
assessing legal possible implications of a situation, one or more of these will likely apply
to some degree. Of course, state and local law may also apply. These include:

• The Fourth Amendment addresses the individual’s reasonable expectation of
privacy. (54 DOJ I.b)

• The Privacy Protection Act (PPA) focuses on freedom of speech as presented in
the First Amendment. (54 DOJ II.B.2.a)

• The Electronic Communications Privacy Act (ECPA) lays out protection and
process regarding digitally stored communications. (54 DOJ III)

• The Wiretap Statute, a.k.a. Title III addresses the privacy of real-time
communications. (54 DOJ IV.D)

• The Computer Fraud and Abuse Act (CFAA) 18 U.S.C. § 1030 (54) focuses on
unauthorized access to computer systems. (56 Robinson)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 107

Questions

A. What, if any, information can you provide to the law enforcement officer over the
phone during the initial contact?

The officer’s question is do my logs reflect the activity in question. It is easy to treat it as
an open ended question that includes “Who was logged, and as doing what?” But from a
legal perspective, the jump from “did this occur?” to the details of the identity of the doer
and the content of that communications is huge. It sounds simple, but it is critical that
only the questions actually being asked are addressed, whither the answer is yes, no, or
“that information requires a request from a judge or court (subpoena, warrant, or court
order).”

After a quick and objective review of my logs (while the officer is on the phone), I can
report back that there does not appear to be any indication of “activity” from upstream
accounts during this time period, and that a “valid user account” was connected at the
time the government system was hacked.

At this point I may begin to think the logs identify a hacker who law enforcement is
investigating, but I have to keep in mind that there is significant legal protection of this
person’s rights to privacy, specifically regarding their personal information (SSN,
address, bank account), their real-time communications, and their stored
communications.

While ECPA begins with the principal that a provider can release no information, there
are several exceptions that would allow me as a provider to volunteer information about a
subscriber or their communications. However, none of these exceptions seem to apply to
this situation. (54 DOJ III.E) So, while at this point I might provide information about the
operation of the system (there were subscribers connected, but no upstream connections),
I cannot provide information about the subscribers.

B. What must the law enforcement officer do to ensure you to preserve this evidence
if there is a delay in obtaining any required legal authority?

The preservation of evidence is addressed under 18 U.S.C. § 2703(f). § 2703(f)(1)
specifically states (54 DOJ III.G.1):

A provider of wire or electronic communication service or a remote computing
service, upon the request of a governmental entity, shall take all necessary steps to
preserve records and other evidence in its possession pending the issuance of a
court order or other process.

This phone call alone is presumably enough to start the process. The officer can verbally
request that the exiting pertinent logs (not future logs) be “frozen” so that they will be
available in the near future (within 90 days) should additional actions such as subpoenas,
court orders, or search warrants be issued, 18 U.S.C. § 2703(f)(2). During this 90-day

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 108

period, the officer must acquire and present an order (subpoena, warrant, court order) that
supports this request. (54 DOJ III.G.1)

This is a practical adjustment to the fast paced realities of cyberspace. In the time it could
take to properly acquire a court order, the situation is in dynamic flux, and the majority of
any tangible evidence of a crime may have a 12-hour life span after which it is
overwritten, similar to surveillance cameras that retain only the last few hours. In order to
avoid investing in hundreds or thousands of videotapes, the assumption is made that a
few tapes can be reused in a regular cycle and that very soon after an incident; the tape
will be pulled and secured as evidence.

Regardless, I would request that the officer fax/email this request to my office as soon as
possible in order to document the request and to avoid miscommunications.

C. What legal authority, if any, does the law enforcement officer need to provide to
you in order for you to send him your logs?

If the logs did in fact clearly provide concrete information relevant to the officer’s
request, I could choose to provide the “basic” information.

However, I would insist that the officer first acquire a subpoena for the specific logs
identified by date and time (GMT), source and destination IP address and TCP port
numbers (if any).

When it came time to produce this data, I would extract only the log records that meet
these criteria. I would then parse out only the fields that were indicated in the subpoena.
The point here is to make sure to include only the basic information that a subpoena has
the power to illicit in accordance with ECPA.

