
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Examination
researched and written by

Aaron Sierra

Summary
This document is the practical assignment portion of the GCFA certification. This
practical assignment consists of three sections in accordance with the GCFA
exam guidelines.

In the first section, I analyze an image of a floppy disk, which contains an
unknown binary. In this scenario, the image and binary were reportedly taken as
evidence during an investigation of alleged illegal distribution of copyrighted
materials. Through my analysis I attempt to determine the identity and use of the
mysterious binary in the context of the investigation. I also look for information to
support the allegations.

In Part 2, I conduct a forensic investigation of a compromised system that was
found in a real world environment. In this section, only superficial details about
the subject system and scenario have been modified to protect concerned
parties. Otherwise, the compromise of the system and all information recovered
are completely bona fide. During my investigation I attempt to illustrate for the
reader the various tools and procedures that such an investigation may typically
be comprised of. At this point, the reader should be warned that Part 2 of this
document contains potentially offensive language, which was documented during
the investigation.

Finally, in Part 3, I attempt to answer legal questions, which have been selected
by the GCFA examiners.

In writing this document, I attempt to give the reader a first-hand perspective of
an investigator’s thought process and rationale. Because this document
attempts to discuss advanced systems concepts, some statements are made
with the assumption that the reader a basic understanding of the Linux operating
environment and its common tools.

Part 1 - Analyze an Unknown Binary

Research and Analysis
To prepare for the binary analysis task, I began by first downloading the evidence
image from http://www.giac.org/gcfa/binary_v1_4.zip. As stated in the section
summary, this download includes a floppy image that was seized in an
investigation involving the illegal distribution of copyrighted materials.

With the downloaded image file now in my possession, I need to be sure the file
was processed properly and that it was not accidentally or deliberately modified.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To accomplish this, I decide to verify its integrity with the MD5 checksum tool,
md5sum. The md5sum command produces a 128 bit cryptographic hash value
based on an input file being ran against the MD5 algorithm. While identical files
will produce identical hash results, it is a statistically high improbability that two
files, even with only minor differences, could produce identical hash values. As
such, use of this method provides reasonable assurance that the subject file is
the true and unaltered file.

Once I ran md5sum and compared the results against the known hash value, I
was confident in the authenticity and integrity of the file. As such, I proceeded to
uncompress the forensic image “fl-160703-jp1.dd.gz” with the gunzip utility, a
common Unix tool. Now, with the file uncompressed, I was left with a standard
dd image and I was therefore able to convert the image and restore it to a floppy
disk with the dd command. This useful command can create a block for block
image of a device and restore the image. As will be illustrated later, dd is a
common and practical forensics tool.

Finally, to preserve the integrity of the subject file system, I mounted it as read-
only. By doing so, I allow myself to analyze the image and its contents without
modifying any precious forensics evidence, such as the actual files or their MAC
times.

With the image properly procured, verified and mounted, I was now ready to get
the actual investigation underway.

To dive into the binary analysis, I first wanted to give myself a visual snapshot of
other files, which may factor into my investigation of the subject binary. To do
so, I created a timeline of all the image’s files by gathering and organizing MAC
information and sending the output to file. By specifying an output file, I could
conveniently reflect on the MAC information as needed without having to rebuild
my forensic timeline. The primary tools used to create the timeline were mac-
robber and mactime. Mac-robber simply collects MAC and other vital file
statistics. While the tool is quite effective, its native output is not human friendly.
For this reason, I then used by mactime to create a timeline which is much more
meaningful for human interpretation. The commands were ran as follows:

mac-robber /mnt/floppy > /tmp/mr.out
mactime -b /tmp/mr.out > /tmp/mactimes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and the following MAC-based timeline information was produced.

While similar information could have been obtained quicker by using the
command ls –latR, the output of that command is superficial, providing
considerably less detail and reliability. As such, it was worth a couple extra steps
to get the more complete and forensically accurate picture.

My approach succeeds in gaining me some perspective on files of interest and,
therefore, the potential scope of my investigation. I can immediately see what
files were of interest to the user near the time of the data collection and the
sequence of their usage. From this output we have learned and can assume:

• The majority of the files on the file system belong to the same user, user
ID 502. (Because John Price is referenced in the properties of the Word
documents as the Author, we may assume for now that he is user 502.
However, if any doubt where present in an actual investigation, the
System Administrators could be consulted to help verify this detail.)

• The subject file (unknown binary), prog, was used by the user immediately
prior to the investigation

• If the system’s time was correct, the subject file was last accessed at
06:12:45 on Wed Jul 16 2003, in whatever time zone the system’s time
was set to

• A temp file named “~5456g.tmp” was accessed suspiciously close to the
last usage of the subject file

• The user had a recent interest in MP3 and DVD technologies
• The user had a recent interest in netcat, which is commonly associated

with malicious or inappropriate activities involving computers
• The suspect file had a file size of 487,476 bytes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

At this point in the investigation, this information will serve only as data-points. It
is noteworthy, but it will have to be revisited in subsequent steps.

It is now time to start collecting information about the subject file itself. The
investigation is still early in the game and there is much to learn. I decide to start
my information gathering with the basics.

First, I collect the file’s forensic fingerprint by again using the md5sum utility to
determine the file’s statistically unique MD5 hash value. With the md5sum output
recorded, I now have another data-point logged.

Diving further into the identity of the subject binary, I continue my analysis with
the use of some more basic but effective Unix commands. I next use the file
command to determine the file type and other details about the subject file. The
output of the file command was as follows:

This information confirmed that the file was indeed a binary and also revealed
that the file was of the ELF format and compiled for Intel architecture with
statically linked libraries and subsequently stripped of all symbols. By going a
step further and running readelf -h against the binary to analyze the file’s header
data, I observed that the file had what appeared to be a normal entry point.
Armed with this information, I was now hopeful that it would execute properly for
me on my test system. The output from the readelf command was as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Because I was dealing with a confirmed binary, I decided to do a strings analysis
of it to yield more clues. The strings utility simply reads the file for strings of four
or more printable characters and prints them to standard output. The strings
analysis process is really a matter of fishing. It’s results could be incredibly
useless or incredibly helpful and may vary greatly depending on the content of
the binary.

Due to the sheer quantity of lines generated by the strings command, I did a
cursory review of the strings output for obvious clues, but nothing was “jumping
out” as a significant detail. Because of the time required to complete a quality
analysis, I soon decided to execute the binary with hopes of finding information at
a little quicker pace. Because I was working in an imaged test environment, I
prepared for the test execution of the binary on my analysis system. If my
system was not imaged or if it was my daily workstation, I would have been
considerably less eager to execute the unknown binary on it. Instead, I would
have opted to setup a Linux virtual machine just for this kind of use, or even build
another test system. After all, any adverse effects could potentially compromise
my workstation or even the investigation; this is not a risk worth taking. Before
jumping into the execution of the binary, I installed and configured Tripwire for
basic system monitoring. By installing Tripwire, I would immediately know if the
binary was a form of malware that had an adverse effect on my critical system
files; however, the Tripwire file system check revealed no tampering with the
monitored file system.

