
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa


	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

 

Grow Your Own Forensic Tools: A Taxonomy of 

Python Libraries Helpful for Forensic Analysis 

GIAC (GCFA) Gold Certification 

Author: T.J. OConnor, terrence.oconnor@usma.edu 

Advisor: Don Weber 

Accepted: April 1st, 2010 

Abstract 

Python, a high-level language, provides an outstanding interface for forensic 

analysts to write scripts to examine evidence. Python is the driving language for several 

current open-source forensic analysis projects from Volatility, for memory analysis to 

libPST for abstracting the process of examining email. This paper provides a taxonomy 

of the different forensics libraries and examples of code that a forensic analyst can 

quickly generate using Python to further examine evidence.  



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 2 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

1. Introduction 
Forensics tools exist in abundance on the Web. Want to find a tool to dump the 

Windows SAM database out of volatile memory? Google and you will quickly find out 

that it exists. Want to mount and examine the contents of an iPhone backup? A tool exists 

to solve that problem as well. But what happens when a tool does not already exist? 

Anyone who has recently performed a forensic investigation knows that you are often left 

with a sense of frustration, knowing data existed only you had a tool that could access it. 

In response, we present this paper on a taxonomy of Python libraries to support 

forensic analysis. In the following sections, we examine how you can grow your own 

tools in-house to solve specific problems. Want to search for Cisco VPN Configuration 

files and crack them? Want to plot imagery metadata geo-location information on a 

Google map? What about your own custom Windows Registry analysis tool? Specific 

analysis of malware or network dumps? In the following sections, we will write tools to 

accomplish all of this.  

The high-level language Python has a omnipotence of modules and libraries, 

several of which can help us develop forensic tools. In this paper, we will examine how 

we can quickly put together tools for specific forensic investigations. In the following 

sections, we will take a look at using Python when working with encrypted files, 

extracting metadata, examining windows artifacts, tracking Web and email usage, foot-

printing applications, carving artifacts from volatile memory, carving file systems, and 

analyzing network traffic.  

 

2. Python for Forensic Analysis 
!
2.1 Introduction to Python Modules 
!

The Python programming language is a high-level, general-purpose language with 

clear syntax and a comprehensive standard library. Often referred to as a scripting 

language, security experts have singled out Python as a language to develop information 

security toolkits. The modular design, human-readable code, and fully developed suite of 

libraries provide a starting point for security researchers and experts to build tools. 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 3 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

By default, Python comes with an extensive standard library which provides 

everything from built-in modules providing access to simple I/O to platform-specific API 

calls. The beauty of Python is user-contributed individual modules, packages, and 

frameworks. Several of these user-default and user-contributed libraries, modules, 

packages, and frameworks can assist forensic analysts with building tools to accomplish 

interesting tasks. In the following sections, we will look at how a forensic analyst can use 

these tools to aid in investigations. 

2.2 Crypto, Hash, and Conversion Functions 
Let’s begin by solving a very simple problem. Occasionally in the course of an 

investigation we run into encryption, where a target attempts to hide information. ROT-

13 provides a very simple method a target may use to hide information. Yes, our targets 

may use much more complex algorithms to encrypt information, but Python also provides 

libraries for those algorithms, as you will see shortly. We will first use ROT-13, though, 

so we can get an understanding of how Python works.  

The ROT-13 cipher is a simple cipher that substitutes each alphabetic character 

with the letter thirteen places further along, wrapping back if necessary, so the letter O 

becomes B, the letter P becomes C, etc. Encoding and decoding a ROT-13 cipher is 

relatively easy. The Python string library contains a function called maketrans that 

substitutes one character for another. Thus, we can declare a new function, ROT13 that 

performs ROT-13 cipher, as shown in Figure 1. 
ROT13 = string.maketrans('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ', 
'nopqrstuvwxyzabcdefghijklmNOPQRSTUVWXYZABCDEFGHIJKLM')  
 
Figure 1. Function for encoding/decoding ROT-13. 

In our script, we open all the files with the extension .txt on a target computer and 

run ROT-13 against each line of those files. After translating each line’s ROT-13 

encoding, we can check to see if the line now contains any legitimate words from a file of 

dictionary words. If it does, we will print a message that we found an ROT-13-encoded 

message. Figure 2 depicts this in a Python script. 

 
import sys, os, string 
 
ROT13 = 
string.maketrans('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ','nopqrstuvwxyz



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 4 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

abcdefghijklmNOPQRSTUVWXYZABCDEFGHIJKLM')  
 
dictionaryFile = open("dictionary") 
dictionary = dictionaryFile.readlines() 
  
for root, dir, files in os.walk(str(sys.argv[1])): 
 for file in files: 
  if ".txt" in str(file): 
   foundWord = 0 
   notFound = 0 
   lines = open(file).readlines() 
   for line in lines: 
    translatedLine=line.translate(ROT13) 
    translatedWords=translatedLine.split() 
    for eachWord in translatedWords: 
     if (eachWord+'\n') in dictionary: 
      foundWord=foundWord+1 
     else: 
      notFound = notFound+1 
   if (foundWord > notFound): 
    print file+" may contain ROT-13 encoding." 
Figure 2. ROT-13 detection script. 
 