D. What other "investigative" activity are you permitted to conduct at this time?

The Wiretap Act, Title III 18 U.S.C § 2510-2522, addresses the real-time surveillance
(wire-tap or sniffing) of electronic communications, including the content of the
communication. While Title III prohibits a person from monitoring the content of
electronic communications, or for law enforcement officials to accept the fruits of that
surveillance, the provider exception of Title III, 18 U.S.C § 2511(2)(a)(i) does
specifically allow such surveillance and disclosure to law enforcement when preformed
on their own network by the owning service provider.

Providers investigating unauthorized use of their systems have broad authority to
monitor and then disclose evidence of unauthorized use under § 2511(2)(a)(i) but
should attempt to tailor their monitoring and disclosure so as to minimize the
interception and disclosure of private communications unrelated to the
investigation. (54 DOJ IV.D.1.3.c)

More specifically,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 109

“protection of the rights or property of the provider” clause of § 2511(2)(a)(i)
grants providers the right “to intercept and monitor [communications] placed over
their facilities in order to combat fraud and theft of services.” (54 DOJ IV.D.3.c)

Because monitoring a hacker's attack ordinarily does not violate
the hacker's reasonable expectation of privacy, see
"Constitutional Suppression Remedies," infra, it is unclear
whether a hacker can be an "aggrieved person" entitled to move
for suppression of such monitoring under § 2518(10)(a). No court
has addressed this question directly. Of course, civil and
criminal penalties for unlawful monitoring continue to exist,
even if the unlawful monitoring itself targets unauthorized use.
(54 DOJ E.1.a)

Relying on the provider exception clause, I would begin additional logging and
monitoring in accordance with company procedures relating to “suspicious activity”.
That procedure states “when there is reason to believe that malicious, destructive,
suspicious, or otherwise unauthorized activity is or is about to occur, steps to identify and
contain that activity should be taken in order to protect the integrity of the systems and
the confidentiality of the customers.” This in-house procedure also demonstrates that
such actions are “normal” in the operation of this system. (54 DOJ IV.3.D.3)

In addition, The Trace Devices chapter of Title 18, 18 U.S.C. § 3121-3127 address real-
time electronic surveillance, network sniffing in this case. §3121(b) specifically allows
me to pen/trap (sniffing both inbound and outbound traffic) my own network without a
court order. (54 DOJ IV.c)

E. How would your actions change if your logs disclosed a hacker gained
unauthorized access to your system at some point, created an account for him/her to
use, and used THAT account to hack into the government system?

After updating my resume, I would immediately secure the evidence (logs, files, screen
shots) that lead me to this discovery. This evidence would be copied to non-volatile
media, such as CDROM, and each digital file would be hashed with an md5 utility.
Copies of the hash values would be stored with the evidence. The hash values would also
be used to verify the integrity of the copies, demonstrating that the copies on CDROM
are identical to the originals, and that there have been no subsequent changes throughout
the life of this investigation.

The Best Evidence Rule, Fed. R. Evid. 1001(3) states that “[i]f data are stored in a
computer or similar device, any printout or other output readable by sight, shown to
reflect the data accurately, is an “original”.” (54 DOJ V.D.1) The hash values should
satisfy the “shown to reflect the data accurately” requirement. In fact, hashing each piece
of digital material involved in an investigation is a good practice.

So according to the Best Evidence Rule, since the files I have copied are “readable by
sight”, and can be “shown to reflect the data accurately” using the md5 hash values, these
files can be considered “original”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 110

I would then contact the law enforcement officer who first called, on the assumption they
would have the best understanding of the situation, and inform them of my findings and
offer to provide a copy of my findings.

At this point, the Computer Trespasser Exception, 18 U.S.C. § 2511(2)(i) comes into
play.

The computer trespasser exception may be used in combination with
other authorities, such as the provider exception of
§ 2511(2)(a)(i). A provider who has monitored its system to
protect its rights and property under § 2511(2)(a)(i), and who
has subsequently contacted law enforcement to report some
criminal activity, may continue to monitor the criminal activity
on its system under the direction of law enforcement using the
computer trespasser exception. In such circumstances, the
provider will then be acting under color of law as an agent of
the government. (54 DOJ IV.D.3.d)

I would continue monitoring and logging, making sure to capture that information to non-
volatile media so that the intruder could not alter or destroy it. Depending on what alerted
me to the intruder’s presence and activities I would direct increased logging and
monitoring at that area.

