GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensic:
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

Binary Analysis, Forensics and Legal Issues

Michael Wyman

GCFA Version 1.3 Practical
SANS CDI San Antonio TX
January 25-30 2003

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Analysis of an Unknown binary

For the initial analysis, I used a Dell Laptop running the Redhat 7.3 Linux operating system,
kernel version 2.4.18-3. A binary called binary v1.3.zip was downloaded from The Sans
Institute. The zip file was downloaded to a USB flash device commonly known as a "pen drive".
Using a pen drive makes it easier to move the file between computers and operating systems.

To make it even easier to work with the binary, I borrowed a trick from Greg Owen's forensics
practical <http://www.giac.org/practical/Greg Owen GCFA.zip>, and created a file system
within a file, which was mounted using the loop option, making it appear as a hard drive
partition. The noatime option was used in the mount command to ensure that the access times of
the files were not modified. The commands used are shown below:

[Froot@localhost root]4 cd Sent/sdal
[root@localhost =dall# dd if=/dev/zerc of=vault.f=s b==1024 count=5000
a00040 records in

oO00+0 records out

[root@localhost sdall# losetup fdev/loopl vault.fs
[Froot@localhost =dall# mkfs.extd Sdev/loopl

mke2fs 1,27 (3-Mar-2002)

Filesystem label=

05 tuype: Linus

Elock =ize=1024 {log=0)

Fragment size=1024 {log=0)

1256 inodes, 5000 blocks

280 blocks {5,00%) reserved for the super user
First data block=1

1 block group

8192 blocks per group, 8192 fragments per group
1256 inodes per group

Writing inode tables: done
Cresting journal (1024 blocks): done
Writing =superblocks and filesystem accounting information: done

Thiz filesystem will be automatically checked every 32 mounts or

180 days, whichewver comes first, Use tune2fs -c or -i to override,

[Froot@localhost sdall# mkdir fent/vault

[root@localhost sdall# mount -t ext3 -o loop,noexec,noatime /mnt/sdal/vault.fs /mnt/vault

The first command, cd /mnt/sdal, simply changes the working directory to the mount point of
the pen drive. Next, the “dd” command was given to create a 5000 kb file full of zeros. Zeros
were written to the file to ensure that all previous data occupying the same space on the pen
drive, was effectively erased. Next, the command “losetup /dev/loop1 vault.fs” was issued to
make the vault.fs file appear as a filesystem to the operating system. Finally, the filesystem was
created within the vault.fs file by issuing “mkfs.ext3 /dev/loopl”. Once the vault.fs file
contained a valid filesystem, it could be mounted using the mount command specifying the
noexec and noatime options. This was done to ensure that the access times of the files examined
were not altered, and to prevent the accidental execution of any programs that may reside on
mounted filesystem.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Binary Details:

Once the vault was mounted, binary v1.3.zip was copied to the vault and examined by executing
the unzip command with the “-v”, or verbose option.

[roct@localbost vault]# unzip -v binary v1.3.zip
Archive: hinary v1.3.zip
Length Method Size Ratio Date Time CRC-32 Hame

26783 Defl:N Saby FEE 0Z2-20-03 12:45 d185fdlE targetl.exe

36793 5567 79% 1 file

Unfortunately, no MDS5 checksum was included in the zip file. It would have been nice to have a
MD)5 checksum of the file as found on the compromised system to ensure the files were
identical. The zip archive contains a file called target2.exe dated 2/20/03 with a time of 12:45.
The file is 26793 bytes expanded.

Next, the file was extracted by invoking unzip with the “-X” option to preserve the Userid and
Groupid of the file. The user and group are listed as root (UID 0). One explanation for this
could be that the person who zipped up the file may have inadvertently modified the file
attributes. Another possibility would be that the file came from a Windows 95/98/ME system,
which always sets the UID and GID to 0. To examine the MAC times, the stat command was
run against the extracted file, target2.exe. We see below that the Access and Modify times are
the same. We can not determine when this file was last executed from the evidence we have
seen so far. It is possible that the file was never executed.

[roct@localbost vault]# unzip -¥ binary v1.3.zip
Archive: binary_vl.3.zip
inflating: target.exe
[roct@localhost vault]¥ stat target?.exe
File: "target?.exe"
Size: 26793 Blocks: 5A I0 Elock: -4611692400238720256 Fegular File
Device: 70Zh/1794d Ihode: 13 Links: 1
Access: (OR44S-rw-r--r--3 Uid: ¢ of root) Gid: ¢ af root)
Access: Thu Feb 20 1Z2:45:458 2003
Modify: Thu Feb 20 12:45:48 2003
Change: Sat Jun 21 02:i06:36 2003

The .exe extension strongly indicates this is a Windows executable and the file command
confirms this fact.

[roct@localhost vault]¥ file targetZ.exe
target? exer MS-D0S executable (EXE), 05/2 or MS Windows

The MD5 checksum of the expanded file is:

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ mdSsum.exe target?._exe
848903a92843895f 3haPFh?MA2L b1 =target2 . exe

The next step is to run the strings command, which shows 212 lines of output, most of which is
garbage. The interesting output is shown below:

impos=zibile creare raw ICMP socket
RAL ICMP SendTo:

Icmp BackDoor YO,1 =
========= [ode by Spoof, Enjoy Yourself!
Your Passllord:
loki
cnd ,exe
Exit OK!
Local Partrers Access
Error Unlnstalling Serwvice
Service UnInstalled Sucessfully
Error Installing Service
Service Installed Sucessfully
Create Service = okl
CreateService failed:dd
Service Stopped
Force Service Stopped Failed¥d
The =ervice iz running or starting!
Huery =service status failed!
Open service failled!
Service 3= Already exists
Local Printer Manager Service
ENSSES,EXE
Open Service Control Manage failed:3d
Start =ervice successfully!
Starting the service failed!
starting the =service <E=>,..
Successfully!
Failed!
Try to change the service's start tupe,..
The szervice iz dizabled!
Huery =service config falled!

Program Description & Forensic Details

The program appears to be ICMP backdoor v0.1 if we believe the alleged author's tag line. An
ICMP back door communicates via the ICMP protocol, normally used to transmit network
errors, announce network congestion, and assist troubleshooting (LIUtilities). One common use
of the ICMP protocol is found in the command “ping”. Ping is primarily used to test basic
network connectivity between two hosts. A ping or more formally, an ICMP echo request, can
be issued to a remote host. If the remote host is reachable, it normally will reply with a “pong”
known as an ICMP echo reply. For security reasons, many companies block incoming ICMP
echo requests. However, many companies do not block incoming ICMP echo replies.

An ICMP backdoor can communicate via ICMP echo replies, thus passing through some
firewalls. The traffic might slip by a network administrator unnoticed and if noticed, may be
inappropriately classified as harmless. For a program like this to work, you need a “client” that

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

can convert your commands into ICMP network packets, and a “server” that can receive the
ICMP packets and convert them back into commands.

Examining the output of the strings command, we see the phrase “RAW ICMP SendTo:”. This
looks like a prompt for a destination address. Two lines later we see an apparent prompt for a
password, “Your Password:”, with the word “loki” appearing below. Loki was one of the first
ICMP backdoor programs. We also see cmd.exe in the output. Cmd.exe is the 32 bit Windows
command prompt used in Windows NT/2000/XP. It looks like target2.exe is accessing cmd.exe.
which will allow an attacker to execute programs on a compromised system.

RA ICMP SendTo:

Icnp BackDoor YO,1 =
========= [ode by Spoof, Enjoy Yourself!

Your Pazslord:

loki
cmid , e

Ewxit OK!

It also appears to be installing a service, based on all of the starting and stopping of services we
see mentioned. The Printer Manger Service is listed by name, perhaps it is modifying or
claiming to be the printing service.

We also see smsses.exe listed. This may be the name of the service under which the program
runs. This would be a good name to choose because of its similarity to a legitimate service
called smss.exe, that controls a number of critical functions, including starting the windows
logon process and loading the kernel for the Win32 subsystem (Liutilities).

The location in which the program looks for smsses.exe gives further clues about the operating
system(s) on which it will execute. Viewing target2.exe in the freely available Hex Editor 2.0
http://www.hhdsoftware.com, we can see the following:

LousuwLlon.n, b
=2v.=2.t.emn. 3.2
2T S eLT. .
e ®x.e...... IySH

The winnt folder contains the operating system on Windows 2000, NT4.0 and NT3.51 systems.
Windows XP keeps it’s operating system in a folder called “windows”.

The screen capture below shows that the program calls winnt\system32\reg.exe.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Registry Console Tool (reg.exe) is a utility that enables command line changes, additions
and deletions to the Windows Registry. The Windows registry is really just a database that
contains the computers configuration. Reg.exe is included with the Windows NT4.0 resource
kit, and the Windows 2000 support tools. We can conclude that target2.exe is targeted towards
Windows NT 4.0 or Windows 2000. At this point, we still don’t know if target2.exe is a client
or server.

The next step was to observe the binary in action. I copied the binary to a Dell Cpia laptop
running Windows 2000 service pack 3 and assigned it an IP address of 192.168.1.103. The
Windows computer was isolated behind a router and was monitored by another computer
running Linux Redhat 7.3 attached to a network tap. The monitoring computer's network
interface was brought up without an IP address, and issued the command tcpdump 'host
192.168.1.103".

The filemon utility from http://www.sysinternals.com was used to monitor the file access of the
suspected trojan. Filemon has the ability to monitor file system activity in real-time and save the
results. The figure below shows the output of the program. This is the output of the second run
of target2.exe. During the first run, I noticed that target2.exe failed to find 3 files that were
missing, namely msvep60.dll, mfc42loc.dll, and target.exe.Local. I downloaded the missing dlls
from http://www.dll-files.com/ and installed them into the system32 directory. Next I copied the
target.exe to the system32 directory and renamed it to target.exe.Local, and executed target2.exe

again.