Yes, the likelihood that you will encounter a ROT-13 cipher on an actual forensic 

investigation is minimal. However, we used the last example to demonstrate a basic 

function of Python. It is also important to understand ROT-13 when decoding elements 

like Windows Registry keys, as we will see later. Let’s examine some of the other 

encryptions and encodings. First, we will build a small Python program to search a target 

machine for Cisco PCF files, which contain the configuration settings for a Cisco IPSEC 

VPN Tunnel.  

These configuration files also contain an interesting line, beginning with either 

enc_GroupPwd= or enc_UserPassword=. This line contains the encrypted group or 

user password. Unfortunately, this password is hashed using a relatively weak encryption 

algorithm and can be converted back to the original plaintext password. Other security 

researchers have demonstrated this previously; however, we built a Python library that 

can be imported into your program. LibCiscoCrack provides a function to reverse the 

encrypted passwords back to their plaintext encodings. Having the capability to 

enumerate a file system, looking for PCF files, and the ability to decode passwords, we 

can build a VPN password cracker in Python in less than five minutes, as shown in 

Figure 3. 

 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 5 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

Import os, sys, libCiscoCrack 
 
for root, dir, files in os.walk(str(sys.argv[1])): 
 for file in files: 
     if ".pcf" in file: 
        lines = open(file).readlines() 
        for line in lines: 
            if "password" in line: 
                plainTextPass = libCiscoCrack.crack(line) 
                              print plainTextPass 
Figure 3. Cisco VPN password detection and cracking script. 

 

Finding PCF files on the file system and cracking them is not where it ends. As 

you’ll see throughout the following sections, we can write Python programs to search the 

unallocated file space—the volatile memory. Python provides libraries and modules for 

decoding base64, symmetric key encryption, and hex encoding as well. Converting a 

base64 encoded string to its plaintext equivalent takes three lines of code (see Figure 4). 

 
import base64 
 
msg = raw_input("Enter Base64 Message:") 
print "Decoded Val:"+base64.decodestring(msg) 
Figure 4. Example of Base64 decoding. 
 

Next, imagine a scenario where we have several keys for a symmetric key encryption 

algorithm like DES, and a message we suspect of being encrypted using one of those 

keys. We’ll store each of those candidate keys in a file called “keys.txt.” As you see in 

Figure 5, we can import the pyCrypto library and write a script to exhaustively search 

those keys, decoding our ciphertext message (ciph).1 After decoding the file with a 

different key each time, we’ll count the number of alphanumeric characters to see if there 

is a possible message. If the decoded text contains mostly alphanumeric characters, we 

will print out a message showing the candidate key and what it decodes the message to. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 pyCrypto is a separate module, which must be installed after installing the Python 

standard libraries. For more on installing additional modules or libraries, see the 

documentation on the Python Web site: http://docs.python.org/install/ 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 6 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

import base64, string 
from Crypto.Cipher import DES 
THRESH = 0.9 
 
keyFile = open("keys.txt") 
keys = keyFile.readlines() 
ciph=base64.decodestring("cG0okyHpOAADuNLv8bRpxpyZeU8kMA2kWV2zoV+YUos=") 
 
for key in keys: 
    obj=DES.new(key[0:8], DES.MODE_ECB)         
    decodedStr=obj.decrypt(ciph) 
    foundLetters = 0 
    for eachChar in decodedStr: 
        if eachChar.isalpha() or eachChar.isdigit()\ 
        or eachChar.isspace(): 
            foundLetters = foundLetters+1 
    if (float(foundLetters)/float(len(decodedStr)) > THRESH): 
        print "DES(ciphertext,"+key[0:8]+")="+decodedStr 
Figure 5. Example of symmetric key decryption. 

 

Now we have our own DES brute-force cracking engine in fewer than 20 lines of 

code. Sure, some might argue that Python runs rather slow, as it is interpreted: Psyco 

might help in that situation (Psyco, 2010). Psyco is a Python extension that significantly 

speeds up the execution of code. Relatively easy to implement, a coder can simply call 

import psyco and then psyco.full() in the first lines of code. This will force the following 

Python code to use the psyco module and (hopefully) run much faster. 

One tool forensic investigators use to sort through large amounts of data to find 

suspect data for further investigation is a cryptographic hash. Both MD5 and SHA256 are 

great choices for implementing a hash. Inputting an executable picture, or media file into 

a hash algorithm results in a relatively shorter string that uniquely identifies that file. 

Databases of hashes exist for known benign software, known malicious programs, 

emerging threats, and child pornography. Let’s look at two of those repositories to build a 

homebrew virus-scanning program in Python.  

