
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

Forensic Timeline Analysis using Wireshark
GIAC (GCFA) Gold Certification

Author: David Fletcher, david.fletcher.6@us.af.mil

Advisor: Richard Carbone

Accepted: July 10, 2015

Abstract

The objective of this paper is to demonstrate analysis of timeline evidence using the
Wireshark protocol analyzer. To accomplish this, sample timelines will be generated
using tools from The Sleuth Kit (TSK) as well as Log2Timeline. The sample timelines
will then be converted into Packet Capture (PCAP) format. Once in this format,
Wireshark’s native analysis capabilities will be demonstrated in the context of forensic
timeline analysis. The underlying hypothesis is that Wireshark can provide a suitable
interface for enhancing analyst’s ability. This is accomplished through use of built-in
features such as analysis profiles, filtering, colorization, marking, and annotation.

Forensic Timeline Analysis using Wireshark 2

David R. Fletcher Jr., david.fletcher.6@us.af.mil

1. Introduction
Correlation of events can be a challenging task during crime investigations.

Timeline analysis is used to ease this burden by ordering each piece of evidence by its

time of occurrence. Doing so aids the investigator by enforcing organization, providing

event context, revealing inconsistencies, and creating a frame of reference for the overall

effort. (Luttgens, 2014) This ultimately enhances the ability to formulate hypotheses and

ultimately solve the crime. This same method can be applied to computer forensic

examinations to attempt to piece together the actions that take place during a computer

incident. To illustrate the process, commonly accepted tools for creating timeline

evidence will be explored. After discussion of timeline generation is complete, an

analysis capability will be presented using the Wireshark network analysis tool. This

capability will be supported using various scripts to convert and present timeline data

within the Wireshark tool.

A computer filesystem is a complex environment that contains a great deal of

evidence. Among this evidence is timestamp information contained in the metadata layer

of the filesystem. Typical filesystems maintain three or more separate timestamps for

each file stored. These timestamps are updated based on activity performed against the

structures that describe the file or its data. Generally, the following timestamp activities

may generate evidence based on the filesystem in question:

Modified – This timestamp is updated when the file contents are updated.

Accessed – This timestamp is updated when the file contents are accessed.

Changed – This timestamp is updated when the metadata of a file is updated.

Birth – This timestamp is updated when the file is created (NTFS only).

Delete – This timestamp is updated when the file is deleted (Ext2/3/4 only).

These timestamps are represented within a field in the timeline using the acronym MACB

(Lee, 2011). Alternatively, Incident Response & Computer Forensics, Third Edition

refers to the timestamp data as MACE – Modified, Accessed, Created, and Entry

Modified rather than MACB – Modified, Accessed, Metadata Change, and Birth.

Forensic Timeline Analysis using Wireshark 3

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Reference material should be consulted to determine the activities that are valid

for a particular filesystem prior to analysis. For instance, Linux ext2/3/4 filesystems do

not record a birth timestamp (Lee, 2012) but do support a delete timestamp (Carbone,

2011) while FAT filesystems do not record a change timestamp (Lee, 2012). To

complicate the matter further, configuration data should be consulted to ensure that

expected timestamp information is supported in the operational environment. For

example, recent versions of windows support use of access timestamps but they are not

enabled by default (Lee, 2012).

Within a typical Windows filesystem an even greater amount of time-related

evidence exists in the form of log files, file metadata, system databases (such as the

Windows registry), and filesystem overlays (such as Volume Shadow Copy). These files

serve to provide additional correlative and contextual clues to the analyst. Using this

information, the investigator may be able to more accurately reconstruct the chain of

events leading up to an incident. In addition, this added evidence may serve to resolve

attempts made to employ anti-forensic techniques such as time-stomping.

Timeline evidence collection is typically preceded by identification of an event of

interest. Using this event as a reference point, individual timestamps are read from the

filesystem and collected into a single file to represent the timeline of activity surrounding

that event. The analyst then interprets combinations of timestamp updates that represent

operating system actions such as file creation, modification, copy, move, access, and

delete within the target operating system. The operating system actions are then

correlated to determine facts about the event in question.

The standard timeline is typically created using tools such as fls and mactime

from The Sleuth Kit (TSK) which consists of filesystem metadata layer timestamp

information only (Lee, 2012)(Carrier, 2005). This restricts the analyst to seeing only

those events that cause changes in file data, or metadata. Inability to correlate filesystem

activity with additional temporal information, such as log files, in an automated fashion

increases the work factor for analysis. This is because any correlation would need to be

performed manually by mounting the filesystem and inspecting various sources by hand.

Forensic Timeline Analysis using Wireshark 4

David R. Fletcher Jr., david.fletcher.6@us.af.mil

The super-timeline is created using the log2timeline tool. Log2timeline is capable

of integrating time-based activity from multiple sources that includes standard timeline

data in the form of a Bodyfile. This tool does not parse filesystem level evidence so the

most effective method of use is to integrate output from both log2timeline and

fls/mactime. Prior to investigating an event, the analyst must identify the sources of time

data that are of interest. This is accomplished using a list file or command line options

passed to the log2timeline command. While log2timeline has shortcomings in evidence

parsing this paper is focused on providing an alternate method of analyzing timeline

output (Carbone, 2011). Since it is the most widely used super-timeline generation tool,

it will be the sole focus of this paper.

The resulting timeline output may be presented in a number of formats but text

formats such as Mactime and CSV are common. These formats are popular because

command line tools such as grep, sed, and awk can be used to parse and search for

evidence (Carbone, 2011). However, the resulting timeline can represent a significant

amount of information that is difficult to interpret without visual cues. Rob Lee, the

forensic curriculum lead for the SANS Institute, has created an Excel spreadsheet that

provides visual information to the analyst (Lee, 2011). Microsoft Excel is not the ideal

environment for sifting through large volumes of text. This is where Wireshark may be

able to advance timeline analysis.

Wireshark is a protocol-parsing tool that is typically used to interpret the various

protocols of the Internet Protocol (IP) suite. Among other features, this tool provides the

ability to colorize, mark, comment, sort, and filter packet information for easy

interpretation by a network analyst (Chappell, 2010).

So how does timeline data relate to IP packets? The IP protocol has several fields

that may be used to provide an analog to timeline data. In addition, among the many

protocols that Wireshark understands is the Transmission Control Protocol (TCP). Once

again, several of the TCP protocol fields may be used to represent timeline information.

One such field is the TCP flags field, which maintains connection state during a

conversation. These flags resemble the MACB field in the timeline output. By carefully

selecting timeline fields for conversion to equivalent IP and TCP fields, one can take

Forensic Timeline Analysis using Wireshark 5

David R. Fletcher Jr., david.fletcher.6@us.af.mil

advantage of the advanced capabilities that the Wireshark tool provides. Finally, timeline

data can be encapsulated in the payload portion of the TCP packet. This allows

interpretation of the payload data using a custom Wireshark protocol dissector.

2. Background
2.1 File System Forensic Artifacts and Manual Analysis

The filesystem of a computer represents a treasure trove of information. As

previously described, timestamp information is critical to recreating the activity

surrounding an event or incident. The filesystem also represents a much greater amount

of information than the typical user may realize.

When a file is deleted, several artifacts remain until the areas where both the

filename information and data of the file are reused. Even then, small portions of a file

may remain inside of other files in what is known as slack space. Slack space is one or

more sectors within a new file that contain old data due to both the cluster size and

manner in which the filesystem attributes sectors to a new file. This evidence may be

difficult to access and process in a manual fashion that nevertheless remains on the disk

(Carrier, 2005).

During manual analysis, the analyst must first create a Bodyfile using the fls tool

from (TSK). This tool outputs timeline information but the data it generates is unordered

and in a less than human readable format. After the Bodyfile is created, the mactime tool

is used to produce the human readable timeline (Lee, 2011). The basic timeline contains

information regarding allocated files, deleted files, and unallocated file data. Once the

timeline is produced, the analyst must identify events of interest and manually correlate

this information with other artifacts of investigation.

Identifying events of interest within the timeline can be a challenging task since

elapsed time represents decay in the fidelity of timeline evidence. The timeline will only

include the last timestamp change evidence (modify, access, change, and birth) in the

filesystem. Only the last change is available since any prior changes are destroyed during

the most recent update (Lee, 2011).

Forensic Timeline Analysis using Wireshark 6

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Correlation of events becomes an even more daunting task. Operating systems

and applications collect a mountain of evidence in the form of log files, file metadata, and

application/system databases that may be used to further explain an event of interest.

This evidence comes in a myriad of formats such as text, binary, and XML that presents

another challenge for collection and correlation. In addition, special files such as the

Windows registry and Volume Shadow Copies present even more information that is

somewhat difficult to manually access and parse in a timely fashion (Luttgens, Mandia,

& Pepe, 2014).

2.2 Log2Timeline
The log2timeline tool is a framework for creating timeline evidence from various

sources found within the filesystem, operating system, and application (or application

service) layers. The creators of log2timeline have automated the process of evidence

gathering and correlation for a great number of different artifacts and formats. In

addition, the log2timeline tool presents this information in a single consolidated timeline

file (Metz, 2015).

