
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
1

GIAC Certified Forensic Analyst
(GCFA)

PRACTICAL ASSIGNMENT

Version 1.3

“Whenever you have excluded the impossible, whatever remains, however
improbable, must be the truth.”1

PART 1 ~ Analyze an Unknown Binary

PART 2 ~ Option 2: Perform Forensic Tool Validation

PART 3 ~ Legal Issues of Incident Handling

Bil Bingham
December 5, 2003

1 Sir Author Conan Doyle - (The Adventures of Sherlock Holmes - “The Adventures of the Beryl Coronet”)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
1

Table of Contents

TABLE OF CONTENTS ...1

ABSTRACT ..2

PART 1 ~ ANALYZE AN UNKNOWN BINARY ...3
1.1 INTRODUCTION ..3
1.2 FINDINGS ..4
1.3 DETAILED ANALYSIS...7
1.4 LEGAL IMPLICATIONS..23
1.5 INTERVIEW QUESTIONS ..24
1.6 ADDITIONAL INFORMATION ..25

PART 2 ~ OPTION 2: PERFORM FORENSIC TOOL VALIDATION27
2.1 INTRODUCTION ..27
2.2 SCOPE..27
2.3 TOOL DESCRIPTION ...28
2.4 TEST APPARATUS AND ENVIRONMENTAL CONDITIONS.....................................31
2.5 DESCRIPTION OF THE PROCEDURES ..33
2.6 CRITERIA FOR APPROVAL ...40
2.7 DATA AND RESULTS ...41
2.8 ANALYSIS..47
2.9 PRESENTATION..48
2.10 CONCLUSION...49
2.11 ADDITIONAL INFORMATION ..49

PART 3 ~ LEGAL ISSUES OF INCIDENT HANDLING50
3.1 INTRODUCTION ..50
3.2 THE LAW ...51
3.3 ADDITIONAL INFORMATION ..54

APPENDIX..55
A.1 NETWORK CONNECTION CODE ...55
A.2 VISION-TEST.VBS ..59

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Abstract

This document has been prepared as an assignment to qualify as a GIAC
Certified Forensics Analyst. The document has three parts that are direct
responses to the GIAC practical assignment for Forensic Analysts.

Part 1 is a systematic account of an analysis of an unknown binary. This
section describes the process of discovering information about executable code
through a variety of processes and software tools.

In part 2, a test is formulated and applied to prove that a new software tool
has what it takes to be a part of a forensic analyst’s toolbox. Read on to find out if
a Foundstone™2 product called Vision™ v1.0 makes the grade.

Part 3 focuses on the Canadian legal system and electronic forensics.
This part will answer a series of questions designed to inform the reader about
Canadian law and forensics covering issues such as privacy and electronic
evidence.

2 For more information about Foundstone visit their web site at http://www.foundstone.com/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

Part 1 ~ Analyze an Unknown Binary

 1.1 Introduction

Global Information Assurance Certification3 (GIAC) has provided the file
target2.exe in a compressed format (binary v1.3.zip) for a forensic analysis.
GIAC also provided instructions to analyze the binary file to determine the
program’s capabilities, purpose, what it was used for and why it was on the
system in question. The uncompressed file (target2.exe) is the target of this
analysis and no analysis of on the compressed file (binary v1.3.zip) is included
with this report.

The binary analysis techniques discussed during the SANS4 conference in
Portland entitled Track 8: System Forensics, Investigation and Response are put
into practice for this analysis.

3 For more information about GIAC visit http://www.giac.org/
4 SANS (SysAdmin, Auditing, Network, and Security) is a research and education organization. For more information
about SANS visit http://www.sans.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

1.2 Findings

This section of the document presents the findings of the binary analysis
for quick reference. The evidence and analysis used to gather this information is
discussed in great detail in the next section of this document entitled “Detailed
Analysis”

A. Binary Details

The table below shows a summary of the binary details gathered from the
first step of the detailed analysis.

Name target2.exe
Size 26793 bytes
Md5 Checksum 848903a92843895f3ba7fb77f02f9bf1
Last Modified February 20, 12:45 PM (PST) 2003
File Classification MS-DOS executable (EXE), OS/2 or MS Windows

Figure 1 - Table of Binary Details

Without access to the original file system, it is not possible to determine
the last time this binary was executed.

B. Program Description

The systematic analysis identified several features of target2.exe:

1. The original filename of the file is smsses.exe.

2. This program runs as a service win32 operating systems (Windows
NT, Windows 2000, and Windows XP). A service is a process that
does not require a user to log in. The UNIX equivalent to a service
would be a daemon, which runs in the background without user
intervention required to start.

3. The binary contains installing and un-installing subroutines activated
by command line parameters.

4. This binary may act as an ICMP5 backdoor and allow a remote client to
talk to this service in a hidden tunnel. This hidden communication has
the ability to pass undetected through some network security devices
(firewalls, access lists).

5 ICMP (Internet Control Message Protocol) is defined by RFC 792. It provides a messaging system for IP modules to
communicate in certain conditions. For more information visit (http://www.faqs.org/rfcs/rfc792.html)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

C. Forensic Details

The forensic details of this binary presented here are in two categories
(footprints and leads). The footprints are the unique set of features on the host
system that can positively identify that this binary is installed or running. The
leads are pieces of information that require further analysis, investigation or
research such as a computer and or person’s name.

This binary leaves a distinct set of footprints when installed onto a host
system. The installation process of this binary creates a windows service called
“Local Print Manager”. The discrepancy between “Local Print Manager” and
Local Partners Access” is the name of the service in the registry is “Local
Partners Access” and the name of the service in the services control is “Local
Print Manager”. The name of the service in the services control is the value of the
registry key “HKLM\System\CurrentControlSet\Services\Local Partners
Access\DisplayName”.

The following registry keys are present on a host with this application
installed:

HKLM\System\CurrentControlSet\Services\Local Partners Access
HKLM\System\CurrentControlSet\Services\Local Partners Access\Type
HKLM\System\CurrentControlSet\Services\Local Partners Access\Start
HKLM\System\CurrentControlSet\Services\Local Partners Access\ErrorControl
HKLM\System\CurrentControlSet\Services\Local Partners Access\ImagePath
HKLM\System\CurrentControlSet\Services\Local Partners Access\DisplayName
HKLM\System\CurrentControlSet\Services\Local Partners Access\Security\Security
HKLM\System\CurrentControlSet\Services\Local Partners Access\ObjectName

When running, the process name that appears in the task list will be
smsses.exe.

The forensic analysis provides several hints that provide some more detail
on the nature ad the origin of this program. The following strings provide more
leads to track down the nature of the program.

a) IP Address 199.107.97.191
The Azusa Pacific University owns this IP address. The host name

for this IP address is sbm191.dtc.apu.edu. A quick search on the
University’s web site reveals that “sbm” is short for School of Business
and Management.

b) “Code by Spoof”
The analysis uncovered the programmer’s alias is Spoof. An initial

Internet search (http://www.google.ca/) on this name yields approximately
eight hundred thousand hits. Trying to narrow down the search by using
the name in context of the text found did not yield any further information.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

c) “Hello from MFC!”
MFC typically stands for Microsoft Foundation Class. In the context

that this “MFC” appears, “MFC” is an abbreviation for a name. The third
person viewpoint further suggests that it is an abbreviation of a group of
people. The Internet search engine, Google™, does not find any relevant
information about this text string.

D. Program Identification

Searching the Internet uncovered some similarities with this binary and
source code for ICMP backdoors, however no exact match was located for the
source code of this binary.

The two pieces of code that appear to be a reference or starting point for
this binary are HDoor V0.16 and icmp_tunnel.h7.

6 The source code for HDoor V0.1 by Lion was found at http://www.cnhonker.net/Files/show.php?id=189
7 The source code for icmp_tunnel.h by Dark Schneider was found at http://www.s0ftpj.org/bfi/online/bfi7/bfi07-13.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

1.3 Detailed Analysis

This section of the document is a systematic account of the methods,
techniques, and actions taken during the course of this analysis. The analysis is
broken down into five stages (preparation, binary details, code analysis, run-time
analysis, and research). Each stage of the analysis will unearth more information
and may effect the actions and/or steps taken in the next stage.

A. Preparation

The preparation stage is required not to analyze the file or gather any
information, but to reduce any risks involved with examining a possibly malicious
executable file.

The workstations used to directly analyze this file do not have any
connections to the production networks to avoid any risk from the unknown
binary. For this analysis, VMWare™ sessions containing various operating
systems running on a Microsoft™ Windows 2000 Professional host workstation
are in place. Also in the toolkit is the Forensic and Incident Response
Environment (F.I.R.E.)8 cd-rom, which contains a host of forensic tools. The
F.I.R.E. cd-rom runs from a laptop in the same private network as the forensic
workstation. The two workstations (plus the virtual VMWare™ hosts) are on a
private network connected to a Cisco™ Pix 501 firewall. In one part of the
analysis, a separate Windows 2000 Workstation1 is used to overcome some icmp
reply issues encountered with VMWareTM.

8 F.I.R.E. is a free Forensic and Incident Response Environment on a bootable CD-ROM created by William Salusky. For
more information visit http://fire.dmzs.com/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

F.I.R.E Linux

Cisco™ Pix 501

Microsoft Windows 2000
Professional Workstation™

w/ VMWare™

The Cisco™ Pix is acting as a network
switch and DHCP server. The outside
interface is not connected to anything, so the
firewall functionality of the pix is not being
used.