First, the NIST National Software reference library maintains a list of known 

software. If you are trying to explain whether or not a file should exist on a system under 

investigation, you can query the NIST NSRL to determine if it belongs there. Second, 

Team Cymru maintains a registry of known malware hashes. If you suspect a file 

contains spyware, a Trojan, or malicious code, you can check to see if it is in the malware 

hash registry. The SANS Internet Storm Center provides an interface for querying both 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 7 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

repositories over the DNS protocol. Using Python, we can write a script to scan a file 

system, submitting files to the database for comparison. For those files that hit on the 

Malware Hash Registry, we’ll print the information. Figure 6 shows this exact program, 

written by a student of mine, Kevin Cullberg (2010), in less than 30 lines of code.  
import os, hashlib, sys, socket, string 
 
for root, dir, files in os.walk(str(sys.argv[1])): 
 for fp in files: 
  try: 
   # open a file and calculate the md5 hash 
   fn = root+fp 
   infile = open(fn, "rb") 
   content = infile.read() 
   infile.close() 
   m = hashlib.md5() 
   m.update(content) 
   hash = m.hexdigest() 
   # send the md5 hash the Team Cmuru for inspection 
   mhr = socket.socket(socket.AF_INET,\     
                        socket.SOCK_STREAM) 
   mhr.connect(("hash.cymru.com", 43)) 
   mhr.send(str(hash + "\r\n")) 
   response = '' 
   # wait for the response from Team Cymru 
   while True: 
    d = mhr.recv(4096) 
    response += d 
    if d == '': 
     break 
   # if the response is malware - print filename 
   if "NO_DATA" not in response: 
    print "<INFECTED>:"+str(fn) 
  except: 
   pass 
   
Figure 6. A homebrew virus scanner in less than 30 lines of code. 
 

After detecting known malware, a forensic investigator has knowledge of what is 

definitely malicious on a system. But what if an investigator wants to look further at 

benign files? As you’ll see in the next section, there are several libraries that can assist us 

in looking into file metadata, or data that describes data.  

2.3 File Metadata Extraction 
File metadata can prove very useful for an analyst during a forensic investigation: 

it can provide information on who created the file, when it was created, and with what 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 8 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

tool; it can even provide information such as where the file was created. Imagine the 

following scenario: we begin an investigation and find thousands of pictures taken with  
import string,sys,os 
from PIL import Image 
from PIL.ExifTags import TAGS 
 
for root, dir, files in os.walk(str(sys.argv[1])): 
 for fp in files: 
     if ".JPG" in fp.upper(): 
                # open a file and extract exif 
                fn = root+fp 
                try:  
                    i = Image.open(fn) 
                    info = i._getexif() 
                    exif={} 
                    for tag, value in info.items(): 
                        decoded = TAGS.get(tag, tag) 
                        exif[decoded]=value 
                    # from the exif data, extract gps 
                    exifGPS = exif['GPSInfo'] 
                    latData = exifGPS[2] 
                    lonData = exifGPS[4] 
                    # calculate the lat / long 
                    latDeg = latData[0][0] / float(latData[0][1]) 
                    latMin = latData[1][0] / float(latData[1][1]) 
                    latSec = latData[2][0] / float(latData[2][1]) 
                    lonDeg = lonData[0][0] / float(lonData[0][1]) 
                    lonMin = lonData[1][0] / float(lonData[1][1]) 
                    lonSec = lonData[2][0] / float(lonData[2][1]) 
                    # correct the lat/lon based on N/E/W/S 
                    Lat = (latDeg + (latMin + latSec/60.0)/60.0) 
                    if exifGPS[1] == 'S': Lat = Lat * -1  
                    Lon = (lonDeg + (lonMin + lonSec/60.0)/60.0) 
                    if exifGPS[3] == 'W': Lon = Lon * -1 
                    # print file 
                    msg=fn+" located at "+str(Lat)+","+str(Lon) 
                    print msg 
                except: 
                    pass 
Figure 7. Script to extract geo-location information from images. 
 
an iPhone. A Python script can allow us to quickly iterate through those files, plotting 

each location on a Google map. 

To build such a script, let’s start first by importing the Python Image Library 

(PIL). PIL allows us to extract the Exchangeable Image file format (EXIF) data from 

images (Python Imaging Library, n.d.). Among other metadata, EXIF contains the 

latitude and longitude of image files. As you see in Figure 7, we can write a script to 

extract the latitude and longitude for pictures containing geo-location data.  



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 9 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

Next, we’ll use the extracted latitude and longitude coordinates to plot out a 

Google map. Google Maps use the KML file format to display geographic data 

(Apiolaza, 2009). To display our images, we’ll build a KML file that we can 

subsequently import into Google Maps. Figure 8 builds a KML document with the place 

marks of the geo-locations of the images we recently found. 
kmlheader = '<?xml version="1.0" encoding="UTF-8"?>\n'\ 
'<kml xmlns="http://www.opengis.net/kml/2.2">\n' 
 
kml = ( 
   '<Placemark>\n' 
   '<name>%s</name>\n' 
   '<Point>\n' 
   '<coordinates>%6f,%6f</coordinates>\n' 
   '</Point>\n' 
   '</Placemark>\n' 
   '</kml>' 
   ) %(fp,longitude, latitude) 
 
kmldoc = kmlheader + kml 
print kmldoc 
Figure 8. Script to build KML to import into Google Maps. 
 

Running our new script, images2KML.py, against a directory of images results in 

producing a Google map (Figure 9) with plotted points for each image.  