The log2timeline output is known as the super-timeline and can be produced in

one of several different formats such as CSV, XML, HTML, SQLite, and Bodyfile. For

the purposes of this paper, the CSV format will be used due to its ease of parsing. Other

format parsers may be added in the future based on the utility and applicability of the

Wireshark tool. The super-timeline maintains the same general format as the standard

timeline but adds new fields such as source, source type, and type to differentiate

information gathered from the different evidence sources (Metz, 2015).

Consolidation of this information makes it much easier to correlate events and

find evidence that would otherwise be missing at the filesystem level. In order to gather

the right information for a particular case, the analyst must include appropriate log types

in a list file or specify them as command line parameters. This process is outlined in

detail on the SANS DFIR blog (“Digital Forensic SIFTing: SUPER Timeline Creation

using log2timeline”, 2011).

Forensic Timeline Analysis using Wireshark 7

David R. Fletcher Jr., david.fletcher.6@us.af.mil

2.3 Wireshark
Wireshark is a network protocol analyzer that has many powerful features for

supporting and interpreting protocol and network behavior. It is capable of parsing

network traffic at layer two of the OSI model and above. This includes the ability to

understand individual packets, network conversations, protocol sessions, and application

interaction. These capabilities are provided based on integrated features of the software

as well as protocol specific extensions known as protocol dissectors. This allows the

analyst to focus on traffic behavior rather than the semantics of a given protocol. In order

to ease the analysis process, several other features beyond basic protocol dissection are

also provided (Chappell, 2010).

This section provides an overview of the features that may be useful in the context

of timeline analysis. It is not meant to provide complete coverage of the features or

analysis techniques supported by Wireshark. For a full explanation of these capabilities,

please see “Wireshark Network Analysis” or an equivalent Wireshark reference.

The first feature of interest is Wireshark’s powerful filtering language. This

language allows an analyst to zero in on the specific activity of interest. The filtering

language is protocol aware so the analyst can identify a specific protocol, protocol field,

and target value. Using these examples, an analyst might look for packets from an

individual host, packets using a specific protocol, or packets containing specific values or

strings. In the context of timeline analysis, this may correlate to specific MACB field

combinations, filenames, or strings. An example display filter can be seen in Figure 1.

Figure 1: Wireshark filter bar and expression builder.

Forensic Timeline Analysis using Wireshark 8

David R. Fletcher Jr., david.fletcher.6@us.af.mil

In Figure 1, the Wireshark display is being filtered for Domain Name Service

(DNS) packets. In addition, the expression builder is visible (front window). This gives

the user a flexible interface for developing and testing filter expressions. As a visual cue,

the filter bar turns green when a syntactically correct filter expression has been entered.

If an appropriate protocol dissector is available then the user can filter on the fields

exposed within that protocol. This can be seen within the expression builder window. In

this case, the DNS fields are exposed showing the user valid protocol field values

available for building a filter expression.

To further aid the analyst in interpreting activity, Wireshark supports profiles and

colorization rules. The profile is simply a group of settings that provide a consistent

environment between analysis sessions. Colorization rules are one of the most powerful

analysis features available in Wireshark. Since colorization rules are most effectively

used when stored in a saved profile, the two features will be discussed together.

Colorization allows the analyst to provide visual cues for identifying packet

characteristics. Wireshark comes with a set of default colorization rules that identify

anomalous conditions such as invalid checksums and retransmissions.

For the purpose of timeline analysis it would be useful to key off specific MACB

field combinations to color categorize file activity such as creation, access, modification,

move, copy, etc. Ideally, a profile would be created for each individual filesystem to be

analyzed since behavior varies based on the filesystem in question. In addition, different

colorization rules can be used for different analysis contexts and switching profiles can

occur dynamically. The profile selector and default colorization rules can be seen in

Figure 2.

Figure 2: Colorization rules and profile selector.

Forensic Timeline Analysis using Wireshark 9

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Another feature that is important for analysis is the ability to add and remove

columns from the packet list window. Within Wireshark, in order to troubleshoot

network problems, it is often necessary to add protocol fields as columns to the display.

Available columns include standard network and transport layer protocol fields

such as IP and TCP that are built into the tool. In addition, fields exposed by a dissector

may also be used. Finally, calculated fields are available which do not exist in the packet

capture or the underlying protocols being analyzed. Instead, the Wireshark engine

calculates these values as the packet trace is being loaded into the application.

 One of the available calculated fields is the Delta Time field, which identifies the

time gap between receipts of packets. This can help the analyst determine where

bottlenecks or performance affecting processes may reside in a client-server application.

This type of analysis is equally important in timeline interpretation. A scripted or

malware attack may become obvious based on the time elapsed between filesystem

actions. Using Delta Time a forensic analyst may filter on a threshold value to reveal

activity that occurs in rapid succession. Figure 3 shows the addition of the Delta Time

column and its application to a packet capture. Sorting on this column can also identify

the longest and shortest delays between packet reception.

Figure 3: Delta Time column applied to packet capture.

Packet marking allows an analyst to identify packets of interest that may or may

not be important in the context of an investigation. Typically, during the course of

troubleshooting, the analyst will mark multiple packets that may represent activity of

Forensic Timeline Analysis using Wireshark 1
0

David R. Fletcher Jr., david.fletcher.6@us.af.mil

significance for further review. Wireshark allows an analyst to arbitrarily mark packets

in a capture file for future reference. This feature is equally relevant to forensic

investigation in that the forensic analyst may mark individual file activities as potentially

malicious or important. After processing the entire timeline, the analyst can then filter to

show only those entries that were marked. This could be a valuable tool in the reporting

phase to identify those timeline entries that are important in the context of an

investigation without altering or extracting original timeline information. Figure 4

illustrates the ease with which packets may be marked.

Figure 4: Packet marking in the packet list pane.

Another useful feature is the ability to add packet comments. This feature allows

an analyst to attach notes to individual packets in a capture file. Using this feature along

with packet marking allows the analyst to identify reasons that the packet was marked or

hypotheses to be validated at the outset of initial investigation. Note taking is critical

when interpreting activity from such a large volume of information. Once analysis is

complete, display filtering can be used to restrict the displayed packets to only those

marked or containing comments using the filters “frame.marked == true” or

“frame.comment != “”” , respectively. Figure 5 shows the context menu for adding

packet comments while Figure 6 shows the packet comment entry field.

Forensic Timeline Analysis using Wireshark 1
1

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Figure 5: Packet Comment context menu selection.

Figure 6: Packet comment add/edit dialogue box.

The final set of features that Wireshark provides is its statistics menu. The

statistics menu hosts a mountain of features that are valuable in the context of network

analysis. Only a small subset of those features is relevant in the context of timeline

analysis. First, the comments summary feature aggregates all packet level comments into

a single text field along with the frame number that the comment references. This can be

seen in Figure 7. Review of the comment summary allows the analyst to review the

activity at a macro level and clip information for reporting. In addition, the frame

number corresponds to the line number in the original timeline in the event that the

source document must be referenced.

Forensic Timeline Analysis using Wireshark 1
2

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Figure 7: Comments summary window.

Next, the Conversations and Endpoints options allow an analyst to see aggregated

communication sessions and filter on any single session to see the details. In the context

of timeline analysis, this would allow the analyst to see where a file had been referenced

multiple times over the course of the timeline. The Packets field will indicate the number

of times that the host system (address A) saw activity on the target file (address B). This

is shown in Figure 8.

Figure 8: Conversations statistics window.

Forensic Timeline Analysis using Wireshark 1
3

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Finally, the most useful macro level feature is the IO Graph option. This option

plots throughput over time. Since the timeline entries are of a somewhat standard size, an

increase in throughput corresponds to increased filesystem activity. Zeroing in on sharp

increases in filesystem activity may reveal the presence of malware or scripted

exploitation. This concept is illustrated in Figure 9.

Figure 9: IO Graph showing throughput peaks and troughs.

2.4 Scapy
In order to take advantage of the advanced features that Wireshark provides, the

timeline output must be converted to packet capture (Pcap) format. The Scapy Python

framework is perfect for tackling this challenge. Scapy provides the ability to craft

arbitrary packets using either the Scapy interactive interface or by importing the Scapy

library into a custom Python script.

To make packet-crafting simple, the Scapy framework exposes the Internet

Protocol and its encapsulated protocols by breaking them down into their constituent

fields. In packet-crafting, one simply provides values for the fields of interest, stacks the

desired protocols on top of one another to construct a valid packet/payload, and

determines disposition. Disposition for a packet may include untracked transmission,

transmission and reception of a reply, or output to a packet capture file for future

Forensic Timeline Analysis using Wireshark 1
4

David R. Fletcher Jr., david.fletcher.6@us.af.mil

analysis. The latter will be the method employed for timeline conversion (SecDev.org,

2007).

To support timeline conversion, Scapy will be used in a custom Python script

developed for parsing the timeline contents (Python Software Foundation, 2015). The

script will manipulate the packet timestamp, IP, and TCP fields of interest for easier

timeline analysis and embed a representation of the timeline entry for parsing by a

custom Wireshark dissector. The packets will then be written to a packet capture file that

will represent the packetized forensic timeline.

2.5 Supporting Tools
In order to make the timeline easier to read within the Wireshark interface two

additional tools will be necessary.