403 9:10:10 PM cmd.exe:884 OPEN C:\target2.exe SUCCESS Options: Open Access: Execute

404 9:10:10 PM cmd.exe:884 CLOSE C:\target2.exe SUCCESS

405 9:10:10 PM cmd.exe:884 QUERY INFORMATION C:\ SUCCESS Attributes: DHSA

406 9:10:10 PM target2.exe:668 OPEN C:A\ SUCCESS Options: Open Directory Access: Traverse

407 9:10:10 PM target2.exe:668 QUERY INFORMATION CA\WS2_32.dll FILE NOT FOUND Attributes:

Error

408 9:10:10 PM target2.exe:668 QUERY INFORMATION CA\WS2_32.dll FILE NOT FOUND Attributes:

Error

409 9:10:10 PM target2.exe:668 QUERY INFORMATION CAWINNT\System32\WS2_32.dll SUCCESS
Attributes: A

410 9:10:10 PM target2.exe:668 OPEN CAWINNT\System32\WS2_32.d1l SUCCESS Options: Open

Access: Execute

411 9:10:10 PM target2.exe:668 CLOSE C:\WINNT\System32\WS2_32.dll SUCCESS

412 9:10:10 PM target2.exe:668 QUERY INFORMATION CA\WS2HELP.DLL FILE NOT FOUND Attributes:

Error

413 9:10:10 PM target2.exe:668 QUERY INFORMATION CA\WS2HELP.DLL FILE NOT FOUND Attributes:

Error

414 9:10:10 PM target2.exe:668 QUERY INFORMATION C:AWINNT\System32\WS2HELP.DLL SUCCESS
Attributes: A

415 9:10:10 PM target2.exe:668 OPEN C:AWINNT\System32\WS2HELP.DLL SUCCESS Options: Open

Access: Execute

416 9:10:10 PM target2.exe:668 CLOSE C:\WINNT\System32\WS2HELP.DLL SUCCESS

417 9:10:10 PM target2.exe:668 QUERY INFORMATION C:\MFC42.DLL FILE NOT FOUND Attributes:

Error

418 9:10:10 PM target2.exe:668 QUERY INFORMATION C:\MFC42.DLL FILE NOT FOUND Attributes:

Error

419 9:10:10 PM target2.exe:668 QUERY INFORMATION C:AWINNT\System32\MFC42.DLL SUCCESS
Attributes: A

420 9:10:10 PM target2.exe:668 OPEN CAWINNT\System32\MFC42.DLL SUCCESS Options: Open

Access: Execute

421 9:10:10 PM target2.exe:668 CLOSE C:\WINNT\System32\MFC42.DLL SUCCESS

422 9:10:10 PM target2.exe:668 QUERY INFORMATION C:\MSVCP60.dll FILE NOT FOUND Attributes:

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Error

423 9:10:10 PM target2.exe:668 QUERY INFORMATION C:\MSVCP60.dll FILE NOT FOUND Attributes:

Error

424 9:10:10 PM target2.exe:668 QUERY INFORMATION CAWINNT\System32\MSVCP60.d11 FILE NOT

FOUND Attributes: Error

425 9:10:10 PM target2.exe:668 QUERY INFORMATION CAWINNT\system\MSVCP60.dl11 SUCCESS
Attributes: A

426 9:10:10 PM target2.exe:668 OPEN CAWINNT\system\MSVCP60.d11 SUCCESS Options: Open

Access: Execute

427 9:10:10 PM target2.exe:668 CLOSE C:\WINNT\system\MSVCP60.d11 SUCCESS

428 9:10:10 PM target2.exe:668 QUERY INFORMATION C:\target2.exe.Local FILE NOT FOUND Attributes:

Error

429 9:10:11 PM target2.exe:668 QUERY INFORMATION C:A\WINNT\System32\MFC42LOC.DLL FILE NOT

FOUND Attributes: Error

430 9:10:11 PM target2.exe:668 QUERY INFORMATION CAWINNT\System32\MFC42LOC.DLL FILE NOT

FOUND Attributes: Error

431 9:10:26 PM target2.exe:668 CLOSE C:\ SUCCESS

Test Results:

The first thing we see on line 403 is target2.exe being launched from the command line.
Throughout the output, we see target.exe first searching in the directory in which it resides. In
this case, it is simply at the root level of the C drive. The optimal place to locate this trojan
would be in %windir%\system32, because most of the files it is looking for reside in the
system32 directory. This would also have the benefit of making the trojan harder to detect,
because the system32 folder is generally not viewed by many end users. Starting on Line 407 we
see the trojan trying to open WS2 32.dIL

Looking up this dll at http://www.liutilities.com/products/wintaskspro/dlllibrary, we find that it
is used for network connections. The functions that WS2 32.dll uses for establishing a network
socket are contained in the next dll that is opened, WS2HELP.dll (line 414).

The next file opened is mrc42pLL on line 419. MFC or Microsoft Foundation Class, is an object
oriented application framework that provides a relatively simple programming interface. Many
newer programs use the MFC (DIl Zone).

Continuing on line 422, the trojan attempted to open was msvcp60.dll, which is the Microsoft C
Runtime Library. This library contains the standard C functions, such as printf. Thus far, it
appears that target2.exe is attempting to initialize a network socket.

The last file opened was mrca2rocpir. MFC42LOC is a localization file for the Microsoft
Foundation Class. This file should only be found on non-English systems (Schwartz). I didn't
need to copy this mfc42loc after all.

Running the Filemon Utility showed what files were being accessed however it is also useful to
see what the process was doing in memory. The Process Explorer, gives us real-time
information about what the process is doing in memory. Process Explorer is freely available
from SysInternals http://www.sysinternals.com/ntw2k/freeware/procexp.shtml.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Process: target2.exe Pid: 896

Base Size MM Description Version Time Path

0x240000 0x16000 * 12/7/1999 7:00 AM C:\WINNT\system32\unicode.nls

0x260000 0x2F000 * 12/7/1999 7:00 AM C:\WINNT\system32\locale.nls

0x290000 0x41000 * 12/7/1999 7:00 AM C:\WINNT\system32\sortkey.nls

0x2E0000 0x4000 * 12/7/1999 7:00 AM C:\WINNT\system32\sorttbls.nls

0x300000 0x2000 * 12/7/1999 7:00 AM C:\WINNT\system32\ctype.nls

0x400000 0x6000 2/20/2003 12:45 PM C:\target2.exe

0x6C370000 0xF2000 MFCDLL Shared Library - Retail Version 6.00.8665.0000 12/7/1999 7:00 AM
C:A\WINNT\system32\mfc42.dll

0x75020000 0x8000 Windows Socket 2.0 Helper for Windows NT 5.00.2134.0001 12/7/1999 7:00 AM
C:A\WINNT\system32\ws2help.dll

0x75030000 0x14000 Windows Socket 2.0 32-Bit DLL 5.00.2134.0001 12/7/1999 7:00 AM
CAWINNT\system32\ws2_32.d11

0x77D40000 0x6F000 Remote Procedure Call Runtime 5.00.2193.0001 12/7/1999 7:00 AM
CAWINNT \system32\rpcrt4.dll

0x77DB0000 0x5A000 Advanced Windows 32 Base AP15.00.2191.0001 12/7/1999 7:00 AM
CAWINNT\system32\advapi32.dll

0x77E10000 0x65000 Windows 2000 USER API Client DLL 5.00.2180.0001 12/7/1999 7:00 AM
C:\WINNT\system32\user32.dl1

0x77E80000 0xB6000 Windows NT BASE API Client DLL 5.00.2191.0001 12/7/1999 7:00 AM
C:\WINNT\system32\kernel32.dll

0x77F40000 0x3C000 GDI Client DLL 5.00.2180.0001 12/7/1999 7:00 AM C:\WINNT \system32\gdi32.dll

0x77F80000 0x79000 NT Layer DLL 5.00.2163.0001 12/7/1999 7:00 AM C:\WINNT \system32\ntdll.dll

0x78000000 0x46000 Microsoft (R) C Runtime Library 6.01.8637.0000 12/7/1999 7:00 AM
C:A\WINNT\system32\msvert.dll

0x780C0000 0x61000 Microsoft (R) C++ Runtime Library 6.00.8168.0000 3/27/2001 4:11 PM

CAWINNT\system\MSVCP60.DLL

The output from Process Explorer shows that target2.exe first accesses the memory locations for
five different National Language Support (.nls) files. NLS files provide the language to ASCII
mapping necessary for a program to run. The rest of the output mirrors what was shown in the
Filemon output, that is, we see an indication that a network socket will be opened. Process
Explorer shows the accessing of the GDI Client DLL, gdi32.dll. This dll handles a number of
graphics functions. This is consistent with the program attempting to write something to the
screen.

Program Identification:

The program has a very unique characteristic, namely the Italian text “Impossibile creare raw
ICMP socket”. This line was searched using the Google search engine yielding a number of
pages that all pointed to the same header file; icmp_tunnel.h, written by Dark Schneider. This
header file contained the phrase “Impossibile creare raw ICMP socket”, and was probably where
the target2.exe exploit code originated. It can be found in the “Butchered from Inside” (Bfi),
Italian online “security” magazine. http://www.sOftpj.org/bfi/online/bfi7/bfi07-13.html

A header file is a collection of information that the functions of a program need. In a C program,
one includes this information using a “#include” statement at the beginning of the program.
Unfortunately, I could not find the actual code used in target2.exe, and it appeared as though
target2.exe did not properly execute. Running the command netstat -an (list all network
connections and listening ports in numerical form), did not show anything suspicious. Had an
ICMP backdoor been present on the system, we would have expected to see something like

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“raw 0.0.0.0: 0.0.0.0:0 LISTENING”

Conclusion: We see that the target.exe program ran for 16 seconds when executed. The
programs calling of the WS2 32 networking libraries, and the text strings we found in the binary
claiming to be an ICMP back door are consistent with the notion that this is indeed a backdoor.
This appears to be the client component of a client-server based trojan. One would need a
special server running to communicate with this trojan because of the use of ICMP echo replies.
Typical client/server applications like Telnet do not use ICMP to communicate, rather they use
the TCP protocol. We do not see target2.exe attempting to open C:\winnt\System32\smsse.exe
or C:\winnt\system32\reg.exe in the Filemon output, despite the fact that we find both of these
programs listed in the strings output obtained from target2.exe. It is possible that these two
programs (smess.exe & reg.exe) are a necessary component of the server portion of the
backdoor. That is, the client connects to a server and executes one or both of these programs.

Legal Implications.

We cannot prove that this program was executed on the host system based on the available
evidence. If we could get a complete image of the compromised system, we could build a
timeline. The obtained timeline could be compared to the filemon output of our test system and
we might be able to show target2.exe's accessing the same files, in the same order, as our test
system. This however would be unlikely, because the system in question probably continued to
be in use for sometime after the alleged running of target2.exe.

We probably can't even prove that our companies acceptable use policy was violated, unless we
can prove that he put the program on a system he wasn’t supposed to access. Here is an excerpt
from the acceptable use policy:

Some examples of inappropriate uses of Computer Resources include:
Attempting to break into or monitor any Computer Resource without proper authorization.
Accessing confidential or sensitive information on computer resources without authorization

So, I would have to prove that he put the server component of this backdoor on a computer he
was not supposed to have access to, then accessed the computer and viewed confidential or
sensitive documents.