Hub
The hub is in place to allow any network traces to capture all
network traffic.

Microsoft Windows 2000
Professional Workstation™

Figure 2 - Forensic Laboratory Configuration

B. Binary Details

In the binary detail analysis stage of this analysis, facts and details about
the binary are collected without opening, or executing the file. This detail will
analyze properties of the file such as date/time stamps for access, modification
and creation. File ownership will also appear at this stage of the analysis.

WinZip™ (8.0) on a Windows 2000 Professional workstation shows the file
name, size and last modified date (see graphic).

Figure 3 – WinZip™ 8.0 Properties

In NT File Systems (the file system on Windows 2000, Windows NT and
Windows XP), file owner information is contained in the file allocation tables on
the hard drive not with the file itself. Without access to the original hard drive this
file resided on, owner information will not be available.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

After file extraction (decompressing) to a floppy drive, displaying the file
properties via the operating system (Windows 2000 Professional) verifies the file
properties. It also shows the creation date/time and last accessed date/time.
Decompressing the file modifies the last access timestamp of the file and is
therefore little value to this analysis. The creation date/time is the same as the
last modified date/time.

Figure 4 - Windows File Properties

Md5Deep9 calculates a md510 message digest on the file. The md5
message digest provides a unique identifier for this file. If any of the file contents
change or are tampered with the md5 message digest will change. Calculating
the md5 digest is important to prove the evidence’s integrity. As the md5
message digest is unique to this file, it proves that the file contents do not change
past this point in time. It is compared with itself and any other files found in the
course of this analysis to prove if the files are identical. The md5 message digest
of this file is 848903a92843895f3ba7fb77f02f9bf1.

9 Special Agent Jesse Kornblum of the US Air Force Office of Special Investigations wrote Md5deep. For more information
on Md5Deep visit http://md5deep.sourceforge.net
10 Ronald Rivest defines the md5 algorithm in RFC 1321. For more information about the md5 algorithm visit
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1321.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

Figure 5 - MD5Deep Message Digest

On most UNIX operating systems, a command called “file” exists to help
identify files by their contents. The file command run from a Red Hat™
distribution of Linux VMWare™ session identifies target2.exe as:

target2.exe: MS-DOS executable (EXE), OS/2 or MS Windows

C. Code Analysis

The code analysis will examine and analyze the contents of the file in
detail. The code analysis deploys two tools to extract information out of the file.
The first program named strings extracts ASCII11 text out of the target file. ACSII
codes represent English number and letters in the form of hexadecimal numbers
in the binary file. The second tool is a disassembler that will try to reverse
engineer the binary file into assembly code, which is easier to analyze. Assembly
code is a programming language that is one better than machine language (one’s
and zero’s) that allows for the use of names.

The utility strings will extract all ASCII phrases out of target2.exe that are
four characters or longer. The output of strings gives us a good knowledge of
what some of the functions and subroutines called by this binary are. However,
the disassembler in the next step of code analysis are much more accurate and
detailed in extracting any dependencies. In terms of a program, dependencies
are any other files the program requires to execute.

The most interesting evidence to further identify this binary are the text
lines:

impossibile creare raw ICMP socket
RAW ICMP SendTo:
======================== Icmp BackDoor V0.1
========================
========= Code by Spoof. Enjoy Yourself!
 Your PassWord:
loki
cmd.exe
 Exit OK!

These extracted lines give us a good indication of this executable’s
possible use. Spoof appears to be an alias of the programmer that developed this
binary. The references to the icmp raw and socket support the header icmp
backdoor. In addition, the reference to loki contains a big hint. As well as being

11 ASCII is the acronym for Acronym for the American Standard Code for Information Interchange

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

the Greek god of mischief, loki is the codename for a published icmp backdoor
program. Phrack Magazine12 published several articles including source code to
implement loki.

Given a service running on a system such as target2.exe or loki, icmp
backdoors can the capability to send commands and files directly to the host
machine.

One of the most frightening aspects of icmp backdoors is the potential for
bypassing tradition security devices. Although technically icmp is a layer 4
(transport) protocol like TCP and UDP, it is normally classified as layer 3
(network) of the OSI13 model. This is because it is typically not used as a
transport, but for network error messages and connectivity. Due to this nature of
icmp, most firewalls do not inspect the payload of icmp and only inspect the
packet header. This means that computer hosts compromised with an icmp
backdoor may be remotely accessed even behind a firewall.

The other interesting output is the reference to starting and stopping
services giving us another clue about the capabilities of target2.exe.

Other strings that require some investigation also show up. “Rich” appears
however is embedded in the first 64 bits of the program meaning it is part of the
MS-DOS stub. The MS-DOS stub is the part of all portable executable (PE) files
that displays “This program cannot be run in DOS mode”. This particular string
resides in all PE files followed by “.text”.

After strings, another tool called a dissembler dissects the program into
various parts and collects debug information. A demo version of PE Explorer
1.9314 suited this purpose. PE Explorer is a disassembler specifically for PE files.
Microsoft™ designed the portable executable (PE) file format for 32 bit Windows
executable files.

PE Explorer gives us the following information to analyze about
target2.exe:

a) Header - Header information found in the file header of target2.exe
b) Names - A list of names of functions and subroutines
c) Resources - Strings table extracted from the resource section of the

target2.exe
d) Dependencies - List of external linked libraries required to execute

target2.exe
e) Assembly Code - The raw assembly code instructions

12 http://www.phrack.org/show.php?p=49&a=6 and http://www.phrack.org/show.php?p=51&a=6 are the two articles from
Phrack Magazine that discuss and implement icmp backdoors.
13 OSI is short for Open System Interconnection, a standard for worldwide communication. A chart detailing the seven
layers of the OSI model can be found at http://webopedia.internet.com/quick_ref/OSI_Layers.asp
14 PE Explorer is a product of Heaven Tools software. Their homepage is http://www.heaventools.com/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

f) End of File Data - Data found after the end of the program.
g) Strings - Another source of text extracted from target2.exe.

a) Header Information

In a portable executable (PE) file format like all executable formats,
the header information contains a collection of fields telling the executing
system important information required to run the program.

Figure 6 - PE Explorer Headers Information

The date/time stamp displayed in the above graphic is the time that
this file was compiled (according to the date/time of the compiling
computer). In this case, the date/time of compilation is several months off
from the last modified date of the file system (Feb 20th 2003).

The decompiler also shows that normal debugging information is
not present. The line number and local symbols have been stripped from
the file. This will make further analysis harder as all the decompiled
assembly language instructions will have memory addresses as names
instead of symbolic names.

Note that the information in the version fields of the header is often
in error. Several linkers either leave the field blank or enter a wrong value.
By the linker version of 6.0 and image base is consistent with program that
are compiled by Microsoft C++ 6.0 but is not conclusive.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

b) Names

Names in the PE executable file are symbols that refer to specific
sections of code. In this binary, all the symbolic names have been
removed, and we are left with memory address.

00404094: L00404094
00404098: SSZ00404098_RAW_ICMP_SendTo__
004040AC: SSZ004040AC____________________________Icmp_
00404130: SSZ00404130_loki
00404138: L00404138

As shown in the above excerpt from the name output, some of the
text referenced in the “data” portion of the executable is linked to the
memory location where they are called. During the debugging analysis,
this information will be necessary to help pinpoint which lines of code are
producing a specific output.

c) Resources

This is information stored in the resources section of the PE file.
PE Explorer gives us an approximation of what was in the original “.rc” file.

STRINGTABLE
LANGUAGE LANG_CHINESE, SUBLANG_CHINESE_SIMPLIFIED
{
1, "Hello from MFC!"
}

The context of this indicates that MFC is an alias or abbreviation of
person and/or group. MFC is the common short form of Microsoft
Foundation Classes. The second clue that this output reveals is the
language used. The “Lang_Chinese” setting may provide some insight to
the origins of this program.

d) Dependencies

This list displays all the dynamic linked libraries (dll) that this
program calls during execution. Dynamic linked libraries are files that
contain functions and data for other programs (executables) to call upon
and reference.

Figure 7 - Target2.exe imports

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

Target2.exe links five dll files directly. These direct imports in turn
require more dll files to function.

Kernel32 provides an interface into the system to access memory,
processes, and resources. Advapi32 provides access to security and the
registry. Ws2_32 contains libraries for network connections. Mfc42,
Msvcrt, and Msvcp60 are all standard C libraries. Msvcp60 is associated
and distributed with most Microsoft visual c++ applications.

Analyzing the subroutines used within these dll files give a very
clear picture of what this program is capable of doing. The ones that seem
have the most potential for malicious behaviors are the disk read/write
(kernel32), network access (ws2_32), and service management
(advapi32). The service management capabilities of advapi32 include
start, stop, create and delete.

e) Raw Code

The raw assembly code is a list of all the assembly code processed
by the computer as this binary executes. This information will be useful
when debugging the program and trying to correlate specific actions with
source code and variables.

f) End of File (EOF) Raw Data

After the End of File Marker and before the physical end of the file
on disk some interesting leads appear.

Figure 8 - PE Explorer EOF Raw Data

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

Some file names and an IP address show up separated by a non-
ASCII character (they do not show up from the strings command). These
characters could have been extracted with a strings utility using a binary
instead of am ASCII format.

