
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Regular Expression Search Primer for

Forensic Analysts

GIAC (GCFA) Gold Certification

Author:	 Timothy	 Cook,	 tcbcook@yahoo.com	
Advisor:	 Robert	 VandenBrink	

Accepted:	 March	 29,	 2011	

Abstract	
	
Often	 forensic	 texts	 and	 articles	 assume	 a	 level	 of	 experience	 and	 comfort	 with	
Linux	 command	 line	 string	 searching	 and	 text	 manipulation	 that	 a	 reader	 does	 not	
possess.	 This	 assumption	 tends	 to	 leave	 the	 reader	 to	 their	 own	 devices	 to	 puzzle	
out	 how	 to	 locate	 and	 extract	 specific	 string	 content	 from	 files.	 The	 focus	 of	 this	
paper	 is	 to	 introduce	 the	 reader	 to	 Linux	 string	 search	 and	 text	 manipulation	
commands	 and	 provide	 specific	 use	 cases	 and	 search	 patterns	 that	 will	 be	 of	 use	 to	
Forensic	 Analysts.	 The	 intent	 of	 this	 paper	 is	 to	 serve	 as	 an	 introduction	 to	 regular	
expressions	 and	 some	 Linux	 commands	 that	 can	 be	 used	 to	 locate	 and	 extract	 text	
for	 individuals	 who	 either	 do	 not	 have	 Linux	 command	 line	 experience	 or	 who	 use	
the	 Linux	 command	 line	 infrequently	 and	 can	 benefit	 from	 a	 refresher.	
	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 2
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

1. Introduction
This paper introduces some of the powerful ASCII pattern identification and

manipulation tools that are available to Forensic Analysts from the command line of the

Linux Operating System of the SANS Investigative Forensic Toolkit (SIFT) Workstation.

It will discuss crafting a search to locate exactly the ASCII pattern that the reader seeks

and will introduce two Linux commands that will allow the reader to isolate and extract

exactly the data that is being looked for. Throughout this paper examples of specific

commands and their syntax will be provided in an effort to clarify discussions and

provide specific use examples. It is not the intent of this paper to transform the reader

into a “Linux guru” but rather to provide the reader with enough familiarity of the Linux

commands introduced to enable the reader to understand and be comfortable with the

search patterns that will be built in this paper, or that the reader may need to craft on their

own. This paper assumes that the reader is using the SANS Investigative Forensic Toolkit

(SIFT) Workstation. The SIFT Workstation is a VMware appliance that is built on the

Ubuntu Operating System and is used extensively in the SANS Forensic Curriculum and

is available for download from http://computer-forensics.sans.org/community/downloads.

2. Text Searching Basics
2.1. What and How

Before a search can be crafted to locate specific information it is necessary to be

able to define exactly what it is being looked for (most often as a pattern) and sometimes

it is necessary to define what is not being looked for (what to exclude). As a simplistic

example, let’s say that the reader is tasked with looking in a forensic image for a deleted

file containing a telephone contact list for a smuggling ring. Phone numbers can be

recorded in many formats – in the United States they may be seven digits or ten digits

and if it is an international number then it may be even longer. Additionally the digits

may be separated by dashes, spaces, parentheses or not separated at all. While it might be

possible to visually scan a small file and identify multiple phone number formats, for

larger files this is not a reasonable approach. A better method would be to craft a

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 3
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

command or commands that will locate the phone numbers. As US area codes range from

201 to 999 one could start by attempting to locate “201-100-0000’ and incrementally

work to “999-999-9999”, repeating for each alternative format or one could identify and

define ASCII text patterns that can be used in an automated search.

After the “what” of the search has been defined it is necessary to address the

“how.” Expanding on the example above, suppose that it is determined that it is desired

to identify all of the blocks of the image that contain telephone numbers from the United

States and that it is safe to assume that a smuggling ring is not using toll free numbers. If

a phone number is initially defined as ten digits separated by dashes (“###-###-####”)

that are not “800” or “88#” area code numbers then one way to approach this might be to

first find all text in the “###-###-####” format and then exclude all of the hits that start

with “800” or “88#” (there are additional U.S. toll free numbers however including them

at this point would unnecessarily complicate this example). The “what” (10 digits in the

format “###-###-####”) and the “how” (identify all of the phone numbers and then

exclude the numbers in the format of “800-###-###” or “88#-###-####”) of the search

have now been defined. This could be pseudo coded as:

1. Locate all lines of text that contain “###-###-####” and place them in an output
file.

2. Locate all of the lines of text in the output file that do not contain “800-###-###”
and place them in a second output file.

3. Locate all of the lines of text in the second output file that do not contain “88#-
###-###” and place them in a third output file

This would work as long as all of the phone numbers were in the specified format

and no other text was in the specified format. If this isn’t the case then it would be

necessary to review and redesign the search. Perhaps it is discovered that phone numbers

are present in the above defined format as well as in the format “(###) ###-####”. Now

the pseudo code might look like:

1. Locate all lines of text that contain “###-###-####” and place them in an output
file.

2. Locate all lines of text that contain “(###) ###-####” and append them to the
output file.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 4
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

3. Locate all of the lines of text in the output file that do not contain “800-###-###”
and place them in a second output file.