After initially executing the program with the command “./prog”, I was prompted
to execute it again with the “--help argument”. The following is the command and
output from my second attempt:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Based on the “help” output, I could speculate that the subject binary was used to
interact with file system images and devices. However, with references to wiping
raw devices, checking for fragmentation, extracting copies from raw devices, I
still had no guesses as to the utility’s true identity. Reaching for the nearest fruit,
I decided to search the content of the “HOWTO” files contained in the “Docs”
directory for passages that would describe such a utility or for passages that
would echo the binaries “help” output. My assumption at the time was that the
suspect file was used for ripping or encoding music. However, searches to
support that hunch were fruitless and proved to be a great waste of time. During
the course of my searches, multiple utilities referenced in the documentation
were downloaded, compiled and ran to determine their output, with hopes of
finding a match. Of all the utilities researched through this tedious method, none
of the analyzed binaries produced a “help” output that compared to the suspect
program.

After this diversion, I refocused my investigation on the binary itself and returned
to the forensics basics. I revisited the strings output and carefully sifted for
anything that could be construed as a clue. During this process, I attempted a
variety of internet queries in a variety of combinations. I even performed
searches on the seemingly obscure strings , hoping that any one of the searches
would shed just a little light on the investigation. This process consumed hours
of investigation time, but it seemed to be my best hope in tracing the file’s
identity.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

During this process, the value “newt” caught my eye as it did in my earlier look at
the Strings output. However, various Google searches on combinations of “newt”
with some of the more unique “help” suggestion strings were of little value to my
investigation. I was hoping that my searches for strings like “extract a copy from
the raw device” and “list sector numbers” would bring me to the utility’s man page
or a user’s “help” post on the internet; but, again to my disappointment, I was
finding nothing that compelled me to believe my investigation was on the right
track.

Because “prog” showed up in the output, I could also guess that this utility was
not compiled with default values. As I was about to learn, this would complicate
the process ahead. This information also served as a valuable data point, but it
was not at all revealing and, still, more information was needed.

Analysis of the strings output proved to be more difficult than I had originally
anticipated. The strings command produced 4760 lines of output. At this point of
the investigation, the process became very manual and tedious. Of these 4760
lines, the majority of the output was no help in revealing the binary’s hidden
identity. Additionally, the strings that most frequently caught my attention
continued to produce fruitless results.

To facilitate my search, I piped the strings results to a temporary file that I could
access and modify in a more efficient manner. Strings were examined and then
re-examined. The result of which was frequent Google searches that were
yielding no leads.

For purposes of discussion, we will look at some of the more interesting strings
and some of my search results. The following shaded boxes contain excerpts
from the strings output and are followed by a discussion of the excerpt.

+45 3325-6543
+45 3122-6543
keld@dkuug.dk
Keld Simonsen
ISO/IEC 14652 i18n FDCC-set
C/o Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V

Though this sequence was found near the end of my strings file (starting at line
4677), I begin with it because it was one of the most eye-catching pieces of data
that I came across. It was what appeared to be, perhaps, the developer’s name
and contact information. As such, I eagerly launched a Google search to learn
more about this person and their possible involvement with this binary. To my
disappointment, I quickly learned that this person and contact information are
associated with several ISO projects and that “ISO/IEC 14652” is a project that
has no relation to this case. No new leads were generated here.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

examining a filename or url!
nbd-server
MFT_LOG_THRESH
mft_log_shutdown
Any of the valid values for \fB--%s\fR can be
supplied directly as options. For instance,
\fB--%s\fR can be used in place of \fB--
%s=%s\fR.
logging threshold ...
log-thresh
useless bogus option
test for fragmentation (returns 0 if file is
fragmented)
checkfrag
display fragmentation information for the file
wipe the file from the raw device
print number of bytes available
extract a copy from the raw device
list sector numbers
operation to perform on files
generate SGML invocation info
1.0.20 (07/15/03)
newt
use block-list knowledge to perform special
operations on files
off_t too small!
how did we get here?
target file block size: %d
unable to raw open %s
error mapping block %d (%s)
nul block while mapping block %d.
stuffing block %d
nul block while mapping block %d.
unable to determine raw device of %s
unable to stat raw device %s
bogowipe
Wrong medium type
No medium found
Is a named type file
No XENIX semaphores available
Not a XENIX named type file
Structure needs cleaning
Stale NFS file handle
Operation now in progress
Operation already in progress
No route to host
Host is down
Connection refused
Connection timed out
No buffer space available
Connection reset by peer
Network is unreachable
Network is down

Address already in use
Protocol family not supported
Operation not supported
Socket type not supported
Protocol not supported
Protocol not available
Name not unique on network
Machine is not on the network
Out of streams resources
No CSI structure available
Too many references: cannot splice
Software caused connection abort
Network dropped connection on reset
MMAP_MAX_
TRIM_THRESHOLD_
MMAP_THRESHOLD_
max mmap regions = %10u
max mmap bytes = %10lu
ANSI_X3.4-1968//TRANSLIT
=INTERNAL->ucs2reverse
=ucs2reverse->INTERNAL
=INTERNAL->ascii
=ascii->INTERNAL
=INTERNAL->ucs2
=ucs2->INTERNAL
=utf8->INTERNAL
=INTERNAL->utf8
=ucs4le->INTERNAL
=INTERNAL->ucs4le
UCS-4LE//
=ucs4->INTERNAL
=INTERNAL->ucs4
UCS-2BE// UNICODEBIG//
UCS-2LE// ISO-10646/UCS2/
CSASCII// ANSI_X3.4-1968//
CP367// ANSI_X3.4-1968//
IBM367// ANSI_X3.4-1968//
US-ASCII// ANSI_X3.4-1968//
ISO646-US// ANSI_X3.4-1968//
ISO-IR-6// ANSI_X3.4-1968//
ANSI_X3.4// ANSI_X3.4-1968//
OSF00010102// ISO-10646/UCS2/
OSF00010101// ISO-10646/UCS2/
OSF00010100// ISO-10646/UCS2/
UCS-2// ISO-10646/UCS2/
UCS2// ISO-10646/UCS2/
OSF05010001// ISO-10646/UTF8/
ISO-IR-193// ISO-10646/UTF8/
UTF-8// ISO-10646/UTF8/
UTF8// ISO-10646/UTF8/
WCHAR_T// INTERNAL
OSF00010106// ISO-10646/UCS4/
OSF00010105// ISO-10646/UCS4/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