\\199.107.97.191\C$
\Winnt\system32\smsses.exe
\\winnt\system32\reg.exe

g) Strings

The disassembler pulls this text out the data portion of the file.
These strings are different from the command strings utility in that PE
Explorer separates these out from specified memory locations instead of
searching for text. Some text that appears to be program switches “-i” and
“-d” show up. These are not found by the strings utility as they are only
two ASCII characters long and the default for strings is four.

Figure 9 - PE Explorer String

D. Run-Time Analysis

At the run-time analysis stage, several trusted programs monitor the
activity of a lab system while target2.exe runs. The output of these trusted
programs determine what the target2.exe program is doing to the host.
Another program called a debugger steps through target2.exe binary code line by
line and can provide memory states at any step of target2.exe’s execution.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

Five programs monitor the state of the test system. The first is regmon15.
This program monitors the windows registry and provides a list of all transaction
to the registry. The Second is filemon16. This program is similar to regmon except
instead of the registry it monitors changes to the file system.

The third tool used to track system changes is winalysis17. This program
snapshots the workstation and saves the data to compare against another
snapshot (taken after the binary is executed). The version used in this analysis is
a trail version downloaded from Winalysis SoftwareTM’s website.

Netstat run with the switch “–an” displays a list of all the tcp and udp
sockets that are open. This is a list of all communications on the system. Netstat
is a utility that comes with Windows operating systems.

The last program deployed is Ethereal18. Ethereal is a network sniffer that
monitors the network card and captures any network packets coming from or to
the test system.

Running target2.exe the first time proves to be a very disappointing
exercise. At first, an error about a missing dll file appears.

Figure 10 - target2.exe dll error

Most visual C++ applications (including Microsoft Office) install
msvcp60.dll. Windows XP platforms have msvcp60.dll installed by default. The
three tools did not detect any chances to the host system even after the missing
dll problem resolution. Filemon logs indicate that the dependency dll files
referenced by this program are accessed, but no system changes took place.
The same run-time tests applied to Windows XP also show no system changes.
The run-time test on Windows NT produced an error.

15 Copyright © 1996-2003 Mark Russinovich and Bryce Cogswell
16 Copyright © 1996-2003 Mark Russinovich and Bryce Cogswell
17 Winalysis is produced by Winalysis Software Inc. The software is available at http://www.winalysis.com/
18 Gerald Combs is the original author of the open source program Ethereal. The many contributors to the program can be
found at http://www.ethereal.com/introduction.html - authors

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

Figure 11 - target2.exe errors in WinNT

In all these tests, target2.exe completes and returns control back to the
command shell indicating it has finished. Regmon and Winalysis logs show that
the executable reads files but makes no changes to the host system. Ethereal
shows no relevant network traffic.

Setting up the run-time tests again with the command line switches “-i”
and “-d” yields some results. Through trial and error, it was determined that this
combination of two switches initiates the binary.

a) Target2.exe –i anything

This combination of switches installs a new service onto the host
machine called “Local Print Manager”. The service is created via the
advapi32.ddl!createservice subroutine. The service (although this
executable tries to start it) fails, as the source binary it is trying to start
does not exist (smsses.exe). Regmon, filemon and winalysis all provide an
inventory of changes to the system as the binary installs a service. An
error appears on the screen, as target2.exe reports that the service failed
to start.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

Figure 12 target2.exe -i ???

b) Target2.exe –d anything
This combination of switches removes the service “Local Print

Manager” if it exists. Otherwise this combination reports an error.

The content of the second switch does not seem to matter only that it is
present. Any more than two switches also results in no binary activity.

Renaming target2.exe to smsses.exe and placing it in the path
c:\winnt\system32\ produce a running service. When smsses.exe is executed
with the parameters –i ??? a new service is created and starts successfully.

The file registry and winalysis results indicate show this executable
running, creating, and then starting the service. A second process (smsses.exe)
starts up and stays resident in memory as a running service.

The only system changes made running this executable with the “-i” switch
are registry changes associated with creating a new service. The process
smsses.exe stays resident in memory and continues to run as a service. Ethereal
and Netstat both indicate no change or exchange of information on the network.

To debug the binary and try to determine the nature of the second variable
and extract any more information about the nature of this executable, a debugger
called w32dasm19 was used. The debugging activity tries to find clues about the
nature of smsses.exe were not very successful.

19 Win32Dasm by URSoft®. The trial software was obtained from http://www.downseek.com/. The official home page of
URSoft (http://www.expage.com/w32dasm/) appears to be abandoned at the time of this writing.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

Kernel32!Writefile Call 4D1F2A, tracing results in limited success as it is
found that no calls past the starting point refer to this section of code.

Trying to determine the significance of the second parameter in the ASM,
debugging module only finds the conditional statements that

1) Check parameter 1 against “-i” at relative memory location 4041F0
2) Check for the number of parameters 402888 mov eax; dword ptr

(esp+4)
3) Conditional Check to see if the service “Local Print Manager” exists

40233B

The debugging tests are very limited as the scope of the program running
at the command prompt (as opposed to a service) is limited to installing and de-
installing the service.

To conclude the run-time tests, another test is formulated to attempt to
produce a reaction of smsses.exe. A Linux (FIRE Workstation) is used to
generate icmp packets with the –p option trying to prove and induce a response
from the smsses.exe service. Ethereal immediately picks up some icmp
response packet changes. Icmp reply data should be identical to the original
icmp request. After testing it is discovered that the changes in the response data
are a result of VMWare TCP/IP stack misbehaving and not the binary
smsses.exe. After a new workstation is acquired (without VMMare), ICMP reacts
as expected and no response or hidden data flow can be detected via Ethereal.

The next logical step in this testing process would be to try and debug the
running service and watch the code as input in the form of ICMP input is
received. By further research into the nature of windows 32-bit winsock, it is
revealed that not all ICMP traffic is passed to the raw socket, and this includes
ICMP echo requests that are automatically answered by the TCP/IP driver stack.
To revalidate the previous ping tests a packet generator with the capability to
form icmp echo replies (which are passed onto to the raw socket) would be
required.

By the definition of icmp there are also many possible ways to pass data
across it with client/server software such as the date information in a different
type of icmp packet, so these test do not indicate that this is not an icmp
backdoor.

E. Research

Now all the information is gathered, it is time to follow upon some of the
leads and hints provided by the technical portion of this forensic analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

a) //199.107.97.191/C$
The IP address can be tracked down as it is an Internet

routable IP address. ARIN20 provides an online utility called whois
to lookup information about IP addresses. The output of a whois
search on 199.107.97.191 returns the following information:

Search results for: 199.107.97.191
CERFnet NETBLK-CERFNET-CBLK2 (NET-199-105-0-0-1)
199.105.0.0 - 199.108.255.255
CERFnet customer - Azusa Pacific University CERF-AZUSA (NET-199-107-96-0-1)
199.107.96.0 - 199.107.99.255
ARIN WHOIS database, last updated 2003-06-03 21:05
Enter ? for additional hints on searching ARIN's WHOIS database.
Search results for: ! NET-199-107-96-0-1
OrgName: CERFnet customer - Azusa Pacific University
OrgID: CCAPU-1
Address: 901 E. Alosta Ave.
City: Azusa
StateProv: CA
PostalCode: 91702
Country: US
NetRange: 199.107.96.0 - 199.107.99.255
CIDR: 199.107.96.0/22
NetName: CERF-AZUSA
NetHandle: NET-199-107-96-0-1
Parent: NET-199-105-0-0-1
NetType: Reassigned
Comment:
RegDate: 1996-08-09
Updated: 1997-10-11
TechHandle: CERF-HM-ARIN
TechName: AT&T Enhanced Network Services
TechPhone: +1-858-812-5000
TechEmail: notify@attens.com
ARIN WHOIS database, last updated 2003-06-03 21:05
Enter ? for additional hints on searching ARIN's WHOIS database.

The IP address (199.109.97.191) is registered to Azusa
Pacific University, and using nslookup, the DNS21 name of this IP
address resolves to sbm191.dtc.apu.edu. Nslookup is a utility that
The website of the Azusa Pacific University is www.apu.edu. A
quick search on their web site reveals that sbm is short for School
of Business and Management.

b) /winnt/system32/smsses.exe
This is the file name of the unknown binary that is the focus

of this analysis. In the end of file space where this name appears,
the word SMB kept appearing as well. SMB stands for System
Message Block and is a protocol used for transferring files.

20 American Registry for Internet Numbers (ARIN) is the authority that assigns IP address. Their web site is
http://www.arin.net/
21 DNS or Domain Name System translates names into IP addresses and vice versa.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

c) /winnt/system32/reg.exe
Looking up this file name on Google™ shows up that

reg.exe is part of the windows resource kit. This file is a utility to
read and update the windows registry.

d) ”Code by Spoof”
The search engine Google™ had far too many hits on this

search string as spoof is a very common term. Nothing in context to
this analysis appeared.

e) “Hello from MFC!”
Again, many returns on the term MFC but not in the context

of a group or as an absolute string were found. MFC commonly
stands for Microsoft Foundation Class.