The Fourth Amendment provides for the reasonable expectation of privacy. Even though
I am convinced that this intruder is “guilty”, I cannot haphazardly violate their
constitutional rights, including their right to privacy while they exercise unauthorized
access (in my opinion) to a (“my”) protected computer.

Since this intruder has demonstrated highly privileged access to the system by creating an
account for their use, I have to assume they have highly privileged control of the logging
process and files. I also have to assume there is a quickly escalating probability the
intruder will realize they have been discovered and take steps to cover their track and
destroy evidence of their activities.

Regarding ECPA, there is a provision for the voluntary disclosure of content material
(not just the basic material) when disclosure “may be necessarily incident to the rendition
of the service or the to protection of the rights and property of the provider of that
service,” § 2702(b)(5). In addition, ECPA allows for my voluntary disclosure of basic
information to a governmental agency when disclosure “may be necessarily incident to
the rendition of the service or the to protection of the rights and property of the provider
of that service,” § 2702(c)(3).

At this point, state law enters the picture. Kentucky Revised Statue 434.845-860
addresses the unlawful access to a computer.

434.845 Unlawful access to a computer in the first degree.
(1) A person is guilty of unlawful access to a computer in the first degree when he
or she, without the effective consent of the owner, knowingly and willfully,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 111

directly or indirectly accesses, causes to be accessed, or attempts to access any
computer software, computer program, data, computer, computer system,
computer network, or any part thereof, for the purpose of:
(a) Devising or executing any scheme or artifice to defraud; or
(b) Obtaining money, property, or services for themselves or another by means of
false or fraudulent pretenses, representations, or promises.
(2) Unlawful access to a computer in the first degree is a Class C felony.
Effective: July 15, 2002
History: Amended 2002 Ky. Acts ch. 350, sec. 2, effective July 15, 2002. -- Created 1984
Ky. Acts ch. 210, sec. 2, effective July 13, 1984. (53 KRS)

So in addition to federal law, the intruder can also be charge for the unlawful access to a
computer with the intention of obtaining services. However, state law does not address
the issues of intercepting communications (either real time or stored) leaving all other
matters to federal law.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 112

References

In some cases, the description is that provided by the page itself.

9.Redhat 8.0
URL: http://www.redhat.com (3/12/03)

10.Microsoft XP
URL: http://www.microsoft.com/windowsxp/default.asp (4/10/03)

11.ext2fs V0.10 – Extended File System version 2
URL: http://ext2.yeah.net (4/10/03)

12.kernel-ntfs-2.4.18-14.i686.rpm
URL: http://linux-ntfs.sourceforge.net/info/redhat.html
(4/10/03)

13.GNU utilities for Win32
URL: http://unxutils.sourceforge.net/ (4/19/03)

14.BreakPoint Software - The Home of The Hex Workshop Hex Editor
URL: http://www.bpsoft.com/ (4/10/03)

15.Nmap ("Network Mapper") is an open source utility for
network exploration or security auditing.
URL: http://www.insecure.org/nmap/ (4/19/03)

16.Tcpdump
URL: http://www.tcpdump.org/ (4/19/03)

17.Trinux is a ramdisk-based Linux distribution that boots from a
single floppy or CD-ROM, loads it packages from an HTTP/FTP
server, a FAT/NTFS/ISO file system, or additional floppies.
URL: http://trinux.sourceforge.net/ (4/10/03)

18.Unzip
URL: http://www.free-screensavers.de/e_unzip.htm (4/19/03(

19.Md5sum. Message Digest version 5, bundled with Redhat (1) and the
GNU utilities for Win32 (5)

20.Arne Vidstrom’s MACMatch
URL: http://ntsecurity.nu/toolbox/ (4/19/03)

21.Unzip (linux) Included with Redhat Linux (1)
22.Zipinfo (linux) Included with Redhat Linux (1)
23.showacls Included with the NT Resource Kit (NTRK)