OSF00010104// ISO-10646/UCS4/
ISO-10646// ISO-10646/UCS4/
CSUCS4// ISO-10646/UCS4/
UCS-4BE// ISO-10646/UCS4/
UCS-4// ISO-10646/UCS4/
alias
module
UNICODELITTLE// ISO-10646/UCS2/
OSF00010020// ANSI_X3.4-1968//
ISO_646.IRV:1991// ANSI_X3.4-1968//
ANSI_X3.4-1986// ANSI_X3.4-1968//

ISO-10646/UTF-8/ ISO-10646/UTF8/
10646-1:1993/UCS4/ ISO-10646/UCS4/
10646-1:1993// ISO-10646/UCS4/
GCONV_PATH
/usr/lib/gconv/gconv-modules.cache
DYNAMIC LINKER BUG!!!
1997-12-20
Out of memory while initializing profiler
 of Verdef record
 of Verneed record

Though less interesting, each of the previous strings was treated as clues that
may solve the puzzle. This list is trimmed down from an already refined list of
more than 500 strings. The strings that were trimmed away were discarded most
often because they were so common and/or non-descript; as such, it was highly
likely that they would have shown in a multitude of other programs. The
remaining strings were left for a few reasons. First, it was my hope that some of
the strings, which seemed to be variables or error messages, would show in
posted code or man pages on the web. Also, some of these strings may have
held additional clues as to the functionality of the binary. Perhaps the most
misleading of these are the strings, were those that seemed to reference network
functionality. Of the search results for these strings, none seemed to support the
presumed purpose of the binary.

Another piece of the strings output that was of interest, but omitted for brevity,
was the finding of 3326 strings that referenced device directories. While this
information served as a data point, it unfortunately provided no leverage for my
extensive Internet searches.

Though it didn’t jump out at me immediately, I would soon find that the most
useful strings to search on were “bmap” and “slack”. Here are the few references
of “bmap” and “slack” found in the strings output. As you can see, these values
would easily be lost or overlooked in 4700+ lines of similarly obscure data:

slack size: %d
%s has slack
%s does not have slack
NULL value for slack_block
bmap_get_slack_block
bmap_get_block_count
bmap_get_block_size
bmap_map_block
bmap_raw_open
bmap_raw_close

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Breakthrough
After hours of futile searching, my breakthrough came when I revisited the clues
and retried some searches. A search on a string from the “--help” output
produced a glimmer of light at the end of the tunnel. I ran a Google search on
the string "use block-list knowledge" and landed up on a page
(http://old.lwn.net/2000/0420/announce.php3) that referenced a utility called
bmap. This page provided only a vague description of the utility. The description
here was simply “Use block-list knowledge to perform special operations on
files.” Unfortunately, the bmap entry linked to an obsolete URL
(http://freshmeat.net/search/?q=news%2F2000%2F04%2F16%2F955924691.html) that
provided no additional information. However, the breakthrough here was that my
attention had now turned towards bmap. With this little push, I soon found that
my investigation was back on track.

I tried several searches on bmap. Eventually my search evolved to “bmap” and
“block”, in an attempt to limit my results to utilities that were specific to disk
management. While most descriptions of bmap were vague and still left more
questions than answers, I eventually ended up at a page that brought it all
together. The page, http://old.lwn.net/2000/0420/announce.php3, described
bmap as follows:

The block size of a typical file system varies from 1K to 4K. Every
file takes at least one block. The unused space in that block is slack
space. Bmap can save data into this slack space, extract data from
slack space, and delete data in slack space. The data cannot be
accessed using tools unaware of slack space (i.e. almost all other
tools), does not change existing files, and therefore cannot be
detected using checksums or access times.1

Now everything made sense. “Prog” was a utility that was used to hide
copyrighted material from detection in the system’s slack space. Suddenly my
investigation had new life.

At this point I had to find the source code and prove that prog was indeed bmap.
I eventually kluged together a URL
(http://www.scyld.com/pub/forensic_computing/bmap/) from broken links and the
URL provided several versions of the bmap utility. I downloaded, and compiled
code from a couple different bmap versions. In doing so I eventually learned that
bmap.c in the bmap distribution was modified and stripped of most references to
slack prior to be being compiled. Additionally, the person compiling the utility
changed the author and program name values. Needless to say, this obfuscation
proved effective in adding exponential layers of difficulty to the investigation.
Had these references been more frequent and consistent, they would have
drawn enough attention to be researched much sooner in the process.

1 Eklektix, Inc., http://www.scyld.com/pub/forensic_computing/bmap/.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Despite the differences in the code, once compiled and ran, it was quite evident
based on their output that prog and bmap were the same utility. Here is
comparison of their output (note that the “help” menu for prog is displayed earlier
in this document and has been omitted here for brevity):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Due to the modifications of the source code and potential differences in library
versions used to compile the utility, producing a file with a matching md5sum is a
statistical improbability. Instead, to further support my finding that these tools are
one in the same, I attempted to analyze the subject file system with the bmap
utility. By doing so, I also hoped to uncover more evidence to support the
allegations of the illegal distribution of copyrighted materials. I did this by
checking each individual file on the file system for information hidden in slack
space. My efforts paid off.

As I systematically analyzed each file, I eventually found that the file “Sound-
HOWTO-html.tar.gz” contained hidden information. I analyzed the file with bmap
and extracted the information as follows:

This finding is significant. It suggests, if not proves the following:
1. Prog and bmap are the same utility
2. The prog/bmap binary was in use on the subject file system
3. The utility was deliberately compiled to conceal its identity
4. The user knew that his activities were illegal or certainly inappropriate
5. Though the actual URLs proved to be fictitious, this information suggests

that the user was involved in the trafficking of pirated music
6. The user used company resources for his illegal activities

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

With this information and after reviewing the other files on the image, it was clear
that my investigation was a success. The unknown binary had been identified
and solidly linked to the alleged illegal activities.

Advice to Investigating Administrators
Because the analysis of slack space may be involved and time consuming, an
efficient approach should be formulated for furthering the investigation. If System
Administrators are going to look for more evidence, they should first determine
the scope of the investigation by listing the systems to which John had access,
and by looking into the involvement of other employees. If involvement of other
employees is uncertain, Internet access logs should be reviewed to determine
what systems may have been accessing bmap distribution sites or MP3
distribution sites, such as the ones referenced in slack space.