4. Locate all of the lines of text in the second output file that do not contain “88#-
###-###” and place them in a third output file.

5. Locate all of the lines of text in the third output file that do not contain “(800)
###-###” and place them in a fourth output file.

6. Locate all of the lines of text in the fourth output file that do not contain “(88#)
###-###” and place them in a fifth output file.

This search method is similar to the manner in which gravel quarries sort rocks.

First a bucket of earth is dumped onto a conveyor that carries it to a series of screens.

These screens start out very large but subsequent screens decrease in size. As the earth

reaches each screen the pieces smaller than the holes in the screen pass through and the

pieces that are larger than the holes in the screen are retained. While both filtering

methods accomplish what they are intended to, they are crude and resource expensive. As

each line of pseudo code represents a separate command line sent to the processor the

fewer the lines of pseudo code the fewer processor cycles it will take (not to mention less

human involvement) to execute resulting in a faster, more efficient search. Fortunately

for us we are working with computers rather than gravel. In order to improve the pseudo

code the Boolean Operators “AND”, “OR” and “NOT” are going to be introduced. One

way to demonstrate these operators is through the use of a Venn diagram. Let’s suppose

that the Venn diagram below represents dinosaurs with the dark area representing those

that eat only plant matter (herbivores), the light area representing those that eat only meat

(carnivores) and the area where the circles overlap representing those that eat both plant

matter and meat (omnivores).

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 5
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

The combined contents of both circles could be expressed as “dinosaurs that eat

meat OR plants” while the overlap area could be expressed as “dinosaurs that eat meat

AND plants”. Likewise the dark area could be expressed as “dinosaurs that eat plants

NOT meat” and the light area could be expressed as “dinosaurs that eat meat NOT

plants”.

With the introduction of the “OR” operator the pseudo code might now look like

the following:

1. Locate all lines of text that contain the numerical patterns “###-###-####” OR
“(###) ###-####” and place them in an output file.

2. Locate all of the lines of text in the first output file that do not contain the
numerical patterns “800-###-###” OR “(800) ###-####” OR “88#-###-###” OR
(88#) ###-###” and place them in a second output file.

	
The	 use	 of	 the	 “OR”	 logic	 operator	 has	 reduced	 the	 pseudo	 code	 from	 six	 lines	

to	 two	 and	 by	 including	 the	 “NOT”	 operator	 it	 can	 further	 be	 reduced	 to	 one	 line:	
	

1. Locate all lines of text that contain the numerical patterns {“###-###-####” OR
“(###) ###-####”} NOT {“800-###-###” OR “(800) ###-####” OR “88#-###-
###” OR (88#) ###-###”} and place them in an output file.

After the search has been clearly defined and made as efficient as possible it is

time to learn the Linux commands that will enable the reader to execute the search and

manipulate the results.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 6
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

3. The Linux Commands
Before beginning a discussion of the Linux commands that will assist the reader

in locating and extracting information let’s take a look at the typical syntax used by

Linux commands:

command [OPTIONS] OBJECT

The OPTIONS, sometimes referred to as ”command line options” or “switches”,

are identified by a leading hyphen (“-“) and control how the Linux command is executed

by the operating system. They can be used to modify the command’s interpretation of the

input or how it formats or displays the output, and can be either omitted or used in

combinations.

The OBJECT is what the Linux command will use as input and is typically a file

name. If the command follows a “pipe” (pipes will be discussed in the next section) then

the OBJECT is omitted as the Linux Operating System understands that the object to

perform the command on is the output of the command to the left of the pipe.

Linux users can always learn more about a command or refresh their memory of a

command’s syntax by accessing the manpage for the command via the “man” command

(which, humorously, there is a manpage for…) using the following syntax:

man [-k] name

The optional “-k” switch tells the “man” command to use the name following as a

pattern in a keyword search of a utilities summary database. This option can be useful if

a user doesn’t remember a specific Linux command but believe that they will recognize it

if they see it.

3.1. Pipes and Redirects
Pipes and redirects are used to instruct Linux to do something with the output of a

command other than print it to “STDOUT” (the screen) and can be very useful in

combining the output of multiple searches, in sorting the output of searches into files or

in refining the output of searches:	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 7
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

• “|” (the character that cohabitates a key with “\”) is known as a pipe symbol and

instructs the computer to execute the command to the right of the symbol using

STDIN (the output of the command to the left of the symbol) as input. Or to

express this in another manner it can be used to direct the output of one

search/manipulation into another search/manipulation.

“Linux command 1” | “Linux command 2”

• “>” can be placed after a command to instruct the system to redirect the output of

the command to a destination specified to the right of the redirect. This

destination can be any number of things but in this paper text files are going to be

used if the file does not exist already the command will create it. If the designated

file does already exist then it will be over written and the original contents of the

file will be lost.

“Linux command 1” > output_file.txt

• “>>” when placed after a command it instructs the system to redirect the output of

the command and to append it to the destination specified. As with the redirect

above, if the file does not exist it will be created however when something is

appended to a file it is added to the end of the file and does not overwrite the

existing file.