URL: http://www.microsoft.com/ntserver/nts/downloads/recommended/ntkit/default.asp
(4/19/03)

24.File tool. Included with Redhat Linux (1)
25.Stat tool. Included with Redhat Linux (1)
26.Ldd tool. Included with Redhat Linux (1)
27.Strings for Win32 by Mark Russinovich

URL: http://www.sysinternals.com/ntw2k/source/misc.shtml#Strings
(4/19/03)

28.Phrack Magazine, Volume 7, Issue 49, Article 06 of 16, "Project
Loki" (3/10/03)
URL: http://www.phrack.com/show.php?p=49&a=6

Phrack Magazine Volume 7, Issue 51 September 01, 1997, article
06 of 17, "L O K I 2 (the implementation)" (3/10/03)
URL: http://www.phrack.org/show.php?p=51&a=06

X-Force loki (1452)
URL: http://www.iss.net/security_center/static/1452.php and
http://secinf.net/unix_security/LOKI2__informationtunneling_progr
am_and_description.html (3/10/03)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 113

29.fprintf() - From Keyword Search the Single UNIX Specification
URL: http://www.opengroup.org/onlinepubs/007908799/ (4/19/03)

30.strace
URL: http://www.liacs.nl/~wichert/strace/ (3/10/03)

31.Request for Comments (RFC): 792 Internet Control Message Protocol
(ICMP)
URL: http://asg.web.cmu.edu/rfc/rfc792.html (4/19/03)

32.Busybox. BusyBox combines tiny versions of many common UNIX
utilities into a single small executable. It provides minimalist
replacements for most of the utilities you usually find in GNU
fileutils, shellutils, etc.
URL: http://www.busybox.net/ (4/19/03)

33.Gpg (linux) The GNU Privacy Guard. GnuPG is a complete and free
replacement for PGP.
URL: http://www.gnupg.org/ (4/19/03)

34.Wipe (linux) Wipe is a secure file wiping utility.
URL: http://wipe.sourceforge.net/ (4/19/03)

35.Nc (linux and windows). Netcat has been dubbed the network Swiss
army knife. It is a simple Unix utility that reads and writes
data across network connections, using TCP or UDP protocol.
URL: http://www.atstake.com/research/tools/network_utilities/ (4/19/03)

36.dd (linux and windows) Included with Redhat Linux (1). A Windows
version is included in the GNU utilities for Win32 (5).

37.HTCIA – High Technology Crime Investigation Association.
September 2002, volume 3, issue 2, page 7. Contributed by Randal
Shane, (rshane@ureach.com)
URL: www.htcia.org (2/27/03)

38.Stegdetect 4.0 Stegdetect is an automated tool for detecting
steganographic content in images.
URL: http://www.outguess.org/detection.php (4/19/03)

39.Stegbreak is used to launch dictionary attacks against
JSteg-Shell, JPHide and OutGuess 0.13b
URL: http://www.outguess.org/detection.php (4/19/03)

40.SANS Reading Room - Steganography.
URL: http://www.sans.org/rr/steg/ (2/16/03)

41.Request for Comments: 1321 - The MD5 Message-Digest Algorithm
URL: http://www.faqs.org/rfcs/rfc1321.html (4/19/03)

42.DBAN; “Darik's Boot and Nuke”
URL: http://dban.sourceforge.net/ (4/05/03)

43.IP_HDRINCL system function call
URL: http://unixhelp.ed.ac.uk/CGI/man-cgi?raw+7 (4/3/03)

44.noop slide
URL: http://project.honeynet.org/scans/scan20/scan20.html (4/3/03)

45.Daemon: Abbreviation for disk and execution monitor. A procedure
that is invoked without being called explicitly whenever an
alteration, an addition, or a deletion or other event occurs.
[ANSDIT] Pronounced dee' mun.
URL: http://www.its.bldrdoc.gov/projects/devglossary/_daemon.html (4/3/03)

46.GNU gcc 2.7.2.1 compiler
2.7.2.1June 29, 1996 per http://gcc.gnu.org/releases.html
copy downloaded from http://ftp.gnu.org/old-gnu/gcc/ dated 1996-
08-1407:00:00 AM
URL: http://abel.hive.no/linux/ib/ (4/19/03)