Once the scope has been determined, suspect systems should at very least be
searched for a file called prog. Due to the care taken to conceal the identity of
the binary, it is less likely that it will be found under the name bmap, but a search
for bmap and other binaries in it’s distribution would be prudent. All suspected
files could be examined for evidence forensically as outlined above.

If Administrators believe that a particular system is involved, the slack space on
the system can be analyzed as above, but with more efficient tools, such as
slacker. The slacker tool analyzes slack space in a directory tree. Simply stated,
it allows a user to recursively analyze files for used and free slack space. Such
an audit would also prove tedious, but it would at least lend more efficiency to the
investigation. Slacker was included in the bmap distribution. The following is a
sample of slacker output:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Legal Implications
John Price’s activities were likely in violation of US and international copyright
laws. Over the last several years, holders of copyrights, specifically those in the
recording industry have stepped up legal action against those who traffic in the
copyrighted material. Such legal action frequently pursues civil judgments for
payment of damages; however, such cases can potentially be escalated to
felonies based on the extent of the infringement.

Because civil suits may be broad in naming defendants, John’s company would
be well served to mitigate its involvement in John’s activities, so as not to be
construed as his enabler. By taking swift action against such infractions and
enforcing the proper policies, as discussed below, they can hope to avoid be
implicated in such affairs.

In addition to the evidence collected in this process, it is probable that
prosecutors and plaintiffs, in building their case, would seek to obtain additional
supporting information and that additional forensic information, such as web and
system logs, would be subpoenaed and analyzed by investigators.

Aside from legal issues involving copyrighted material, John was probably
violating company policy as well. As part of a comprehensive information

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

systems program, John’s employer should have policies, which seek to prohibit
the use and possession of malware and other types of security software on
company systems, networks, and premises. Such a policy would definitely have
pertained to the bmap utility. Additional policies, such as Acceptable Use of
Systems and Acceptable Use of Internet, would serve as further deterents
against such behavior and provide the employer with a clear means of recourse
should such violations occur. Such policies should be clearly stated,
dissemintated, and enforced to ensure their validity if they are ever to be called
upon in a real-world case.

For more information on copyright infringement, you may want to visit these sites:
http://www.copyright.gov/
http://library.law.columbia.edu/music_plagiarism/
http://www.templetons.com/brad/copymyths.html

Interview Questions
Because so much evidence points to inappropriate activity by the user, I would
begin questioning him in a manner that would give him a chance to confess, and
I would then progress to questions that would hopefully elicit a slip-up, if not a
pressured confession. By giving John a chance to confess, I would hope to gain
his cooperation in determining the scope of the illegal activities and the
involvement of other employees. This would also allow me to not reveal what I
already know until I have to. By doing so, I can judge whether or not his
confession is complete, and I would not tempt him to omit details and deliver a
story that conforms only to my findings.

My interview questions for this case would be as follows:
1. Why does your system contain recent information on the creation and use

of mp3s?

2. Why do you have information on sites like fileshares.org, ripped.net, and
emmpeethrees.com?

3. What are the files and orders that you referenced in your recent
communication to Mike? (This question is derived from the content of
Mikemsg.doc)

4. What is the purpose of the prog utility that you’ve recently used?

5. Who are you selling the music to?

6. On what other systems are you hiding data with the bmap utility?

7. Who else from our company is involved in your music pirating operation?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

8. What do you want to tell me about your trafficking operation?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 2 – Forensic Analysis of a System

About the Case
On the morning of June 10, 2003 at approximately 5:00 AM PST, an on-call
network administrator is woken by a phone call from a monitoring engineer who
is calling to report extremely high bandwidth utilization in part of their network.
The Administrator immediately logs in and sets up IP accounting to track down
the culprit. The activity is traced to a single server in their Northern California
data center, which generated 1.7 GB of traffic in a 20 second period. A decision
is immediately made to air-gap the server by removing its Ethernet connection
and report the incident to the Security team when they arrive for work later that
morning.

The company, which I will reference as foo.com1, had all but forgotten about the
existence of the subject system. An engineer had hastily built it to host and test
a temporary monitoring application. It was deployed it many months earlier and,
after the server’s test period of only a few weeks, it was left on-line as its
custodian shifted his attention elsewhere and forgot about it. Despite this grave
oversight, it was fortunate for foo.com, that the server was a non-standard build
and contained no sensitive or proprietary data.

This section of the practical assignment details the forensic evidence collection
and analysis of the subject server.

The pertinent system specifications are as follows:

System Time Zone
GMT

Software
Operating System: RedHat 7.1, Kernel 2.4.2 (unpatched)
WebServer: Apache 1.3.22
Other: PHP 4.0.6 based web application

Hardware
Manufacturer: Generic chassis with no serial number
Internal Hard Drive: Seagate Baracuda, 20gb
CDROM: Internal
Floppy: 3.5 internal
Memory 512 mb
Motherboard Intel Server Board with onboard video card
CPU Dual 700 mhz Pentium Processors

1 Shown in sanitized logs and output as foo.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Tag # Description
030604-01 Generic 2U Rack Mounted Server (No Serial#), Dual Processor,

Burgandy Face, Asset Tag #0005521
030604-02 Seagate Baracuda ATA III, Model ST320414A, Serial

#3EC07L1W, internal harddrive

Preservation of Data
Because the system was left powered on, I had an opportunity to image the
memory prior to powering down the system. To accomplish this, I configured a
secure laptop to network directly to the server and started a listening process of
netcat on the laptop and I piped the output of the listening process to a file, which
would later become a dd image file.

I next logged onto the server to create a dd image of the server’s memory.
However, rather than creating a local image file, which could potentially overwrite
critical forensic information, I piped the dd output to a local netcat process that
was configured to send information over the network to the listening netcat
process on the laptop.

Netcat is often referred to as the “Swiss Army Knife” of network tools. It is an
incredibly useful and light utility that allows one to send and receive data on any
system port. While it is commonly associated with hacking, due to its frequent
use by hackers, its flexibility and wide array of applications make it a practical
tool for system administrators and security professionals who can use it for a
variety of legitimate tasks, such as the task described here.

Once the imaging process was completed and the contents were verified on the
laptop, the system was powered down hard by doconnecting it’s power cable.
The system was then taken to a secure lab for further imaging of its drives and
forensic analysis.

Once in the lab, the hard drive was removed from the subject system and labeled
as evidence. In order to power up the subject disk on the forensic analysis
system without incident, I first had to remove the label references found in the
forensic workstation’s /etc/fstab and replace the entries with their proper device
paths. By doing so, I could boot up with both disks and not worry about label
conflicts between the two systems. The revisions to /etc/fstab were as follows:

/dev/hdc2 / ext3 defaults 1 1
#LABEL=/ / ext3 defaults 1 1
#LABEL=/boot /boot ext3 defaults 1 2
/dev/hdc1 /boot ext3 defaults 1 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Once the revisions were in place, the forensic system was powered down, the
subject disk was then physically connected to the forensic system, and the
system was again powered up.