 
Figure 9. Image locations plotted on Google Maps. 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 10 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

After decoding information about the location of files, we may want to look at the 

authors of other file types. pyPDF provides a Python library capable of extracting such 

document information, document merging, splitting, cropping and encrypting and 

decrypting PDF files (Fenniak, 2010). The Document Information Class of PDF can 

return information about the author, creator, producer, subject, or title of a PDF File.  

Looking for files created by a particular author or length? Let’s write a small 

program that will look for PDF files longer than five pages, created by “Dr Evil”. You’ll 

notice that Figure 10 shows how we can import pyPDF in and define a PdfFileReader 

object that reads in each file, checking the title, author, and number of pages. If we pass 

our comparison test, we print the file name and length to the screen. You may also notice 

we suppress warnings and also use a try/except scheme to catch errors. If you try to parse 

through all the documents on a given file system, you will run into plenty of errors. If you 

want to know more about which files cause errors, you could add a print statement in the 

except scheme instead of just passing by; for now, our script helps by automating the 

process of finding some low-hanging forensics fruit. 
import warnings,sys,os,string 
from pyPdf import PdfFileWriter, PdfFileReader 
warnings.filterwarnings("ignore") 
 
for root, dir, files in os.walk(str(sys.argv[1])):  
 for fp in files: 
            if ".pdf" in fp: 
                fn = root+"/"+fp 
                try:  
                    pdfFile = PdfFileReader(file(fn,"rb")) 
                    title = pdfFile.getDocumentInfo().title.upper() 
                    author = pdfFile.getDocumentInfo().author.upper() 
                    pages = pdfFile.getNumPages() 
 
                    if (pages > 5) and ("DR EVIL" in author):              
                        resultStr = "Matched:"+str(fp)+"-"+str(pages) 
 
Figure 10. Metadata extraction from PDF file types. 
 

In addition to multimedia and PDF types, an investigator can find a rich source of 

metadata information inside of Microsoft Office documents. Microsoft Office stores 

information inside Word (DOC), Excel Workbook (XLS), and PowerPoint (PPT) 

presentations in binary format using a basic container structure called OLE2, which can 

contain information about everything from the author to the embedded pictures inside the 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 11 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

document. Now, let’s see how we can use the OLE2 format to help a forensic 

investigation.  

Imagine a scenario where we suspect a user has downloaded a Microsoft Office 

document that has embedded VBA macros. The macros caused damage to the 

compromised system, so we want to identify the document that caused the problem and 

reverse-engineer it. We can use the OleFileIO_PL library to read the Microsoft OLE 

streams from files, detecting those that have “macro/vba” in their OLE data (see Figure 

11). Notice that we use the except/pass to walk right over files that raise an error for 

either not being an OLE2 file type or that contain no OLE2 streams. This allows us to 

find Microsoft OLE files missing a Microsoft Office extension.  
 
import OleFileIO_PL,os,sys,string 
 
for root, dir, files in os.walk(str(sys.argv[1])):  
 for fp in files: 
                fn = root+fp 
                try: 
                    ole = OleFileIO_PL.OleFileIO(fn) 
                    if ole.exists('macros/vba'): 
                        print fn+":"+" contains vba macros." 
                except: 
                    pass 
Figure 11. Metadata extraction from OLE2 (MS Office) file types. 
 

After a thorough examination of metadata contained in files, we may want to look 

deeper inside the Operating System internals of our target. In the next section, we will 

provide tools for examining the configuration and settings inside the Windows Operating 

System. 

2.4 Examining Microsoft Artifacts 
The Windows Registry stores configuration settings and options in a hierarchical 

database on the Microsoft Windows Operating System. The Registry provides a 

forensically rich environment, containing everything from the wireless keys for WPA-

PSK to AutoComplete Passwords in Internet Explorer to a list of recently opened 

documents and programs (Carvey, 2007). Specific applications stored their own registry 

keys as well, making endless possibilities of locations to check. 

Depending upon the environment, an analyst can access the Registry via a series 

of built-in tools such as REGEDIT or REGEDIT32. The Windows Powershell also 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 12 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

provides a powerful interface for grabbing registry keys. But what if you want to access a 

Windows Registry during offline analysis inside a forensic distribution such as SIFT, 

DEFT, or HELIX?  

The RunMRU keu provides an interesting key inside the Windows Registry. It 

shows all the recently run commands from the start menu. Figure 12 shows how to pull 

the values out of this key and display them on the screen. Notice that we first open a 

winreg key, then enumerate through the list of values for the key. Each value is printed to 

the screen. 
import _winreg 
 
RunMRUKey = _winreg.OpenKey( 
    _winreg.HKEY_CURRENT_USER, 
    "Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\RunMRU") 
 
try: 
    i = 0 
    while 1: 
        name, value, type = _winreg.EnumValue(RunMRUKey, i) 
        print name+":"+value 
        i += 1 
except WindowsError: 
    print 
Figure 12. Examining windows registry keys using Python. 
 

In addition to the Registry, the Windows operating system family has several 

unique forensic artifacts. Several python based-tools exist to analyze these artifacts. An 

example of a tool constructed entirely in Python to solve a Windows forensic problem is 

Vinetto (Monniez, 2010). Vinetto is a forensic tool to examine a Thumbs.db file from the 

command line: this can be useful for a forensic investigator performing an investigation. 