Interview Questions:
Set the tone: Narrative — We both work for the same company. ['m working on my day off, in a

hurry to leave and don't really want to do an in depth investigation of anything. I'm not out for
blood, I just want to get things wrapped up.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Talking to our suspect, Mike:

Mike, I need your help, I was supposed to be off today, but before I can go home I have to get
this thing resolved. The Intrusion detection team found some strange traffic on the network.
Joe, the Sysadmin found this program on a computer, I'm not sure what it does, but it looks like
it might be an alternative shell-like program, similar to Telnet or SSH. Who knows it may even
be more secure than telnet.

1. Mike, the program is called target2.exe. Like I said, seems like a telnet program of some
sort. Have you ever used Telnet before? (Assume I know he has. I want him to admit something
innocuous.). Telnet’s not very secure, especially on Windows, this (target2.exe) looks better.

2. Well, we are still trying to figure out where this originated. The Intrusion Detection folks
need more time to go through the logs. Early indications are that it was coming from a computer
you might have been working on. It’s always better if these things can be solved before they get
escalated. It starts to turn into a big deal when you have to get more people working on the
problem. I’m hoping you can help me nip this in the bud. Can you think of any reason why
someone would run this program?

Just to see if he will come up with a reason, maybe even the reason given in question 1.

3. Have you ever seen this program before?

4. Look, I just have to know, so we can stop this before it gets out of hand. I just want this
solved. Did you install this program?

5. If no: Do you have any idea who might want to install something like this?
If Yes: Can you tell me what systems you connected to?

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

Connected: An Internet Encyclopedia. Ed. Baccala, Brent. Apr. 1997. Freesoft. 15 Aug. 2003.
<http://www.freesoft.org/CIE/Topics/81.htm>

The DLL Zone. Fortune City. 18 Aug. 2003.
<http://www.fortunecity.com/skyscraper/fortune/570/mfc42.html>

LIUtilities Online. LIUtilities Inc. 15 Aug. 2003
<http://www.liutilities.com/products/wintaskspro/processlibrary/smss/>

Schwartz, David. Redistributing Microsoft Visual C++ 6.0 Applications. MSDN. Aug. 2000.
Microsoft. 18 Aug. 2003. <http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnvc60/html/redistribvc6.asp>

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Legal Issues

A. What points if any can you provide to the law enforcement officer over the phone during the
initial contact?

Because my company offers services to the public, the Electronic Communications Privacy Act
(ECPA) applies. The ECPA 18 U.S.C. § 2702 covers the rules for voluntarily disclosing
customer records and communications. Generally, it restricts companies that provide services to
the public from disclosing customer data, particularly to government entity's.

There are several exceptions. I am allowed to voluntarily disclose data to Law Enforcement; if
I inadvertently stumble on communications that appear to be related to the commission of a
crime, or if [believe that there is a danger of death of serious physical injury to another person.

Additionally, I may disclose customer information if I have permission from the customer,
including consent given by clicking on a banner or agreeing to a user agreement, or if I need to
protect my own property (i.e. If I need to stop disruption or hacking of my computers).
Assuming none of these exclusion conditions are met, I can not disclose much information to law
enforcement at this time.

I can tell the Law Enforcement official that I have a record of a valid account being “dialed in”
during the time of the incident.

I can also tell Law Enforcement that after reviewing my log files, I have found no evidence of
hacking during this time period, and I was therefore unable to determine if the attack came from
my system or from upstream.

B. What must the law enforcement officer do to ensure you preserve this evidence if there is a
delay in obtaining any required legal authority?

The law enforcement official can issue a retention order, requiring that I preserve all relevant log
files for a period of 90 days. (Morris p5). The retention order is made possible by Title 18 of the
US Code, Section 2703(f) , that states;

“A provider of wire or electronic communication services or a remote computing service, upon the
request of a governmental entity, shall take all necessary steps to preserve records and other evidence in

its possession pending the issuance of a court order or other process”

The request to preserve the evidence can be done over the phone, but the Department of Justice
(DOJ) suggests that it be done by fax, or email in order to avoid misinterpretations.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The DOJ publication Searching and Seizing Computers and Obtaining Electronic Evidence in
Criminal Investigations, phrases it like this:

“There is no legally prescribed format for § 2703(f) requests. While a simple phone call should therefore be
adequate, a fax or an e-mail is better practice because it both provides a paper record and guards against
miscommunication.”

A sample of the suggested DOJ preservation of evidence letter can be found here:
http://www.cybercrime.gov/s&sappendix2002.htm# C_

C: What legal authority, if any, does the law enforcement officer need to provide to you in order
for you to send him your logs?

Law enforcement would be required to obtain a court order to get access to my logs. A court
will issue an order if the agent can show “articuable facts” that make it reasonable to believe that
the information requested is “relevant and material to an ongoing criminal investigation” (Morris
p4). The court order would allow them to see everything in the log files related to the alleged
perpetrator, such as source and destination IP addresses, account names, dates and time spent
online. If the investigator only needs the identity, name, address and phone billing records,
he/she could use a subpoena. This could also allow the investigator to read already opened
emails, however unopened emails require a search warrant.

D: What other “investigative” activity are you permitted to conduct at this time?

Assuming I have no banner's or user agreement in place, there is not much that I can do. I can
search my own log files to ensure the integrity of my system. I could also find out what type of
attack was perpetrated against the government, and then watch outbound traffic for that type of
activity. For example, if the hacker used an rpc exploit, I could use my provider exemption to
monitor rpc traffic on the system as a whole, and look for suspicious activity. I could not single
out one user and monitor their transmissions because that would basically be a wiretap and
violation of US Code, Title 18 Section 2511. This is especially true if | am monitoring the
userid as the result of information provided by Law Enforcement.

E: How would your actions change if your logs disclosed a hacker gained unauthorized access to
your system at some point, created an account for him/her to use, and used THAT account to
hack into the government system?

If the hacker gains unauthorized access to my system and creates a new account to hack from, I
am still somewhat limited in what I can do because of the contractual agreement that exists
between the user and my company.

However, the USA Patriot Act of 2001 added an amendment to subsection 2703(c)3 that states
“service providers do have the statutory authority to disclose non-content records to protect their
rights and property” (Morris) This means that I can turn over the log files to Law Enforcement
in this particular case.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

Interception and disclosure of wire, oral, or electronic communications prohibited. 18 US Code.
Sec. 2511. http://www4.law.cornell.edu/uscode/18/2511.html

Morris, Daniel. Tracking a Computer Hacker. U.S. Department of
Justice. 10 July 2001. <http://www.usdoj.gov/criminal/cybercrime/usamay2001 2.htm>

The Electronic Communications Privacy Act. 18 US Code. Sec. 2701-2712. 1986.
http://www4.law.cornell.edu/uscode/18/2701.html

Searching and Seizing Computers and Obtaining Electronic Evidence in Criminal Investigations.
U.S. Department of Justice. 02 July 2002.
<http://www.cybercrime.gov/s&smanual2002.htm# IIIC1 >

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Forensics Analysis of Compromised System

Synopsis of Case Facts & Description of the System Analyzed:

An IBM laptop was connected to a cable modem router and deliberately put outside the firewall,
to act as a honeypot. The computer was first prepared by 'wiping' the hard disk using the Wipe
V2.0 utility by Tom Vier. This procedure ensured that no data would remain on the disk, giving
the investigator a “clean slate” to work from. After wiping the disk, the system was loaded with
the Windows 2000 Advanced server operating system and formatted with the NTFS file system.

Only 2048 kilobytes of the 5 gigabyte hard disk was partitioned and formatted. This was done
because the investigator's computer only had 3 gigabytes of free hard disk space to hold the hard
drive image of the honeypot. The default installation options were selected, as was the option to
install Internet Information Server version 5.0. No application or operating system patches were
installed.

The honeypot was monitored via another computer running the Linux Redhat Operating System
version 7.3. The monitoring computer was connected to a network tap and the network interface
was brought up without an IP number. This made the monitoring system invisible to the

Internet.
Internet
O
0
= ﬁ
Cable Modem
HoneyPot LinkSys Router
. IP 192.168.1.102 IP 24.158.218.6
o A o
. . Analysts System
Intrusion Detection System REEULEIEL IP 192.168.1.104

Firewall

Hub/Network Tap

The honeypot was placed outside the firewall and was scanned using a web based port scanner
called “Shields Up” found at http://grc.com/intro.htm. This was done to verify that port 80 was
exposed to the internet.

All network traffic was collected using tcpdump (http://www.tcpdump.org). The specific
command was; tcpdump -i ethO ' ! arp ' -w /home/tmp/traffic. The ““! arp” directive was used to
avoid recording the barrage of Address Resolution Protocol (arp) traffic generated by the service
provider.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Unfortunately, a mistake was made when connecting the honeypot to the network. Tcpdump
was not activated until after the honeypot had been connected to the network.
As a result, the tcpdump log does not contain a record of the actual system compromise.

The honeypot was disconnected from the network as soon as the system compromise was
detected, by simply unplugging the network cable. The system was left running in order to
collect an image of the volatile dynamic memory before system shutdown.

Hardware:
The computer system is a IBM Thinkpad 600 laptop, with a 6 gigabyte hard drive, 128

megabytes of memory, built in USB port, sound card and an Internal CDrom drive and a 3com
Megahertz PCMCIA network card.

Tag #s Description
Tag 001 IBM Model 600 Thinkpad Laptop Serial # 78-HBI70
Tag 002 IBM Travelstar hard drive. Model DADA-25120

Size: 5120 Megabytes. Serial #: 11503156021 mf98w
Image Media.

The memory was the first thing imaged. At this point I did not want to re-connect the computer
to the network, so I attached a 128mb USB 'pen' drive to the compromised system, inserted the
SANS Forensics Course v1.6 CD, and issued the command dd if=\\.\PhysicalMemory
conv=noerror | gzip -c| dd of=C:\mem.img.gz. Dd.exe, version 4.1 was run from the SANS
Forensics Course v1.6 CD, because this version of dd has the ability to image a system's physical
memory. Gzip was included in the middle of the command because the system's memory was
128 mb and the USB pen drive only had 124 megabytes of available space.

After obtaining the memory image, a hard shutdown was performed by removing the battery
and power adapter.

The next step was to image the hard drive. The compromised system was booted from the
CDrom drive using the Forensics and Incident Response Environment (F.I.LR.E) version 4.0
bootable CDrom. F.L.LR.E is a collection of forensics utilities as well as a bootable Linux
environment that contains a number of useful statically compiled binaries.

