
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Windows Forensic Analysis (Forensics 500)"
at http://www.giac.org/registration/gcfe

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfe

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System

GIAC (GCFE) Gold Certification

Author: Ramprasad Ramshankar, ramprasad.ramshankar@gmail.com
Advisor: Christopher Walker, CISSP, GSEC, GCED, CCISO, CISA

Accepted: January 27, 2021

Abstract

EFS or the Encrypting File System is a feature of the New Technology File System
(NTFS). EFS provides the technology for a user to transparently encrypt and decrypt
files. Since its introduction in Windows 2000, EFS has evolved over the years. Today,
EFS is one of the building blocks of Windows Information Protection (WIP) - a feature
that protects against data leakage in an enterprise environment (DulceMontemayor et al.,
2019). From the attacker’s perspective, since EFS provides out-of-the-box encryption
capabilities, it can also be leveraged by ransomware. In January 2020, SafeBreach labs
demonstrated that EFS could be successfully used by ransomware to encrypt files and
avoid endpoint detection software (Klein A., 2020). The purpose of this paper is to
provide security professionals with a better understanding of artifacts generated by EFS
and recovery considerations for EFS encrypted files.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 2

Author Name, email@address

1. Introduction
In Windows 2000, Microsoft introduced built-in technologies that provided

encryption of data in transit (IPSec) and data at rest (EFS) (Syngress, 2003). The EFS
technology provides the capability for transparent encryption and decryption of files in an
NTFS volume. Support for EFS has been built into NTFS starting from version 3.0 and
above. The functionality provided by EFS differs from Bitlocker. Bitlocker, introduced in
Windows Vista, provides volume level encryption capabilities whereas EFS provides
encryption at the file content level.

EFS encryption is applicable to files as well as directories. When a directory is
encrypted, all the files created inside that directory will automatically get encrypted. In
the context of this paper, references to the term “files” also include directories. As a
relevant aside, EFS and file-system compression are mutually exclusive. If a file is EFS
encrypted then it cannot be compressed natively by NTFS and vice-versa.

To encrypt a file with EFS, Windows provides three options: the Windows GUI,
the cipher command-line tool, and the Windows API. Through the Windows GUI, “users
can encrypt files via Windows Explorer by opening a file’s Properties dialog box,
clicking Advanced, and then selecting the Encrypt Contents To Secure Data option.”
(Russinovich M. et al., 2012). The cipher is a built-in command-line tool that provides
various options to create and manage EFS encrypted files (eross-msft et al., 2017).
Notable are the /e and /d options that help to encrypt and decrypt files, respectively. The
Windows API also provides a range of functions defined in Winbase.h (Winbase.h
header, 2019) and Winefs.h (Winfesh.h, 2019) to programmatically work with EFS. The
EFS service, hosted by the Local System Authority Sub-system (LSASS) process,
transparently orchestrates all the related encryption/decryption operations.

EFS is also configurable through Group Policy. The MS-GPEF specification from
Microsoft details the group policy settings that are available from enabling/disabling EFS
to defining file recovery policies (Openspecs-office, 2018a)

Technically, EFS uses a combination of symmetric and asymmetric key
cryptography to achieve file encryption/decryption. “Symmetric encryption algorithms
are typically very fast, which makes them suitable for encrypting large amounts of data
such as file data” (Russinovich M. et al.,2012). EFS, therefore, uses symmetric key
algorithms (Openspecs-Office, 2018b) such as Advanced Encryption Standard (AES)
and Triple Data Encryption Standard (3DES) to generate a per-file random key also
called the File Encryption Key (FEK). Since the FEK is symmetric it can both encrypt
and decrypt the contents of the file.

Anyone with access to a file’s FEK will be able to decrypt the file contents,
therefore the FEK must be protected such that only authorized user(s) will have access to
it. EFS achieves FEK protection through the use of asymmetric key algorithms such as
RSA (Rivest-Shamir-Adleman) and ECC (Elliptic Key Cryptography). Asymmetric
algorithms generate keys in pairs called the private key and the public key (Lastnaheholiu

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 3

Author Name, email@address

et al., 2018b). When a piece of data is encrypted with a public key, it can only be
decrypted with the corresponding private key and vice-versa.

EFS generates a public/private key-pair at the user level to protect the FEK. The

user’s public key is used to encrypt the FEK. “The source of the public key may be
administratively specified to come from an assigned X.509 certificate or a smartcard or
randomly generated” (Russinovich M. et al., 2012). This encrypted version of the FEK
(EFEK) is stored as part of the encrypted file itself.

During decryption, the user’s private key is essential to decrypt the EFEK. This

private key is protected by a mechanism called Data Protection Application Programming
Interface or DPAPI (Burzstein et al., 2010). The use of DPAPI ensures that the private
key and the encrypted file are accessible only by an authorized user.

This paper explores the workings of EFS based on the outline provided above.

The focus will be on-disk and in-memory artifacts generated by EFS.