“Linux command 1” >> output_file.txt

3.2. srch_strings – Getting the ASCII Out
The ‘srch_strings” command is what is taught in the Forensic Curriculum at the

SANS Institute for extracting the printable content from a forensic image. By default it

extracts printable strings of at least 4 characters in length but this behavior can be

changed through the use of options. The Ubuntu Linux manpage for the srch_strings

command (Ubuntu, 2005) gives the syntax for the command as:

 srch_strings [option(s)] [file(s)]

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 8
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

 The options that the reader is likely to encounter or use are:

 -a Scan the entire file rather than just the data section.

-n This option can be used to change the minimum length of printable
characters to extract from the default value of 4.

-t The allowable values for this option are {o,x,d} and instruct the command

to display in the first column the offset of the text in octal, hex or decimal
respectively.

 -h Display the command line help

 The command, as taught in the SANs Forensic courses (Lee, 2011) and modified

to accommodate the file names used in this paper, is:

srch_strings –a –t d forensic_image.img > string_file.txt

 This command will extract all sequences of printable ASCII text of at least 4

characters in length from the file named “forensic_image.img” and output it to the text

file “string_file.txt” preceding each line of printable ASCII text with the decimal offset of

it’s location in the “forensic_image.img” file.

	

3.3. grep – The String Search Tool of Choice

New Linux users often wonder where some of the “funny commands” got their

names. According to “Netizens: On the History and Impact of the Net” (Hauben, 1996)

the UNIX grep command was created by Ken Thompson on March 3, 1973 and is a

derivation of the editor command that it simulated:

 "One afternoon I asked Ken Thompson if he could lift the regular expression
recognizer out of the editor and make a one-pass program to do it. He said yes. The next
morning I found a note in my mail announcing a program named grep. It worked like a
charm. When asked what that funny name meant, Ken said it was obvious. It stood for
the editor command that it simulated, g/re/p (global regular expression print)."

The SIFT workstation, built on the Ubuntu Operating System, includes GNU grep

(GNU is a recursive acronym for GNU’s Not Unix). The Ubuntu manpage for the grep

(Ubuntu, 2005) command gives the syntax for the command as:

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 9
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

grep [OPTIONS] PATTERN [FILE…]

For the purpose of the examples below it is assumed that [FILE…] is the ASCII

string content from the forensic image that was extracted to the “string_file.txt” file using

the “srch_strings” command on the SIFT workstation.

The grep command is actually a combination of four separate commands (grep,

egrep, fgrep and rgrep), each of which handles regular expressions differently. The two

that are going to be discussed in this paper are grep, which interprets patterns as being

Basic Regular Expressions (BRE), and egrep, which interprets patterns as being Extended

Regular Expressions (ERE). The differences between the two are varied but center

around how certain characters in patterns are interpreted. While discussing the

differences with John Bambenek (coauthor of “grep Pocket Reference” which is

published by O’Reilly Media) he stated that “you can make almost everything work in

grep that works in egrep, but it is messy” and advised that “if I were doing it, I’d tell

them to live in egrep.”

The OPTIONS can modify both how the grep command interprets the patterns as

well as how it displays the output, and can be either omitted or used in combinations.

Some of the available options will be discussed here and examples provided as well.

Pattern Modifiers

-E Interpret the pattern provided as an Extended Regular Expression. This

is equivalent to using the egrep command:

grep –E ‘forensic’ string_file.txt

-e PATTERN

 This instructs grep to use the pattern that follows it as a literal pattern

and is useful when a pattern includes characters that can be interpreted

as either literals or meta-characters (meta-characters will be discussed

later when patterns are discussed). The command below would look

for the specified text in the text file, with preceding hyphen, and will

not interpret the hyphen as a switch:

grep –e ‘-grade’ string_file.txt

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 10
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

-f FILE Open the named file and use the contents as patterns to search for. This

allows the use of a file that contains a dirty word list or set of patterns

of interest to your investigation. It is useful to maintain a Master

Pattern File or several subject specific pattern files (such as

drug_terms.txt or hacking_terms.txt) that can be used to select tested

patterns rather than recreating patterns every time the need arises. The

command below would look in string_file.txt for every word or pattern

listed in the text file dirty_words.txt:

 grep –f dirty_words.txt string_file.txt

-i Ignore case, or do a “case insensitive” search on the pattern. As Linux

is case sensitive this can be very useful. The command below would

look in string_file.txt for every upper or lower case combination of the

letters “forsenic”:

grep –i ‘forensic’ string_file.txt

-v This option is described as “invert-match” and it instructs the grep

command to output every line that does NOT contain the pattern. It is

useful when trying to exclude specific patterns (such as the “88#”

numbers in our example above). The command below would look in

string_file.txt for every line of text that does NOT contain the lower

case pattern “forensic”:

grep –v ‘forensic’ string_file.txt

-w Match only if the pattern is matched as a word (white space before and

after) rather than as a subset of a word. This would ensure that a search

for “the” only returned hits for the word “the” and not as a subset of

perhaps “rather” or “theory”. The command below would look in

string_file.txt for every line that contains the lower case word “the”:

grep –w ‘the’ string_file.txt

Output Control

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 11
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

-c Instead of printing the pattern matches just provide a count of

matching lines (note that if the pattern is matched 3 times in 1 line it

will only increase the count by 1). The command below would return

the number of lines in string_file.txt that contain the lower case pattern

“forensic”:

grep –c ‘forensic’ string_file.txt

-o Print only the matched pattern rather than the whole line and if a line

contains multiple matches print each match on its own line:

grep –ow ‘forensic’ string_file.txt

 Multiple switches can be specified by either listing them singly (each with their

own hyphen) or by stringing them together behind one hyphen but users must always

consider what affect switches will have on the pattern that that is specified.