Because of disk space limitations, only the partitioned portion of the hard disk was imaged. The
fdisk v2.11 utility was run from the F.I.LR.E CDrom to verify that there was still only one
partition. The command fdisk —1 was issued to list the partition table of the disk. The output of
the fdisk utility below shows the single 2 gig partition.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Disk ~dev-shda: 240 heads. 63 sectors,. 837 cylinders
Unitszs = cylinders of 15120 = 512 hytes

Device Boot Start End Blocks Id System
sdeuvshdal E i 277 2094088 + 7 HPFS-/HTFS

The program dd, version 3.16, was used to obtain the hard drive image and the output was sent to
the investigators computer via the network transfer program Netcat version 1.10. The specific
command was dd if=/dev/hdal | nc 192.168.1.104 31337. This sent the entire contents of the
hard drive partition to the Analysts’ system. The Analysts’ system was prepared to accept the
image by issuing the command nc -1 -p 31337 > /home/tmp/ibm.img. This command tells Netcat
to listen (-1) on port (-p) 31337 and redirect the output to the file ibm.img.

To verify that the image was identical to the original partition, a program called mdSsum version
2.0.14 was used to obtain the MDS5 checksum. The Message Digest Number 5 (MDS), algorithm
was invented by Ron Rivest, and is used to generate a 128 bit number to verify the integrity of a
file. Each file will have a different MDS5 checksum, even if a file differs from another file by
only one character (MD5 Checksum Utility). In short, if an image has the same MD5
checksum as the original filesystem, one can be sure that they have an exact copy.

Below is the check sum of the transferred image:

[roctilocalbost image]# mdSsum ibm, img
FAAEAM dEa0ad 37202144 2c4R944 ihw, img

Here is the checksum collected from the original filesystem:

[Foct@FIRE] =dal> mds /dev/hdal
7729344 74dRa0ad37302144dc 2045044 Jdev/hdal

We can see that the numbers are identical. The image is an exact copy of the compromised
filesystem.

Media Analysis of System:

There are several pieces of evidence available for analysis that are summarized in the table
below.

Investigator's Notes taken by the investigator On the analysis system.
Notes while configuring, deploying and
analyzing the honeypot. Name: notes.txt

Tcepdump File containing all network traffic [|On the analysis system.

Logfile entering and exiting the honeypot,
Name: sunday.tcp

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

excluding arp broadcasts.

LAl B IWindows System & event logs.

Files

Windows Log files:
C:\Winnt\system32\config\AppEvent.evt

C:\Winnt\system32\config\SecEvent.evt

C:\Winnt\system32\config\SysEvent.evt

Filenames: Unchanged

IIS Log Files
Information Server (IIS).

Log files generated by Internet

C:\Winnt\system32\[LogFiles\W3SVC2\ex030727.log

C:\Winnt\system32\[LogFiles\W3SVC2\ex030727.log

FileNames: Unchanged

Record of

processes, and || Rl ERigeint

enealegili S http:/www.sysinternals.com

Listing of running processes, open
running files and dlls obtained by using the

All collected from running honeypot
and saved to a USB pen drive.

Filenames:

autoruns.txt — listing of Registry “start up”
entries.

Handle.txt — listing of open files on the
honeypot.

Procinterrogate.txt — listing of processes &
associated dlls running on the honeypot.

Media Image
the honeypot hard drive.

Exact copy of the only partition on

Taken directly from the honeypot and
transferred over the network to the
analysts system.

Name: ibm.img

Sl il Dump of the Random Access
Image Memory (ram) obtained from the

honeypot after the incident.

Taken directly from the honeypot's ram.

Name: mem.img

Analyst's Notes:

The first available evidence is from the analyst's (my) rather sparse notes. The notes tell the time

© SANS Institute 2003,

As part of GIAC practical repository.

Author retains full rights.

that the honeypot was connected to the network, when the Shields Up scan occurred, the time of
network disconnection and the imaging of the drive. The full notes.txt file is shown below:

£ cat notes.txt

18:32 put machine on network and scanned from zhields up site.
18:35 started tcpdump on monitoring computer

18:45 pulled out network cahle

™ @:58 accessed taskmanger

11:88 inserted ushdrive

12:88 imaged drive

Tcpdump/Network Log File

Analysis is made easier by the fact that we have the tcpdump logfile of all network traffic
entering and exiting the honeypot. The tcpdump logfile is named sunday.tcp, and is analyzed on
a Windows machine using WinDump.exe from http://windump.polito.it. Windump is a network
analyzer that allows one to examine network traffic in real time or stored traffic that is saved to a
compatible file. Windump is fully compatible with the UNIX/Linux program tcpdump that was
used to collect the network traffic.

The output below shows the command Windump.exe being invoked with the “-n” option which
prevents hostname resolution, and the “-r”” option that tells WinDump.exe that it will be reading
from the file sunday.tcp. The output shows that the honeypot, (IP 24.153.218.66) is sending a
“Syn”, or a request for a network connection to port 80, usually used for web servers, to over 100
different IP addresses. The source IP shown is that of the router (24.153.218.66). This is
expected as the network tap with the connected computer running tcpdump and recording the
traffic, is between the router and the cable modem. Only three “Syn’s” are shown below for
brevity.

% _AUinDump.exe —n —r szunday_tcp more

22:36:22.760164 IP 24.153.218.66.3743 > 192.168.248.3.80: § 108741P14:108741014¢@> win 16384 <m
ss 1468.nop.nop.sack0K> <DF>

22:36:22.761041 1P 24.153.218.66.3752 > 192.89.250.105.80: S 1089180076 :169180876(A> win 16384 <
mes 1468 _nop,.nop,.sackO0K> (DF>

22:36:22.761726 1P 24_153.218.66.375%3 > 192.168.198.121 . 80: § 109238723:187238723(8> win 16384
{mss 1468, .nop.nop,.sack0K> (DF>

The large amount of network activity directed to so many different address in such a short time,
is a strong indication that the honeypot has already been compromised, and is actively scanning
for web servers. As stated earlier, tcpdump was not activated until after the honeypot had been
connected to the network. By this time, it was too late. Had tcpdump been logging network
traffic before placing the honeypot on the network, there would be a record of the exact exploit
used to compromise the system.

Thus far, there is evidence that the machine has been compromised. To investigate further, the
Intrusion Detection System (IDS) Snort was used to analyze the tcpdump logfile. Snort is a
widely used and freely available IDS that can among other things, read network traffic from a
file and compare it to “signatures” of exploits. If a match is found Snort triggers an alert, that in
this case is sent to an alert file. Snort also writes the packet that triggered the alert to a tcpdump
compatible file. Below are the first two entries in the Snort alert file.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The first line shows an “ICMP Destination Unreachable (Communication Administratively Prohibited)” message.
This means that the honeypot tried to communicate with the system 192.65.201.221, but was
rejected by a router along the way.

[**][1:485:2] ICMP Destination Unreachable (Communication Administratively Prohibited)
[Classification: Misc activity] [Priority: 3]

07/27-22:36:23.244829 172.31.9.27 -> 24.153.218.66

ICMP TTL:52 TOS:0x0 ID:26390 IpLen:20 DgmLen:56

Type:3 Code:13 DESTINATION UNREACHABLE: ADMINISTRATIVELY PROHIBITED,
PACKET FILTERED

** ORIGINAL DATAGRAM DUMP:

24.153.218.66:3816 -> 192.65.201.221:80

TCP TTL:117 TOS:0x0 ID:20369 IpLen:20 DgmLen:48 DF

Seq: 0x6B312DC Ack: 0x0

** END OF DUMP

The next entry in the Snort alert file warns that the honeypot may be attempting to exploit
another web server. Snort's message is: “ WEB-IIS ISAPI .ida attempt”.

[**] [1:1243:8] WEB-IIS ISAPI .ida attempt [**]

[Classification: Web Application Attack] [Priority: 1]
07/27-22:36:23.845407 24.153.218.66:3882 -> 192.121.89.163:80

TCP TTL:128 TOS:0x0 1D:20476 IpLen:20 DgmLen:1500 DF

Ak ARFEE Seq: 0x6E2BC85 Ack: 0x4D4BB910 Win: 0x4470 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-007
tyfocus.com/bid/1065][Xref => http://www.whitehats.com/info/IDS552]

To verify that this was not a false positive, Windump was used to examine the snort log file.
Windump was invoked with the -X option to print ASCII characters along with hex. We also
specify the destination [P number that was found in the Snort warning. The Windump output is
below:

$ c:/WinDump.exe -X -r snort.log. 1060865909 'host 192.121.89.163'

22:36:23.845407 1P 24.153.218.66.3882 > 192.121.89.163.80: . 115522693:115524153(1460)
808208 win 17520 (DF)

0x0000 4500 05dc 4ffc 4000 8006 9827 1899 da42 E.O0@......B

0x0010 ¢079 59a3 0f2a 0050 06e2 be8S 4d4b b910 yY. * P .MK..

0x0020 50104470 91b3 0000 4745 5420 2164 6566 P.Dp....GET./def

0x0030 6175 6¢74 269 6461 358 5858 5858 5858 ault.1da?XXXXXXX

0x0040 5858 5858 5858 5858 5858 5858 5858 5858 XXX XXX XX XXX XXXX
0x0050 5858 5858 5858 5858 5858 5858 5858 5858 XXX XXX XX XXX XXXX
>>>>>>>>>>>>>Cut Several Lines of X's

0x0250 4630 9a02 0000 e80a 0000 0043 6164 6552 FO......... CodeR
0x0260 6564 4949 008b 1c24 {£55 d866 ObcO 0195 edl..$.Uf...

We can see that the honeypot did send a malicious packet to 192.121.89.163. Line 0x0020
shows the start of the statement GET/default.ida? followed by a number of “X's”. This is
characteristic of the Code Red I Worm. The “X's” are padding to overflow the ida buffer on a

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

vulnerable machine. The text shown on line 0x0250 leaves little doubt that this is indeed the
Code Red IT worm (CodeRedIl Worm Analysis).

We have solid evidence that the honeypot has been compromised by the Code Red II worm and
that it is attempting to infect other machines. However, there is no record of the compromise of
the honeypot in the network log file, only evidence that the honeypot is attacking other
machines. From this point finding further evidence of Code Red II is expected, but there could
also be other things that were installed during the time the honeypot was exposed.

Windows Log Files:

The next source of evidence for analysis comes from the Windows event logs. According to
Microsoft Knowledge Base Article 315147, Windows 2000 has three primary event logs:

System log - records operating system events like a system service failure.

Security log — records logon and logoft successes and failures along with other security
information.

Application log - records events that have to do with applications that are running on the server.

By default all three of these logs are kept in the %windir%\system32\config folder. The
%windir% is a variable that represents the location of the Windows operating system. For
Windows 2000 computers, the operating system installation is usually C:\Winnt.