The first tool is a custom host file. A host file is used to provide name resolution

in the absence of Domain Name System (DNS) servers. For this effort, the host file will

be used to turn IP addresses representing the host under analysis and target file name into

human readable format. The host file is a simple tab delimited file with an IP address

column and a text column (Chappell, 2010). The Python script described in Section 2.4

will generate this host file. An example can be seen in Figure 10.

Figure 10: Example host file entries.

The second tool is a custom Wireshark protocol dissector. Dissectors extend the

functionality of Wireshark and enable it to display details of protocols it does not natively

Forensic Timeline Analysis using Wireshark 1
5

David R. Fletcher Jr., david.fletcher.6@us.af.mil

know how to parse. Dissectors can be written in the C programming language or the Lua

scripting language. For the purposes of this paper, the latter method will be used to

demonstrate timeline analysis capabilities. Once a dissector is imported into Wireshark,

the dissector is registered with an expected protocol and port. This allows Wireshark to

“recognize” a protocol and attempt to parse its fields using traffic characteristics (Kaplan,

2015).

3. Methodology
In order to use Wireshark as a timeline analysis tool there must be a correlation

between timeline entries and network traffic. In this case, that correlation includes use of

fields in both the Internet Protocol (IP) and Transmission Control Protocol (TCP).

At the IP level, the source address can be used to identify the computer/user under

investigation while the destination address can be used to identify the target of the

operation (typically a file) (Stevens & Fall, 2011). The remaining fields will be identified

using TCP as the embedded protocol in the packet.

At the TCP layer of the packet, the source port can be used to identify either the

timeline or the super-timeline packet payload. By picking a specific port for each

timeline format, a protocol dissector can be built and related to the chosen port. The

dissector can then be used to parse the TCP payload providing even greater flexibility for

analysis. Next, the TCP flags field will be used to represent the MACB flags found in the

timeline entry. Finally, the TCP payload field will contain the full contents of the

timeline entry as a series of zero terminated strings. This will allow the dissector to

distinguish the timeline fields within the packet payload (Trinh, 2012).

The following process assumes that the analyst has already performed scoping,

identified timeline artifacts of interest, and generated a valid timeline output file. The

output file must be in Mactime format for standard and CSV format for super timeline

analysis. The process described will convert the generated timeline into a packet capture

file (Pcap) and companion host file for use in evidence analysis using Wireshark. Once

the packet capture has been generated, a Wireshark dissector will be created to handle the

Forensic Timeline Analysis using Wireshark 1
6

David R. Fletcher Jr., david.fletcher.6@us.af.mil

notional timeline and stimeline protocols1. The notional protocols correlate directly to

the standard and super timeline formats respectively. This will enhance analysis

capabilities by exposing the full complement of Wireshark features to the process. As a

final step, multiple example Wireshark profiles will be generated to illustrate the ability

to switch analysis context on the fly. These will include colorization profiles that

highlight differences in filesystem characteristics and analysis methods.

3.1 Timeline Pcap Generating Scripts
The general process of timeline conversion can be seen in the flowchart found in

Figure 11. The conversion will read each line of the timeline file, parse that line into its

constituent fields, assign an IP address to the subject of the entry, create a host file entry,

generate an individual packet using Scapy, assign the appropriate timestamp to the

packet, add the packet to a packet list, and continue until the end of file marker is

reached. Once the end of file marker is reached, the resulting Pcap file will be written

out to disk. The full scripts that perform this activity can be found in Appendix A and B

for standard timeline (Mactime) and super-timeline parsing (CSV), respectively.

1 The timeline and stimline protocols are a side effect of using Wireshark for analysis. The protocols describe the

internal message format of the timeline payload of the packet. In addition, when associated with a TCP port, Wireshark

will automatically apply the dissector script to packets matching that characteristic.

Forensic Timeline Analysis using Wireshark 1
7

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Figure 11: Timeline parsing process.

Prerequisites for using the scripts include installation of the Scapy and Pytz

libraries. These libraries are imported in the parsing scripts to craft timeline packets and

construct valid timestamps from the parsed timeline data, respectively (Bishop, 2015). In

addition, the Argparse library is used to present and parse command line arguments to the

script.

Both scripts take the same command line arguments for processing a timeline file.

These arguments include the path to the input timeline file (--file), the timezone to be

applied (--tzone), the output location for the resulting Pcap file (--outfile), the hostname

of the system under investigation (--hostname), and output location for the resulting host

file (--hostfile). The tzone, outfile, hostname, and hostfile arguments are all optional and

each is given a default value if not specified. A valid command line invocation of the

super-timeline processing script can be seen in Figure 12.

Forensic Timeline Analysis using Wireshark 1
8

David R. Fletcher Jr., david.fletcher.6@us.af.mil

$ Python parse_stimeline.py --file ~/timeline.CSV --tzone

UTC --outfile ~/timeline.Pcap

--hostname case_1234_server --hostfile ~/hosts

Figure 12: Super-timeline parser command line invocation.

The parser operates in a straightforward fashion by reading the entries from the

specified timeline file in the appropriate format (CSV for super timeline). Each line is

then expanded into its individual timeline fields by splitting the line using the comma as a

delimiter.

Within the main loop, additional processing is applied to several of the timeline

fields. First, the path is stripped off the filename for inclusion in the host file. Next, the

time/date elements are split into values that are acceptable for the Python datetime

constructor. The MACB field is then used to construct a string representing the TCP

flags that should be set in the resulting packet. Finally, the description field length is

checked to determine whether the packet will exceed 65,536 bytes (super-timeline only).

If the description field does cause the packet to exceed this length, then the field is

truncated. This is required due to the length limit for an IP packet (Stevens & Fall,

2011). The vast majority of timeline entries are a fraction of this length but Prefetch files

contain a vast amount of metadata in this particular field. This process represents a

compromise in capability. It is possible to store more than 65,536 bytes in a TCP stream

but this would require the analyst to re-assemble these packets and limit the utility of

Wireshark as a timeline analysis tool.

After the packet length is confirmed not to exceed allowed limits, the timeline

entry is re-assembled as a series of zero terminated strings. This sets the stage for

processing the payload using a custom Wireshark dissector in Lua. This process is

described in Section 3.2.

Before a packet can be generated, it must be assigned a source IP address,

destination IP address, source port, and destination port. The source IP address resolves

to the hostname specified at the command line. This value is always the IP address

172.16.0.1. The destination port can be chosen at random (it is set to 9999 in the

Forensic Timeline Analysis using Wireshark 1
9

David R. Fletcher Jr., david.fletcher.6@us.af.mil

prototype script). The destination IP address represents the file identified in the timeline

entry.

Using the full filename as the key, a Python dictionary object is used to keep track

of files that have been processed. If the current file has been previously processed, the IP

address stored in the dictionary is reused. If the filename does not exist in the dictionary,

then a new IP address is allocated and a host file entry is written. Using IP version 4 it is

possible to create a timeline file with approximately 4.3 billion unique files (Stevens &

Fall, 2011). The prototype script is currently restricted to processing 65,535 unique files.

However, this restriction can be easily lifted by altering the IP address selection logic.

With the addressing details of the IP packet complete, the power of the Scapy

library can be put to use. In order to assemble the packet, variables at the IP, TCP, and

payload layers are assigned as seen in the code snippet in Figure 13. Each layer’s

variables are specified within parenthesis and each layer is separated by a forward slash.

After assembly, the appropriate timestamp is assigned to the packet and the packet is

added to a Scapy packetList object. The packetList is used to contain a collection of

packets in memory (SecDev.org, 2007).

Create an IP packet with TCP transport and data payload

p=IP(src=srcIP,dst=ip)/TCP(sport=timelinePort,dport=destPort

,flags=flags)/Raw(load=data)

Set packet timestamp to constructed value

p.time = int(pktTime.strftime("%s"))

Append packet to packet list

pkts.append(p)

Figure 13: Python packet assembly using Scapy.

Once the end of the timeline file has been reached, the packetList object is written

out to disk at the location specified using the outfile argument. The remaining open

resources are then closed and script execution terminates.

Forensic Timeline Analysis using Wireshark 2
0

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Prior to viewing the Pcap in Wireshark, it is necessary to move the host file

created by the parsing script to the proper location. Within Wireshark, this location can

be identified by navigating to Help > About Wireshark and selecting the Folders tab as

seen in Figure 14. The personal configuration folder is where profiles are created. The

root of this folder represents the default profile and subfolders will be named for the

profiles that a given user has created (Chappell, 2010).

Figure 14: Wireshark folder location dialogue box.

Wireshark must be instructed to use the generated host file for name resolution.

This is accomplished by navigating to Edit > Preferences, selecting Name Resolution and

checking the Resolve Network (IP) Addresses and Only use the profile “hosts” file

entries. This dialogue can be seen in Figure 15.

Forensic Timeline Analysis using Wireshark 2
1

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Figure 15: Wireshark name resolution options.

Even with name resolution enabled, the default Wireshark display is not initially

conducive to timeline analysis. In order to fix this, columns will be removed, added and

re-arranged. Right clicking on the column heading reveals the Remove Column option.

In the display, remove all but the time, source, destination, and length columns. Next,

select a single packet in the packet list pane (top), expand the Transmission Control

Protocol entry in the packet details pane (middle), right click on the “Flags” field and

select Add as Column.

The default display is still not analyst friendly. Change the time display format

by selecting View > Time Display Format > Date and Time of Day. Finally, add the

Delta Time field by navigating to Edit > Preferences selecting Columns and clicking the

add button. Set the column title to Delta time and set the field type to Delta Time. This

option setting can be seen in Figure 16.