Vinetto can display metadata contained within a Thumbs.db file, extract the related 

thumbnails and place them in a directory, or produce an html report. Figure 13 depicts the 

results of running Vinetto against a Thumbs.db file to produce images. 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 13 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

 
Figure 13. Sample output from Vinetto. 

2.5 *NIX Artifacts 
PyUTMP module provides a Python-oriented interface to the utmp file on the 

Unix operating system (Clapper, 2010). The utmp file provides information about which 

users are currently logged onto a system. However, the utmp structure is binary and 

cannot be read by a simple text editor: rather, each Operating System (Solaris, Unix, 

Linux) provides a series of tools for reading the binary structure.  

Image a scenario where you must perform forensics on a live Linux system. You 

suspect that the standard binaries for displaying utmp information have been 

compromised by application-level root-kits and you want to read information in the utmp 

binary using a script. Further forensic analysis leads you to believe that the application-

level root-kit was installed the week of June 20th, 2010. Figure 14 shows how we can 

detect the users who logged into our system the week of June 20th, bypassing using 

standard binaries that may have been compromised in the initial attack. 

 

 

 

 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 14 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

import time 
from pyutmp import UtmpFile 
 
start = time.mktime(time.strptime("12:00-20.06.2010","%H:%M-%d.%m.%Y")) 
end = time.mktime(time.strptime("12:00-27.06.2010","%H:%M-%d.%m.%Y")) 
 
for utmp in UtmpFile(): 
 checkTime = time.ctime(utmp.ut_time) 
 if start < utmp.ut_time < end and\ 
  utmp.ut_user_process: 
   print '%s logged in at %s' % (utmp.ut_user,\  
                        time.ctime(utmp.ut_time)) 
  
Figure 14. Example script to read the UTMP binary on a Unix system.  
 
2.6 Tracking Email and Web Client Usage 

Interfacing with Web and email clients can assist in a forensic investigation. A 

case might exist where you find the credentials for a pop email account and wish to 

investigate further. The account contains thousands of messages that must be filtered 

against a massive set of keywords already established in your investigation. 
import poplib 
from email import parser 
 
keyWordFile = open("keywords.txt") 
keyWords = keyWordFile.readlines() 
 
pop_conn = poplib.POP3_SSL('pop.gmail.com') 
pop_conn.user('username') 
pop_conn.pass_('password') 
messages = [pop_conn.retr(i) for i in range(1, len(pop_conn.list()[1]) + 1)] 
messages = ["\n".join(mssg[1]) for mssg in messages] 
messages = [parser.Parser().parsestr(mssg) for mssg in messages] 
pop_conn.quit() 
 
for message in messages:  
    for keyWord in keyWords: 
     if keyWord in message['subject']: 
           print message['subject'] 
Figure 15. Email/web example. 
 

Python presents a library capable of both connecting to the pop server using 

poplib and parsing the messages using the parser package from the email module. In the 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 15 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

example above (Figure 15),2 we demonstrate how to connect to a pop server, dump the 

messages in their entirety and parse them against a list of keywords from the file 

keywords.txt.  

2.7 Footprinting Applications 
Windows uses the Portable Executable (PE) file format for executable code object 

code and Dynamic Link Libraries (DLLS). Using a combination of two libraries, PEFile 

(Carrera, 2006a) and PYDASM (Carrera, 2006b), we can build a small disassembler. 

This can help a forensic analyst to determine if a program loaded the address of a 

particular system call, for example the syscall, to bind a network socket (Seitz, 2009). 

A few years back the SPYLOCKED Trojan caused quite a bit of damage. 

SPYLOCKD downloaded a Trojan DLL and Executable to a computer and then notified 

the user that virus protection had expired and needed to be upgraded. If the user clicked 

and upgraded the virus protection, he/she further infected the box with malware. Almost 

immediately after the attack, anti-virus vendors created a signature for the malicious DLL 

that the application hooked to. Finding the DLL and deleting it from the system corrected 

the issue.  

But what if you wanted to know which pieces of new executable code on your 

system hooked to that DLL? Enter PEFile. We can write a quick Python script using the 

PEFile library to scan all executables in Figure 16, looking at which DLLs they are 

hooked to and printing out any executables that hook to “SPLOCKD.DLL.” We will also 

print out the other DLLS and IMPORTS used by the malicious executable for further 

analysis. 
import pefile,sys,os,sys 
 
for root, dir, files in os.walk(str(sys.argv[1])):  
 for fp in files: 
            if ".exe" in fp: 
                try:                      
                    pe = pefile.PE(root+"/"+fp) 
                    for entry in pe.DIRECTORY_ENTRY_IMPORT:                         
                        if "SPYLOCKD.dll" in entry.dll: 
                            print fp+" hooked to SPYLOCKD." 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 This example is based an anonymous post on the Stack Overflow Web site: http:// 

stackoverflow.com/questions/1225586/checking-email-with-python 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 16 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

                except: 
                    #no linked DLLs - passing 

                    pass 
Figure 16. Displaying DLLs linked from a Windows portable executable. 
 