“-i –w” or “-iw” Perform a case insensitive search for the pattern specified as

a word.

“-i -w -c” or “-iwc” Return a count of the lines that contain the upper or lower

case pattern specified as a word.

“-i –v” or “-iv” Exclude all lines that contain upper or lower case

combination of the pattern.

“-i –v -c” or “-ivc” Return a count of the lines that don’t contain the upper or

lower case combination of the pattern.

“-i –w -f” or “-iwf” Perform a case insensitive search for the contents of the

named file as whole words. This combination is very useful

when we have a list of terms or patterns compiled into a dirty

word list file.

The PATTERN represents the text that the reader wants to locate and is in the

form of a regular expression (sometimes referred to as “regex’ or “regexp”). A regular

expression is nothing more than a character or set of characters that can be used to match

a single character, multiple characters or combination of characters and properly crafted

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 12
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

regular expressions can enable the reader to efficiently locate any content desired. As an

example, a regular expression can be crafted that will locate the lower case word

“forensic” or the upper case word “FORENSIC” or any combination of upper and lower

case letters as well as lines that start or end with combinations of “forensic” or even lines

that don’t start or end with combinations of “forensic” as well as “forensic” as a whole

word or as a part of a word (such as “forensics” or “forensically”). Regular expression

patterns are customarily enclosed in single quotes (the single quote shares a key with the

double quote and is located just to the left of the “Enter” key) to clearly delineate the

beginning and end of the pattern. The more one learns about grep and regular expressions

the more accomplished one will be come at locating exactly the content, and only the

content, that they seek.

 The most basic building block of regular expressions are called literals and are

those that match one character, such as specific letters and numbers. These can be

combined to find literal combinations of ASCII text. The command below would return

all text where the lower case letter “t” was followed by lower case “h” and then lower

case “e” and would return, if they were present, lines with such words as “the”, “rather”,

“theory”, etc.:

grep ‘the’ string_file.txt

This can be combined with grep options to be more or less specific. For instance,

in order to find only the lowercase word “the” we would add the “-w” option:

grep –w ‘the’ string_file.txt

If it doesn’t matter if the pattern is interpreted as upper or lower case the

following could be used:

grep –i ‘the’ string_file.txt

If only the word “the” in upper or lower case letters is desired:

grep –iw ‘the’ string_file.txt

And to exclude any line that contained the upper or lower case word “the”:

grep –viw ‘the’ string_file.txt

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 13
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

In addition to literals grep utilizes meta-characters, or characters that have a

special meaning in regular expressions and, unless specified, are not used as literals. To

define a single instance of a range of characters one can use what is termed a “character

class” which is a list of characters enclosed by the meta-characters “[“and “]”. If the first

character in the list is a ‘^” then it will match any character that is NOT in the list. A

range of characters can be defined by providing the first and last characters in the range

separated by a hyphen (to test for a literal hyphen it must come first or last in the range,

as in [-ad] which would locate a single instance of “-“, “a” or “d”):

[abcdef] or [a-f] Any one of the letters “a”, “b”, “c”, “d”, “e” or “f”.

[23456] or [2-6] Any one of the numbers “2”, “3”, “4”, “5” or “6”.

[^3456] or [^3-6] NOT one of the numbers “3”, “4”, “5” or “6”.

Thus one can locate either the letter combination “the” or “The” through the

following command:

grep –E ‘[Tt]he’ string_file.txt

And one could combine this with the “–w” option to further specify that only the

words “The” or “the” are sought:

grep –Ew ‘[Tt]he’ string_file.txt

Certain ranges or classes of characters are so useful that they have been

predefined in “named character classes” and those that might be useful in a forensic

search of text have listed below.

[:alpha:] Any alphabetic character A-Z or a-z (same as [a-zA-Z]).

[:digit:] The digits 0-9 (same as [0-9]).

[:alnum:] Any alphanumeric character (same as [a-z0-9A-Z]).

[:upper:] The upper case letters A-Z (same as [A-Z]).

[:lower:] The lower case letters a-z (same as [a-z]).

[:punct:] Punctuation symbols.

[:space:] Whitespace comprised of space characters or tabs.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 14
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

[:blank:] Whitespace comprised of TAB, space or carriage return.

[:xdigit:] Hex characters a-f, A-F or 0-9 (same as [a-f0-9A-F]).

Note that the brackets are part of the named character class, and when using

named character classes in a pattern it is necessary to include them within brackets so that

they actually appear to have double brackets around them ([[:xdigit:]]). Examples of this

will be provided later in the paper when a regular expression is developed for a MAC

address.