Forensic Timeline Analysis using Wireshark 2
2

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Figure 16: Delta Time column addition.

After all these actions are completed, the Wireshark display should look like

Figure 17. The settings above will not need to be repeated as profile changes are saved

upon exit. This creates a marginally useable interface for timeline analysis. An

investigator can see when file activity takes place, the time between file actions, the host

on which the file activity occurs, the target file, the MACB flags in a cryptic format, and

the length of the packet (and relative length of the timeline entry).

Figure 17: Initial Wireshark timeline analysis UI.

Forensic Timeline Analysis using Wireshark 2
3

David R. Fletcher Jr., david.fletcher.6@us.af.mil

An unanticipated side effect of using a host file to display the file name is that the

host file is delimited using whitespace characters. This means that filenames containing

whitespace characters are truncated in the display. This further detracts from the ability

to perform timeline analysis using Wireshark without the benefit of a dissector.

3.2 Timeline Lua Dissector
It would be beneficial to create a protocol dissector to parse the embedded

timeline data placed in the packet payload by the timeline parsing script. This would

improve the analyst’s ability to visualize and analyze timeline information within the

Wireshark user interface. In addition, it would expose timeline fields for use as displayed

columns and direct reference in Wireshark’s filtering language.

The protocol dissector will be written in the Lua scripting language. The script

will register the protocol, identify fields found in the payload and their type, then add the

fields to the dissector tree. The general structure of the script includes variable

declarations and three functions. The initialization function sets up the packet counter,

the dissector function parses the actual protocol fields, and the getStringLength local

helper function calculates the offset to the next string in the payload. The last line of the

script registers the port used by the protocol in the dissector table. This last element must

match the port used in the parsing script for automatic dissection to occur within

Wireshark (Bjorlykke, 2009). The source for the timeline and super-timeline Lua scripts

can be seen in Appendix C and D, respectively.

The completed dissector must be placed in either the Personal Plugins or Global

Plugins folder previously identified in Figure 14. This will cause the dissector to be

applied by default when the chosen port is seen in the loaded Pcap file. Once the

dissectors are in place, Wireshark must be restarted to see the resulting effect.

The first indication can be seen in the packet details pane. Previously, below the

Transmission Control Protocol entry was a single node identified as Data (Figure 18).

This node is now replaced with either “Timeline Protocol” or “Super Timeline Protocol”

based on the selected port and script that generated the Pcap file. Expanding this node

Forensic Timeline Analysis using Wireshark 2
4

David R. Fletcher Jr., david.fletcher.6@us.af.mil

reveals all of the fields that make up the timeline entry found in the packet payload

(Figure 19).

Figure 18: Packet details before dissector load.

Figure 19: Packet details after dissector load.

Exploring the capabilities that the dissector exposes reveals that any of the

elements can be added by right clicking and selecting Apply as Column. In addition,

typing the protocol name in the Filter field reveals the list of protocol elements by name.

Forensic Timeline Analysis using Wireshark 2
5

David R. Fletcher Jr., david.fletcher.6@us.af.mil

The list of super-timeline elements can be seen in Figure 20. This allows the analyst to

more naturally filter based on fields that make sense in the context of timeline analysis.

Figure 20: Super Timeline filter field values.

3.3 Wireshark Timeline Analysis Profiles
A final enabler for timeline analysis using the Wireshark tool is profile generation

to provide context to the information presented in the Packet List pane. The most

noticeable of these capabilities is Colorization Rules.

Prior to creation of analysis profiles, the interface will once again be rearranged to

make better sense in the context of timeline analysis. The following changes will be

applied to Wireshark with a super-timeline Pcap file loaded. The same process would

apply equally to a standard timeline Pcap file with the missing fields omitted. Starting

with the field list that ended Section 3.1, another round of column adds and removes will

occur.

First, right click on the Flags field in the packet list pane and select Remove

Column. A better representation of the MACB flags is now available through the parsed

packet payload. To add this field, select any of the timeline packets, expand the Super

Timeline Protocol entry in the packet details tree, right click on MACB and select Apply

as Column. Do likewise with the Short Filename, File Name, Entry Source, and Notes

Forensic Timeline Analysis using Wireshark 2
6

David R. Fletcher Jr., david.fletcher.6@us.af.mil

fields. This field configuration will serve as the baseline for colorization rule generation.

A subset of this configuration can be seen in Figure 21.

Figure 21: Super-timeline dissector field additions.

In order to generate a profile within Wireshark navigate to Edit > Configuration

Profiles. This will activate the configuration profile dialogue seen in Figure 22. Click on

the new button and enter a name for the profile. In this case, the profile will be used for

identifying NTFS operations based on MACB flag combinations. Therefore, the profile

will be named “Timeline – NTFS Operations – Lee.”

Figure 22: Wireshark Configuration Profile Dialogue.

Forensic Timeline Analysis using Wireshark 2
7

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Once the profile is added, it can be selected at any time using the profile selector

found at the lower right corner of the display window. Profiles consist of a series of text

files stored personal configuration directory identified in Figure 14. Each profile is

stored in a sub-directory bearing the profile name. Any configuration changes applied

through the user interface while the profile is active will be stored within this directory.

Initially, this profile will be extended to include colorization rules. The first

action is to remove the default colorization rules. These rules apply to network traffic

and are not applicable to forensic timeline analysis. Open the rules by navigating to View

> Coloring Rules. Select the all of the existing rules and click the delete button. New

coloring rules that pertain to forensic analysis can now be added.

Using the NTFS time rules for $STDINFO timestamps found in the FOR 508

course material simple colorization rules can be constructed. These rules all focus on the

value of the MACB flag combination. The combinations shown in the course material

cover eight different file system operations, seven of which are unique. Each rule can be

added by clicking on the New button and specifying a color and filter rule. The

colorization rules applicable to NTFS according to FOR 508 can be seen in Figure 23

(Lee, 2011).

Figure 23: Timeline Colorization Rules for NTFS $STDINFO

Navigate to View > Colorize Packet List to ensure that packet colorization rules

are applied to the current packet capture. Once this is complete, the packet list pane will

Forensic Timeline Analysis using Wireshark 2
8

David R. Fletcher Jr., david.fletcher.6@us.af.mil

appear as seen in Figure 24. Note that there are still entries that are not assigned a color.

This is due to incomplete understanding or ambiguities that exist in the way that NTFS

timestamps are updated. As the meaning for these combinations become known,

additional colorization rules can be added dynamically.

Figure 24: Colorized timeline packet list.

Additional colorization profiles can be found in Appendix E. These profiles

implement each of the timestamp rule sets within the FOR 508 course materials in

addition to Mr. Lee’s Microsoft Excel colorization profile (Lee, 2012). The colorization

rules for the Microsoft Excel profile include complex filters that have not been tested

exhaustively. They represent a direct translation into Wireshark display filter language.

The order of filtering has an impact on colorization and as a result, it may be necessary to

break individual rules up to obtain the fully expected behavior.

The colorization rules described above provide the analyst context within the

macro timeline view. In contrast, display filters allow the analyst to perform more

focused analysis of timeline events. Using display filters, the analyst can zero in on dirty

words or operations/behaviors of interest with respect to a particular line of investigation.

Display filters can be saved in Wireshark using one of two methods. The first

method creates a reference to the stored filter on the filter bar as seen in Figure 25. The

second method uses the Analyze > Display Filters… menu option seen in Figure 26.

Forensic Timeline Analysis using Wireshark 2
9

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Figure 25: Display filter save using the filter bar.

Figure 26: Display filter save using the Analyze > Display Filters… method.

The filter bar option makes stored display filters available through a series of

buttons on the filter bar. To use this method, simply enter the display filter in the filter

bar, click the save button, and provide a name. The drawback of this method is that the

filter is not easily portable. No reference to the display filter exists within the profile

directory.

In contrast, the Analyze > Display Filters… option creates entries in the “dfilters”

text file located in the stored personal configuration directory identified in Figure 14.

This allows an analyst to share display filters easily by copying the text file or the full

profile directory to another computer.

Forensic Timeline Analysis using Wireshark 3
0

David R. Fletcher Jr., david.fletcher.6@us.af.mil

A combination of both methods would likely be the best option for analysis. The

filter bar filters would likely be a subset of the profile-stored filters. This gives ready

access to filters used heavily during an investigation without limiting portability.

Applying the filters used for timeline colorization represents a good starting point

for display filter development. Doing so allows the analyst to view file system operations

and suspicious activity in context using colorization. As specific activity is identified as

malicious, the analyst can switch to display filtering to identify additional occurrence of

the same or similar activity. Baseline filters corresponding to NTFS, Linux, and Mr.

Lee’s Excel analysis profile can be found in Appendix F.

Colorization rules and display filters represent the most useful saved profile

features in the context of timeline analysis. With a set of full profiles developed, an

organization can simply archive the contents of the profile directories and make them

available to their analysts. Analysts then simply need to extract the contents into their

Wireshark personal profile directory for use.

4. Future Enhancements

While this script has shown that timeline analysis is possible using the capabilities

of Wireshark, the user interface has room for improvement.

Investigations may involve multiple computers. The ability to correlate analysis

across several computers would require some re-tooling of the timeline parser.