In order to view the files the hard drive image of the honeypot was mounted on the analyst’s
Linux system using the mount command with the “noatime” and “noexec” options. This ensures
that the image will not be modified during the examination, and that no programs can be
executed from the mounted filesystem. The command used is shown below:

|EPDDt@lDEElhDSt root]# mount -t ntfs -o loop,nostime,noesec ./ibn,img Jfmnt/vault

After mounting the filesystem, I copied the three event files found in C:\Winnt\system32\config
to the Pen Drive for analysis on a Windows computer. This was done because the event files are
not in a plain text format, and require special in order to be read. Two tools are readily available
to read the event files; Windows Event Viewer, and psloglist from http://www.sysinternals.com.
To ensure the integrity of the copied files, a MDS5 checksum was computed for each file before
transferring them to the Windows computer.

[roctilocalbost screenshots]# mdSsum fmnt/vault AWINNT sustend2fconfig/ Evt

dedb 182439040 20hc 5425153371647 Snt/ vault/WINNT S systen3d2 /conf iz /AppEvent Evt
AA0F052e2E85CE319711F5112Fafafoe Sont,/vault/UINNT /systend2 /conf ig fSecEvent Evt
bhdecddal 3843857 2004d354a0afel03 Aont/ vault/ WINNT /systen32/conf ig/SusE vent (Evt

Another MD5 checksum was performed on the event files after they had been copied to the hard
drive of the Windows machine. The files are identical.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

% mdSsum.exe =_Eut

4cdbl182432bdc2che5F425F53371647a =AppEvent . Evt
4407052e2885c8319711F5112fafaf5c =SecEvent . Evt
bodecd4al 384385729d4d354aBafeld53 =5 ysEvent.Evt

Unfortunately, the event log files proved to be of little value because they are unreadable. Below
is a representative error message found when attempting to open any of the three files.

Event Yiewer, '|

IUnahble to complete the operation on “Saved Application Log",
The event log file is corrupted

The event log files appear to be corrupt. Perhaps psloglist can read the files. Psloglist was
invoked with the “-I” option that specifies a stored event log file for input. Psloglist was run
against all three event log files. A representative error message is shown below.

% psloglist.exe —1 fAppEvent.Euvt

PzLogList v2_.3 — local and remote event log viewer
Copyright (C» 2000-2Z883 Mark Russinowvich
Sysinternals — www_sysinternals.com

Suystem log on “SMOTO—-8CH4ZHEYRR:
Could not open AppEvent.Evt event log on MOTO-BCH4ZNEYRR:
The event log file is corrupted.

Unfortunately, it appears that the event log files are indeed corrupt and unreadable.

ITs Log Files:

The IIs log files are examined next. Once again MD5 checksums are done on the files before
and after copying.

Md5checksum on the Honeypot:

[Froot@localhost screenshots]# ndSsum Smnt/vault WINNT /sustend2/Logh iles /W3SNC 1 /en030727 , log
49424 1h5Fh7E27 800965060 3a2193587 Sant/vault AWINNT /systen32LogF 1les WESVE 1 /exl30727 , log
[Froot@localhost screenshots]# ndSsum Smnt/vault WINNT fsustend2/LogF iles W3SNC2 /en030727 , log
3F7913b3c21221023513d800cf9d61e7 Smnt/vault/WINNT/susten32/LogF iles /3502 /ex030727 , log

Md5checksum after copying to the analyst’s system.

% mdSsum.exe . WISUCL exB3@727.log .- WISUC2 exB30727.log
494e41 b5 fh7E27a80676a76h3a2f 9387 = AU3ISUCL exB38727 . log
IF?913b3c21221823a134808cf 7d61e? = AUISUC2/exB3B727 . log

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The files are identical. By default, IIs logs all accesses to the websites it is serving to
%windir%/system32/Logfiles/W3SVCx. The x stands for the number of the website. In the case
of the honeypot there are two; the default, and the administration website. The logfiles are given
a date-based name (Jones p1).

As expected there are two directories found in %windir%/system32/Logfiles, W3SVC1 and
W3SVC2. Examining the files found in these directories yielded little information. Because of
the similarity of the two files, and the fact that there are only two line entries in each log file,
only the %windir%/system32/Logfiless W3CVC1/ex030727.log is shown below.

& cat exB38727_log
BSoftware: Microsoft Internet Information Services 5.0

Hlersion: 1.8

iDate: 2003-A7-28 AA:48:11

BSubComponent: Process Accounting

BFields: date time s—event s—process—type s—user—time s—kernel-time s—page—Ffaults s—total

g—active—procs s—stopped—procs
2083-07-28 BB:48:11 Reset—Interval-Start All BA._06H: BE.608x B B G A
2083-87-28 PAA:48:-11 Logging-Interval-Start All BO.66B: O0.A00: B @ A A

The file only shows the starting of the IIS web server component. No other events are logged in
the files. Normally one would expect to find a record of showing what was requested from the
web server, and where it was requested from (IP number). After searching the Internet, it was
discovered that several people have noted that IIS will shutdown without logging any events
when presented with an IDA buffer overflow (Lovy pl).

Running Processes/Startup Files

In contrast to the log files, a wealth of information was found by examining the post
compromise, pre-shutdown, honeypot. The running processes and a record of the start up files
on the honeypot were captured by using three tools from Sysinternals.

The first file is called Handle.txt and was generated by running a program included on the SANS
Forensics Course v1.6 CD named Handle v2.0, from Sysinternals. The first thing that stands out
while examining the file, is the number of threads devoted to inetinfo process. According to
Chapter one of the Microsoft Technet Overview of Internet Information Services 5.0 guide,
inetinfo is the process that hosts the web and ftp Internet services.

A few definitions are in order. A process is simply a program to be executed along with the
resources it requires, such as space in memory. A thread belongs to a process, and a process can
have many threads when running on a modern operating system. Threads can share the
resources, such as memory, of the process under which they run. This increases efficiency as the
resources do not have to be duplicated. Threads can be added as needed. Inetinfo.exe is a
process that can have many threads. (Maheswaran).

Looking at the output of the Handle.txt file, one can see that there are a large number of threads
associated with the inetinfo process on the honeypot.

To find out just how many threads were associated with inetinfo, the following command was

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

executed.

% grep inetinfo.exe~{852~> handle.txt ! cut —d ™" —f2 lunig —c
1 Process inetinfo.exe{852>
338 Thread inetinfo.exe<852>

The first part of the command grep, simply looks for inetinfo.exe(852), the process id of inetinfo.
Next, the output is “cut” and the number of unique threads that belong to inetinfo.exe process id
852 are counted. As shown in the output above, there are 330 threads running within inetinfo.
By default, IIS runs with approximately 10 inetinfo threads (Fenton p1).

IIS was very busy doing something. From the captured network traffic, and the Snort analysis,
there was evidence of the honeypot sending hostile traffic that was consistent with a Code Red II
infection. The large number of inetinfo threads found running on the honeypot is expected with
a Code Red II infection, because the worm spawns 300 threads for a non-Chinese system. 600
threads on a Chinese system (CodeRedIl Worm Analysis).

The second file to examine is named procinterrogate.txt. This file was generated using a
program called ProcInterrogate version 0.0.1, written by Kirby Kuehl and was executed from the
F.I.LR.E CD with output going to a USB Pen Drive. ProcInterrogate lists the running processes,
along with any Dynamic Link Libraries (dll's) the process is using. A dll is a library of data or
functions that a Windows program can use if needed (DLL, Webopedia).

DII's can also give clues as to the true function of a program. One tactic employed by Hackers is
to give a malicious program a name that is similar to the name of a common Windows program.
By examining the dll's associated with a program, one can sometimes detect when a program has
the potential to do more than expected. For example, suppose you find a program called
notepad.exe, a very common Windows program, running on a computer. At first glance the
program appears innocuous. However, if ProcInterrogate were to show the WSOCK?32.dll
associated with the notepad process, the program would become suspect. This is because the
WSOCK32.dll is used for a variety of network connections, and is not normally associated with
notepad.exe. Examining dll's quickly becomes tedious with larger programs like inetinfo.exe,
which requires well over 50 dll's to run.

The file procinterrogate.txt shows that 24 processes were running on the honeypot, none of
which were surprising. All the processes were expected to be found running on web server, with
the exception of tp4mon.exe, shown in the Proclnterrogate output below.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CisUWINMT~Sy=tem32stpdmon.exe (Process ID: 1124

Entry Point Base Size Module

BxAA41B865A AxAR4100PAA BPEA1 BEABA C=UWINNT~Systend2~tpdmon.exe
BxAARBREA Bx77FEA00A BEAY?A6A C=sUWIMNT~Systen3d2~ntdll.d11
Bx775A75FA Bx775A00AR BAZ 400608 C=UWINNT~systen3d2~5HELL3Z .d11
BxAARBREA Bx77F48000 BEA3CABA C=sUWIMNT~=systen32~GDI132 DLL
Bx77EBCIDE Bx77EEBPDOR BUOB6BBHE C=“UWINNT~=systemn32~KERNEL3Z . DLL
Bx77E33BB4 Bx77E18000 BP06506H8 C=“UWINNT~=systen32~USER32Z _DLL
Bx77DBEYCTY Bx77DEBBOE BOHB5AB6H C=“UWINNT~systen32~ADUAFI3Z .DLL
Bx77D43958 Bx77D48000 BB06 FABA C=“UWINNT~=systen32~RPCRT4_DLL
Bx77C760 944 Bx77C70000 800400860 C=UINNT~systen3d2~SHLUAFI .DLL
Bx77B5BEE4 Bx77B50000 BEAEEABEA C=“UWINNT~=systemn32~COMCTL32 . DLL
Bx0BBBBBOA Bx66CEAOOR BOOE?B6H0 C=SUWINNT~Systen3d2~tpdres.dll

After examining the tp4mon.exe process and performing a Google search, it was found to be a
program to monitor the Track Point found in IBM laptops (Task List Programs).

The final file to examine is named autoruns.txt. This file is the result of running the program
autoruns.exe version 1.2 from Sysinternals. Autoruns.exe was launched from the F.I.R.E CD
and output was saved to a USB Pen drive for later analysis. Autoruns.txt is a listing of the
programs that are configured to start when the computer boots. Sometimes virii or trojan
programs will be configured so that they launch every time the computer boots. It is therefore
prudent to examine the output of autoruns.exe. The contents of the autoruns.txt file is shown
below.