Another type of meta-character is a positional character, or anchor, which allows

users to specify where in the line of text a string pattern should be located. While some of

these may not be relevant to a search of a text dump of a forensic image (as the lines of

text would not be in the same format that they would be if the text file were searched

independently) they can be useful in searching individual text files and can significantly

improve the efficiency of our search.

^ A carat (“^”) outside of a character class has a different meaning than

a carat inside a character class (recall that a “^” inside a character

class signifies “NOT”). Outside of a character class, as in “^A” or

“^[0-9]”, it is a starting anchor and indicates that one is looking for

lines that begin with the “A” or a digit. Likewise “^It” would match

lines that start with the word “It”. This allows grep to restrict its

pattern comparison to the beginning of each line thus improving the

performance of the search:

grep -E ‘^It’ string_file.txt

$ A “$”, as in “A$” indicates that one is looking for the lines that end

with the “A” and “$night” would match lines that end with “night”.

This allows grep to just search the characters at the end of a line thus

improving the performance of the search:

grep -E ‘night$’ string_file.txt

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 15
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

· A period (often referred to as a “dot”) means “any one character can

be here” and it is used where one wants to specify that the position

must be occupied by a non-blank character. As an example, the

pattern “mark.” would match “marks” but not “mark” or “marker”:

grep -E ‘mark.’ string_file.txt

 Iteration or modifier meta-characters control the number of times that the

preceding character is to be used in a search and are useful in looking for variations of

patterns.

? The question mark “?” is used to match the preceding character 0 or 1

times (in other words the character is optional). The pattern

“honou?r” would match either the British spelling of “honour” or the

American spelling “honor”:

grep -E ‘honou?r’ string_file.txt

* The asterisk is used to match the preceding character 0 or more times.

The pattern “bo*k” would locate both “book” and the abbreviation

“bk” as well as a fat fingered “bok” or “boook”. The asterisk is often

used in conjunction with a period to indicate “any text 0 or more

times” or more generally, “.*” is a “wildcard” equivalent to “any

text”:

grep -E ‘bo*k’ string_file.txt

grep -E ‘beginning.*end’ string_file.txt

+ The plus sign is used to match the preceding character 1 or more

times. The pattern “bo+k” would locate both “book” and the fat

fingered “bok” or “boook” but would not locate the abbreviation

“bk”:

grep -E ‘bo+k’ string_file.txt

{n} This is used to indicate that the preceding character or sub pattern

should match exactly ”n” times. If the reader were looking for a zip

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 16
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

code they would be looking for a 5 digit number and the pattern

might look like:

grep -Ew ‘[0-9]{5}’ string_file.txt

{n, } This is used to indicate that the preceding character or sub pattern

should match “n or more” times. A search pattern for a word that is at

least 10 characters long might look like the following:

grep -E ‘[[:alpha:]]{10,}’ string_file.txt

{n,m} This is used to indicate that the preceding character or sub pattern

should match at least “n” times and no more than “m” times. A search

pattern for a stock number that was made of anywhere between 9 and

13 numbers or letters may look like the following:

grep -E ‘[[:alnum:]]{9,13}’ string_file.txt

There are four additional meta-characters that are of importance because they

enable the user to define how patterns should be interpreted. These are the parentheses,

backslash, the vertical bar or pipe symbol and the word boundary symbol.

\ The backslash character (sometimes referred to as the escape

character) is used when it is desired to include in a pattern one of the

meta-characters listed above as a literal character. Unlike the “-e”

switch the escape character just affects the character that follows it

and not the whole pattern. As an example, to search in a text file for

the file named “drugs.xls” one would need to escape the period and

the pattern would look like ‘drugs\.xls’. Similarly, to search for a

backslash one would need to escape it with a backslash (‘\\’) and to

define a pattern that begins with a hyphen one would need to type ‘\-‘

so that grep does not interpret it the hyphen as another switch:

grep -E ‘\$[0-9]’ string_file.txt

grep -E ‘\-grade’ string_file.txt

grep -E ‘drugs\.xls’ string_file.txt

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 17
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

() Parentheses enable characters to be grouped in a pattern to create sub-

patterns. When parenthesis are followed by an iteration meta-

character it indicates that the pattern within is to be treated by

repetition symbols as a single character. To clarify this, in order to

find either Tim or Timothy, but not Timothyothy the pattern would

look like:

 grep –E ‘Tim(othy)?’ string_file.txt

 The sub pattern in parentheses followed by the “?” indicate that one is

looking for 0 to 1 instances of the sub pattern “othy”.

| When utilized in a regular expression pattern the pipe represents a

logical OR. It is often combined with the parentheses to group

multiple characters that are allowable in a specific position of the

pattern. The example below would look for the word “the” with upper

or lower case “T” and with lower case “h” and “e”:

grep –E ‘(T|t)he’ string_file.txt

 Astute readers might note that this pattern is similar to a pattern

previously used in the discussion of brackets. Both patterns would

have the same result however using the character class is considered

more efficient than using alternation. Where the use of alternation

makes sense is when looking for alternate sub patterns:

grep –E ‘(Jan|Feb|Mar)’ string_file.txt

\b This indicates a word boundary and can be used to indicate that the

pattern is to be found at the beginning of a word, at the end of a word

or is to be located as a whole word by placing the \b at the beginning,

end or both, respectively:

grep –E ‘\bthe’ string_file.txt

grep –E ‘the\b’ string_file.txt

grep –E ‘\bthe\b’ string_file.txt

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 18
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

Users need to be careful when combining meta-characters and fully consider how

grep will interpret the patterns that are defined. As an example, preceding a single

character with “^” and following it with “*” would combine to mean “any line that starts

with 0 or more of this character”, which would match every line in the file. Users also

need to be aware of the affect that the optional command line switches that are used will

have on the grep command’s interpretation of a pattern.