Specifically, the IP range and host IP address would need to be a configurable option or

command line parameter. Each Pcap file could then be generated separately using non-

conflicting address spaces. Once all of the Pcap files have been created, the mergecap

tool could then be used to combine the separate sources into a single file.

A comprehensive set of analysis profiles could be created and distributed as a

single Zip file. This would allow the community to download the Zip file and apply the

Wireshark analysis methodology more easily. The user would simply expand the profile

Forensic Timeline Analysis using Wireshark 3
1

David R. Fletcher Jr., david.fletcher.6@us.af.mil

archive within their Wireshark profile directory to take advantage of colorization and

filters.

This methodology could be applied to create another output format for either the

log2timeline or plaso tools. The ability to directly create Pcap data from a timeline

generation tool would remove an unnecessary intermediate step. Integration of this

feature into the timeline generator would likely improve adoption as well.

Finally, a workaround for the Prefetch file metadata in the description field could

be permanently solved. This would require an extension to the timeline parser to include

generation of multi-packet TCP streams. While stream reassembly within Wireshark is

not ideal, maintaining fidelity of the timeline contents is critical to a thorough

investigation.

5. Conclusion
The Wireshark protocol analyzer is a flexible tool for network analysis with

powerful statistics, highlighting, and filtering features. These features are valuable for

more than just network analysis. Through conversion of timeline data from text to Pcap

file an analyst gains access to the aforementioned features. In addition, the analyst is able

to quickly create profiles that contain colorization rules and filters to expedite the

analysis process.

The initial concept for this project involved correlating timeline data with

common fields used in TCP/IP network analysis. During research, it became obvious

that some of this correlation was unnecessary and actually caused difficulty.

Use of a host file failed to take into account filenames that contained whitespace

characters; using this strategy proved a dead end. The options available to mitigate this

issue included encoding the whitespace characters as non-whitespace strings or

modifying the host file parser in the Wireshark application. Neither of these options were

viable. The former would increase the burden on the analyst to interpret character

representations on the fly. The latter would take a level of effort not practical given the

timeframe for this paper.

Forensic Timeline Analysis using Wireshark 3
2

David R. Fletcher Jr., david.fletcher.6@us.af.mil

The TCP flag manipulation made sense at a high level in the context of matching

bit field operations. However, when applied, the Request for Comments became critical

as combinations of TCP flags would cause unexpected behavior in Wireshark. For

instance, initial choice of flags included use of the Reset flag to represent a MACB

element. This caused the packet payload not to be displayed in Wireshark since reset

packets do not have a payload. In addition, the filtering and display of the TCP flags

field was not intuitive from a timeline analysis perspective. The analyst would have to

mind map certain TCP flag bits to MACB fields on the fly.

All of the shortcomings outlined above were accommodated by use of the

Wireshark dissector. This directly exposed timeline fields to the native Wireshark

interface and allowed creation of columns, colorization rules, and filters using names that

make sense to a forensic analyst.

Forensic Timeline Analysis using Wireshark 3
3

David R. Fletcher Jr., david.fletcher.6@us.af.mil

6. Bibliography

Bishop, S. (2015, March 23). pytz - World Timezone Definitions for Python — pytz

2015.2 documentation. Retrieved from http://pytz.sourceforge.net/

Bjorlykke, S. (2009, June 17). Lua Scripting in Wireshark [PDF]. Retrieved from

http://sharkfest.wireshark.org/sharkfest.09/DT06_Bjorlykke_Lua%20Scripting%2

0in%20Wireshark.pdf

Carbone, Richard. (2011). Generating computer forensic super-timelines under Linux: A

comprehensive guide for windows-based disk images. Valcartier, Québec:

Defence R&D Canada - Valcartier.

Carrier, B. (2005). File system forensic analysis. Boston, MA: Addison-Wesley.

Chappell, L. (2010). Wireshark network analysis: The official Wireshark certified

network analyst study guide. San Jose, CA: Protocol Analysis Institute, Chappell

University.

Kaplan, H. (2015, July 2). Lua/Dissectors - The Wireshark Wiki. Retrieved July 2, 2015,

from https://wiki.wireshark.org/Lua/Dissectors

Lee, R. (2011). File System Forensic Analysis, SANS Advanced Computer Forensic

Analysis and Incident Response (V2011_0920) (1st ed.). Bethesda, MD: SANS

Institute.

Lee, R. (2011, December 7). SANS Digital Forensics and Incident Response Blog |

Digital Forensic SIFTing: SUPER Timeline Creation using log2timeline | SANS

Institute [Web log post]. Retrieved from http://digital-

forensics.sans.org/blog/2011/12/07/digital-forensic-sifting-super-timeline-

analysis-and-creation

Lee, R. (2012, January 25). Digital Forensic SIFTing: Colorized Super Timeline

Template for Log2timeline Output Files. Retrieved from http://digital-

forensics.sans.org/blog/2012/01/25/digital-forensic-sifting-colorized-super-

timeline-template-for-log2timeline-output-files

Forensic Timeline Analysis using Wireshark 3
4

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Luttgens, J. T., Mandia, K., & Pepe, M. (2014). Incident response & computer forensics.

Metz, J. (2015, April 13). Home · log2timeline/plaso Wiki · GitHub. Retrieved May 10,

2015, from https://github.com/log2timeline/plaso/wiki

Python Software Foundation. (2015, May 27). Overview — Python 2.7.10

documentation. Retrieved from https://docs.python.org/2/

SecDev.org. (2007). Scapy. Retrieved from http://www.secdev.org/projects/scapy/

Stevens, W. R., & Fall, K. W. (2011). TCP/IP illustrated: Volume 1.

Trinh, T. (2012, June). Wireshark · Wireshark-users: Re: [Wireshark-users] Reading a

zero-terminated string in Lua dissector. Retrieved from

https://www.wireshark.org/lists/wireshark-users/201206/msg00010.html

Forensic Timeline Analysis using Wireshark 3
5

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Appendix A
Standard Timeline Conversion Script

#!/usr/bin/Python

###

########

This script will parse a timeline file to create a Pcap

representation

of the timeline for analysis in wireshark using the built-in features

such as profiles, colorization, filtering, and annotation.

The basic process is to open the timeline file, parse each line, and

output a host file and Pcap that can be used together. Each entry in

the timeline is processed to create an individual tcp packet.

Characteristics

of the packet are mapped to the timeline entry information. For

instance:

Source IP = Hostname

Destination IP = Target File

Source Port = Unused

Destination Port = Timeline Protocol Identifier

TCP Flags = MACB Flags

This is just an example of the mapping power of using tcp. Other

fields

of the packet that may be useful are IPID, sequence numbers, options

field,

and more.

Limitations of this tool include:

The host file is whitespace delimited so any whitespace characters

are

interpreted as the end of the host name. This causes file names with

white

Forensic Timeline Analysis using Wireshark 3
6

David R. Fletcher Jr., david.fletcher.6@us.af.mil

space to be displayed improperly. This is a minor inconvenience as

it is

remedied by importing the timeline parsing lua dissector which allows

the

analyst to insert fields into the display to include the correct

filename.

The maximum payload of a tcp packet is 65,535 bytes. Timeline

entries that

exceeded this maximum length were not expected but prefetch files

have a

large amount of metadata included with them. This could be resolved

by

creating tcp sessions for this information but that paricular

solution

defeats the purpose of use which is easy display, colorization and

marking

of timeline data.

###

imports for required libraries

import argparse

import ntpath

import logging

logging.getLogger("Scapy").setLevel(1)

import the Scapy module for packet generation

from Scapy.all import *

import datetime and pytz to adjust for timezone offset

from datetime import datetime, timedelta

from pytz import timezone

import pytz

Create a parser to read in command line arguments

parser = argparse.ArgumentParser(description='Convert a timeline file

into Pcap')

Forensic Timeline Analysis using Wireshark 3
7

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Add argument for input timeline file

parser.add_argument('-f','--file', help='The timeline file to parse')

Add argument for time zone

parser.add_argument('-z','--tzone', help='Timezone offset of the

timeline in pytz format')

Add argument for output Pcap file

parser.add_argument('-o','--outfile',help='Output filename for the

resulting Pcap',default='./stimeline.Pcap')

Add argument for hostname

parser.add_argument('-hn','--hostname',help='Name of the source host

for this evidence',default='computer')

Add argument for hostfile

parser.add_argument('-hf','--hostfile',help='Output filename for the

resulting host file',default='./hosts')

Parse arguments for use

args = parser.parse_args()

Open the host file with write access

hostFile = open(args.hostfile, 'w')

Set the location of the Pcap file

PcapFile = args.outfile

Set the port to represent timeline protocol traffic

this must match the port used in the target lua dissector

timelinePort = 7143

Create a timezone object for use in setting packet timestamp

tz = timezone(args.tzone)

Set the starting network address for the packet capture

Currently, this packet capture will be able to process 56,634

unique files

network = "172.16."