The next step is to determine and try to find a source of this program on
the Internet. Various strings, unique identifiers, and descriptions are put into a
search engine to try to find a relevant match. Two source codes have some
similar characteristics as target2.exe and they may be a reference or a basis for
this code. The words that found hints at the source code are “ping backdoor
win32” and “immposible to creare raw socket”

a) HDoor22

Here is the HDoor v0.1 code, as it would appear without the
formatting tags.
“======================== Ping BackDoor V0.1 ========================”
“========= Code by Lion. “
” Your PassWord:"

Here is the strings extracted from target2.exe:
“======================== Icmp BackDoor V0.1 ========================”
“========= Code by Spoof. Enjoy Yourself!”
“ Your PassWord:”

Notice how the number of equal signs for both text
descriptions is equal in both banners. It is almost as if it was a cut
and paste and change the name, and change ping to icmp. Even
the space before the “Your password: “ is identical. This is
circumstantial evidence however the fact that two suspected icmp
backdoor programs use the same banner appears to be more than
reasonable doubt.

22 The source code for HDoor V0.1 by Lion was found at http://www.cnhonker.net/Files/show.php?id=189

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

b) ICMP_tunnel.h23

Again, the similarities are only a small part of the code.
“RAW ICMP SendTo:” and "impossibile creare raw ICMP socket"
from the bulletin board source code match strings output of
target2.exe. These strings are very circumstantial and the only
reason I included them in this analysis is that the two executables
contain the same two strings in different languages.

Both of these found sources are dissimilar from the binary in that they do
not contain any service installing / de-installing code.

23 The source code for icmp_tunnel.h by Dark Schneider was found at http://www.s0ftpj.org/bfi/online/bfi7/bfi07-13.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

1.4 Legal Implications

No proof was available to determine that this executable had been run on
the system, as access to the original system was not available to compare the
system state with the footprint of this binary, however should such proof come
available, and it could be proven that access to said computer system was
fraudulent or unauthorized. Then under Canadian Criminal Code 342.1(1) any
offender can be sentenced to a term of up to ten years. Here is the excerpt from
the Canadian Criminal Code:

“Every one who, fraudulently and without colour of right,
(a) obtains, directly or indirectly, any computer service,

(b) by means of an electro-magnetic, acoustic, mechanical or other device, intercepts or
causes to be intercepted, directly or indirectly, any function of a computer system,

(c) uses or causes to be used, directly or indirectly, a computer system with intent to commit an
offence under paragraph (a) or (b) or an offence under section 430 in relation to data or a
computer system, or

(d) uses, possesses, traffics in or permits another person to have access to a computer
password that would enable a person to commit an offence under paragraph (a), (b) or (c)

is guilty of an indictable offence and liable to imprisonment for a term not exceeding ten years,
or is guilty of an offence punishable on summary conviction.”

If this executable was found installed and running on a corporate
computer, the person(s) responsible would be in direct violation with my
corporation’s information security policy, section titled configuration control.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

1.5 Interview Questions

These interview questions should determine if the interviewee is responsible
for the binary analyzed:

• Do/Did you attend the university of Azusa Pacific?
• Did you install and/or execute this program?
• What does MFC stand for?
• Who is Spoof?
• What does the executable smsses.exe do?
• Did you install the “Local Printer Manager” service?
• Are you authorized by the company to use this computer?
• What is your username?
• When did you have access to this computer?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

1.6 Additional Information

Reference

Loki in Norse Mythology
http://www.pantheon.org/articles/l/loki.html

Peering Inside the PE: A Tour of the Win32 Portable Executable File Format
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndebug/html/msdn_peeringpe.asp
by Matt Pietrek

An In-Depth Look into the Win32 Portable Executable File Format, Part 2
http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/default.aspx
by Matt Pietrek

Alien Autopsy: Reverse Engineering Win32 Trojans on Linux
http://www.lurhq.com/alien.pdf
by Joe Stewart, GCIH

Covert Shells
http://gray-world.net/papers/covertshells.txt
by J. Christian Smith

Project Loki: ICMP Tunneling
http://www.phrack.org/show.php?p=49&a=06
by Alhambra and daemon9

LOKI2 (the implementation)
http://www.phrack.org/show.php?p=51&a=6
by daemon9

Inside NT Utilities - Regmon
http://www.winnetmag.com/Articles/Index.cfm?ArticleID=4795&pg=3
by Mark Russinovich

Section 342.1 Criminal Code of Canada - Unauthorized Use of a Computer System
http://www.catalaw.com/logic/docs/ds-3421.htm
by Daniel Shap

Department of Justice Canada – Criminal Code
http://laws.justice.gc.ca/en/C-46/41491.html

TCP/IP Illustrated, Volume 1
The Protocols
By W. Richard Stephens

Just What is SMB ?
http://samba.anu.edu.au/cifs/docs/what-is-smb.html
by Richard Sharpe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

Internet Utilities
http://www.google.ca/ Internet search engine
http://www.webopedia.com/ Online dictionary
http://www.liutilities.com/ Database of dynamic linked libraries

Software
http://www.winalsyis.com Winalysis
http://www.heaventools.com PE Explorer
http://fire.dmzs.com/ F.I.R.E. boot cd-rom
http://www.geocities.com/govest/ GoVest Debugger
http://www.expage.com/w32dasm/ Win32Dasm Debugger
http://www.sysinternals.com RegMon and FileMon
http://md5deep.sourceforge.net MD5Deep
http://www.microsoft.com Windows 2000, Windows XP, Windows NT, Windows 98
http://www.redhat.com Red Hat’s Distibution of Linux
http://www.winzip.com WinZIp
http://www.vmware.com VMWare

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

Part 2 ~ Option 2: Perform Forensic Tool Validation

2.1 Introduction

During this part of the CGFA assignment, a series of tests confirm whether
a tool is viable as a forensic tool. The tests will validate the tool as reliable,
accurate and what impact it has on a system.

The first line of testing revolves around the program footprint. The results
help reduce and eliminate the original footprint. The second test validates the
accuracy and reliability of the tool.

2.2 Scope

To communicate effectively on a TCP/IP network, an application or
process needs a layer four protocol (transport) to effectively send or receive
network data. The most commonly used protocols for this are Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP). These protocols are
defined in RFC 170024 as protocol 2 and protocol 17.

Each of these protocols can be used on a variety of ports from 1 to 16555.
The tests in this part will focus on measuring the accuracy and reliability of a
program that lists these open port and protocol pairs, and then associates them
with a running process.

For the purposes of this validation, the scope of tests will be limited to
Windows 2000™.

24 A copy of this RFC can be found at http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1700.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

2.3 Tool Description

A. Description

The product tested is Vision™ v1.0 from Foundstone25. Vision™ is a free
downloadable software package obtained from http://www.foundstone.com/.
Once at Foundstone’s home page click resources and then free tools, then
forensics. Now click Vision™ v1.0 to start a download.

This software program’s main function is to list and associate TCP and
UDP network connections with running processes. In addition, the software
allows the user to send the socket a string of information and kill the socket. This
software lists running applications, processes, services, device drivers, and basic
system information. The output of the log file is the list of open network
connections and the owning application. The list of running processes mapped
against network ports provides an excellent source of evidence to prove that an
executable is running. Vision™ v1.0’s output combined with a network sniff
provides can prove beyond a reasonable doubt exactly what transpired on a
given system.

B. Footprint

The same three tools that determined the foot of the unknown binary will
determine the footprint of this forensic tool. These tools are regmon, filemon and
Winalysis™.

Using those three tools to footprint the install process results in one
hundred and thirty seven thousand three hundreds seventy-three file accesses
and ten thousand two hundred and two registry accesses. The install process
called visionsetup.exe has a very large impact on the target system.

 To try and decrease this footprint, several steps are taken

1) Gather a list of all the installed files as determined by the output of
filemon and winalysis.

C:\Program Files\Foundstone\Vision\DeIsL1.isu
C:\Program Files\Foundstone\Vision\License.txt
C:\Program Files\Foundstone\Vision\Readme.txt
C:\Program Files\Foundstone\Vision\Vision.cnt
C:\Program Files\Foundstone\Vision\Vision.exe
C:\Program Files\Foundstone\Vision\VISION.HLP
C:\Program Files\Foundstone\Vision_DEISREG.ISR
C:\Program Files\Foundstone\Vision_ISREG32.DLL

25 Copyright © 1999 - 2003, Foundstone, Inc. All rights reserved worldwide.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

2) Copy the identified files to a network share
3) Reset the VMWare™ session to prior to Vision™ install
4) Copy the files back to the host
5) Try to launch Vision™

The program launches successfully without the install portion from the off-
line files. The file and registry access counts are now five hundred and twenty six
and seven hundred and two to run the program.