3.3.1. Pattern Construction and Maintenance
Now that the reader has a grasp of the basics of grep and regular expressions it is

time to craft some simple grep searches. Before we do though let’s revisit the “-f” option

and the concept of the dirty word list. Dirty word lists can be very useful but Master Dirty

Word lists can also quickly become burdensome. As an example, a Master Dirty Word

list for all possible drug terms could easily contain several thousand patterns, many in

foreign languages, and most of which a forensic examiner might never encounter in a

lifetime of searches. Consider how long it would take grep to compare every one of the

several thousand patterns in such a file to the entire contents of a 5 GB srch_strings

output file. Instead it is better to develop and maintain one’s own subject specific dirty

word lists that can be used to collect patterns that are relevant to searches that the user

has conducted in the past and from which the user can cut and paste case specific dirty

word lists for each search based on what is known about a case and terms of interest that

are found through the examination of the forensic image being reviewed. This process

often involves building new case specific dirty word lists for subsequent searches as one

learns more about the contents of the image from the results of previous searches.

One of the things that it makes sense to keep in a master file is extended regular

expression patterns for things that one may wind up searching for in different cases, such

as the examples below. In each case the pattern (some of which come from “grep Pocket

Reference” by Bambenek and Klus and are included with the permission of O’Reilly

Media) will be presented and then the pattern will be broken down so that the reader can

better understand what has been presented in this paper. Each of the patterns provided has

been tested on the SIFT workstation.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 19
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

Search patterns list:

Note: Many of the following patterns contain a leading and following \b which

indicates that the pattern is to be searched for as a word or a standalone pattern.

File Extensions: grep –Ei ‘\.(txt|exe|xls|doc|docx|jpg|bmp)\b’

The trailing \b with no leading \b defines that the pattern is to be located at

the end of a word but need not comprise the entire word. The beginning

of the pattern is an escaped period indicating that it is to be interpreted

literally as a “dot” and the sub pattern that follows contains a selection of

common file extensions. The grep command utilized the “-i” switch to

make the search case insensitive.

URLs: grep – E ‘\bhttps?://.+\.(com|net|org|uk|mil|gov|edu)’

The leading \b with no following \b defines that the pattern is to be located

at the beginning of a word but that it need not comprise the entire word.

The “?” following the “s” indicates that it is optional so that the pattern

will locate both “http” and “https”. Note the use of the dot before the “+”

to indicate 1 or more characters followed by an escaped “dot” and then a

selection of valid domain names.

SSN: grep –E ‘\b[0-9]{3}(|-)[0-9]{2}(|-)[0-9]{4}\b’

[0-9]({3}(|-) defines 3 digits that are followed by either a space or a dash.

This is repeated for a pattern of 2 more digits and then 4 more digits. One

can also add an alternate format of 9 continuous digits by changing the

“(|-)” to “(|-|)”.

MAC Addresses: grep –E ‘\b([[:xdigit:]]{2}:){5}[[:xdigit:]]{2}\b’

 grep –Ei ‘\b([0-9a-f]{2}:){5}[0-9a-f]{2}\b’

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 20
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

Two versions are presented here in order to show both the usage of a

named character class as well as the fact that sometimes it makes the

patterns longer and harder to read. In the top pattern the

([[:xdigit:]]{2}:){5} indicates a sub pattern of 2 hexadecimal characters

followed by a “:” repeated 5 times and then followed by a final 2

hexadecimal characters. This will return any combination of digits from

00:00:00:00:00:00” to “FF:FF:FF:FF:FF:FF” in upper or lower case

characters. The second version is the exact same pattern but utilizes [0-9a-

f] instead of the named character class and relies on the grep switch “-i” to

cover upper and lower alphabetic characters. Finally, the “:” could be

replaced with a sub pattern of (|-|:) to account for addresses that are

alternately space or dash separated.

IP Addresses: grep –E ‘\b[0-9]{1,3}(\.[0-9]{1,3}){3}\b’

[0-9]{1,3} defines a pattern of anywhere from 1 to 3 digits. This is

followed by a sub pattern of a literal period followed by 1 to 3 digits

which is repeated exactly 3 times. This will return any combination of

digits from “0.0.0.0’ to “999.999.999.999.” Since IP addresses only range

from “0.0.0.0” to “255.255.255.255” depending upon the search results it

may be necessary to create a pattern to exclude higher number groups

from the results or one could build in a range of 0 – 255 in each place at

the expense of making the pattern more complex.