47.ld-linux.so.1
URL: http://rpmfind.net/linux/RPM/redhat/6.2/i386/ld.so-1.9.5-
13.i386.html (4/3/03)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 114

48.libc.so.5
URL: http://rpmfind.net//linux/RPM/contrib/libc6/i386/libc5-5.4.38-3.i386.html
(4/19/03)

49.ping
URL: http://docencia.ac.upc.es/FIB/STD/misc/ping.html (4/19/03)

50.fsstat
URL: http://www.mcsr.olemiss.edu/cgi-bin/man-cgi?fsstat+1 (4/19/03)

51.IEHist dumps Internet Explorer history from index.dat files into
delimited files suitable for import into other tools.
URL: http://www.cqure.net/tools.jsp?id=13 (4/19/03)

52.John the Ripper is a fast password cracker, Besides several
crypt(3) password hash types most commonly found on various Unix
flavors, supported out of the box are Kerberos AFS and Windows
NT/2000/XP LM hashes...
URL: http://www.openwall.com/john/ (4/19/3)

53.SAMDump 1.04. Created by Dmitry Andrianov
URL: http://www.l0pht.com/l0phtcrack/dist/samdump.zip (12/4/02)

54.Microsoft’s Really Hidden Files: A New Look at Forensics. Version
2.6b by The Riddler
URL: ther1ddler@fuckMicrosoft.com (3/1/03)

55.Ositsis WinProxy Lite
URL: http://www.winproxy.com/english/home/hm_business_home_en.asp (4/3/3)

56.fls, part of the TASK toolset.
URL: http://www.atstake.com/research/tools/task/ (12/4/02)

57.rdjpgcom - display text comments from a JPEG file
URL: http://www.engr.utk.edu/eccsw/jpeg/rdjpgcom.html (4/3/3)

58.The Autopsy Forensic Browser
URL: http://www.atstake.com/research/tools/forensic/ (4/3/3)

59.Ethereal – Network Protocol Analyzer
Version 0.9.2 © 1998-2000 Gerald Combs Gerald@etheral.com
URL: http://www.ethereal.com (4/3/3)

60.Richard Ginski – SANS GCFA practical
 URL: http://www.giac.org/practical/GCFA/Richard_Ginski_GCFA.pdf (3/24/03)

61.Kentucky Revised Statutes Chapter 434 – Unlawful Access to a
Computer in the first degree.
URL: http://www.lrc.state.ky.us/KRS/434-00/CHAPTER.HTM (3/24/03)

62. Searching and Seizing Computers and Obtaining Electronic
Evidence in Criminal Investigations – Computer Crime and
Intellectual Property Section, Criminal Division, United States
Department of Justice. July 2002
URL: http://www.cybercrime.gov/s&smanual2002.htm (3/1/03)

63. U.S. Information Security Law, Part one: Protecting Private
Sector Systems, and Information Security Professionals and Trade
Secrets. Steven Robinson
http://www.securityfocus.com/infocus/1669 (04/2/03)

64.U.S. Information Security Law, Part two: Protecting Private
Sector Systems and Securing the Working Environment. Steven
Robinson.
URL: http://www.securityfocus.com/infocus/1681 (4/2/03)

65.Issue 13: Kernel Korner: The ELF Object File Format by
Dissection. Posted on Monday, May 01, 1995 by Eric Youngdale
URL: http://www.linuxjournal.com/article.php?sid=1060 (4/6/03)

66.NetWinder ELF Design Notes Pat Bierne, patb@corel.com Revision: 1.3,
Date: 1999/12/07 16:24:04
URL: http://www.netwinder.org/~scottb/notes/Elf-Design-all.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 115

67.Symantec – Norton Antivirus
URL: http://www.symantec.com/ (3/1/03)

68.McAfee Antivirus
URL: http://www.mcafee.com (3/1/03)

69.Loki2 source code.
URL: http://www.hackerproof.org/technotes/backdoors/loki2.tar.gz (2/18/03)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 116

Appendix A.
Sanitizing DASD

Statement of the problem

When a computer hard disk, or DASD (Direct Access Storage Device), is sent to surplus
and then acquired by other agencies and the general public, it likely contains confidential,
personal, or proprietary data and information1.