To try to reduce these further, all the dynamic linked library files that
vision.exe requires are relocated into the off-line vision directory. The following
dll files are copied into the C:\Program Files\Foundstone\Vision\ directory:

C:\WINNT\System32\ACTIVEDS.DLL C:\WINNT\System32\rnr20.dll
C:\WINNT\System32\ADSLDPC.DLL C:\WINNT\System32\RTUTILS.DLL
C:\WINNT\System32\DHCPCSVC.DLL C:\WINNT\System32\SAMLIB.DLL
C:\WINNT\System32\DNSAPI.dll C:\WINNT\System32\Secur32.dll
C:\WINNT\System32\ICMP.DLL C:\WINNT\System32\SETUPAPI.DLL
C:\WINNT\System32\inetmib1.dll C:\WINNT\System32\snmpapi.dll
C:\WINNT\System32\iphlpapi.dll C:\WINNT\System32\TAPI32.DLL
C:\WINNT\System32\MPRAPI.DLL C:\WINNT\System32\USERENV.DLL
C:\WINNT\System32\NETAPI32.DLL C:\WINNT\System32\winrnr.dll
C:\WINNT\System32\NETRAP.dll C:\WINNT\System32\WINSPOOL.DRV
C:\WINNT\System32\PSAPI.DLL C:\WINNT\System32\WS2_32.dll
C:\WINNT\System32\RASAPI32.DLL C:\WINNT\System32\WS2HELP.DLL
C:\WINNT\System32\RASMAN.DLL C:\WINNT\System32\WSOCK32.dll

Now that the file access has been minimized, all the vision files and dll
files that are in the off-line folder are moved to a cd-rom. We are down to one
hundred and eighty-eight file accesses. Of these accesses the only files
accessed by vision.exe directly are:

C:\WINNT\System32\drivers\etc\services C:\WINNT\System32\winrnr.dll
C:\WINNT\System32\rnr20.dll

Two of the files that we moved into the application path (winrnr.dll and
rnr20.dll) are still accessed by vision.exe. The files indirectly accessed by
running vision.exe are:

C:\Documents and Settings\Administrator\Application Data\Microsoft\Internet Explorer
C:\Documents and Settings\Administrator\Application Data\Microsoft\Internet Explorer\Quick Launch
C:\Documents and Settings\Administrator\ntuser.dat.LOG
C:\PROGRA~1\COMMON~1\MICROS~1\WEBFOL~1\MSONSEXT.DLL
C:\Documents and Settings\Administrator\NTUSER.DAT
C:\Documents and Settings\Administrator\ntuser.dat.LOG
C:\Program Files\ C:\WINNT\AppPatch\sysmain.sdb
C:\Program Files\desktop.ini C:\WINNT\system32\cabinet.dll
C:\WINNT\AppPatch\LayerStorage.dat C:\WINNT\system32\drivers\etc\services
C:\$LogFile C:\WINNT\system32\sdbapiu.dll
C:\pagefile.sys C:\WINNT\system32\sfc.dll
C:\Program Files\desktop.ini C:\WINNT\win.ini
C:\WINNT\AppPatch\msimain.sdb C:\

The following registry keys are created by running vision™ the first time
on a system:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

HKLM\SOFTWARE\Microsoft\RFC1156Agent\CurrentVersion
HKLM\SOFTWARE\Microsoft\RFC1156Agent\CurrentVersion\Parameters
HKLM\SOFTWARE\Microsoft\RFC1156Agent\CurrentVersion\Parameters\TrapPollTimeMilliSecs
HKLM\SOFTWARE\Classes\TypeLib\{1EA4DBF0-3C3B-11CF-810C-00AA00389B71}\1.1\0\win32
HKLM\SOFTWARE\Microsoft HKLM\SOFTWARE\Microsoft\RFC1156Agent

The two file warnings listed in the Winalysis™ graphic directly relate to
saving regmon and filemon results to disk. Some of the registry access listed in
regmon output is a direct result of the winalysis tool. Several registry keys are
created and depending how the program is launched, the “most recently used”
lists are modified.

Figure 13 - Winalysis Detected System Changes.

The footprint has now been minimized and calculated, running Vision™
changes the access time of 23 files, creates 6 registry keys, and modifies other
registry key depending on how Vision™ was launched.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

2.4 Test Apparatus and Environmental Conditions

Two hosts connected to a private isolated network generate test tcp and
udp connections for Vision™ to record. These hosts are connected to a private
isolated network.

Microsoft Windows 2000
Professional Workstation™

Cisco™ Pix 501

Microsoft Windows 2000
Professional Workstation™

This workstation is hosting the Vision™
software that will be the subject of the
testing. As a secondary role, this host
generates some tcp and udp connection to
itself to create data to be captured.

This laptop generates TCP and UDP
network connections to the desktop. These
prepared connections act as the expected
results of the experiment.

The Cisco™ Pix is acting as a network
switch and DHCP server. The outside
interface is not connected to anything, so the
firewall functionality of the pix is not being
used.

Figure 14 - Experiment Environment

For clarity, the two hosts on this test network will be called Vision™ Host
and test laptop for the rest of this document. Both test platforms are running
Microsoft Windows 2000 Professional Workstation™, Version 5.00.2195 Service
Pack 4.

The windows hosts in the experiment may generate NetBIOS traffic.
Windows networking is known to be chatty. The broadcasts and internal windows
2000 NetBIOS traffic may interfere with the results. Initially a VMWare™ session
was used as the tasting platform, however due to the shared aspect (with the
host) of the networking layers, this option was not used to avoid skewing the test
results.

FPORT is another utility from Foundstone™. It is the command line
predecessor of Vision™ and will be used for two purposes. One is to check the
accuracy of Vision™ and the second is to ensure the test environment does not
change.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

Netstat is a command that is bundled with Windows 2000 Professional
Workstation™. This command list the UDP and TCP ports open without
displaying applications that correspond with the ports.

TGrab™ v1.4 is a screen capture program that will be used to capture the
data from vision. Vision does have a log file, however the log file output is
restricted to active connections. TGrab™ is available from
http://www.doldersum.com/. For this tool validation a trail copy of TGrab™ is
used.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

2.5 Description of the Procedures

This chapter of the document describes in detail the testing procedures
used in this experiment. The output of these procedures will be analyzed to
determine the feasibility of using Vision™ as a forensic tool.

The test will be performed as follows:
1) Launch Vision
2) Get Vision results from screen with TGrab™. The screenshot will have

to be renamed as TGrab™ will overwrite it the next time it is launched.
3) Get Vision results from output log. The file will have to be renamed, as

Vision will append any new information to the same file. To retain the
integrity of the data and associate it with a particular test. The log file
will be renamed every time Vision™ is executed.

4) Get Fport output
5) Get Netstat –an output
6) Close Vision™

The test will be repeated 1005 times to determine the accuracy and
consistency of the data output. Once complete, md5sum will calculate a
message digest on all the files. The message digests will be the basis for the
analysis and any variations indicate a change in the test environment or
inconsistent results of Vision™.

A. Setup

Two windows 2000 hosts will create a static networking environment by
utilizing C# (c-sharp) scripts to generate UDP and TCP connections.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

Microsoft Windows 2000
Professional Workstation™

Cisco™ Pix 501

Microsoft Windows 2000
Professional Workstation™

SENDING ON PORTS
UDP 5001, 5501
TCP 7501, 8001

LISTENING ON PORTS
UDP 5001, 5501
TCP 7501, 8001

LISTENING ON PORTS
UDP 5005, 5505
TCP 7505, 8005

SENDING ON PORTS
UDP 5005, 5505
TCP 7505, 8005

Figure 15 - Network Connections

The script source codes are displayed in the appendix. These scripts have
been compiled for each port for ease of identification in the log files. Had the c#
script had the port number as a parameter instead of being hard coded it might
not be apparent which application was which.

Originally, the test was designed with 10 ports for each TCP and UDP (20 in
total), however two issues arose out of that. The first was that 20 ports would not
fit onto one screen of data so the screenshot would not have all the data. Even
with four ports, the screen resolution had to be increased to capture all the GUI
data in one screenshot. The other issue was system performance. With 20
applications tossing raw data around in an endless loop, the test platforms were
not very responsive.

Here is a table of which application is sending or receiving on the appropriate
port.

Host Application Name Action Protocol Port
Test Laptop TX_UDP_5001 Send UDP 5001
Test Laptop TX_UDP_5501 Send UDP 5501
Test Laptop TX_TCP_7501 Send TCP 7501
Test Laptop TX_TCP_8001 Send TCP 8001
Test Laptop RX_UDP_5005 Receive UDP 5005
Test Laptop RX_UDP_5505 Receive UDP 5505
Test Laptop RX_TCP_7505 Receive TCP 7505
Test Laptop RX_TCP_8005 Receive TCP 8005

Vision™ Host TX_UDP_5005 Send UDP 5005
Vision™ Host TX_UDP_5505 Send UDP 5505

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

Vision™ Host TX_TCP_7505 Send TCP 7505
Vision™ Host TX_TCP_8005 Send TCP 8005
Vision™ Host RX_UDP_5001 Receive UDP 5001
Vision™ Host RX_UDP_5501 Receive UDP 5501
Vision™ Host RX_TCP_7501 Receive TCP 7501
Vision™ Host RX_TCP_8001 Receive TCP 8001

To conduct the procedure as outlined, a visual basic script was written to
facilitate doing the test 1005 times. The vbs code listed below launches TGrab™,
Vision™, Fport, and Netstat. The script relies on the setup on TGrab™ to get an
automatic screenshot. After a delay, the script renames the log files and
terminates vision. Once it has completed this cycle 1005 times, it then calculates
an md5 message digest on all the files in the four data directories. The output of
md5sum is placed into a text file in each directory called md5sum.txt.