Next, I used the command

fdisk -l /dev/hda

to view the disk’s partitioning. Once I had the partition information, I then began
the process of imaging each partition.

To better document and identify the image slice numbers, I referenced the slice
number in the image file name along with the string “emc”, which was designated
to reference the subject system. Each slice was imaged with the following dd
command convention:

dd if=/dev/hda1 of=/img/emc1.img

Because the system was a non-standard build, I now wanted to determine which
slice was root and examine it’s /etc/fstab to make sense of the slice identities and
mount points. To do so, I mounted each image file. In order to preserve the
forensic information contained in each slice, I was careful to mount each image
with restrictive options as follows:

mount -ro,loop,nodev,noexec,noatime /emc/emc/images/emc1.img /mnt

I learned each of the slices identity based on its content or the original /etc/fstab
entries. I next renamed the images according to a new convention that also
referenced the mount point. By doing so, the identity of each slice image would
be self-evident and my future interactions with each image would be more
efficient. The new naming convention was emc<slice#>_<mountPoint>.img,
such as emc6_root.img.

Now that each slice was imaged and properly named, I performed a checksum
comparison of the images against the actual disk slices to verify the success and
integrity of the imaging process. As was discussed earlier, this is a vital step in
proving that the evidence had not been altered.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The previous screenshot shows the md5 checksum comparisons between the
actual system disk partitions and their corresponding images. Now that the
evidence had been demonstrated to be properly collected, I could press on into
my investigation.

The Investigation
With the images preserved, I was now ready to start sifting for clues. To facilitate
the investigation, I decided to take advantage of the feature rich “Autopsy
Forensic Browser”, which is described in depth at
http://www.sleuthkit.org/autopsy/desc.php.

Once I had Autopsy setup and ready to use, I created a case called “emc” and
added the images to the case using Autopsy’s “Host Manager”. As you can see,
the use of Autopsy simplifies the process by providing a point-and-click working
environment. At this point, my earlier step of referencing the mount points in the
image names were already paying off in time saved.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Now that the case was being managed in Autopsy, MD5 checksum were taken
once more with Autopsy, so that they could be stored and easily referenced as
part of the “emc” case I had created in Autopsy. In addition to it’s browsing
capabilities, Autopsy also provides various additional functionality, one of which
is to act as a sort of notebook that allows investigators to easily reflect back on
case notes and details in an organized fashion. These features become
increasingly useful; especially as the investigator’s notes begin scaling to
voluminous proportions.

With my case set up in Autopsy, it was now time to create some timelines and
gain some insight into the subject system’s suspicious behavior. To do my
analysis, I use two methods to setup timelines. The first timeline is a
comprehensive timeline of all slice images. To create this timeline, I used the
following command against the read-only mounted image files:

mac-robber /mnt/emc |mactime > /tmp/emc.mac

This method created an enormous 31,928,501 kb file that can be easily and
efficiently searched with standard Unix commands. However, by creating
additional timelines in Autopsy, I have the option of using Autopsy’s browsing

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

features as an alternative method of analyzing timeline data. Both methods have
their strengths and weaknesses. Though I’m eager to focus my attention on the
events of days just prior to the system being pulled off-line, I first analyze the
timeline to determine the system’s prior usage. Here are some of my findings.

The earliest MAC information found in the timeline is misleading. It dates back to
1989 and I speculate the information is preserved from archives used in the
installation media and the administrator’s customizations. These dates can be
dismissed by the simple fact that the hardware technology used by this server
was not existence at such and early date.

Later timeline entries would suggest that the system was in use through much of
2000 and that several package upgrades occurred in February 2001. During that
period, many files associated with drivers, man pages and server applications
showed changes to their modification and access times. The changes made
seemed to hinge around specific packages. As such, I would again attribute this
to build archives used in the installation process.

On March 24 , 2001, thousands of entries were created in rapid succession.
These changes affected files such as device directories, as well as common
system application files. All changes during this period showed as changes to
the modification and access times of the individual files. The activity here was
clearly a major system change and seemed to be consistent perhaps with a
system build. Soon after, on the 27th, a MySQL database was also installed.
Frequent package additions persist on through the year. During this period,
libraries, utilities and applications updates are seen often.

As I continued down the timeline, evidence of another major system event was
gleaned from the creation of thousands of files on September 25, 2001. Beside
the volume of files created, the file types were what one would expect to be
generated by an installation or system upgrade. These entries indicated inode
content changes to a wide variety of system and application files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Coincidentally, the boot log’s earliest entries dated to September 25, which would
seem to suggest the time at which the server entered into service:

From this period on, file system activity seems much more in-line with regular
use. Entries are generated much more frequently for their Access times rather
than their modification or change times. Again, application updates are seen, but
they are sporadic and occur with much less frequency than the changes of the
later period. These changes probably reflects the nature of the testing and
development that was done on the system.

When I later questioned the Engineer about the history of the server, he revealed
that the server was built form an image and that it was “rebuilt” several times due
dependency issues with his application. He also confirmed that it was finally
deployed in late 2001, but could not give a specific date.

Now that we have some perspective on the file system creation and history, I
shift my attention back to the investigation. Discussion and reflection on activity
timelines will be a recurring part of this analysis.

Of more interest to me than the early history of the system, I was especially
curious about the file system activities immediately preceding the incident. As
such, I sifted through the entries of early June, where I quickly discovered a flurry

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of activity in a very suspicious directory. The directory was named “.targa” and
it was tucked away in /usr/local/man/man1, where it would likely remain
undetected for a long time under normal system use. Here you can see a portion
of the “.targa” references that were revealed in my Autopsy timeline:

Immediately of interest and concern, was the apparent content of the “.targa”
directory. In it, I recognized the names of utilities commonly used by hackers.
These utilities served no legitimate purpose on the system, let alone in their
hidden location.

With my findings, my attention was immediately focused on the contents of the
“.targa” and the clues they held. As such, I would now sift through the contents
of the individual files to extract what I could about their purpose, usage, and user.
Because “.targa” contained so many files, including a vulnerability scanner,
sniffer, rootkit, php exploit tool, samba exploit tool, netcat, psybnc, and other
malware, this document will stay focused on the files that I found to be of
particular interest to the investigation and will not cover the other items which
were determined to be simply part of the attacker’s toolkit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The files displayed in “.targa” were now a known; so before I dove too deeply into
the “.targa” analysis, I decided to take a quick look at the files that were deleted
on the file system. By doing so I was hoping to develop an even broader view of
the incident.