2.8 Cracking Encryption and Steganography 

So far we’ve used some forensic-tailored Python libraries. However, our creation 

of forensic analysis tools is not limited to forensic libraries only. We can use standard 

Python modules and libraries to perform our analysis. Consider the example of a system 

where we find several password-encrypted zip files that we want to try to crack against a 

  
import zipfile 
  
zFile = open(sys.argv[1],”r”) 
passFile = open(sys.argv[2],”r”) 
passwords = passFile.readlines() 
 
for password in passwords: 
        try: 
               for info in zfile.infolist():    
                       fname = info.filename          
                       print "trying..."+str(password) 
                       data = zfile.read(fname,str(password)) 
                       print “password found:"+str(password)) 
                       break 
        except Exception, e: 
               print e 

               if ('Bad password') in e: pass  
 
Figure 17. Brute-force cracking zip files using Python. 
 
custom word list of passwords. We can use the default module for handling zip files.  

For encrypted or password-protected zip files, the zip-file module provides a 

function call to extract files. When called with the wrong password, the function raises an 

error. That certainly helps us, as we can enumerate down a list, continuing on if we raise 

an error and only exiting when our script passes the correct password to decode. Figure 

17 shows an example for a custom zip file password cracker. 

If we wanted to get fancy, we could combine this with other tools, such as 

dumping all the ASCII or UNICODE strings in volatile memory, hoping that memory 

might have the contents of a recently used password on the system. Volatile memory, as 

you’ll see in the next section, can prove very useful in a forensic investigation. 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 17 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

2.9 Carving Volatile Memory: Volatility 
Analyzing the contents of volatile memory (RAM) to find digital artifacts can 

give an investigator insight into the current state of a system. Volatile memory analysis 

can enable an investigator to discover open network connections, recently used 

passwords, deleted files, the process table, or even the contents of the Windows registry. 

However, carving those artifacts out of memory can be a rather challenging task. Enter 

Volatility. 

Volatility is currently one of the largest open-source projects for digital forensics, 

with a growing repository of code samples (Walters, 2010). The project provides a 

framework of Python libraries for extracting digital artifacts from volatile memory. 

Because the toolkit acts as a framework, it abstracts away the underlying operating 

system. This enables an investigator to build independent Operating System tools to 

examine the contents of the memory.  

The structure of Volatility allows investigators to develop modules for extracting 

specific information out of RAM. By default, the framework comes with plug-in modules 

to: 

• Print the list of open connections and scan for connection objects 

• Print a list of loaded dlls for each process 

• Dump crash dump information and convert it to a raw dump 

• Show the files open for each process and dump processes to executable 

• Identify image properties, including data, time and location 

• Print a list of registry keys for each process found in the process table 

The authors of Volatility created the code to be extensible: thus, several investigators 

have extended the Volatility framework by building third-party plug-in modules. Some of 

the more interesting plug-in modules include: 

• CryptoScan – Finds TrueCrypt passphrases. 

• Suspicious – Finds “suspicious” processes. 

• Keyboardbuffer – Extracts keyboard buffer used by the BIOS. 

• Getsids – Get information about what user (SID) started processes. 

Extending Volatility for your own purposes is relatively easy. To start, download 

Volatility from the distribution site and create a new file in the memory_plugins 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 18 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

directory. You can call the file whatever you wish. In our example, we will extract the 

running processes from a memory dump. This example is an abbreviated form of the 

examples included by the author, Aaron Walters (2010).  

In Figure 18, you will notice we have to declare a class for our new plug-in and 

define both help(self) and execute(self) methods. In our execute method, we use the built-

in function process_list() to dump the process list, we then iterate through the process list, 

printing the process name and process id for each process found in volatile memory. 

 
from vutils import * 
from forensics.win32.tasks import * 
 
class getPids(forensics.commands.command): 
         
    def help(self): 
        return  "Print list running processes" 
 
    def execute(self): 
 
 (addr_space, symtab, types) = \ 
          load_and_identify_image(self.op, self.opts) 
        all_tasks = process_list(addr_space,types,symtab) 
        print "%-20s %-6s" %('Name','Pid') 
 
        for task in all_tasks: 
            if not addr_space.is_valid_address(task): continue 
            image_file_name = \ 
               process_imagename(addr_space, types, task) 
             process_id = process_pid(addr_space,types,task) 

    print "%-20s %-6d" % (image_file_name, process_id) 
 
Figure 18. Volatility example. 
 
2.10 Analyzing Network Traffic: Scapy 

The Scapy toolkit is a powerful packet-manipulation program, capable of 

decoding a wide variety of protocols (Biondi, 2010). The supported protocols include IP, 

TCP, UDP, ICMP, 802.11, and even Bluetooth. Scapy differs from standard tools by 

providing an investigator the ability to write small Python scripts that can investigate 

network traffic. An investigator can write Scapy scripts to investigate either real-time 

traffic by sniffing a promiscuous network interface, or load previously captured pcap 

files. Furthermore, the Scapy developers included the ability to perform deep-packet 

dissection, passive OS fingerprinting, or plotting via third-party tools like GnuPlot.  