StopAt=1005
NETSTATFolder="C:\DATA\NETSTAT"
FPORTFolder="C:\DATA\FPORT"
TGRABFolder="C:\DATA\SCREENSHOTS"
VISIONFolder="C:\DATA\VISION"
VISIONLog ="C:\DATA\VISION\Visionlog.txt"
Set wshshell = createobject("wscript.shell")
Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}!\\.\root\cimv2")
Done = False
i=1
Do While Not(Done)

wshshell.run "C:\Progra~1\TGrab\TGrab.exe"
Wscript.sleep 2000
wshshell.SendKeys "~"
Wscript.sleep 1000
wshshell.SendKeys "%b"
wshshell.run "C:\Progra~1\Foundstone\Vision\Vision.exe"
Wscript.sleep 1000
Wshshell.SendKeys "%"
Wshshell.SendKeys " "
Wshshell.SendKeys "x"
Wshshell.run "cmd.exe /c fport > c:\data\fport\fport_" & i & ".txt",7,FALSE
Wshshell.run "cmd.exe /c netstat -an > c:\data\netstat\netstat_" & i & ".txt",7,FALSE
Wscript.sleep 4000
Set colProcessList = objWMIService.ExecQuery ("Select * from Win32_Process Where Name = 'vision.exe'")
For Each objProcess in colProcessList
 objProcess.Terminate()
Next
Wscript.sleep 2000
Wshshell.run "cmd.exe /c rename c:\data\screenshots\screenshot1.jpg ss_" & i & ".jpg",7,FALSE
Wshshell.run "cmd.exe /c rename " & VISIONlog & " Visionlog_" & i & ".txt",7,FALSE
IF (i=StopAT) THEN

Done=true
ELSE

i=i+1
END IF

Loop
Wscript.sleep 5000
Set FS_Obj = CreateObject("Scripting.FileSystemObject")
Dim DataFolders(3)
DataFolders(0)="C:\DATA\NETSTAT"
DataFolders(1)="C:\DATA\FPORT"
DataFolders(2)="C:\DATA\SCREENSHOTS"
DataFolders(3)="C:\DATA\VISION"
i=0
do While not(i=4)

Set Folder_H = FS_Obj.GetFolder(DataFolders(i))

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

Set Files_H = Folder_H.files
For Each f1 in Files_H

Wshshell.run "cmd.exe /c md5sum " & DataFolders(i) & "\" & f1.name & " >>" & DataFolders(i) &
"\md5sum.txt",7,TRUE

Next
i=i+1

loop

To complement the script, Vision™ and TGrab™ will be configured to
work within the time constraints in the script. Vision™ will update it’s log file
every five seconds.

Figure 16 - Vision™ Setup

After vision™ is launched, there are two pauses in the script adding up to
five seconds to allow for the screenshot. In this duration Vision™ will only write to
it’s log file once based on this configuration,

TGrab™ is configured to take one screenshot in 5 seconds and then
terminate. Notice the option “Capture Full Screen image” is selected. When only
taking one picture this setting is inverse, so the program is really taking a screen
shot of the active application. The other setting of importance it the filename,
when TGrab write the file it appends a number to the filename indicating which
picture it is. (IE, if we took five screenshots the filenames would have the
numbers 1 through 5 appended to them)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

Figure 17 - TGrab Setup

B. Preflight Checks

1) Check all eight network applications are running and
sending/receiving data.

2) Verify no data files exist in the four data directories.
a. C:\DATA\FPORT\
b. C:\DATA\NETSTAT\
c. C:\DATA\VISION\
d. C:\DATA\SCREENSHOTS\

3) Verify the application settings for Vision™ and TGrab™

C. Documentation Requirements
Four data directories will be the repositories of testing. The “code”

directories are to contain the source code and compiled code for testing. The
process directory is there for manual screenshots of the setup.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

Figure 18 - Data Structure

C:\DATA\FPORT\
This directory will contain the output of fport. The naming convention for

the files will be fport_#.txt where # is the iteration of the test that produced this
result. (E.G, fport1005.txt will be the filename of the 1005th test)

C:\DATA\NETSTAT
This directory will contain the output of the “Netstat –an” command. The

naming convention will be Netstat_#.txt where # is the iteration of the test.

C:\DATA\SCREENSHOTS
TGrab™ creates a file screenshot1.jpg when it captures the screen. After

that is complete the vbs script will rename this file to ss_#.jpg where # is the
iteration of the procedures the test is currently on.

C:\DATA\VISION
Vision™ is configured to automatically log to c:\data\vision\visionnlog.txt

every five seconds. The script will rename this to visionlog_#.txt where # is the
iteration of the procedures the test is currently working on.

D. Data Integrity

Prior to starting the test the mouse pointer will be move to the bottom of
the screen to the task bar where an “eye” from running vision™ will appear.
When Vision terminates, the “eye” icon in the taskbar remains until it is
highlighted with the mouse. Because the program will be launched 1005 times
the mouse pointer is placed here to avoid any memory leaks associated with
1005 “eye” icons on the taskbar. The pointer must be placed at the bottom of
where the eye icon will appear. As the mouse hovers over the “eye”, a popup
appears saying “Vision”. The mouse must be low enough that the popup does
not appear in the active area of vision, otherwise the screenshots may vary and
using a md5 checksum to compare the screenshots will not be feasible.

Once the mouse pointer is perfectly in place, the mouse cord is unplugged
to prevent any unintentional movement. The keyboard will be unplugged once
the test has been started as well.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

Two of the programs (Fport and netstat) will be used to ensure the testing
environment remains constant and no unintentional network connections are
made. In the event of a change in the network, Fport and netstat can be used to
qualify any changes in Vision™ data so the overall test will not be unusable.

E. Test Results

As long as the baseline results of Fport and netstat are constant, the
expectations of the Vision™ output are:

• Each folder will have 1006 files. Any deviation from this means an error
in testing and will be analyzed to determine the extent of the problem.

• There will be only one unique md5 message digest for each of the data
folders with the exception of the vision text log. Any deviation from this
must be accounted for.

• The vision text log will contain multiple md5 message digests as each
log file includes date/time information. The expectation of this log file is
that there will only be four unique TCP connections.

• The port and application information extracted from the Vision™ output
(including screenshot) will be the same as Fport.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

2.6 Criteria for Approval

There are three criteria for approval

1) Repeatable
The results from test to test must be the same with the only
provision for a discrepancy being that something on the system
changes and the other tools running have the same discrepancy as
vision™ v1.0.

2) Accurate
The GUI26 output of vision 1.0 must match up with the output of
Fport. The text logging output of Vision™ must match the port list of
netstat. Any discrepancy must have a valid, documented, technical
explanation. Although the accuracy does not disqualify the output
as evidence, it does make the product less of a useful tool.

3) Minimized Footprint
This condition is the least tangible of the criteria in that the
measurements used will be personal judgment of whether the
footprint that vision™ 1.0 makes while running justifies the
forensics information vision™ provides.

26 Graphical User Interface

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

2.7 Data and Results

Before analyzing the data, any inconsistencies must be addressed. The
data presented by this set of tests has several issues that must be addresses or
removed from consideration.

A. Data Validation

The output of Fport™ has one unique md5 digest and the output of
netstat has one unique md5 digest. These two facts make the testing
environment clean and indicate that no network changes were introduced during
the course of the test.

There are two unique md5 digests for the vision screenshots. Two
screenshots have a digest of 4818373619c159c7a9e2f246285acd19 and the rest
have a digest of 5f05d381797d05bb45dcca50db4df7cc. The two inconsistent
screenshots are from iteration 12 and 925. In addition the vision™ log output only
has 1004 files not 1006, the two missing iterations are 12 and 925.

Figure 19 - ss_12.jpg and ss_925.jpg

The screenshots and total lack of log output for these two iterations seem
to indicate the vbs script failed to start Vision™. These two iterations will be
removed from consideration, as they do not show that Vision™ was inconsistent
or inaccurate. This only shows that Vision™ failed to execute.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

B. Data Analysis (Repeatable)

With the two exceptions out of the way, the remainder of the data shows
that for 1003 iterations, the screenshot data is repeatable and reproducible. The
md5 digest of the vision log data is inconclusive as the vision log data contains
date and time information. Each file has a unique md5 digest. Using the
command dir shows that 81 of the files have a size of 1020 bytes while the
remaining 922 files have a file size of 510 bytes. Examining the contents shows
that the larger files have the same information twice. It appears that the test was
not consistently timed and that in some instances Vision™ logged twice. The
setup for Vision should have set a much longer time that the 5 seconds allotted in
the setup phase.

To use the information gathered constructively to prove the repeatability of
Vision™, we will analyze the data contained within. Once compiled the data
should only have four unique TCP connections. (Remember, the vision log file
only contains active TCP connections). After piping all the data into one comma
delimited file, the total amount of records is 4336. The result of 4336 divided by 4
is 1084 so this file may be 1084 iterations of the four TCP connections. To prove
this, the data is imported into Microsoft Excel™. The date and time information is
removed. All the fields are run together so they form one run-on field. Then using
the auto filter function in Microsoft Excel™ the filter bar show 4 unique records.

Figure 20 – Microsoft™ Excel Auto Filter

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

Figure 21 - Microsoft™ Excel Autofilter Results

The four unique records goes to prove that the data retrieved from
Vision™ is repeatable and reproducible.

C. Data Analysis (Accurate)

The log file of Vision™ contains all the active TCP ports that Fport and
netstat show. It does not however contain all the UDP TCP port information and
without the screenshot of the GUI should not be considered an accurate
representation of the UDP/TCP connections.