I began the process by using Autopsy’s File Analysis feature. With this tool I was
able to view deleted files on the root image with a single click. At the top of the
list was the first conspicuous file, t83-1-sh. The color of the link indicated that the
file’s meta data had been reallocated. As such, it was likely that the file’s true
content would not be recovered, but I attempted to recover it to see if turned up
any leads.

By clicking on the filename link, I was presented with additional file data and a
rendering of its contents. From this information, I could clearly see that the file
was in fact gzip compressed data. Based on this, I decided to dig further and
used the export utility to save the file contents to disk.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Because I new the data was compressed with gzip, I saved the export with the
.gz extension and then ran the gzip utility on it to uncompress the data.

By running the file command on the uncompressed data, I found, as would be
expected, that the uncompressed data was actually a tar file. Knowing this, I
proceeded to list the contents of the tar archive with the tar command. In doing
so, I discovered that this file housed an IRC spoofing utility called psybnc. A
quick Google search revealed more information about psybnc and its usage at
http://www.netknowledgebase.com/tutorials/psybnc.html

As it turned out, there was actually an undeleted file in /usr/local/man/man1
named psybnc.tgz, so it appeared that the file was in fact reallocated. This was
proven by viewing the file’s meta data through Autopsy:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Despite the futile results of this particular file recovery, the file recovery process
is the same for most deleted files.

One notable exception to the process is for files in which the meta data
references no direct blocks. In such an instance, the user selects the “force”
option under the “Direct Blocks” section. By doing so, you can force the display
of the files associated data blocks, as I illustrate on a deleted file called
“php0TfIEX” in the temp directory: This file was suspicious because it was one of
many similar files that were deleted from the /tmp directory in a short period of
time. Also, I began to see a trend of file modification and access times dating
back to the last weeks of May. As you’ll notice, the previous files were in use on
May 25 and 26 of 2003. This trend prompts me to expand my the scope of my
search to activity in late May. I begin the expanded investigation with the
recovery of this deleted file:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Because the contents of this file are ascii text, I use Autopsy to display the file’s
contents. While the text is not very descriptive, this file and existence of many
similar files suggests to me that the incident involves some form of a PHP attack
on May 24. Similar strings to the contents of this file were found frequently in my
strings analysis of the imaged memory mentioned earlier in this section. All of
these finding revealed a repetition of some common characters and each
instance varied in length. The file contents were as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

As perhaps an easy way to validate or dismiss my PHP theory, I turn to the
system’s Apache logs for supporting information. As I do so, I understand that
the local logs may very well have been altered by the attacker in an attempt to
cover his trail, but the investigation and my nagging suspicion warrants the effort
of analyzing the logs. After all, it is very possible that our attacker was only as
thorough as his attack scripts. If so, he may not have been thorough in his
approach.

The following is an excerpt from the httpd error_log.

[Sat May 24 15:34:23 2003] [error] [client XX.XX.255.50] File does not exist:
/www/htdocs/emc/sumthin
[Sat May 24 21:36:02 2003] [notice] child pid 6671 exit signal Segmentation fault (11)
[Sat May 24 21:36:03 2003] [notice] child pid 8372 exit signal Segmentation fault (11)
[Sat May 24 21:36:03 2003] [notice] child pid 26377 exit signal Segmentation fault (11)
<omission>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Sat May 24 22:16:38 2003] [notice] child pid 17991 exit signal Segmentation fault (11)

In this example, I have inserted <omission> to represent that I have left out
numerous similar entries generated between May 24 21:36:03 2003 and May 24
22:16:38 2003. After seeing countless entries of the segmentation fault error in
rapid succession, I ran:

grep "May 24" error_log |grep "Segmentation fault" | wc -l

From this command, I learned that there were in fact 9754 similar entries on May
24. With this evidence, I was now certain that the system was compromised on
May 24 at approximately 22:16 GMT, which was the time of the final entry.

With the additional knowledge of how the box was compromised, I now had to
get back to the analysis of the “.targa” files in search of other clues and perhaps
additional evidence to support my PHP attack theory. A quick grep search of
“.targa” for php entries yields immediate results and leads me to examine the
following files:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This file appears to be a PHP vulnerability scanner. It contains the foul language
that hacker scripts have come to be known for, and its use appears to create, or
at least use, the files phpcheck.tmp and vulnphp.txt.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The scanphp.sh file, shown above, appears to be a control script to facilitate the
use of the phpcheck binary. It requires user input and interacts with several
other files when executed. Based on its content, it appears to use synscan and
bscan to scan hosts for vulnerabilities. The input file for bscan, uniq.txt,
contained 9615 IP addresses. With this volume of hosts to attack, it may be
associated with the network traffic described in the case facts. Because of this
potential, I decide to check the file’s MAC time in my timeline file:

As suspected, the file was last accessed at approximately 3:21 AM PST. Based
on the lack of reliable network outage statistics, but the fact that this file’s access
time is in close proximity to the network outage, it is quite probable that this file
and its counterparts played a key part in the incident.

The list of vulnerable hosts is then used as an input file for phpcheck, which now
looks to be an attack binary. Output from the bscan file would suggest that this is
in fact the attacker’s modus operandi:

While the e-mail addresses and hacker handles found in bscan may at first
appear to be a clue, internet searches on DrBios and Bagabontu unfortunately
show that these names are associated with a variety freely available malware.
As such, I conclude that it is highly unlikely that they are personally involved in
the attack. It is far more likely that our attacker just has just downloaded their
scripts for his toolkit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Synscan, referenced earlier in scanphp.sh, is described at its distribution site,
http://www.psychoid.net/synscan.html, as an “extremely fast portscanner”.1

The existence of these PHP attack tools lends further evidence to support my
theory that the attacker compromised this system during a PHP attack.

From the name of one file, we could further surmise that our attacker enjoyed his
craft. All of the tools mentioned thus far were included in tarball called
goodies.tgz. This tarball was also found undeleted in the “.targa” directory.

Another file included here is go.sh. This file is apparently a control script for
synscan. Most eye-catching about this script is its reference to an e-mail
address called tproxy@yahoo.com:

Again, this bit of information looks like it may be a key clue to the attacker’s
identity. This script would imply that the attacker accesses a Yahoo e-mail
account called tproxy@yahoo.com. However, when I attempted to verify the
existence of the account with an anonymous e-mail, I received a bounce-back
stating that there was no such user. What looked to be a critical break, again
proved fruitless.