Set the value of the third octet

three = 0

Set the value of the fourth octet, reserving .1 for the source host

four = 2

Forensic Timeline Analysis using Wireshark 3
8

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Set the source host information (IP and hostname)

srcIP = "172.16.0.1"

srcHost = args.hostname

Create a packet list object to hold the crafted packets

pkts = Scapy.plist.PacketList()

Write the first entry in the host file, identifying the source of

evidence

hostFile.write(srcIP + "\t" + srcHost + "\n")

Dictionary to determine file/IP utilization

files = dict()

Helper function for mapping months to month numbers

def getMonthNumberFromShortMonth(shortMonth):

 months = { "jan" : 1,

 "feb" : 2,

 "mar" : 3,

 "apr" : 4,

 "may" : 5,

 "jun" : 6,

 "jul" : 7,

 "aug" : 8,

 "sep" : 9,

 "oct" : 10,

 "nov" : 11,

 "dec" : 12

 }

 return months[shortMonth.lower()]

Open the timeline file with read permissions for parsing

with open(args.file, 'r') as file:

 # For each line, parse the individual elements

 for line in file:

Forensic Timeline Analysis using Wireshark 3
9

David R. Fletcher Jr., david.fletcher.6@us.af.mil

 elements = line.split(',')

 date = elements[0]

 size = elements[1]

 macb = elements[2]

 mode = elements[3]

 uid = elements[4]

 gid = elements[5]

 meta = elements[6]

 fname = elements[7]

 # if the date element is "Date" then we are reading the header,

skip

 if (date.lower() == "date"):

 continue

 # Create a short filename by splitting at the last forward slash

 short_fname_arr = fname.rsplit('/',1)

 # Parse the macb flags and set tcp flags accordingly

 # M=Push, A=Ack, C=Urg, B=Syn

 P = "P" if macb[0].upper() == "M" else "" # M

 A = "A" if macb[1].upper() == "A" else "" # A

 U = "U" if macb[2].upper() == "C" else "" # C

 S = "S" if macb[3].upper() == "B" else "" # B

 # Assemble the resulting tcp flags into a single field

 flags = S + A + P + U

 # Check the length of the short name array, if < 2 then

 # filename is first element, otherwise second

 if (len(short_fname_arr) < 2):

 short_fname = short_fname_arr[0][:-2]

 else:

 short_fname = short_fname_arr[1][:-2]

 # Check to see if we already have an entry for this file, since

 # multiple files may have the same name, we must use full name

Forensic Timeline Analysis using Wireshark 4
0

David R. Fletcher Jr., david.fletcher.6@us.af.mil

 if fname in files:

 # If file already exists, reuse IP address

 ip = files[fname]

 else:

 # If not, then grab another IP, add it to the dictionary

 if (four == 254):

 if (three == 255):

 sys.exit('Timeline exceeded 56,654 entries...')

 else:

 four = 0

 three += 1

 else:

 four += 1

 ip = network + str(three) + "." + str(four)

 files[fname] = ip

 # Add a new entry to the host file

 hostFile.write(ip + "\t" + short_fname + "\n")

 # Parse the date from the entry for use in Scapy

 dateElements = date.split(' ')

 timeElements = dateElements[4].split(':')

 # If the timezone parameter is not null then use passed in

parameter

 # otherwise use None

 if (timezone != None):

 pktTime =

datetime(int(dateElements[3]),getMonthNumberFromShortMonth(dateElements

[1]),int(dateElements[2]),int(timeElements[0]),int(timeElements[1]),int

(timeElements[2]),0,tzinfo=tz)

 else:

 pktTime =

datetime(int(dateElements[3]),getMonthNumberFromShortMonth(dateElements

[1]),int(dateElements[2]),int(timeElements[0]),int(timeElements[1]),int

(timeElements[2]),0,None)

 # Assemble packet payload constructing null terminated string from

Forensic Timeline Analysis using Wireshark 4
1

David R. Fletcher Jr., david.fletcher.6@us.af.mil

 # timeline file entry data

 data = date + "\x00" + size + "\x00" + macb + "\x00" + mode +

"\x00" + uid + "\x00" + gid + "\x00" + meta + "\x00" + short_fname +

"\x00" + fname + "\x00" # Create an IP packet with TCP transport

and data payload

p=IP(src=srcIP,dst=ip)/TCP(sport=timelinePort,dport=9999,flags=flags)/R

aw(load=data)

 # Set packet timestamp to constructed value

 p.time = int(pktTime.strftime("%s"))

 # Append packet to packet list

 pkts.append(p)

Write the Pcap file out to disk

wrPcap(PcapFile,pkts)

Close open resources

hostFile.close()

file.close()

Forensic Timeline Analysis using Wireshark 4
2

David R. Fletcher Jr., david.fletcher.6@us.af.mil

 Appendix B
Super Timeline Conversion Script

#!/usr/bin/Python
###
########
This script will parse a timeline file to create a Pcap
representation
of the timeline for analysis in wireshark using the built-in features
such as profiles, colorization, filtering, and annotation.

The basic process is to open the timeline file, parse each line, and
output a host file and Pcap that can be used together. Each entry in
the timeline is processed to create an individual tcp packet.
Characteristics
of the packet are mapped to the timeline entry information. For
instance:

Source IP = Hostname
Destination IP = Target File
Source Port = Unused
Destination Port = Timeline Protocol Identifier
TCP Flags = MACB Flags

This is just an example of the mapping power of using tcp. Other
fields
of the packet that may be useful are IPID, sequence numbers, options
field,
and more.

Limitations of this tool include:

The host file is whitespace delimited so any whitespace characters
are
interpreted as the end of the host name. This causes file names with
white
space to be displayed improperly. This is a minor inconvenience as
it is
remedied by importing the timeline parsing lua dissector which allows
the
analyst to insert fields into the display to include the correct
filename.

The maximum payload of a tcp packet is 65,535 bytes. Timeline
entries that
exceeded this maximum length were not expected but prefetch files
have a
large amount of metadata included with them. This could be resolved
by
creating tcp sessions for this information but that paricular
solution
defeats the purpose of use which is easy display, colorization and
marking

Forensic Timeline Analysis using Wireshark 4
3

David R. Fletcher Jr., david.fletcher.6@us.af.mil

of timeline data.

###

imports for required libraries
import argparse
import ntpath
import logging
logging.getLogger("Scapy").setLevel(1)

import the Scapy module for packet generation
from Scapy.all import *
import datetime and pytz to adjust for timezone offset
from datetime import datetime, timedelta
from pytz import timezone
import pytz

Create a parser to read in command line arguments
parser = argparse.ArgumentParser(description='Convert a super-timeline
file into Pcap')
Add argument for input super-timeline file
parser.add_argument('-f','--file', help='The super-timeline file to
parse')
Add argument for timezone
parser.add_argument('-z','--tzone', help='Timezone offset of the
timeline pytz format')
Add argument for output Pcap file
parser.add_argument('-o','--outfile',help='Output filename for the
resulting Pcap',default='./stimeline.Pcap')
Add argument for hostname
parser.add_argument('-hn','--hostname',help='Name of the source host
for this evidence',default='computer')
Add argument for hostfile
parser.add_argument('-hf','--hostfile',help='Output filename for the
resulting host file',default='./hosts')
Parse arguments for use
args = parser.parse_args()

Open the host file with write access add --hostfile argument
hostFile = open(args.hostfile, 'w')
Set the location of the Pcap file add -o argument
PcapFile = args.outfile

Set the port to represent timeline protocol traffic
this must match the port used in the target lua dissector
stimelinePort = 57143

Create a timzeon object for use in setting packet timestamp
tz = timezone(args.tzone)

Set the starting network address for the packet capture
Currently, this packet capture will be able to process 56,634
unique files
network = "172.16."
Set the value of the third octet

Forensic Timeline Analysis using Wireshark 4
4

David R. Fletcher Jr., david.fletcher.6@us.af.mil

three = 0
Set the value of the fourth octet, reserving .1 for the source host
four = 2

Set the source host information (IP and hostname) add -src argument
srcIP = "172.16.0.1"
srcHost = args.hostname

Create a packet list object to hold the crafted packets
pkts = Scapy.plist.PacketList()

Write the first entry int the host file, identifying the source of
evidence
hostFile.write(srcIP + "\t" + srcHost + "\n")

Dictionary to determin file/IP utilization
files = dict()

Open the timeline file with read permissions for parsing
with open(args.file, 'r') as file:
 # For each line, parse the individual elements
 for line in file:
 elements = line.split(',')
 date = elements[0]
 time = elements[1]
 tz = elements[2]
 macb = elements[3]
 src = elements[4]
 srctype = elements[5]
 type = elements[6]
 user = elements[7]
 host = elements[8]
 short = elements[9]
 desc = elements[10]
 ver = elements[11]
 fname = elements[12]
 inode = elements[13]
 notes = elements[14]
 format = elements[15]
 extra = elements[16]

 # If the date element is "Date" then we are reading the header,
skip
 if (date.lower() == "date"):
 continue

 # Create a short filename by splitting at the last forward slash
 short_fname_arr = fname.rsplit('/',1)

 # Parse the macb flags and set tcp flags accordingly
 # M=Push, A=Ack, C=Urg, B=Syn
 P = "P" if macb[0].upper() == "M" else "" # M
 A = "A" if macb[1].upper() == "A" else "" # A
 U = "U" if macb[2].upper() == "C" else "" # C
 S = "S" if macb[3].upper() == "B" else "" # B