Credit Card: grep –E ‘\b[0-9]{4}((|-|)[0-9]{4}){3}\b’

[0-9]{4} defines a pattern of 4 digits followed by a sub pattern of an

optional space or dash followed by a sub pattern of 4 digits which is

repeated exactly 3 times. This will return any combination of digits from

“0000-0000-0000-0000” to “9999-9999-9999-9999” with the dash being

optional or replaced by a space.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 21
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

American Express: grep –E ‘‘\b[0-9]{4}(|-|)[0-9]{6}(|-|)[0-9]{5}\b’

Apparently American Express is not just like the other guys and for that

reason the American Express pattern is a little more straight forward.

Here the pattern defines 4 digits followed by 6 digits followed by 5 digits,

all of it optionally separated by spaces or dashes.

Email Addresses: grep –Ei ‘\b.+@.+\.(com|net|org|uk|mil|gov|edu)\b’

Two things that all email addresses have in common are the “@” in the

middle and the “dot domain name” at the end. This pattern looks for 1 or

more characters (defined by the “.+”) followed by “@” and then 1 or more

additional alphanumeric characters and ending in a literal dot followed by

one of the top level domain names listed. This is just an example and if a

specific domain name or a domain name not in the sub pattern is desired it

can be substituted or added.

US Phone: grep –E ‘\b(\(|)[0-9]{3}(\) |-| |\)-|)[0-9]{3}(-| |)[0-9]{4}\b

The sub patterns on this one deserve close attention. The first sub pattern

is “(\(|)” and can be read as “optionally starting with a literal “(“. The

second sub patterns is “(\) |-| |\)-|)“ which defines optionally a literal “)”

followed by a space or a dash or a space or a literal “)” followed by a dash

or no separator at all. The third sub pattern is simpler and indicates a dash

or a space or no separator at all. This would locate a phone number in any

of the following formats:

 (800)-555-1212
 (800) 555-1212

 800-555-1212
 8005551212

 800 555 1212

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 22
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

3.4. Text Extraction Made Easy
If, instead of returning whole lines of text, a user wants to extract only the pattern

that they are looking for, and don’t mind having each instance of the pattern returned on

its own line, then the user can use the “-o” switch with grep to easily accomplish this. But

what if the user wants alternate line content in addition to, or instead of, the pattern?

Perhaps one is looking for the offset number at the beginning of the line of text in the

srch_strings command output file or a pattern is only a part of the information that the

user seeks. Linux provides commands that can facilitate that as well and two of these

commands will be discussed below.

3.4.1. cut
The Linux “cut” command is one of more normal sounding Linux commands as

well as one of the simpler commands available to extract text from a file or a line of

output based on position. While there are more powerful extraction tools available,

sometimes all the user needs is a simple text extraction command and cut is easy to use

and fast. The format of the command is listed on the Ubuntu manpage (Ubuntu, 2005) as:

cut OPTION…[FILE]…

The [FILE…] parameter can be either the name of an input file or, if the cut

command follows a pipe, it can be omitted. Some of the options available for the cut

command are:

-c Lists a character or multiple character column positions in the line to

extract. The character positions can be a single character position

number, multiple character position numbers separated by a comma or

a dash or a combination of these. The option “-c5” would extract only

the 5th character while “–c5,6” would extract the 5th and 6th characters

from the text and “-c5-25” would extract all of the characters from the

5th to the 25th character. The option “-c5- “ would extract from the 5th

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 23
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

character to the end of the line of text. The position of the desired data

in the line of text needs to be very consistent for this option to be

useful:

 cut –c5,6 Pattern1_Search.txt

 grep – Ei ‘Pattern1’ string_file.txt | cut –c5-25

 grep – Ei ‘Pattern1’ string_file.txt | cut –c5,6,10-20

-f This option tells cut to select the specified field or fields which are by

default tab or space separated. As with the “-c” option above we can

select a specific field or use commas and dashes to specify multiple

fields. Assuming that one used the “–t” option with the srch_strings

command to have each line of text preceded by the offset at which it is

to be found in the forensic image the option “–f1” would return a list

of all the file offsets that contain the pattern defined in the grep

command:

 cut –f1 Pattern1_Search.txt

 grep – Ei ‘Pattern1’ string_file.txt | cut –f5,8,10-13

-d This option allows users to specify a field delimiter for the “-f” option.

If one is dealing with a database export or a Comma Separated Value

(.CSV) file then it may be needed to specify a non-default field

delimiter such as a comma or colon. It is sometimes necessary to

enclose the specified delimiter in quotes:

 cut –d: –f5,6 Pattern1_Search.txt

 grep – Ei ‘Pattern1’ string_file.txt | cut –d”,” –f5-

3.4.2. awk
The Linux awk command is actually a command line utility used to execute

programs written in the awk programming language. The awk programming language,

whose name is an acronym for the last names of its three authors (Aho, Weinberger and

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 24
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

Kernighan), is specialized for textual data manipulation. The awk language is capable of

performing many actions including regular expression pattern matching, mathematical

calculations and elaborate output formatting. This paper is going to restrict it’s coverage

of awk to rearranging and formatting fields and adding simple text to output.

Because it is a command that invokes a shell that executes a program the syntax

of the awk command appears different than other Linux commands introduced thus far.