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 19 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

What is really exciting is that an investigator can write four lines of a Scapy 

program to do what used to take hundreds of lines of C code or multiple-command 

switches in tcpdump. The capabilities for an investigator to investigate traffic are endless: 

make a graph of network destinations, count the number of 802.11 deauth packets in a 

time period to detect an attack, or make a table of the IP IDENT fields to detect covert 

TCP packets.  

Let’s examine a situation where an investigator may want to record statistics 

about the geo-location of the IP address source and destination. After importing Scapy, 

we’ll call the function sniff in our main() procedure. We can use a filter to detect only IP 

packets and then pass those packets with an IP layer to a subsequent function we define, 

called prnPkt. The subsequent function looks up the geo-location information for the 

source and destination based on the IP address fields extracted from each packet.  
 
import scapy, GeoIP 
from scapy import * 
 
gi = GeoIP.new(GeoIP.GEOIP_MEMORY_CACHE) 
 
def prnPkt(pkt): 
 src=pkt.getlayer(IP).src 
 dst=pkt.getlayer(IP).dst 
 srcCo = gi.country_code_by_addr(src) 
 dstCo = gi.country_code_by_addr(dst) 
 print srcCo+">>"+dstCo 
 
try: 
 while True: 
            sniff(filter="ip",prn=prnPkt,store=0) 
except KeyboardInterrupt: 

 print "\nExiting.\n" 
Figure 19. Packet-sniffing using Scapy. 
 
2.11 Stand-Alone Python Tools 

AnalyzeMFT is a stand-alone Python script designed to fully parse the Master 

File Table (MFT) from an NTFS file system and present the results in human-readable 

format (Kovar, 2010). AnalyzeMFT is constructed entirely in Python and for each MFT 

record can record if the entry is valid, type of record, parent folder record and sequence, 

standard information attributes, file name records, object IDs, birth Volume ID, Domain, 

flags and notes. AnalyzeMFT differs from some of the other Python libraries and 

modules that we have reviewed in the fact that it is a stand-alone script. However, it 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 20 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

provides an excellent example of how an investigator can use the Python programming 

language to build a comprehensive toolkit to solve a forensic problem. 

Another toolkit created entirely in Python to solve forensics problems is the 

pyFlag (Forensics and Log Analysis GUI) project. pyFlag provides an advanced forensic 

tool for the analysis of large volumes of log files for forensic investigators (Cohen, n.d.). 

The current version of pyFlag includes the following features: 

• Network Forensics – analyzes network captures in TCPDump format. 

• Log Analysis – capable of reading many log formats and multiple methods for 

querying log data. 

• Disk Forensics – supports a large number of file formats, carving techniques, and 

hard disk drive analysis. 

• Memory Forensics – based on the Volatility Framework, can perform limited 

analysis of volatile memory. 

 
Figure 20. Screenshot of pyFlag forensic tool. 

 

3 Conclusions 
! !!

In this paper we examined using Python to perform a variety of forensic 

collection and analysis tasks. We demonstrated using Python to work with encrypted 

files, to extract metadata, to examine windows artifacts, to track Web and email usage, to 

foot print applications, to carve artifacts from volatile memory, to carve file systems, and 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 21 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

to analyze network traffic. Additionally, this paper introduced some stand-alone toolkits 

built entirely in Python. Python proves an excellent language for creating tools for 

forensic analysis because of its easy-to-understand pseudo-code like syntax and 

abundance of standard libraries and thirty-party libraries and modules.  

 

In the preceding sections we presented an abundance of these third-party libraries 

and modules used to create tools to analyze specific forensic problems. Although this 

paper has addressed and introduced several libraries for forensic analysis, it is no way 

conclusive. Appendix A records some of the tools we have discussed in the course of this 

paper as well as other useful libraries and modules for writing forensic scripts. However, 

everyday new libraries are added to the Python standard distribution and third-party 

libraries continue to grow in abundance as well. Several libraries such as libForensics and 

Volatility have begun implementing Python frameworks for development of further tools 

for specific niches of forensic analysis. Learning to import these libraries and write code 

for future forensic investigation can prove a rather useful tool in the overall development 

of a forensic investigator.  

We have considered several of the advantages of writing custom Python tools for 

forensic analysis. Primarily, it gives investigators the ability to solve novel problems. 

Additionally, it gives the investigator the confidence to clearly articulate how the tool has 

manipulated working or actual copies of the data during the course of an investigation. 

Next, it can reduce the actual amount of time required to perform analysis by restricting 

the tool to the specific data we are attempting to extract, interpret, and analyze instead of 

relying on the full functionality of an all-encompassing forensics suite.   

In conclusion, Python proves a rather useful tool in a forensic analyst’s arsenal 

considering the relative ease it takes to create simple Python scripts, the abundance of 

libraries, and the constant necessity for forensic investigators to solve novel problems to 

acquire, interpret and analyze data. If you are not writing scripts to assist in your forensic 

investigations already, we definitely encourage you to begin now.   