Forensic Timeline Analysis using Wireshark 4
5

David R. Fletcher Jr., david.fletcher.6@us.af.mil

 # Assemble the resulting tcp flags into a single field
 flags = S + A + P + U

 # Check the length of the short name array, if < 2 then
 # filename is first element, otherwise second
 if (len(short_fname_arr) < 2):
 short_fname = short_fname_arr[0][:-2]
 else:
 short_fname = short_fname_arr[1][:-2]

 # Check to see if we already have an entry for this file, since
 # multiple files may have the same name, we must use full name
 if fname in files:
 # If file already exists, reuse IP address
 ip = files[fname]
 else:
 # If not, then grab another IP, add it to the dictionary
 if (four == 254):
 if (three == 255):
 sys.exit('Timeline exceeded 56,654 entries...')
 else:
 four = 0
 three += 1
 else:
 four += 1
 ip = network + str(three) + "." + str(four)
 files[fname] = ip
 # Add a new entry to the host file
 hostFile.write(ip + "\t" + short_fname + "\n")

 # Parse the date from the entry for use in Scapy
 dateElements = date.split('/')
 timeElements = time.split(':')

 # If timezone parameter is not null then use passed in paramter
 # otherwise use None
 if (timezone != None):
 pktTime =
datetime(int(dateElements[2]),int(dateElements[0]),int(dateElements[1])
,int(timeElements[0]),int(timeElements[1]),int(timeElements[2]),0,None)
 else:
 pktTime =
datetime(int(dateElements[2]),int(dateElements[0]),int(dateElements[1])
,int(timeElements[0]),int(timeElements[1]),int(timeElements[2]),0,None)

 # Assemble packet payload constructing null terminated strings
from
 # timeline entry data
 data = date + "\x00" + time + "\x00" + tz + "\x00" + macb + "\x00"
+ src + "\x00" + srctype + "\x00" + type + "\x00" + user + "\x00" +
host + "\x00" + short + "\x00" + ver + "\x00" + fname + "\x00" + inode
+ "\x00" + notes + "\x00" + format + "\x00" + extra + "\x00"

Forensic Timeline Analysis using Wireshark 4
6

David R. Fletcher Jr., david.fletcher.6@us.af.mil

 # if the length of the data + description is shorter than the
packet
 # minus headers then append the desc to the payload
 if (len(data) + len(desc) <= 65494):
 data = data + desc + "\x00"
 # otherwise truncate description by appropriate amount to fit into
 # remaining payload space and append to the payload
 else:
 data = data + desc[:65494-len(data)] + "\x00"

 # Create an IP packet with TCP transport and data payload

p=IP(src=srcIP,dst=ip)/TCP(sport=stimelinePort,dport=9999,flags=flags)/
Raw(load=data)

 # Set packet timestamp to constructed value
 p.time = int(pktTime.strftime("%s"))

 # Append packet to packet list
 pkts.append(p)

Write the Pcap file out to disk
wrPcap(PcapFile,pkts)

Close open resources
hostFile.close()
file.close()

Forensic Timeline Analysis using Wireshark 4
7

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Appendix C
Standard Timeline Lua Dissector

-- Standard Timeline Protocol Dissector
-- This script is a dissector for standard timeline data embedded in
-- TCP packets with port 7143. The packet payload is a group of null
-- terminated strings which are used for forensic analysis. This
-- dissector is typically used with a host file that translates the IP
-- addresses int he packet capture as file names.

-- Debug print for checking the dissector load in tshark
print ("Timeline.lua loaded")

-- Create a new dissector
FTIMELINE = Proto ("ftimeline", "Standard timeline protocol")

-- Create protocol fields
local f = FTIMELINE.fields

-- Add individual fields of the type stringz with appropriate labels
and comments
f.tstamp = ProtoField.stringz
("ftimeline.tstamp","Timestamp","Timestamp of timeline entry")
f.fsize = ProtoField.stringz ("ftimeline.fsize","File Size","File size
in bytes")
f.macb = ProtoField.stringz ("ftimeline.macb","MACB Flags","Modify,
Access, Change, Birth flags")
f.mode = ProtoField.stringz ("ftimeline.mode","Perm Mode","Unix Style
Permission Mode")
f.uid = ProtoField.stringz ("ftimeline.uid","UID","User Owner ID")
f.gid = ProtoField.stringz ("ftimeline.gid","GID","Group Owner ID")
f.meta = ProtoField.stringz ("ftimeline.meta","Meta","Mactime Meta
Field")
f.sfname = ProtoField.stringz ("ftimeline.sfname","Short Name","Short
File Name")
f.fname = ProtoField.stringz ("ftimeline.fname","File Name","File
Name")

-- Initialize packet counter
local packet_counter

-- Timeline initialization function
function FTIMELINE.init ()
 packet_counter = 0
end

-- Local function to determine string lengths for
-- calculating the offset of the next payload element
local function getStringLength(buffer, offset)
 return buffer(offset):stringz():len() + 1
end

-- Protocol dissector function
function FTIMELINE.dissector (buffer, pinfo, tree)

Forensic Timeline Analysis using Wireshark 4
8

David R. Fletcher Jr., david.fletcher.6@us.af.mil

 -- Adding fields to the tree
 local subtree = tree:add (FTIMELINE, buffer())
 -- Set the initial offset to zero
 local offset = 0

 -- For each field represented in the protocol, read in a string
 -- calculate the new offset, and add the field to the tree
 local tstamp = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.tstamp, tstamp)

 local fsize = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.fsize, fsize)

 local macb = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.macb, macb)

 local mode = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.mode, mode)

 local uid = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.uid, uid)

 local gid = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.gid, gid)

 local meta = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.meta, meta)

 local sfname = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.sfname, sfname)

 local fname = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(f.fname, fname)

end

-- Register the port and protocol with the dissector table
DissectorTable.get("tcp.port"):add(7143, FTIMELINE)

Forensic Timeline Analysis using Wireshark 4
9

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Appendix D
Super Timeline Lua Dissector

-- Super Timeline Protocol Dissector
-- This script is a dissector for super-timeline data embedded in
-- TCP packets with port 57143. The packet payload is a group of null
-- terminated strings which are used for forensic analysis. This
-- dissector is typically used with a host file that translates the IP
-- addresses in the packet capture as file names.

-- Debug print for checking the dissector load in tshark
print ("STimeline.lua loaded")

-- Create a new dissector
STIMELINE = Proto ("stimeline", "Super-timeline protocol")

-- Create protocol fields
local s = STIMELINE.fields

-- Add individual fields of the type stringz with appropriate labels
and comments
s.date = ProtoField.stringz ("stimeline.date","Date","Date stamp of
timeline entry")
s.time = ProtoField.stringz ("stimeline.time","Time","Time stamp of
timeline event")
s.zone = ProtoField.stringz ("stimeline.zone","Time Zone","Timeline
time zone")
s.macb = ProtoField.stringz ("stimeline.macb","MACB","Modify, Access,
Change, Birth flags")
s.src = ProtoField.stringz ("stimeline.src","Entry Source","Timeline
entry source")
s.srctype = ProtoField.stringz ("stimeline.srctype","Entry Src
Type","Timeline entry source type")
s.type = ProtoField.stringz ("stimeline.type","Entry Type","Timeline
entry type")
s.user = ProtoField.stringz ("stimeline.user","Username","Timeline
entry user")
s.host = ProtoField.stringz ("stimeline.host","Host","Timeline entry
host")
s.sfname = ProtoField.stringz ("stimeline.sfname","Short
Filename","Short File Name")
s.ver = ProtoField.stringz ("stimeline.ver","File Version","File
Version")
s.fname = ProtoField.stringz ("stimeline.fname","File Name","Full File
Name")
s.inode = ProtoField.stringz ("stimeline.inode","Inode","File Inode")
s.notes = ProtoField.stringz ("stimeline.notes","Notes","Notes")
s.format = ProtoField.stringz ("stimeline.format","Format","Format")
s.extra = ProtoField.stringz ("stimeline.extra","Extra","Extra")
s.desc = ProtoField.stringz
("stimeline.desc","Description","Description")

-- Initialize packet counter

Forensic Timeline Analysis using Wireshark 5
0

David R. Fletcher Jr., david.fletcher.6@us.af.mil

local packet_counter

-- Timeline initialization function
function STIMELINE.init ()
 packet_counter = 0
end

-- Local function to determine string lengths for
-- calculating the offset of the next payload element
local function getStringLength(buffer, offset)
 return buffer(offset):stringz():len() + 1
end

-- Protocol diessector function
function STIMELINE.dissector (buffer, pinfo, tree)

 -- Adding fields to the tree
 local subtree = tree:add (STIMELINE, buffer())
 -- Set the initial offset to zero
 local offset = 0

 -- For each field represented in the protocol, read in a string
 -- calculate the new offset, and add the field to the tree
 local date = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.date, date)

 local time = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.time, time)

 local zone = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.zone, zone)

 local macb = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.macb, macb)

 local src = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.src, src)

 local srctype = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.srctype, srctype)

 local type = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.type, type)

 local user = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.user, user)

Forensic Timeline Analysis using Wireshark 5
1

David R. Fletcher Jr., david.fletcher.6@us.af.mil

 local host = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.host, host)

 local sfname = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.sfname, sfname)

 local ver = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.ver, ver)

 local fname = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.fname, fname)

 local inode = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.inode, inode)

 local notes = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.notes, notes)

 local format = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.format, format)

 local extra = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.extra, extra)

 local desc = buffer(offset):stringz()
 offset = offset + getStringLength(buffer, offset)
 subtree:add(s.desc, desc)

end

-- Register the port and protocol with the dissector table
DissectorTable.get("tcp.port"):add(57143, STIMELINE)