% cat autoruns.txt

HEEY _LOCAL_MACHINE~SOFTWARE“Microzof tsMindows HNI“CurrentUersion“UWinlogonsUserinit
+ GisUWINNTssystem32suserinit .exe

HKEY_LOCAL_MACHINE~SOFTWARE~Microsof t*Windows“Currentlersion~RunOnce

HEKEY _LOCAL_MACHINE~SO0FTWARE“Microszof t>xMindows“Currentlersion“RunOnceEx*

HKEY _CURRENT _USER~5of tware“MicrozoftsMindows HNI“CurrentUersion“UWindows“Run
HEKEY _LOCAL_MACHINE~S0FTWARE“Microszof tsMWindouws“CurrentUersion“Run*.

+ GiSWINNTSHUUI2smanagersmuremind.exe autorun

+ tpdmon.exe

HKEY _CURRENT _USER~Sof tware“Microzof t*“Windouws“Currentlersion“Run*.
C:xDocumentsz and Settings~All UserssStart Menu~ProgramszssStartup

+ ThinkPad Modem Copyright.lnk —-» C:sWINNTS-MUWIZ“managersmucpyrt.exe
C:xDocuments and Settings“AdminiztratorsStart Menu“Programs“Startup

HKEY _CURRENT _USER-~Sof tware“MicrozsoftsWindows HNI“Currentlersion“HWindows“Load
HEKEY _LOCAL_MACHINE~SOFTWARE“Microszof tsMindows“Currentlersion~RunServices™
HKEY _LOCAL_MACHINE~SOFTWARE“Microszsof tsxWindows*Currentlersion~RunServicezOnce™
HKEY _CURRENT _USER-~S5of tware“Microzof t>xWindows Currentlersion~RunServices™
HKEY _CURRENT _USER-~Sof tware“Microsof t Windows Currentlerszion~RunServiceszsOnce™
HKEY _CURRENT _USER~Sof tware“Microzof tsWindows Currentlersion“Rundnce™
HKEY_CURRENT _USER~Sof twaresMicrozof tsWindows Currentlersion“RunOnceEx*
C:sWINNT»win.ini

The first thing listed is the userinit.exe program. This program is expected, and is a vital part of
Windows. Userinit runs logon scripts & starts the shell, which is called Explorer.exe
(Liutilities).

The next items of interest are on lines 7-8, where mwremind.exe and tp4mon.exe are both set to
start at boot time. Both of these programs are expected on a IBM Thinkpad laptop computer. As
stated before, tp4mon monitors the trackpad. Mwremind.exe is part of the IBM Thinkpad
modem software package.

Line 11 shows a program called mycpyrt.exe configured to launch when a user logs on to the

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

computer. Mycpyrt.exe is a copyright banner associated with the IBM Thinkpad modem.
Launching mycpyrt.exe from the command line shows the banner below:

i
1B Sofhware (c) IBM 1992, 1002

Licensed Materials - Program Froperty of 1Bh
All Rights Resenrad

Licensed under one or more of U5, Patent
MNos. 5,042,056, 5,265,151, 5,291,520, and
5,465,273 assigned to General Datacomm, Inc.

The final entry in the list is C:\Winnt\win.ini. The win.ini file was used on older versions of
Windows to launch programs, however it does not start programs in the Windows 2000
operating system. There are no unusual entries in the file.

Media Image

The next step is to mount the drive image for examination. This was accomplished using the
following command.

|EPDDt@lDEElhDSt root]# mount -t ntfs -o loop,nostime,noesec ./ibn,img /Smnt/vault

Autopsy v1.73, written by the security group @stake (http://www.atstake.com) was used to
examine the mounted image. Autopsy has a number of useful features such as the ability to
create a timeline, do searches for a particular string of characters, and recover deleted files.

One of the first things found using Autopsy, was the file root.exe. This file was found in
c:\Inetpub\scripts\root.exe. This file is really a copy of cmd.exe the Windows command usually
found in c:\winnt\system32\cmd.exe. The Code Red II virus copies cmd.exe to
C:\Inetpub\scripts\root.exe to make the command available through a web browser. This makes
it possible for anyone to connect to the web server and execute a command like this:
“http://ipAddress/c/winnt/system32/cmd.exe?/cmd.exe/c+dir”. This command would execute
the dir command on drive C. Running other programs on the compromised computer is just a
matter of substituting the command in place of the “dir” given in the example above (Russell &
Mackie).

To ensure that root.exe is really a renamed cmd.exe, a MDS5 checksum was computed for both
files.

[Froot@localhost vault]# ndSsum Inetpub/scripts/root.exe WINNT/systen32/cnd,exe
Rafodandf7122bchabE01287039a8075 Inetpub/scripts/root ,exe
53fodabdf7122hchdbh01287039a8075 WINNT fsystens2/cnd .exe

The files are indeed identical.

Another characteristic of the Code Red virus, is that it creates a file called explorer.exe to the

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

root level of the C drive. Explorer.exe is found in the expected location, C:\explorer.exe. The
file was examined using the strings v2.11.93.0.2 utility with the -n option. The “-n 5” shown in
the command below, eliminates any extraneous binary noise by only printing strings longer than
5 characters.

[roct@localhost vault]# strings -n 5 explorer.exe
\EXPLORER ,EXE

SOFTWARE WMicrosofti lindows NTWCurrentWersion' Winlogon
aFCDhizable

SYSTEM CurrentControlSetSery ices\ W3SYCY\Paraneters\Virtual Roots
foeripts

SMSACC

(bt

dih, 217

KERMELZZ,d11

ACVAPIEZ ,dll

=leepn

GetlindowsDirectoryA

WinExec

FegHueryValusE=A

FerSetYslusE=A

FeglpenkeyE=A

FegClozekey

The strings output shows the troubling information contained in explorer.exe. The code has the
potential to create three virtual roots; one is the entire ¢ drive (c:\,,217) another is the entire d
drive (d:\,,217) and the last is the c:\Program Files\Common Files\System\msadc directory.
Creating these virtual roots effectively exposes the entire C & D (if there is one) logical drives to
the internet.

The c:\explorer.exe file is executed after a post-infection reboot. It was not executed on the
honeypot, because the computer was never rebooted. The stat command verifies this, by
showing that the Access, Modify, and Change times are all the same. If it were executed, we
would expect the access time to be later than the Change time.

[roct@localhost vault]# stat explorer.exe
File: "explorer.exe"

size: 8192 Blocks: 1R I0 Block: -4611R92408335723328 Regular File
Device: 700nRS1792d Thodes 9283 Link=ss 1
Access: 0400/ -r---——-—- o Uid: | af rooty Gid: af root)

Access: Mon Jul 28 03:132:20 2003
Modify: Mon Jul 28 03:32:20 2003
Change: Mon Jul 25 03:32:20 2003

TimeLine Analysis.

A timeline was generated using the timeline feature of Autopsy v1.73. The key events are
summarized in the table below.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

07/27/03 13:31:42

Windows 2000 Advanced Server and IIS 5.0
installation begins.

Timeline output of
Autopsy. Creation of
Metafile-data begins at
13:31

VPRI~ 22:22:00

The honeypot is put outside firewall. To
verify that the honeypot was reachable via an
external network, the honeypot was port
scanned by Shields Up, a web based port
scanner found at http://www.grc.com.

Investigator's notes.

07/27/03

22:36:22

investigator's computer.

Honeypot is compromised. The file root.exe, [|Autopsy timeline
which is characteristic of the Code Red II output.
worm, is created in the c:\Inetpub\scripts
22:24:58 || directory.
The file c:\exporer.exe is created. This file is || Autopsy timeline
22:32:20(also part of the Code Red II worm. output.
The program tcpdump is invoked on the Analysis of tcpdump

packet capture.

Sometime
between

07/27/03
07:27:03

22:24:58

and

W1 22:36:22

The Code Red II worm begins scanning for
port 80 on other hosts.

Tcepdump logfile.

~ 22:45:00

07:27:03

The Honeypot is physically disconnected
from the network.

Investigators notes.

Examining the TimeLine in more detail, we can see the first activity occurs on July 27, 2003.
The files shown below are hidden files, all created at the time Windows 2000 was installed.

© SANS Institute 2003,

As part of GIAC practical repository.

Author retains full rights.

Sun Jul 27 2083 13:31:42 268232 mac —/—r—xr—xr—x A a 91288 C:~5Secure:55DS
4876 mac —/—r—xr—xr—x A a 11281 C:~SMFTMirr
56 mac —/-r—xr—xr—x @ a 9-144-14 G:~/98ecure:55DH
8192 mac —/—r—xr—xr—-x 48 a 7-128-1 C:~%Boot
2568 mac —/—r—xr—xr—-x 48 a 4-128-4 GC:s50ttrDef
131872 mac ——pr—xr—xr—x A a 18—128-1 C:~%UpCaze
B mac —/—pr-xp—xr—x 8 a 8-128-2 C:~%BadClus
2144346112 mac —/—-r—xpr—xpr—x @ a 8-128—1 C:~%BadClus:5Bad
12828672 mac ——pr—xr—xpr—x A a 2—128-1 C:~%LogFile
2528128 mac —/—r—xr—xr—x B a B—128—-1 C:~SMFT
130888 mac —/—r—xr—-xr—x B a 6—128—1 C:~/5%Bitmap
B mac —/—r-wxr—xr—x 48 A 31283 C:~5Uolume
344 mac ds/dr—xr—xr—x A a 111444 C:~ 5Extend
%6 mac —/—r—xr—xr—x A a 914411 C:~5Secure:58I11

Next we see the file root.exe is created at 22:24:58. Recall that root.exe is really a renamed copy
of cmd.exe. We can also see that ipconfig.exe was accessed at 22:25:00. One of the first thing
that the Code Red II worm does, is determine the IP number of machine it has infected. This is
done so that the worm can figure out what IP numbers to attack, and so that the compromised
machine will not re-infect itself (Code RedIl Analysis). Ipconfig.exe will among other things,
list any IP's assigned to the computer on which it is executed.

Sun Jul 27 28083 22:24:58 8368 .a. —/rxr—xur—x
4384 .a. —/ P XPXPX

236384 | .c —/—PuUXPUXPUX

3 LB TSR XPXEX

Sun Jul 27 28083 22:25:00 35688 _a. —/—Pundaurux

669-128-4 C:~AUINNT Fonts/egadBuoa.fon
337-128-4 C:~/UINNT ~Fonts-/cgaBBuwoa.fon
92281—128-3 C:n\/Inetpubsscripts-root.exe
599-128-4 C:» UINNT - Fonts-dosapp.fon
944—128-4 C:~/UINNT rsystem3d2/ipconfig.exe

Sometime shortly after 22:25:00, the Code Red Worm attempts to propagate itself over the
network.