This paper deals only with sanitizing hard disk drives. The architecture of floppy (5.25 or
3.5) diskettes is such that overwriting is not as effective as with hard disks. Since you
cannot be sure of the history of a floppy (what types of material it has held), all floppy
diskettes should be physically destroyed when no longer needed. Since CDROM disks
cannot be effectively overwritten or erased, and scratching or marring the surface does
not alter the still recoverable material under the surface, all CDROM disks should be
physically destroyed when no longer needed.

Before addressing the effective deletion, or wiping, a hard disk, the basic physical and
logical structure of a hard disk must be understood.

Figure 1 illustrates the surface of a disk platter as concentric rings called tracks, and the
segmentation of tracks into sectors. For the purpose of discussion, we can assume that
each sector can hold 512 bytes. A byte is 8 binary digits, or bits, which together represent
the code for a specific alphanumeric or special character.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 117

Figure 1 11

In order to make a physical hard disk useable, a partition table is created which defines
one or more partition on the disk. Figure 2 helps illustrate that a partition is a collection
of cylinders that the disk driving software and operating system present to the computer
user as a disk drive such as C:\, D:\, and so on. If you wipe the contents of one partition
you will not have wiped the partition table, master boot record, other partition. To
address comprehensive disk wiping, the entire surface of the disk, not just a subset (a
partition) that represents a portion of the disk.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 118

Figure 2 12

Part of the nature of DASD architecture is that material2 that is “deleted” is not actually
destroyed, but is instead abandoned. Deleting a file simply flags those portions of the disk
that store the file as available to store any other digital material. The actual content of the
deleted file remains untouched until another file is written to that same location on the
disk, overwriting the deleted material. This is like turning to a book’s table of contents
and erasing the line that lists chapter nine’s title and page number. All that has been
altered is the table of contents, no the pages of the actual chapter.

Since subsequent access to “deleted” material is trivial, ineffectively wiped 3 hard disks
create a significant risk to material that the state is obligated to manage and protect. This
includes question of exposure to litigation, and violation of HIPAA standards, along with
potential damage to public’s trust.

Today there are many commonly held misunderstandings about how to wipe a disk so
that its contents are irrecoverable. For example;

• reformatting a disk destroys all the digital material is storing
• low-level formatting a disk will destroy its contents
• emptying and windows recycle bin, clearing logs, and deleting the contents of a

file and re-saving it as an empty file will destroy a file.
do not impede later access to this same material.

In fact, reformatting a disk only alters its “table of contents” and not the actual material
stored on the disk. While there are many references to “low-level formatting” on the web
and in manuals, an actual low-level format is usually an option only to disk manufactures.
Think of a hard disk as a bookshelf. You can rearrange the books as often as you want,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 119

and in any order you want. But this does not change the basic structure of the bookshelf.
Reformatting rearranges the books, while a low-level format puts the shelves in place.

Faced with this problem, state agencies need a solution that;

1. effectively reduces the risk that digital material leaves the control of the owning
agency to an acceptable level,

2. is inexpensive in purchase cost, required man hours, and use, and
3. is reasonable easy to perform.

To address the first requirement, the application of well tested techniques that make the
retrieving of previous material impractical. Note that it is generally accepted that given
enough money, time, expertise, and desire any deleted material can be retrieved.
However, the goal is to reduce risk to an acceptable level rather than to eliminate the risk,
which is usually impossible. The same principal can be seen in passwords. Any password
can be cracked, given enough time and resources. The goal is to make the effort of
cracking a password (or un-deleting a file) impractical due to the expense and time
required. At that point, the few (people, nations…) who could consider making the huge
investments necessary would use much less expensive techniques such as stealing the
computer before you could delete your files.

To address the second requirement, this paper addresses the use of publicly available free
software. While there are many products available that address this problem, they differ
primarily in the range of options, reports, and techniques presented through a graphical
interface.

Overview of the process

In developing this paper, several approaches were considered. While personally having
practiced several methods of securely deleting digital material, most require an extensive
understanding of hardware, software, and programming. This violates the third
requirement.