Forensic Timeline Analysis using Wireshark 5
2

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Appendix E
Timeline Colorization Rules

SANS FOR 508 NTFS $STDINFO Timestamp Rules
DO NOT EDIT THIS FILE! It was created by Wireshark
@File Volume Move@stimeline.macb ==
".AC."@[39371,11281,58383][62139,61532,61532]
@File Rename/Local Move@stimeline.macb ==
"..C."@[2726,36555,62867][0,0,0]
@File Copy@stimeline.macb ==
".ACB"@[3214,16709,63538][64635,62207,62207]
@File Access@stimeline.macb == ".A.."@[6973,63545,60879][0,0,0]
@File Modify@stimeline.macb ==
"M..."@[63993,60242,2992][2514,2489,2155]
@File Creation@stimeline.macb ==
"MACB"@[1953,60103,5529][1404,3277,1508]
@File Deletion@stimeline.macb ==
"...."@[56364,6000,6000][3553,1732,1732]

SANS FOR 508 Linux Timestamp Rules
DO NOT EDIT THIS FILE! It was created by Wireshark
@File Creation@stimeline.macb == "MAC."@[3201,63881,3034][0,0,0]
@File Modify@stimeline.macb == "M.C."@[58230,44528,5213][0,0,0]
@File Access@stimeline.macb == ".A.."@[63585,60199,5461][0,0,0]
@File Copy@stimeline.macb == "MAC."@[7422,58335,59580][0,0,0]
@File Move/Delete@stimeline.macb ==
"..C."@[9027,13069,58214][63724,63118,63118]

Rob Lee Super Timeline Colorization Rules
DO NOT EDIT THIS FILE! It was created by Wireshark
@Log File@stimeline.srctype contains "Log" || stimeline.srctype
contains "XP Firewall Log"@[53778,55283,55516][0,0,0]
@Folder Opening@stimeline.short contains "ShellNoRoam/Bags" ||
stimeline.short contains "BagMRU"@[9626,31311,16693][62139,61532,61532]
@Device/USB Usage@stimeline.desc matches "drive mounted$" ||
stimeline.type contains "Drive Last Mounted" || stimeline.short matches
"drive mounted$" || stimeline.srctype contains "SetupAPI log" ||
stimeline.short contains "RemovableMedia" || stimeline.short contains
"STORAGE/RemovableMedia" || stimeline.short contains "USB" ||
stimeline.short contains "/USB/Vid_" || stimeline.short contains
"Enum/USBSTOR/Disk&Ven_" || stimeline.short contains "volume mounted"
|| stimeline.srctype == "MountPoints2 key"
@[8268,2592,64588][63724,63118,63118]
@Execution@stimeline.desc matches "^Typed the following cmd" ||
stimeline.type contains "CMD Typed" || stimeline.srctype contains
"RunMRU key" || stimeline.short contains "RunMRU" || stimeline.short
contains "UEME_RUNPIDL" || stimeline.desc contains ".pf" ||
stimeline.type contains "Last run" || stimeline.short contains
"MUICache" || stimeline.src == "PRE" || stimeline.srctype ==
"UserAssist key" || stimeline.type == "Time of Launch" ||
stimeline.short contains "UEME_" || stimeline.srctype contains

Forensic Timeline Analysis using Wireshark 5
3

David R. Fletcher Jr., david.fletcher.6@us.af.mil

"PreFetch" || stimeline.srctype == "XP Prefetch" || stimeline.short
contains "UEME_RUNPATH" || stimeline.fname contains ".pf" ||
stimeline.short contains "was executed" || stimeline.short contains
".pf" @[62354,1067,1067][0,0,0]
@Deleted Data@stimeline.desc matches "^.DELETED" || frame contains
"RECYCLE" || stimeline.short contains "DELETED" || stimeline.srctype ==
"Deleted Registry" || stimeline.srctype ==
"$Recycle.bin"@[2114,2114,2114][65006,65006,65006]
@File Opening@stimeline.desc contains "URL:file:///" || frame contains
"LNK" || stimeline.short contains "opened by" || stimeline.short
matches "^URL:file:///" || stimeline.short contains "CreateDate" ||
stimeline.short contains "visited file://" || frame contains ".lnk" ||
stimeline.short contains "recently opened file" || stimeline.desc
matches "^Recently opened file of extension" || stimeline.type contains
"File Opened" || stimeline.srctype == "RecentDocs key" ||
stimeline.type contains "Folder Opened"@[35232,63873,790][0,0,0]
@Web History@stimeline.srctype contains "Firefox 3 history" ||
stimeline.src == "WEBHIST" || stimeline.srctype == "Internet Explorer"
|| stimeline.desc matches "^URL" || stimeline.type contains "URL" ||
stimeline.desc contains "http://" || stimeline.desc contains "LSO" ||
stimeline.type contains "LSO" || stimeline.srctype contains "LSO" ||
stimeline.srctype contains "Flash cookie" || stimeline.src contains
"LSO" || stimeline.short contains "visited" || stimeline.short contains
"URL" || stimeline.short matches "^Flash Cookie"
@[61699,46758,3924][0,0,0]

Forensic Timeline Analysis using Wireshark 5
4

David R. Fletcher Jr., david.fletcher.6@us.af.mil

Appendix F

Stored Timeline Analysis Filters

Stored Display Filters FOR 508 $STDINFO Timestamp Rules
Timeline - NTFS Operations - Lee
"File Volume Move" stimeline.macb == ".AC."
"File Rename/Local Move" stimeline.macb == "..C."
"File Copy" stimeline.macb == ".ACB"
"File Access" stimeline.macb == ".A.."
"File Modify" stimeline.macb == "M..."
"File Creation" stimeline.macb == "MACB"
"File Deletion" stimeline.macb == "...."

Stored Display Filters FOR 508 Ext2/3/4 Timestamp Rules
Timeline - Linux Operations - Lee
"File Creation" stimeline.macb == "MAC."
"File Modify" stimeline.macb == "M.C."
"File Access" stimeline.macb == ".A.."
"File Copy" stimeline.macb == "MAC."
"File Move/Delete" stimeline.macb == "..C."

Stored Display Filters Rob Lee Excel Analysis
Activity based analysis
"Logging Evidence" stimeline.srctype contains "Log" ||
stimeline.srctype contains "XP Firewall Log"
"Web History" stimeline.srctype contains "Firefox 3 history" ||
stimeline.src == "WEBHIST" || stimeline.srctype == "Internet Explorer"
|| stimeline.desc matches "^URL" || stimeline.type contains "URL" ||
stimeline.desc contains "http://" || stimeline.desc contains "LSO" ||
stimeline.type contains "LSO" || stimeline.srctype contains "LSO" ||
stimeline.srctype contains "Flash cookie" || stimeline.src contains
"LSO" || stimeline.short contains "visited" || stimeline.short contains
"URL" || stimeline.short matches "^Flash Cookie"
"Device/USB Storage" stimeline.desc matches "drive mounted$" ||
stimeline.type contains "Drive Last Mounted" || stimeline.short matches
"drive mounted$" || stimeline.srctype contains "SetupAPI log" ||
stimeline.short contains "RemovableMedia" || stimeline.short contains
"STORAGE/RemovableMedia" || stimeline.short contains "USB" ||
stimeline.short contains "/USB/Vid_" || stimeline.short contains
"Enum/USBSTOR/Disk&Ven_" || stimeline.short contains "volume mounted"
|| stimeline.srctype == "MountPoints2 key"
"Folder Opening" stimeline.short contains "ShellNoRoam/Bags" ||
stimeline.short contains "BagMRU"
"File Opening" stimeline.desc contains "URL:file:///" || frame contains
"LNK" || stimeline.short contains "opened by" || stimeline.short
matches "^URL:file:///" || stimeline.short contains "CreateDate" ||
stimeline.short contains "visited file://" || frame contains ".lnk" ||
stimeline.short contains "recently opened file" || stimeline.desc
matches "^Recently opened file of extension" || stimeline.type contains

Forensic Timeline Analysis using Wireshark 5
5

David R. Fletcher Jr., david.fletcher.6@us.af.mil

"File Opened" || stimeline.srctype == "RecentDocs key" ||
stimeline.type contains "Folder Opened"
"Execution Evidence" stimeline.desc matches "^Typed the following cmd"
|| stimeline.type contains "CMD Typed" || stimeline.srctype contains
"RunMRU key" || stimeline.short contains "RunMRU" || stimeline.short
contains "UEME_RUNPIDL" || stimeline.desc contains ".pf" ||
stimeline.type contains "Last run" || stimeline.short contains
"MUICache" || stimeline.src == "PRE" || stimeline.srctype ==
"UserAssist key" || stimeline.type == "Time of Launch" ||
stimeline.short contains "UEME_" || stimeline.srctype contains
"PreFetch" || stimeline.srctype == "XP Prefetch" || stimeline.short
contains "UEME_RUNPATH" || stimeline.fname contains ".pf" ||
stimeline.short contains "was executed" || stimeline.short contains
".pf"