Approximately, eight minutes later, (22:32:20) the file explorer.exe is created.
Sun Jul 27 28083 22:32:28 8192 mac »————— a a 9283 smntsvaunltsexplorer.exe

Finally, at 22:36:22 tcpdump is invoked on the investigators computer. The Investigator's
computer is connected to a network tap so that all traffic entering and exiting the honeypot is
recorded. Unfortunately, tcpdump is not started until after the honeypot has been compromised.
This is because the Investigator did not want to start recording network traffic until after the
honeypot had been scanned by Shields Up. This was obviously a mistake, as the honeypot
compromise took place less than 3 minutes after the honeypot was exposed to the Internet.

Below are the first entries in the tcpdump logfile, showing that the Code Red II Worm has

already entered the propagation stage.

22:36:22.76P1i64 IP 24.153.218.66.3743 > 192.168.248.3.80: S 1A8741014:108741614¢A> win 16384 <mss 146@,nop,nop,sack
OK> (DF>

22:36:22.761041 IP 24.153.218.66.3752 > 192.80.250.1085.808: & 10%2180A76:-107180B76{A> win 16384 {mss 146@,.nop.nop.sac
kOK> (DF>

The network cable is unplugged around 22:45:00, and the USB Pen drive is attached to the
honeypot 15 minutes later at 23:00:17. We can tell the USB drive was plugged in at that time by
looking at the access time of USBSTOR.SY'S, which is the Microsoft driver for USB storage
devices.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sun Jul 27 2883 23:00:17 1978 .a. p———— A a 9285 smnt /vault AWINNT /zystend2/drivers/USBST
OR.5Y8

The last time the system was used can be determined by looking at the last entries in the
timeline. The last entry shows that the ntuser.dat. LOG file was written to on July 27, 2003 at
23:40:39. The computer must have been turned off around this time or there would be later
entries in the timeline. This also matches the turn off time given in the investigators notes.

Sun Jul 27 28@3 23:48:3% 217888 mac -/-r-xr-xr-x @ a 9188-128-4 C:\~/Documents and Settings/Administrator
/NTUSER.DAT

1824 mac —/-r—xr-xr-x @ 2} 2187-128-4 C:»/Documents and Settings/Administrator
sntuser.dat . LOG

Analysis of Memory Dump:

At approximately 22:45, the contents of the honeypot's memory was dumped to a file called
ibm.img, and transferred via USB Pen drive to the analyst's system. The strings command was
used to show the readable text found in the honeypot's memory.

The first search was for the string “ida?”, which is contained in Code Red II network packets.
This string is expected, and found in the honeypot's memory.

% strings —a5 mem.img lgrep ida?

sdefanlt . ida? XAl A A R N R A A R A N A A AR AR AR N RN A RN AR AR HR K
bbb R bR e Rt R R R R R R R R R A R R R R R R A R R R R R R R
AR 2289806858 uchd 3 x w7801 0?82 @:2 06858 xuchd 307801 20?898 w6 858X uchd 307801 w9898 08?820
#»u531hxub3f F2uBR?8xuABAA: Ul =a

By this point there is little doubt that the honeypot has been compromised by the Code Red II
worm. What is not known, is whether something besides the Cod e Red II worm was loaded
onto the honeypot. Other malicious programs such as network sniffers, to monitor network
traffic, or key loggers to capture keystrokes, could loaded and running on the honeypot. To look
for evidence of these sorts of programs the following commands were executed:

strings -a5 mem.img | grep logger
strings -a5 mem.img | grep keylog

strings -a5 mem.img | grep sniff

Interestingly the last command returned something called sniffer.exe. To investigate further, the
“-a 15” option was passed to grep to show the 15 lines before and after the word sniff.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

£ strings —a5 mem.img !grep —alS sniff

PSUNC . EXE
Sample script.whs
SAMP™1EB1 .WHS
SCp.exe

sdiff .exe
sed.exe

SEe(.EeXe
sSeprvice.exe
SFind.exe
share.exe
Shortcut.dll
showin.exe
sidZuser.exe
sigs.exe
gizZe.exe
sniffer.exe
sort.exe
split.exe
ssh.exe
ssh—add.exe
ssh—agent .exe
SSH-—"1DA.EXE
ssh—host—config
SSH-"1DD
response_kit
RESFON™8
win2k_xp
procinterrogate.txt
PROCIM™1 .TET
response_kit
RESPON™8

As shown above, a number of suspicious programs were found, however it seems odd that they

are mostly in alphabetical order and so many of them start with the letter

(P44
S

. Upon closer

review, the investigator recognized the string “response kit” as being a directory found on the
SANS Track 8 Course CD v1.6. Running the command Is -1 s* in the response_kit/win2k xp
directory of the SANS CD showed the following:

£ pud; 1s -1 ==

socygdrivesdsresponse_kitAswinZk_xp

—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab?12
—P—HP—XP—X 1 rab712

© SANS Institute 2003,

Hone 26112 Sep 27 26801
Mone 14848 Jan 17 20808
Hone 465922 May 31 208008
Mone 23552 Mar 38 26061
Hone 215848 Oct 25 260081
Mone 374784 Oct 25 26881
Hone 24864 Hov 12 208008
Mone 49152 Apr 26 1998
Hone 12808 Oct 25 26061
Mone 3@31e4 Oct 2 26081
Hone 215848 Oct 25 260081
Mone 487668 Jun 16 26061
Hone 24864 Jun 16 268061
Mone 554496 Sep 27 26881
Hone 4940880 Sep 27 260081
Mone 12324 Sep 27 268061
Hone L6B648 Sep 27 260081
Mone 4014688 Sep 27 268081
Mone 4657 Sep 2V 2001
Mone 26816 Sep 27 26881
Hone 29696 Sep 13 26061
Mone L66448 Mar 8 2000
Hone 3g3164 Oct 2 20081
Mone 471888 Oct 2 26881

As part of GIAC practical repository.

sCcp.-exe
sdiff _exe
sed.exe

seq.-.exe
SErvice.exe
share _exe
showin.exe
sid2uzer_exe
sigs._exe
size_exe
sniffer.exe
sort.exe
split_exe
ssh—add._exe
ssh—agent _exe
ssh—host—conf ig
ssh-kevygen_exe
ssh-keyscan.exe
ssh—user—confiyg
szsh_exe
strace.exe
strace.sys
strings _exe
strip.exe

Author retains full rights.

The sniffer.exe file found in memory was not a malicious sniffer, rather it was a program called
Sniffer Detector, written by H. Carvey and found on the SANS Course CD v1.6.

Recovering Deleted Files:

Unfortunately, the Code Red Worm only resides in memory, therefore deleted files are not
expected and were not found on the victim computer. However, I did recover a file to illustrate
the technique involved.

Recovering files in Autopsy is a simple as clicking on the “All Deleted files” button. This
makes all deleted files visible in a web browser window. From there, it is just a matter of
clicking on the file, then selecting export from the bottom pane. Once this is done, a dialog box
prompts for the location to save the file. Autopsy makes it easy, however a more in depth
explanation is in order. At this point, it is necessary to understand a little bit about hard disks
and the NTFS file system.

At its most basic level, a hard disk is divided into small chunks called blocks. The hard disk of
the honeypot is divided into 512 byte blocks, which is a very common size. The NTEFS file
system organizes these smaller blocks into clusters, which are the smallest units that can hold a
file. For disks that have a partition (logical subdivision of the disk) size larger than 1 gigabyte
and smaller than 2 gigabytes, the default cluster size is 2048 bytes (Default Cluster). This means
that any file written will consume at least 2048 or 2k, of disk space. So for example, if you have
a file that is 1.5k it will take up 2k of disk space as far as the file system is concerned. Similarly,
if you have file that is 2.5k it will need 2 clusters and therefore consume 4k of disk space. The
2.5k file will not actually fill both clusters, there will be 1.5k of unused space called “slack
space” at the end of the second cluster that is unable to be used by the filesystem. This slack
space might contain remnants of an old file, or it may be used by a hacker to hide a file.

The NTFS filesystem keeps track of the files contained in the clusters on a hard disk through the
use of a special file called the Master File Table, or MFT. Each file known to the operating
system has record in the MFT, that includes the location of the file. For example, notice the
output below. This is from the deleted file C:\WINNT\inf\dispdet.inf found through Autopsy:

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

% cat recover.prpt.txt
Autopsy MFT Entry Report <ver 1.732

MFT Entry: 555-128-4
Pointed to by file:
C:sWINHT #inf /dispdet . inf
MDS of istat output: 6171387B54FfL224d78997d4822771ches
Image: ~homesmikew-toolslocker//nevhackcst nevhackcst/images/ibm2_img
Image Type: ntfs
Date Generated: Sun Sep 7 19:42:85 28083
Investigator: mikew

MFT Entry: 555
Seqguence: 1
Allocated

uiD: A

DOS Mode: File
Size: 13416
Links: 1

Mame: dispdet.inf

SSTAMDARD_IMFORMATION Times:

Created: Tue Dec 7 H6:-880:860 1779
File Modified: Tue Dec 7 B6:88:88 1999
MFT Modified: Sun Jul 27 13:-42:86 2883

Accessed: Sun Jul 27 13:=32:53 28083
SFILE_MNAME Times:
Created: Sun Jul 27 13:=32:23 2883

File Modified: Sun Jul 27 13:32:53 2883
MFT Modified: Sun Jul 27 13:-32:53 2883
Accessed: Sun Jul 27 13:=32:53 28083

Attributes:

Tupe: $STANDARD_INFORMATION <16-8> Mame: M-A Resident size: 72
Type: SFILE_MAME <48-5> Mame:= H-A Rezident size:- BB

Tupe: $SECURITY_DESCRIFTOR <88-3> Mame: M-A Resident size: 148

656245 656246 656247 656248 656247 656258 656251
File Type: ASCII English text, with GRLF line terminators

At the top of the file, we can see the number that it used to keep track of the file called the MFT
Entry. For this file the number is 555-128-4. Five lines later we see that the size of the file is
13416 bytes. We can also see the times that the MFT was modified for this record and the
attributes of the file. The 2™ from the last line in the Autopsy output, shows that this file
occupies the 7 clusters 656245 — 656251. This is expected because the file is 13416 bytes \ 2048
cluster size = 6.5 or 7 clusters. One way to recover a deleted file, is simply to extract the
location information from the MFT. This is the method employed by the utility icat from
http://www.sleuthkit.org. Below is the command used to recover our example file
C:\WINNT\inf\dispdet.inf.