So, attempts were made to automate several of these techniques. However, this created a
catch-22 where there was then a need to be familiar with the components that “do” the
automation.

Fortunately, a tool (Darik's Boot and Nuke, or "DBAN") was found that automates the
best of these tools and techniques, satisfying the three requirements (effectiveness, low-
cost, and ease of use).

After illustrating the use of DBAN, I will illustrate the use of some of these other
individual tools and techniques. Of specific interest will be the use of dd to examine
portions of a “wiped” disk to verify the effectiveness of the wipe process.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 120

Details of the process

This paper recommends the use of DBAN, a freeware floppy diskette Linux distribution
that automates the process of DASD discovery and the use of wipe to destructively
overwrite the entire surface of hard disks.

Note that when finished, the wiped disk will no longer contain a partition table or
operating system. In order to boot from, or use, the wiped disk, it must first be
repartitioned and an operating system installed. The wipe process does not damage the
disk in anyway, it simply removers everything! So while the slate has been completely
wiped clean, it is still a perfectly good slate read for reuse.

Detailed walk-through of the process

The DBAN tool available at http://sourceforge.net/projects/dban/

As stated on the DBAN website;

Darik's Boot and Nuke ("DBAN") is a self-contained
boot floppy that securely wipes the hard disks of
most computers. DBAN will automatically and
completely delete the contents of any hard disk
that it can detect, which makes it an appropriate
utility for bulk or emergency data destruction.

1. Download dban-0.4.0_i386.zip from http://sourceforge.net/projects/dban/ into an
empty directory on your local system.

2. Unzip dban-0.4.0_i386.zip. This will produce the following files;

C:\dbr\dban-0.4.0_i386>dir
 Volume in drive C has no label.
 Volume Serial Number is 3CBD-2ACD

 Directory of C:\dbr\dban-0.4.0_i386

02/27/2003 09:50 PM <DIR> .
02/27/2003 09:50 PM <DIR> ..
10/30/2002 04:48 PM 3,920 changelog.txt
02/27/2003 09:50 PM <DIR> config
10/30/2002 04:48 PM 103 Darik's Boot and Nuke.url
10/30/2002 04:48 PM 1,474,560 dban-0.4.0_i386.img
10/30/2002 04:48 PM 1,152 install.bat
02/27/2003 09:50 PM <DIR> licenses
10/30/2002 04:48 PM 1,016 notes.txt
10/30/2002 04:48 PM 17,863 rawrite2.exe
10/30/2002 04:48 PM 3,197 readme.txt
10/30/2002 04:48 PM 3,411 wipe.txt
 8 File(s) 1,505,222 bytes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 121

3. Read the readme.txt file listed above. The readme.txt file contains clear
instructions for creating a bootable floppy copy of the DBAN tool.

4. Place a blank floppy diskette in the floppy drive and run the install.bat script
shown above. This batch file will place the DBAN system onto the floppy is a
particular way. You cannot simply copy these file onto a floppy, they have to be
placed on the floppy using the rawrite2.exe program also listed above.

5. Place your new DBAN diskette in the diskette drive of a system whose hard
disk(s) you want to actually wipe.

6. Power on the machine to be wiped. Rather than loading from its hard disk, it will
read the DBAN floppy and boot a small copy of Linux under which the wipe
process will run.

7. Depending on the size and speed of the hard disk, the DBAN process will usually
take several hours. The machine can be left unattended during this time.

8. When the process is finished, the machine can be powered off and released. Note
that since the entire disk has been wiped clean, it no longer contains an operating
system or partition table. So if you reboot from the wiped hard disk, the BIOS
will complain in a variety of ways. To make the hard disk usable again, you will
need to boot from a removable disk (floppy or CD) and repartition the disk, and
then load an operating system.

Other tools and techniques

1. Download a copy of Trinux from http://trinux.sourceforge.net/ You will want the
IDE version for running on a desktop, and the PCMCIA version for laptops. Also
download the wipe.tgz package from http://trinux.sourceforge.net/pkg/

2. Following the instructions, build a bootable copy of the Trinux operating system.
3. After the Trinux floppy is built, copy the wipe.tgz file to the root of that floppy.
4. Boot with Trinux floppy. The boot process may take several minutes, especially

when performing the DHCP initialization tasks.
5. When prompted for a “package diskette”, type “Y” (without the quote marks) and

allow the boot process to continue reading from the boot floppy. You should see
the wipe.tgz package being loaded.