The GUI screen of Vision™ is a direct reflection of Fport and Netstat. In
the output of netstat, it appears that there are more ports showing up. This is
because netstat uses the source IP address as well. This mean that one
application listening on port 137, will show up multiple times in netstat depending
on how many ip addresses it has. The same port only shows up once in Fport
and Vision™ as UDP port 137.

D. Data Results

The following figures contain screenshots of the unique results gathered
by this test. The screenshots have been cropped for readability.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

Figure 22 - FPort Results

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
45

Figure 23 - Netstat -an Results

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
46

Figure 24 - Vision™ GUI Results (cropped for readability)

Figure 25 - Vision™ Log File Results

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
47

2.8 Analysis

The data collected by Vision™ has a couple of uses to a forensic
investigator. In the case of finding a suspect machine running, Vision™ can
provide proof that an executable was running and communicating on the
network. The data will also reveal an ip address that the host is connected to for
TCP connections.

Vision™ also determines what application corresponds with a network
port. The output can pinpoint what application received or transmitted specific
data if the forensic analyst has network traces to lead him to a specific
Microsoft™ NT or 2000 host. This tool would be used in scenarios where it is
expected or possible for a backdoor program to be installed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
48

2.9 Presentation

Vision™ outputs data in two ways. The comma delimited log file (although
nice in that is can log over a period of time) contains only a portion of the data
and until this changes, the presentation of Vision™ data is a screenshot. The log
file can be used in the case where an active TCP connection is involved.

The output of the tool is a list of six fields of data as shown

A. PID
This is the process identification number. These numbers are assigned
by the operating system sequentially so can be used to determine what
sequence the processes were executed.

B. Process
This is the name of the process.

C. Port
The port number the process is communicating with. This number can
be anywhere in the range from 1 to 65535.

D. Protocol
This field will be either TCP or UDP.

E. Remote IP
This will display an IP address of an active TCP connection

F. Path
This displays the full path to the program that is communicating on this
port.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
49

2.10 Conclusion

This validation was only partly successful. It has proven that Vision™ by
Foundstone™ can provide accurate, repeatable and reproducible results. The
footprint of running this product is significant enough that it should not be used in
an incidence response scenario. This is reinforced when compared to Fport,
which has no footprint except for the MRU (Most Recently Used). Vision™ can
be used forensically where the evidence has already been imaged and evidence
containment is not an issue. (Such as on a copy of the data)

Recommendations

The text based logging should include all the port/application data
collected by Vision™ and not just the active TCP connections. This would
remove the need for screenshots as a presentation mechanism. In addition, this
would allow this program to be used in an ongoing investigation to collect
connection information over time. In this context, the footprint may be a
worthwhile price to pay for the function.

Reduce the footprint. This program references several dll files from the
system drive that could be access from a cd-rom. The other suggestion along
these lines is too remove the need to make registry entries.

2.11 Additional Information

Reference

A Simple Multi-threaded TCP/UDP Server and Client v2
By Patrick Lam
http://www.c-sharpcorner.com/Network/simpleTcpUdpServerClientPL2.asp

The Wizard's Hot Keys/Shortcuts
http://www.wizardscave.com/hotkeys.html

Windows Scripting Host
http://www.devguru.com/Technologies/wsh/quickref/wsh_objects.html

Microsoft Windows Script
http://msdn.microsoft.com/scripting

Software

http://www.go-mono.com/ Mono (Win32 C# Compiler)
http://md5deep.sourceforge.net MD5Deep
http://www.microsoft.com Windows 2000, Windows XP, Windows NT, Windows 98
http://www.foundstone.com Fport
http://www.foundstone.com Vision v1.0
http://www.doldersum.com/ TGrab v1.4
http://www.sysinternals.com Regmon and Filemon

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
50

Part 3 ~ Legal Issues of Incident Handling

3.1 Introduction

This part of the assignment will delve into the depths of Canadian law and
provide some insight of the law and how it relates to electronic documents and
computer networks.

The three main acts that deal with this subject are the Canada Criminal
Code, Canada Evidence Act, and Canada Personal Information Protection and
Electronic Documents Act. Canada has very recently introduced federal laws
regarding electronic evidence and information. Some provinces have further
outlined the federal regulations, however British Columbia has not yet adopted
any provincial regulations regarding electronic information.

Throughout this part, I will be personifying a system administrator
working for an Internet service provider. Sgt Boggs is a fictional character that
will be used to portray some aspects of Canadian Law. For purposes of the
following scenarios, I know Sgt Boggs as law enforcement officer and there is no
need to verify his identity.

Phone: “Brrring. Brrring.”
Bil the sysadmin: “Hello”
Sgt Boggs27: “Hello, this is Sgt Boggs from the Royal Canadian

Mounted Police, I am calling to inform you of criminal
activity coming from an account on your systems. It
appears that an account has hacked into a
government computer. Can you review your activity
logs and determine if this activity came from your
systems or from a downstream provider? The timeline
in question is yesterday from three to four pm.”

27 Sgt Boggs as depicted in this paper is a purely fictional character and any resemblance to any real person is
unintentional.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
51

3.2 The Law

A. Disclosure of Information

Bil The sysadmin: “After reviewing my logs, the only thing I can find is
ISPUSER_01 was logged in during that period. “

Sgt Boggs: “Great, tell me everything you know about
ISPUSER_01.”

Bil The sysadmin: “Ok, just a sec, I will look it up.”

According to the Canada Personal Information Protection and Electronic
Documents Act28, I can provide the law enforcement officer any information I
have on ISPUSER_01 as the request was made from an official source for the
purpose of investigating a crime. I can do this without the consent of the user in
question under these circumstances. This scenario also assumes that the
information collected by the ISP about ISPUSER_01 is legal, which is a different
law.

B. Electronic Evidence

Bil the sysadmin: “… And that’s all the info we have on ISPUSER_01”
Sgt Boggs: “ Ok, I have all that written down now. Can you make a

copy of the logs files in question and get a md5
checksum on them?”

In Canadian Federal Evidence Act, there are two special stipulations for
electronic evidence. The normal laws and regulations on admissibility do apply
except for these two stipulations:

a) Authenticity

The person(s) bringing the electronic record must also have evidence that
the document is what they claim it is29. This evidence is typically verbal and in the
case of this scenario would be, “This is a log of users logged in.”

b) Integrity

To be admissible into legal proceedings, the electronic document must
have a certain degree of integrity. This is some degree of certainty that the
document has not changed from the original. Given this situation the integrity of
the logs could be proven under three clauses of the Canada Evidence Act.

28 Canada Personal Information Protection and Electronic Documents Act 7(3)(h.2)
29 Canada Evidence Act 31.1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
52

1) The best evidence rule states, “on proof of the integrity of the
electronic documents system by or in which the electronic
document was recorded or stored”30. This clause could be
satisfied by an md531 checksum on the drive and/or copy of file
at the point in time in question.

2) Further to the best evidence rule, a presumption of integrity
exists if the system the electronic document is taken from is
working reliably as per the Evidence act32.

3) Another clause in the presumption of integrity states, “if it is
established that the electronic document was recorded or stored
in the usual and ordinary course of business by a person who is
not a party and who did not record or store it under the control of
the party seeking to introduce it”33. In this case the logs I was
reviewing were the user access logs recorded to calculate billing
information.

C. Legal Authority

Sgt Boggs: “Great I will come by a and pick up that log file on disk
later on “

As discussed in the answer to question A, the Canada Personal
Information Protection and Electronic Documents Act has a clause for law
enforcement access to private information collected in the normal course of
business. Sgt Boggs in this case does not need any further legal authority for me
to send him/her the logs.

D. Further Investigation

Sgt Boggs: “Thank you for all you cooperation. If you can find out
anything more, let me know”

Another part of the Personal Protection and Electronic Documents Act34

allows me to review and search for any recorded personal information without the
knowledge or consent from the suspect, as I know that it may be used in a
criminal investigation.

30 Canada Evidence Act 31.2(1)(a)
31 md5 message digest as outlined by Ronald Rivest in RFC 1521.
32 Canada Evidence Act 31.3(a)
33 Canada Evidence Act 31.3(c)
34 Personal Protection and Electronic Documents Act 7.2(a)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
53

The criminal code35 would prevent me from eavesdropping on the wire for
his activity until such a time as the law enforcement officer provided a court
order. I could however review any intrusion detection systems or network sniffer
logs that are already in place to protect the ISP under a provision of the criminal
code36. The distinction here is I cannot put a new sniffer or modify the current
eavesdropping equipment to specifically look at the suspect’s activity.

E. Evidence Collection

Bil the sysadmin: “Oh, I have new information based on the IDS logs,
ISPUSER_01 was hacked into using the Ijustmadethisup
vulnerability. Another account was created called
ISPHACK_01 and that account was also used to hack
into that government system”

Sgt Boggs: “…”

The law enforcement officer at that point in time can obtain a search
warrant37 and seize the computer equipment in question. The other alternatives
for the law enforcement officer are to obtain the logs/data38 or have me obtain the
logs, data and/or image. 39 The alternatives listed here are the ones available by
law, I am unsure of the standard practices (if there is one) the RCMP40 deploy in
these scenarios.