[rootBlocalhost hinlf ./icat -f ntfs /home/mikew/tools/locker/nevhackcst/nevhackest/inages/ihn2.ing 555-128-4)
d/sdal/recover/conhine

In the example above, icat is given the filesystem type (-f ntfs) then the dd image of the
honeypot, followed by the MFT Entry number 555-128-4. Finally, the output is redirected to a
file called combine. Examining the recovered file below, we see the expected file size of 13416

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

bytes.

% 1z -1 combine
—PuH—————— + 1 rabT12 Mone 13416 Sep 7 28:23 combhine

It is also possible to recover a file without using the MFT Entry. In the example below, dcat
from http://www.sleuthkit.org is used to extract each cluster separately, and to redirect the
output to separate files, named a — g. Luckily, all of the clusters are contiguous. Many larger
files are not, and may have 100’s of clusters scattered around the hard disk making recovery
much more tedious.

grgotﬂlocalhost binl# .sdcat —-f ntfsz shome/mikewstools/locker~/nevhackcst/nevhackcst/images/ibn2.img 656245 > /mnt
al/recover/a

[rootBlocalhost hinl# .sdcat —f ntfz shomesmikewstoolsslockersnevhackest/ nevhackcstsimages/ibm2.ing 656245 > /nnt
6 > /nntssdal/recoversh

[rootB@localhost hinl# .rdcat —f ntfsz shomesmikew-toolsz-locker/nevhackest/nevhackcst/images/ibm2.ing 656246 > /nnt
7?7 > /mnt/sdal/recover/sc

[root@localhost binlH# ./dcat —f ntfs shomesmikew/tools/locker/nevhackcst/nevhackcst/images/ibmn2.img 656247 > /mnt
8 > /mnts/sdal/recoversd

[rootBlocalhost hinl# .sdcat —f ntfz shomesmikewstoolsslockersnevhackest/nevhackcstsimages/ibm2.ing 656248 > /nnt
? > /mnt/sdal/recoverse

[root@localhost hinl# .sdcat —f ntfz shomesmikewstoolsz-locker~nevhackest nevhackcst/images/ibm2.img 656249 > /mnt
58 > /mnts/sdal/recoversf

[root@localhost binlH# ./dcat —f ntfs shomesmikew/tools/locker/nevhackcst/nevhackcst/images/ibm2.img 656258 > /mnt

1 » smntrssdal srecoversy

Examining the files recovered with dcat, we can see below that all are 2048 bytes in size, or in
other words, the entire cluster has been recovered.

[rootPlocalhost clustersIft 1s —1la
total 18

druwsxp—xr—x 2 root root 28048 Sep VY 200:-44 |
druwxr—xpr—x 3 root root 2848 Sep V 28:44 _.
—PUKEP— KX 1 root root 28048 Sep VY 20:20
—PUKP XX 1 root root 2848 Sep V 28:28
—PUKEP— KX 1 root root 28048 Sep VY 20:20
—PUHP—XP—3 1 root root 2048 Sep V 28:28
—PUKE— KX 1 root root 2848 Sep YV 20:20
—PUHP—XP—3 1 root root 2848 Sep 7 28:21
—PUKE— KX 1 root root 2848 Sep VY 20:21

Below, the files are combined to recreate the deleted file:

[rootPlocalhost clustersl cat a bec de £ g ¥ .. combined.dcat

£ 1s —1a

total 28

druxpr—xpr—x+ 2 rab?12 Mone B Sep 7 23:82 .

druyx—————— + 4 rabT?12 Mone A Sep 7 23:82 ..

—PuR—————— 1 rab?12 Mone 13416 Sep 7 23:82 combine
—PuH—————— 1 rab?12 Mone 14336 Sep 7 23:82 combined.dcat

We see that the combined.dcat file is actually larger than the deleted file. This can be explained
by the fact that we recovered more than just the file, we recovered all of the clusters. Seven
clusters x 2048 = 14336. The diff command was run to compare the two files, they didn’t differ
by much.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

% diff combine combined.dcat
L26a527

>

“ Mo newline at end of file

Had there been file remnants or part of hidden file in the slack space of the last cluster, we could
have extracted it using the dcat recovery method.

The C:\WINNT\inf\dispdet.inf that was recovered, is an information file that contains a list of the
displays that are supported by Windows 2000. After the initial installation, the file is no longer
needed and is deleted. Rather than list the entire file, only the first 10 lines of the file are shown
below. The head command version 2.0.21, was used to extract the first 10 lines from the
recovered file.

i

head combine

Detect.inf (for SUR>

List of supported displays, manufacturers

[Verzionl
Signature="5CHICAGDS"
Provider=:xMS:x
LayoutFile=layout.inf

String Search.

For the string search, I once again used Autopsy version 1.73. Autopsy makes the search easy by
providing a “Keyword Search” button at the top of a browser window. The search covers the
entire mounted media image. The output below is from the Autopsy keyword search page. The
number of occurrences of each search term is found in the parenthesis following the searched
word.

Previous Searches

sniff (69) | Code Red (0) | hack (313) | defaultida (0) |

The first search was for the word “sniff” . This was done to check for the presence of a network
sniffer. A network sniffer is a program that listens to all traffic addressed to or passing a network
interface. Output from the sniffers are typically written to a log for later retrieval, or emailed to a
throw away account. The goal is usually to obtain valid computer login names and passwords.
Interestingly, 69 occurrences of the word sniff were found, none of which proved to be suspect.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The next words searched were “code red”, “hack” & “default.ida”. This was done to look for
evidence of the Code Red II worm and it’s tell-tale phrase, “Hacked by Chinese”, as well as the
string default.ida which was found in the captured network traffic. Unfortunately, it appears that
may programmers also like the work hacked, because 313 occurrences were found. All of these
occurrences were unrelated to the Code Red II worm, and after further examination, none were
found to be suspect. No occurrences of the phrase “code red” or “default.ida” was found.

Finally, I ran strings against the memory image. Because the Code Red II worm resides in
memory, we should be able to find evidence of the worms signature. I ran 'strings mem.img |
grep default.ida' resulting in the following output

% strings —a% mem. 1m igrep ida?

sdefaunle. 1da7HH
bbb R bR e Rt R R R R R R R R R A R R R R R R A R R R R R R R
AR 2289806858 uchd 3 x w7801 0?82 @:2 06858 xuchd 307801 20?898 w6 858X uchd 307801 w9898 08?820
#»u531hxub3f F2uBR?8xuABAA: Ul =a

The output shown above is also listed in the Memory Analysis section of the paper, along with
additional string searches performed against the image of the physical memory.

Conclusion:

The system that was examined was the victim of a successful Code Red II worm attack. The
trademark files were found in the expected locations. That is a copy of the
C:\winnt\system32\cmd.exe was found to be copied to C:\inetpub and renamed to root.exe and
the file explorer.exe was found at the root level of the C drive.

Had the system been rebooted, C:\explorer.exe would have executed at first login and created a
virtual root, making the entire C drive available via the Microsoft IIS web server.

Further evidence that this was a Code Red II worm infection, comes from the network logs,
which show that the machine began sending out network packets that contained the characteristic
signature of Code Red II.

The memory analysis also showed that the Code Red II worm was present in the systems
memory, and had spawned 330 threads, a number consistent with the default behavior of the
worm running on a non-Chinese computer.

The evidence of the Code Red II worm is very clear, however we also wanted to see if any
additional exploits, or hacking tools were installed on the honeypot. Was it possible that the
Code Red IT worm was used to gain access to the computer, so that the machine could be loaded
with hacking tools etc?

There is no evidence that this occurred, based on the registry information present in the
autoruns.txt file, or from the string searches of the hard drive and memory of the honeypot. In
hindsight, it would have been more interesting to terminate the propagation phase of the Code
Red II worm by rebooting the system and allow the virtual root to be created. It is very likely
that if this would have been done, the system would have been exploited further.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

CodeRedIl Worm Analysis. 04 Aug 2001. Eye Digital Security. 20 Aug. 2003
<http://www.eeye.com/html/Research/Advisories/ AL20010804.htm>

Default Cluster Size for FAT and NTFS. Microsoft Knowledge Base Article — 140365.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Microsoft. 25 Aug. 2003. http://support.microsoft.com/?kbid=140365

DIl Webopedia. 08 Mar. 2003. Internet.com. 25 Aug. 2003.
http://www.webopedia.comVTERM/D/DLL.html

Fenton, Jon. “Re: IIS developers, please help me, very thank's ! Online Posting. 16 Oct. 2001.
Microsoft.Public.Inetserver.IIS. Forum. 20 Aug. 2003.
<http://groups.google.com/groups?hl=en&Ilr=&ie=UTF-8 &oe=UTF-
8&selm=u%233jAQmVBHA.1596%40tkmsftngp07>

HOW TO: Clear the Event Logs in Windows 2000. Microsoft Knowledge Base
Article — 315147. Microsoft. 20 Aug. 2003. http://support.microsoft.com/?kbid=315147

Lovy, Scott. “Microsoft.” Online Posting. 02 Aug. 2001. Microsoft.Public.Inetserver.IIS
Forum. 20 Aug. 2003.
<http://groups.google.com/groups?selm=ujTSDX2GBHA.1892%40tkmsftngp02 &oe=UTF-\
8&output=gplain>

Jones, Allen. It’s All in the Logging. Windows Web Solutions. Nov. 2000. Windows & .Net
Magazine Network. 20 Aug. 2003.
http://www.windowswebsolutions.com/Articles/Index.cfm?ArticleID=15835&pg=1

LIUtilities Online. LIUtilities Inc. 15 Aug. 2003
< http://www.liutilities.com/products/wintaskspro/processlibrary/userinit/>

Maheswaran, Muthucumaru. “Processes Lecture Notes”. Mcgill University. 20 Aug. 2003.
http://www.cs.mcgill.ca/~cs310/2003B/LECTURES/PPTs/02-process.ppt

MD5 Checksum Utility. 3L Corporation. 20 Aug. 2003.
< http://www.shen.myby.co.uk/threel/tech/tools/md5.htm>

Overview of Internet Information Services 5.0. Microsoft Press. 20 Aug. 2003.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/iis/iis5/reskit/ii
s50rg/iischpl.asp

Russell, R. & Mackie, A. Code Red I Worm. 05 Aug. 2001. Security Focus. 21 Aug. 2003.
http://aris.securityfocus.com/alerts/codered2/010805-Analysis-CodeRedIl.pdf

Schwartz, David. Redistributing Microsoft Visual C++ 6.0 Applications. MSDN. Aug. 2000.
Microsoft. 18 Aug. 2003. <http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnvc60/html/redistribvc6.asp>

Task List Programs. Answers That Work.com. 21 Aug. 2003.
http://www.answersthatwork.com/Tasklist pages/tasklist t.htm

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