6. When prompted for “another package diskette”, type “N” (without the quote
marks) and let the boot process continue.

7. At the console prompt, enter the command “ls” and note any folder named
“hd…” or “sd…”. For example; hdb2, hda1, sda4, sdb2… These are the disks and
partitions 8 that Trinux has recognized.

8. Enter the command “fdisk –l”. This will identify the drives and partitions
recognized.

9. Wipe (destructively overwrite) the entire surface of the physical disk. An example
of running the dd command, or the wipe program;

for n in `seq 7`; do dd if=/dev/urandom of=/hda1; done

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 122

wipe -C 512 /dev/hdb2

10. If you want to recreate a partition on the wiped disk, there are many ways and
tools available. For example; you can use the DOS fdisk program, an operating
system install disk, or the following Linux command;

sfdisk --force --no-reread /dev/hdb1 < input.file

The input.file contents the following line;
 0,,83,*

11. With the disk repartitioned, you can then format the partition(s) into a file system
such as DOS, NTFS, ext2, and ext3.

Verifying the results of the process

Once you have wiped a hard disk, you may want to verify for yourself that the material
on the disk has been effectively overwritten.

Use dd to read a sector before wiping, and then the same after wiping. Compare the two.
You can also use dd to “browse” the disk sector by sector inspecting the contents.

In the example below, dd will access disk hdb and pull one block of 512 bytes beginning
at 9999 * 512 bytes from the beginning of the disk. This block will be dumped to the
screen.

dd if=/dev/hdb bs=512 count=1 skip=999

In this next example dd accesses the hda disk beginning 512 * 50 bytes from the
beginning of the disk and will pull 512 * 2 bytes out and save them to the test.bin file for
review.

dd if=/dev/hda of=/test.bin bs=512 count=2 skip=50

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 123

References

1. There is a difference between data and information. Data is one or more recorded
symbols or markings that is not presented in context. Information is data put into
context. For example, the data “40601” is meaningless without a context. Then
put into the context of “zip codes”, that data meaningful.

2. Material is a general term describing the contents of digital storage. Examples of
material include; a computer file, a specific section of a computer disk, any
portion of a computer file.

3. The terms wiping, scrubbing, and sanitizing a hard disk referrers to the process of
destructively overwriting the entire disk surface, replacing all material with
different material. Effective wiping refers to writing repetitious patterns of
specific binary values to the entire disk surface so as to make irrecoverable, in
practical terms, the original material. See Peter Gutmann’s paper Secure Deletion
of Data from Magnetic and Solid-State Memory7 for a detailed description of the
patterns and their repetitions that are most effective for destructively overwriting
digital material.

4. Trinux; “Trinux is a ramdisk-based Linux distribution that boots from a single
floppy or CD-ROM, loads it packages from an HTTP/FTP server, a
FAT/NTFS/ISO file system, or additional floppies.”
URL: http://trinux.sourceforge.net/

5. What You Don’t See On Your Hard Drive Brian Kuepper, April 4, 2002. SANS
Reading Room.
URL: http://rr.sans.org/incident/don’t_see.php

6. Secure File Deletion, Fact or Fiction? John R. Mallery. July 16, 2001. SANS
Reading Room..
URL: http://rr.sans.org/incident/deletion.php

7. Peter Gutmann; Secure Deletion of Data from Magnetic and Solid-State Memory
URL: www.cs.auckland.ac.nz/~pgut001/secure_del.html

8. DBAN; “Darik's Boot and Nuke”
URL: http://dban.sourceforge.net/

9. wipe - Secure Deletion Tool
URL: http://wipe.sourceforge.net/

10. Linux Disks and Partitions
URL: http://www.mandrakeuser.org/docs/mdoc/user/install-part-naming.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 124

11. image hd-schematic.gif
URL: http://www.linuxvalley.it/encyclopedia/ldp/guide/sag/x754.html

12. image; img23.png
URL: http://www.linuxman.com.cy/rute/node22.html