 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 22 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

4. References 
Apiolaza, L. (2009, February 1). Generating dynamic Google maps with Python. 

Retrieved from http://quantum.uncronopio.org/ 

Biondi, P. (2010). Scapy – Powerful Packet Manipulation Program. Retrieved from 

http://www.secdev.org/projects/scapy/ 

Carrera, E. (2006a). PEFILE – a Python module to read and work with PE (Portable 

Executable) files. Retrieved from http://www.pythonware.com/products/pil/ 

Carrera, E. (2006b). Pydasm: Introduction. Retrieved from http://dkbza.org/pydasm.html 

Carvey, H. (2007). Windows forensic analysis. Burlington, MA: Syngress Publishing, 

Inc. 

Clapper, B. (2010). PyUTMP—Python interface to Unix utmp. Retrieved from http:// 

bmc.github.com/pyutmp/ 

Cohen, M. (n.d.) PyFlag – Python Forensic Log Analysis GUI. Retrieved from http:// 

www.pyflag.net 

Cullberg, Kevin (2010). Homebrew virus scanner. CS485F Course Web site. West Point, 

NY. Retrieved from http://www-internal.eecs.usma.edu/CS485F 

Fenniak, M. (2010). PyPdf. Retrieved from http://pybrary.net/pyPdf/ 

Kovar, D. (2010). AnalyzeMFT — A Python tool to deconstruct the Windows NTFS 

$MFT file. Retrieved from http://www.integriography.com/ 

Monniez, Christophe (2010). Vinetto. Retrieved from http://sourceforge.net/projects/ 

vinetto/ 

Python Imaging Library (PIL). (n.d.). Retrieved from http://wwwc.Pythonware.com/ 

products/pil/ 

Psyco [Web site]. (2010). Retrieved from http://psyco.sourceforge.net/ 

Seitz, J. (2009). Gray Hat Python. San Francisco, CA: No Starch Press. 

Walters, A. (2010). Volatility – Memory Forensics. Retrieved from https://www. 

volatilesystems.com 

 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 23 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

Appendix A – Useful Libraries and Modules For Analysis 
AnalyzeMFT A Python Tool to deconstruct the Windows NTFS $MFT file. 

Available at  http://www.integriography.com/. 

Atlasutils Useful python utilities and scripts. Available at 

http://atlas.r4780y.com/resources/atlasutils-current.tgz. 

Disass-3.0 A Python Library for disassembling executables for anlaysis. 

Available at http://atlas.r4780y.com/resources/disass-3.0-

080424.tgz. 

GrokEVT A collection of scripts built for reading Windows® 

NT/2K/XP/2K3 event log files. Available at 

http://projects.sentinelchicken.org/grokevt/. 

Hashlib A standard Python library responsible for calculating secure 

message digests and hashes.  

LibDisassemble A Python Library for disassembling executables, required for 

PEFile. Available at 

http://atlas.r4780y.com/resources/libdisassemble-2.5-

080424.tgz. 

LibForensics  A Python library for developing digital forensic applications. 

Requires Python 3.1. Available at 

http://code.google.com/p/libforensics/. 

Mount_EWF.PY Allows mounting storage media data in EWF Files. Available 

at http://www.forensicswiki.org/wiki/Libewf. 

PEFile A multi-platform Python module to read and work with 

Portable Executable (aka PE) files. Available at 

http://code.google.com/p/pefile/. 

PIL Python Imaging Library adds image processing capability to 

Python interpreter. Available at 

http://www.Pythonware.com/products/pil/. 

Psyco Python extension which can be applied to speed up execution 

of any Python code. Available at http://psyco.sourceforge.net.. 



	
  

© 2010 The SANS Institute   Author retains full rights.	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Key	
  fingerprint	
  =	
  AF19	
  FA27	
  2F94	
  998D	
  FDB5	
  DE3D	
  F8B5	
  06E4	
  A169	
  4E46	
  

A Taxonomy of Python Libraries Helpful for Forensic Analysis! 24 
!

"#!$%&''&()!*+((+',+-&,&''&(./012-+3/!! !

PyCrypto The Python Cryptography Toolkit. Available at 

http://www.pycrypto.org. 

PyDasm A Python interface to the libdasm, x86 dissembler. Available 

at http://dkbza.org/pydasm.html. 

PyFlag An advanced forensic tool, written in Python, capable of 

analysis of large volumes of log files. Available at 

http://www.pyflag.net. 

PyPDF A Python Toolkit capable of extracting, splitting, merging, 

cropping, and reading metadata from PDF Files. Available at 

http://pybrary.net/pyPdf/. 

PySimReader A Python Toolkit for extracting information from SIM Cards. 

Available at 

http://www.ladyada.net/media/simreader/pySimReader-Serial-

src-v2.zip. 

PyUTMP A Python interface to the Unix UTMP file. Available at 

http://bmc.github.com/pyutmp/. 

Scapy A powerful packet manipulation library, capable of decoding 

several different protocols. Available at 

http://www.secdev.org/projects/scapy/. 

String A Python module from the standard library capable of 

performing a variety of tasks with strings. 

Vinnetto A Python tool capable of extracting thumbnail images and 

their metadata. Available at 

http://sourceforge.net/projects/vinetto/. 

Volatility A complete collection of tools for analysis of artifacts from 

volatile memory. Available at 

https://www.volatilesystems.com/default/volatility. 

ZipFile A standard Python library capable of reading, uncompressing, 

and creating zip compressed files. 

 