Along with the other malware, I also came across a DoS tool called bang. The
purpose of bang was clearly identified in its source code:

1 Author Unknown, http://www.psychoid.net/synscan.html.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

As would be expected from any malicious user, the intruder setup a sniffer to log
the server’s network communications. The sniffer was proven operational by the
contents of this apparent output file named .sniffer:

The red boxes were added to the graphic in order to obscure the password
entries and username recorded in earlier network login attempts. Based on the
presence of linsniffer source code, it is probably that linsniffer was the capture
utility to credit for this.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Finally, we’ll take a look at one of the intruder’s key utilities. In the “.targa”
directory, there was a file called inst.tgz. In this tarball were two files: a binary
called login and shell script called inst.

Inst was in fact a shell installation script which contained gzip compressed data.
The script extracted the gzip data to a file named “sk”. The script then sets the
“sk” file with execute permissions. It next proceeded to gather statistics about
the host system and e-mailed the statistics to two addresses. This activity was
consistent with expected root kit setup steps. As such, it was probable that these
binaries were the keys to a system backdoor left by the attacker.

Because the default paths that were setup by the executable were not valid or in
use by the suspect binaries (as further illustrated below), I determined that the
values were defaults that were subsequently modified by our attacker.
Unfortunately, this also meant that the referenced email addresses were
probably default values as well, and they would not reveal the identity of the
attacker. Furthermore, these email addresses were also associated with freely
available malware.

My theory of default values was further proved by extracting the gzip data to a file
called test2 and comparing the MD5 checksum values of test2 and sk, which was
the default file name and the name of a binary on the system. The files were not
identical.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Due to the volume of the strings output from the actual sk binary, I have printed
the text here rather than use an image:

[root@LinuxForensics .targa]# strings sk |head -135 | tail -115 |grep -v alloc |grep -v /dev
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:./bin:/usr/local/man/man1/.t
arga:/usr/local/man/man1/.targa/bin
HOME=/usr/local/man/man1/.targa
PS1=\[\033[1;30m\][\[\033[0;32m\]\u\[\033[1;32m\]@\[\033[0;32m\]\h
\[\033[1;37m\]\W\[\033[1;30m\]]\[\033[0m\]#
SHELL=/bin/bash
TERM=linux
pqrstuvwxyzabcde
0123456789abcdef
[1;36m[
[0;36m===== SucKIT version 1.3a, May 17 2003 <http://sd.g-art.nl/sk> =====
[1;36m]
[0;36m
[1;36m[
[0;36m====== (c)oded by sd <sd@cdi.cz> & devik <devik@cdi.cz>, 2002 ======
[1;36m]
[0;36m
Can't open a tty, all in use ?
Can't fork subshell, there is no way...
/usr/local/man/man1/.targa
/bin/sh
Can't execve shell!
BD_Init: Starting backdoor daemon...
FUCK: Can't fork child (%d)
Done, pid=%d
/usr/local/man/man1/.targa/.rc
use:
%s <uivfp> [args]
u - uninstall
i - make pid invisible
v - make pid visible
f [0/1] - toggle file hiding
p [0/1] - toggle pid hiding
Detected version: %s
FUCK: Failed to uninstall (%d)
Suckit uninstalled sucesfully!
FUCK: Failed to hide pid %d (%d)
Pid %d is hidden now!
FUCK: Failed to unhide pid %d (%d)
Pid %d is visible now!
file

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Failed to change %s hiding (%d)!
%s hiding is now %s!
/usr/local/man/man1/.targa
FUCK: Can't open %s for read/write (%d)
RK_Init: idt=0x%08x,
FUCK: IDT table read failed (offset 0x%08x)
FUCK: Can't find sys_call_table[]
sct[]=0x%08x,
FUCK: Can't read syscall %d addr
Z_Init: Allocating kernel-code memory...
FUCK: Out of kernel memory!
Done, %d bytes, base=0x%08x
sk12
[1;36m[
[0;36m===== SucKIT version 1.3a, May 17 2003 <http://sd.g-art.nl/sk> =====
[1;36m]
[0;36m
[1;36m[
[0;36m====== (c)oded by sd <sd@cdi.cz> & devik <devik@cdi.cz>, 2002 ======
[1;36m]
[0;36m
core
FUCK: Got signal %d while manipulating kernel!
/sbin/initsk12
_ __/|
\'X.X'
=(___)=
 U
Hello, dear friend
I have two news for you. Bad one and the bad one:
First, it seems that someone installed rootkit
on your system...
Second, is the fact that I can't execute (errno=%d)
original /sbin/init binary!
And reason why I am telling you this is
that I can't live without this file. It's just
kinda of symbiosis, so, boot from clean floppy,
mount root fs and repair /sbin/init from backup.
(and install me again, if you like :P)
Best regards,
 your rootkit .. Have a nice day!
0123456789abcdefghijklmnopqrstuvwxyz
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
<NULL>
hP%U%u
1.3a
sk12
/usr/local/man/man1/.targa/.sniffer
/proc/
/proc/net/
socket:[
/sbin/init
/sbin/initsk12
login
telnet
rlogin

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

rexec
passwd
adduser
mysql
ssword:
PRhl
[root@LinuxForensics .targa]#

The information contained in this strings output is quite telling. First we not only
learn that “inst” did install a root kit, but we also see that the root kit is SucKIT
version 1.3a. In addition, we also learn that the root kit was not a default
installation, so one could reasonably surmise that it was probably tuned to the
attackers preferences. Finally, we are provided with a list of potential paths and
binaries that may also be infected.

To confirm my theory, I decided to investigate the potential effects that the root
kit may have had on /sbin/initsk12, which was a pathname referenced in the
strings output. As suspected, I find that the “initsk12” binary was created at a
time that coincided with the accessing of the sk binary. I further reveal that the
init binary also appeared to be modified at this time.

A quick internet search on initsk12 quickly confirms that it is a file created as part
of the SucKIT set-up.

I decided to go a step further check the strings output of /sbin/init. The resulting
output looked so familiar that I then decided to check its MD5 checksum value
against the sk binary value that I had looked at a little earlier.

It turned out to be the sk binary! With his malicious code nestled in a critical
startup file, the attacker had all but complete control of the victimized host.

As would be expected, the login binary appeared to be a root kit login client. Its
strings output revealed extensive references to and documentation for psybnc.
This would suggest that psybnc facilitated the client-server communications
between the attacker’s system and the compromised system. Also of note about

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the binary was that it self identified as version 1.3a and its interface was written
in Romanian:

More About the Investigation
In the end, this investigation unfolded quite nicely due to the use of simple, but
effective Unix tools. Once the attacker’s home directory, “.targa”, was uncovered
it was quickly apparent what tools were in use by the attacker and how the
attacker operated. However, for the sake of thoroughness and with the hope of
learning the attacker’s identity, it was still necessary to dig deeper. For this, the
acii timeline was further analyzed to determine the attacker’s activities and other
basic tools were used to peer deeper into files which may have been deleted to
cover the attacker’s tracks.