The Ubuntu manpage for awk (Ubuntu, 2005) lists the syntax as:

pattern { action }

The manpage further states that in the absence of a pattern that the action shall be

performed on any input record (as when following a pipe). Similar to the cut command

in awk there is a default field separator of white space or the user can define a field

separator. The first field is designated as $1, the second $2 and so forth and if one wants

to print the entire record or line $0 is used. Note that if multiple fields are printed they

should be separated by a comma to ensure that the output is separated by a space:

-F Field Separator

 awk –F: ‘{print $0}’ Pattern1_Search.txt

 grep –Ei ‘Pattern1’ string_file.txt | awk –F: ‘{print $0}’

 As was mentioned above, one of the things that awk can do that cut can’t is to

insert text into the output, allowing users to organize the output. Note that text must be

enclosed with a double quote:

 awk –F: ‘{print “name: “, $3, “ Phone: ” $1}’ Pattern1_Search.txt

 grep –E ‘Pattern1’ string_file.txt | awk –F: ‘{print $3, “ Phone:” $1}’

 In addition to the print function awk is also capable of utilizing the printf

function to add formatting that can create uniform columns of output. The printf function

allows the user to specify different formats and modifiers for the output, some of which

are:

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 25
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

% Format control character – precedes each of the characters below when

used in a printf statement.

- The minus sign when used in conjunction with one of the formats

below indicates that the value being printed should be left justified. If

the minus sign is omitted the value will be right justified by default.

 c ASCII text.

 s String.

 i Integer.

\n This instructs printf to insert a newline character. If it is not included

then the lines of output will print all together on one line.

 The printf formats are declared immediately after the printf statement and any

added text is embedded in the formatting section. As an example of this the statements

below will print the third field left justified and then the first field right justified, each in a

column of a minimum of 10 characters in width. If the value of the field is longer than the

minimum length it will not be truncated:

 awk ‘{printf “%-10s %10s\n”,$3,$1}’ Pattern2_Search.txt

 grep –E ‘Pattern2’ string_file.txt | awk ‘{printf “%-10s %10s\n”,$3,$1}’

 awk ‘{printf “Name: %-10s Phone: %10s\n”,$3,$1}’ Pattern2_Search.txt

 If a user desires to generate a report with uniform columns, column headings or

explanatory text then the printf function is the way to go.

4. Conclusion
The Linux Operating System that the SIFT workstation is built on provides

powerful command line tools that enable Forensic Analysts to locate and extract ASCII

text from forensic images or text files as required. The ability to handle both regular

expressions and extended regular expressions makes grep a very useful command line

search tool that can locate and extract text using patterns that are crafted based on the

specifics of an investigation.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 26
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

Pipes allow users to combine Linux commands to refine searches and to carve

out and manipulate the data that is being looked for. Additional grep commands used in

conjunction with redirects, as well as the awk and cut commands, enable users to

accumulate the information extracted in output files.

Forensic Analysts who take the time to master these tools can craft regular

expression patterns to quickly and easily locate and extract information of specific

interest to their investigations. The ability to leverage these tools and techniques to their

full advantage, quickly, accurately, and effectively, is a key weapon in the Forensic

Analyst's arsenal.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	 27
	

Timothy	 Cook,	 tcbcook@yahoo.com	 	 	

5. Appendix – Phone Number Search Solution

Given what been covered in this paper, let’s briefly revisit the phone number

search that was used as an example earlier. In order to locate all of the non-toll free phone

numbers in a srch_string generated text file, and output the file offsets to a new file, the

reader could use the following command:

grep –E ‘\b(\(|)[0-9]{3}(\) |-| |\)-|)[0-9]{3}(-| |)[0-9]{4}\b |

 grep –Ev ‘\b(\(|)(800|(88)[0-9])(\) |-| |\)-|)[0-9]{3}(-| |)[0-9]{4}\b |

 cut –f1 > offsets.txt

6. References
Bambenek, J., & Klus, A. (2009). Grep pocket reference. Sebastopol, CA: O'Reilly

Media.

Hauben, M., & Hauben, R. (1996). Netizens: On the history and impact of the net
Retrieved September 19, 2011 from: http://www.columbia.edu/~hauben/netbook/

Lee, R. (2011). Forensics 508: File system forensic analysis. Bethesda, MD: SANS
Institute.

Ubuntu Manpage Repository (2005). Ubuntu awk manpage Retrieved September 19,
2011 from:
http://manpages.ubuntu.com/manpages/precise/en/man1/awk.1posix.html

Ubuntu Manpage Repository (2005). Ubuntu cut manpage Retrieved January 3, 2012
from: http://manpages.ubuntu.com/manpages/hardy/man1/cut.1.html

Ubuntu Manpage Repository (2005). Ubuntu grep manpage Retrieved September 19,
2011 from: http://manpages.ubuntu.com/manpages/hardy/man1/grep.1.html

Ubuntu Manpage Repository (2005). Ubuntu man manpage Retrieved January 13, 2012
from: http://manpages.ubuntu.com/manpages/hardy/en/man1/man.1posix.html

Ubuntu Manpage Repository (2005). Ubuntu srch_strings manpage Retrieved January 12,
2012 from:
http://manpages.ubuntu.com/manpages/hardy/en/man1/srch_strings.1.html