35 Canada Criminal Code Part IV Invasion of Privacy 184. (1)
36 Canada Criminal Code Part IV Invasion of Privacy 184(2)(c)(iii)
37 Canada Criminal Code Part XV Special Procedure and Powers 487(1)(d)
38 Canada Criminal Code Part XV Special Procedure and Powers 487 (2.1)
39 Canada Criminal Code Part XV Special Procedure and Powers 487 (2.2)
40 Royal Canadian Mounted Police

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
54

3.3 Additional Information

References

Privacy Commissioner of Canada
http://www.privcom.gc.ca/

Canada’s Parliament
http://www.parl.gc.ca/

Department of Justice Canada
http://laws.justice.gc.ca/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
55

APPENDIX

A.1 Network Connection Code
This c-sharpe code was designed based on Patrick Lam’s UDP/TCP

examples41. For brevity, only four programs are shown here. The remaining code
are these with the name and ports changed accordingly.

A. RX_TCP_7501.cs
The c# code will open up a TCP listening socket on port 7501.

namespace RX_TCP_7501
{

using System;
using System.Net;
using System.Net.Sockets;
using System.Threading;

public class RX_TCP_7501
{

private const int Port = 7501;
public static void Main(String[] argv)
{

TcpListener tcpListener = new TcpListener(Port);
try
{

tcpListener.Start();
Socket soTcp = tcpListener.AcceptSocket();
while (true)
{

Byte[] received = new Byte[512];
int bytesReceived = soTcp.Receive(received, received.Length, 0);
String dataReceived =

System.Text.Encoding.ASCII.GetString(received);
Console.WriteLine(dataReceived);
String returningString = "The Server got your message through TCP: "

+ dataReceived;
Byte[] returningByte =

System.Text.Encoding.ASCII.GetBytes(returningString.ToCharArray());
soTcp.Send(returningByte, returningByte.Length, 0);

}
tcpListener.Stop();

}
catch (SocketException se)
{

Console.WriteLine("A Socket Exception has occurred!" + se.ToString());
}

}
}

}

B. RX_UDP_5001.cs
This c# code will listen on port 5001 for UDP packets.

namespace RX_UDP_5001
{

using System;

41 The article on this can be viewed at http://www.c-sharpcorner.com/Network/simpleTcpUdpServerClientPL2.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
56

using System.Net;
using System.Net.Sockets;
using System.Threading;

public class RX_UDP_5001
{

private const int Port = 5001;
public Thread UdpThread;
public static void Main(String[] argv)
{

IPHostEntry localHostEntry;
try
{

//Create a UDP socket.
Socket soUdp = new Socket(AddressFamily.InterNetwork, SocketType.Dgram,

ProtocolType.Udp);
try
{

localHostEntry = Dns.GetHostByName(Dns.GetHostName());
}
catch(Exception)
{

Console.WriteLine("Local Host not found"); // fail
return ;

}
IPEndPoint localIpEndPoint = new IPEndPoint(localHostEntry.AddressList[0],

Port);
soUdp.Bind(localIpEndPoint);
while (true)
{

Byte[] received = new Byte[256];
IPEndPoint tmpIpEndPoint = new

IPEndPoint(localHostEntry.AddressList[0],Port);
EndPoint remoteEP = (tmpIpEndPoint);
int bytesReceived = soUdp.ReceiveFrom(received, ref remoteEP);
String dataReceived =

System.Text.Encoding.ASCII.GetString(received);
Console.WriteLine(dataReceived);
String returningString = "The Server got your message through UDP:"

+ dataReceived;
Byte[] returningByte =

System.Text.Encoding.ASCII.GetBytes(returningString.ToCharArray());
soUdp.SendTo(returningByte, remoteEP);

}
}
catch (SocketException se)
{

Console.WriteLine("A Socket Exception has occurred!" + se.ToString());
}

}
}

}

C. TX_TCP_7501.cs
This c# code will send TCP packets to the ip address given as a parameter on
port 7501.

namespace TX_TCP_7501
{

using System;
using System.Net;
using System.Net.Sockets;
using System.Threading;
public class TX_TCP_7501
{

private const int Port = 7501;
public static void Main(String[] argv)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
57

{
if (argv.Length == 1)
{

try
{

TcpClient tcpClient = new TcpClient(argv[0],Port);
NetworkStream tcpStream = tcpClient.GetStream();
int i = 1;
while(true)
{

bool DONE = false;
if (tcpStream.CanWrite)
{

String StringtobeSent = i + ": Testing TCP On Port
" + Port;

Byte[] ASCIIToBeSent =
System.Text.Encoding.ASCII.GetBytes(StringtobeSent.ToCharArray());

tcpStream.Write(ASCIIToBeSent, 0,
ASCIIToBeSent.Length);

tcpStream.Flush();
}
while (tcpStream.CanRead && !DONE)
{

if (tcpStream.DataAvailable)
{

Byte[] received = new Byte[512];
int nBytesReceived =

tcpStream.Read(received, 0, received.Length);
String dataReceived =

System.Text.Encoding.ASCII.GetString(received);
Console.WriteLine(dataReceived);
DONE = true;

}
}
i=i+1;

}
tcpStream.Close();

}
catch (Exception e)
{

Console.WriteLine("An Exception has occurred.");
Console.WriteLine(e.ToString());

}
}
else
{

Console.WriteLine("Usage: TX_TCP_7501 a.b.c.d");
}

}
}

}

D. TX_UDP_5001.cs
This c# code will send UDP packets to the ip address given as a parameter on
port 5001.
namespace TX_UDP_5001
{

using System;
using System.Net;
using System.Net.Sockets;
using System.Threading;
public class TX_UDP_5001
{

private const int Port = 5001;
public static void Main(String[] args)
{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
58

if (args.Length == 1)
{

try
{

UdpClient UDPStream = new UdpClient(args[0], Port);
Byte[] ASCIIText = new Byte[256];
IPHostEntry remoteHost = Dns.GetHostByName(args[0]);
IPEndPoint remoteIp = new

IPEndPoint(remoteHost.AddressList[0],Port);
int i = 1;
while(true)
{

string StringText = i + ": Testing UDP On Port " + Port;
ASCIIText =

System.Text.Encoding.ASCII.GetBytes(StringText.ToCharArray());
int nBytesTX = UDPStream.Send(ASCIIText,

ASCIIText.Length);
Byte[] RX = new Byte[512];
RX = UDPStream.Receive(ref remoteIp);
String dataRX =

System.Text.Encoding.ASCII.GetString(RX);
Console.WriteLine(dataRX);
i=i+1;

}
UDPStream.Close();

}
catch (Exception e)
{

Console.WriteLine("An Exception Occurred!");
Console.WriteLine(e.ToString());

}
}
else
{

Console.WriteLine("Usage: TX_UDP_5001 a.b.c.d");
}

}
}

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
59

A.2 Vision-Test.vbs
This script was used to generate 1005 iteration of Vision™. During the

testing, two of sets of data were invalid. If you intend on using this script or a
variation of it, you will have to adjust the wscript.sleep commands to allow
enough time for the operation to complete. This will vary based on applications
and computer speed.

StopAt=1005
NETSTATFolder="C:\DATA\NETSTAT"
FPORTFolder="C:\DATA\FPORT"
TGRABFolder="C:\DATA\SCREENSHOTS"
VISIONFolder="C:\DATA\VISION"
VISIONLog ="C:\DATA\VISION\Visionlog.txt"
set wshshell = createobject("wscript.shell")
Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}!\\.\root\cimv2")
Done = False
i=1
Do While Not(Done)

wshshell.run "C:\Progra~1\TGrab\TGrab.exe"
Wscript.sleep 2000
wshshell.SendKeys "~"
Wscript.sleep 1000
wshshell.SendKeys "%b"
wshshell.run "C:\Progra~1\Foundstone\Vision\Vision.exe"
Wscript.sleep 1000
wshshell.SendKeys "%"
wshshell.SendKeys " "
wshshell.SendKeys "x"
wshshell.run "cmd.exe /c fport > c:\data\fport\fport_" & i & ".txt",7,FALSE
wshshell.run "cmd.exe /c netstat -an > c:\data\netstat\netstat_" & i & ".txt",7,FALSE
Wscript.sleep 4000
Set colProcessList = objWMIService.ExecQuery ("Select * from Win32_Process Where Name = 'vision.exe'")
For Each objProcess in colProcessList
 objProcess.Terminate()
Next
Wscript.sleep 2000
wshshell.run "cmd.exe /c rename c:\data\screenshots\screenshot1.jpg ss_" & i & ".jpg",7,FALSE
wshshell.run "cmd.exe /c rename " & VISIONlog & " Visionlog_" & i & ".txt",7,FALSE
IF (i=StopAT) THEN

Done=true
ELSE

i=i+1
END IF

Loop
Wscript.sleep 5000
Set FS_Obj = CreateObject("Scripting.FileSystemObject")
Dim DataFolders(3)
DataFolders(0)="C:\DATA\NETSTAT"
DataFolders(1)="C:\DATA\FPORT"
DataFolders(2)="C:\DATA\SCREENSHOTS"
DataFolders(3)="C:\DATA\VISION"
i=0
do While not(i=4)

Set Folder_H = FS_Obj.GetFolder(DataFolders(i))
Set Files_H = Folder_H.files
For Each f1 in Files_H

wshshell.run "cmd.exe /c md5sum " & DataFolders(i) & "\" & f1.name & " >>" & DataFolders(i) &
"\md5sum.txt",7,TRUE

Next
i=i+1

loop