During my analysis of the timeline, I some the “.targa” contents were found to be
older than the suspected intrusion date. This was caused by the preservation of
the file information from the attacker’s tar archive(s). In the file “goodies.tgz”, the
times corresponding to some of its contents also correspond precisely to the
times of the file’s premature entry into the forensic timeline. In this case, the
perceived early of arrival of these files cannot be construed as an earlier
compromise.

Besides these entries, the timeline’s other noteworthy contribution was in it’s
ability to serve as a kind of access log of the attacker’s activities. While this
supporting information is beyond the scope of this paper, it could be very helpful
in correlating the attacker’s activities to “mysterious” events on network and other
systems in the computing environment. Such information may crucial in helping
to determine the scope of the intrusion.

In addition to the clues generated by Autopsy, system logs and the timeline,
other tools such as ils and icat were used to search the compromised host for

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

deleted information. While each of these tools performs a unique task, in unison
they can provide a quick and powerful method of resurrecting lost data.

As its name may imply, ils simply lists inode information for files. Its power lies in
its ability to list the inode information for deleted files. Once this information is
obtained, the icat utility can be used to the reveal the contents of those deleted
files.

While these techniques may be vital to some investigations, the emc attacker
was fairly bold and, besides the use of the rootkit, was not so careful about
covering his tracks. As such, the use of these utilities did not render further
information than that which was reviewed above.

About the Attacker
The attacker has to be given some credit for getting in and controlling the system
for as long he did. Also, the attacker gets credit for not leaving any identifying
information on the system. However, the attacker showed a certain amount of
carelessness by not cleansing critical logs and not wiping deleted files, let alone
the fact that psybnc.tgz was left undeleted and visible in “../.targa”, just outside of
the attacker’s hidden directory. Also, the attacker’s careless use of network
resources ultimately resulted in the loss of a successfully compromised host.

Because the attacker took the time to change the paths of the rootkit, it is a good
bet that /usr/local/man/man1/.targa is the home directory used in his other
attacks. And, if I suspected the compromise of additional systems, my
investigation into those systems would certainly start with a search for the
“.targa” directory and its contents.

Based on the IP entry, in the httpd error_log, immediately prior to the PHP attack,
I would also wager that the IP was that of the attacking system, which was on a
Korean ISP’s network. However, due to the attacker’s effectiveness in taking this
system and the volume of other vulnerable hosts found in the wild, I would have
to guess that the attacking host was used merely a staging point for further
attacks, as was our victimized host. In fact, the Romanian interface for login
suggests that the intruder may be Romanian rather than Korean. This
conclusion is based on the fact that the attacker’s skill set is advanced enough
that he would likely have adapted the interface of his key tool to the language of
his preference rather than operating with an interface in a foreign language.

Had the root kit not redirected the attacker’s command history to /dev/null, the
.bash_history file may have contained some additional information that would
have let us draw inferences about the user based on command usage. However,
with the history set as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the history files were of no help to the investigation.

The prowess displayed by the attacker distinguishes him from a first-timer, but
the mistakes showed that he clearly is not among the elite.

Preservation of Evidence During Examination
Finally, in conclusion to Part 2 Option 1, and in accordance with the exam
instructions, I have retaken MD5 sums of the root image, which was the image
primarily used during the investigation. The checksums were taken immediately
prior to the original submission of this document as proof that the techniques
described above are a valid means evidence collection and media analysis that
do not harm the forensic evidence.

Part 3 - Legal Issues of Incident Handling

Answers to the following questions are based on the assumption of guilt in the
John Price case analyzed in section 1.

Q&A

Q. Based upon the type of material John Price was distributing, what if any, laws
have been broken based upon the distribution?.

A. John Price’s activities were likely in violation of US and international
copyright laws. Over the last several years, holders of copyrights,
specifically those in the recording industry have stepped up legal
action against those who traffic in the copyrighted material. Such legal
action frequently pursues civil judgments for payment damages;
however, such cases can potentially be escalated to felonies based on
the extent of the infringement (As cited at
http://www.templetons.com/brad/copymyths.html). For more

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

information on copyright infringement, you may want to visit these
sites:
http://www.copyright.gov/
http://library.law.columbia.edu/music_plagiarism/
http://www.templetons.com/brad/copymyths.html

Q. What would the appropriate steps be to take if you discovered this
information on your systems?

A. In my research, I have found no statute that would require one to
report John’s crime to the authorities or any third party, as the facts
were presented in this case. However, John’s employer is faced with
certain ethical and business dilemmas. From an ethics standpoint, one
could reasonably argue that John’s employers should support and
cooperate fully with his prosecution. However, many employers would
not voluntarily involve themselves in such a case. As such, I would
coordinate with my corporate legal counsel and act on this case in
accordance with their guidance. Aside from corrective actions taken
by the employer against John, I would fully expect that the case would
be thoroughly documented, but never voluntarily passed to a third
party.

Q. In the event your corporate counsel decides to not pursue the matter any
further at this point, what steps should you take to ensure any evidence you
collect can be admissible in proceedings in the future should the situation
change?

B. The collection of all forensic evidence must be executed in a cautious
and well-documented fashion. Care should be taken to preserve the
media’s state as it was at the time of collection. As illustrated, the
techniques used in the document are acceptable methods harvesting
evidence while preserving its integrity. Additionally, thorough
documentation inventorying the evidence, noting details, and recording
the media state information, such as checksums, must also be
maintained. The documentation and evidence should then be stored in
a secure location to prevent tampering. By documenting the
maintaining double custody and a clear chain of custody, the integrity
of the evidence can be further demonstrated; however, these handling
techniques are not technically required by non-law enforcement
personnel.

Q. How would your actions change if your investigation disclosed that John Price
was distributing child pornography?

A. If any evidence of child pornography were collected, my portion of the
investigation would immediately cease, in that I would no longer probe
for forensic details. Instead, I would immediately report my findings to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

my superiors and local law enforcement authorities. I would then let
law enforcement personnel resume the investigation. I would also
carefully document my findings and all instances where evidence may
have been transferred to other systems during the course of my
investigation. My documentation would also be transferred to law
enforcement personnel along with the subject system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

Eklektix, Inc. "Announcements" Publication Date/Last Update: April 20, 2000
http://old.lwn.net/2000/0420/announce.php3 October 12, 2003

Author Unknown "SynScan" Publication Date: Unknown
http://www.psychoid.net/synscan.html October 12, 2003