2. Objective
The objective of this paper is to gain a practical understanding of EFS from a

digital forensics perspective. There are three goals defined in this objective. The first goal
is to study changes to an NTFS volume when a file gets encrypted. The second is to
observe changes to a file’s internal structures before and after encryption. The last goal is
to put together this information to understand file recovery in EFS.

3. Methodology
The Update Sequence Number (USN) Journal is used to observe volume level

changes during EFS encryption. The USN Journal is a per-volume file maintained by
NTFS to record changes to files and directories in a volume (Mikeben et al., 2018a). The
changes recorded in USN Journal will be in binary format and can be queried using the
fsutil command-line tool (Toklima et al., 2018).

The Master File Table (MFT) is used to observe changes to a file’s internal data

structures during encryption. The MFT is one of the core files in NTFS. All the files in an
NTFS volume have at least one entry in the MFT (Mikeben et al., 2018b), also called the
file’s MFT record. In exceptional cases a file can have multiple MFT records. These
cases are outside the scope of this study. A comparison of a file’s MFT record before
and after encryption provides an understanding of EFS’ workings.

This paper also makes references to registry keys used by EFS. These keys are

identified using the Process Monitor tool from SysInternals (Russinovich M., 2020a).
Process Monitor is used to monitor the registry changes made by lsass.exe – the

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 4

Author Name, email@address

process that hosts the EFS service and mmc.exe – the process that writes group policy
changes to the registry.

The tests related to this research are conducted in a Windows 10 standalone

Virtual machine. The version of Windows used is 20H2 (determined by the winver
command), and the version of NTFS is 3.1 (determined by running fsutil fsinfo ntfsinfo
c:).

4. Volume Analysis
4.1. Approach

The approach taken for volume analysis is to review the USN journal changes
when encrypting a plain text file. The file used for this example is
“C:\Users\test\Documents\file.txt”. This file is owned by the user “test” and is the first
file in the “test” user’s account to be encrypted with EFS.

Following is the summary of the volume level changes of encrypting a plain-text

file. The detailed procedure is given in the author’s blog (Diyinfosec, 2021a):
• A file named EFS0.LOG file is created in the "C:\System Volume Information"

directory.
• The private and public key pairs are generated for the “test” user. The key pairs

are stored in a file under the user profile inside the
"%APPDATA%\Microsoft\Crypto\RSA\<SID>" directory.

• A certificate is created for the key pair in the
"%APPDATA%\Microsoft\SystemCertificates\My\Certificates" of the user
profile.

• A file named EFS0.TMP is created in the directory containing the plain text file-
(C:\Users\test\Documents in our case). The EFS0.TMP acts as a placeholder for
the plain text data as it gets encrypted. The EFS0.TMP is a hidden file owned by
SYSTEM.

• The plain text file is marked as Encrypted.
• The encrypted content is written back to the plain text file (file.txt) effectively

making it an encrypted file.
• EFS0.TMP file is cleared.
• EFS.LOG file is cleared.

The next section goes into the details of the above listed artifacts, their structure,

and analysis.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 5

Author Name, email@address

4.2. Artifact Analysis
4.2.1. The EFS0.LOG file
EFS0.LOG is used to record the events during the encryption process (Syngress,

2003). This file is owned by SYSTEM and gets created under the “System Volume
Information” directory of the volume containing the plain-text file. The EFS0.LOG gets
removed after encryption. In the case of encrypting multiple files, the EFS0.LOG is
created separately for each file (i.e., it does not get appended).

The structure of the EFS0.LOG is not documented by Microsoft. As part of this
research, the log file was recovered using file recovery software (Active@ File Recovery,
n.d.), and a few of the fields in the log were identified as documented in Appendix A.

EFS log records can be carved out from unallocated space in the volume. A

Python script to carve the EFS log records is provided in author’s Github page
(diyinfosec, 2020d). During testing, between 1-3 copies of EFS log records were found
per encrypted file in the unallocated space. EFS log records can provide evidence of a
filename (with path) being present in an NTFS volume even if the file itself has been
removed and its MFT record has been reused.

4.2.2. The Key-pair file
The EFS key-pair and its corresponding certificate (covered in the next section)

are always generated together. Depending on the group policy settings, they can be
generated on the domain controller or the local machine (Syngress, 2003). This research
only covers locally generated key-pair files and self-signed certificates.

The key-pair/certificate is created at a user level, typically only once, i.e., when
the user encrypts a file for the first time. Any files subsequently encrypted by that user
can use the same public key to encrypt the FEK (which changes for every file) and the
private key to decrypt the FEK.

EFS supports RSA and ECC algorithms for key-pair generation. The EFS Group

policy settings determine the choice of algorithm and the length of the key (Openspecs-
office, 2018c). The default algorithm used is RSA with a 2048-bit key.

The key-pair file is created under the
"%APPDATA%\Microsoft\Crypto\RSA\<SID>" directory when RSA is used and under
the "%APPDATA%\Microsoft\Crypto\Keys" directory when ECC is used.

Structurally the key-pair file has three elements - public key properties, private

key properties, and an export flag. The public key properties are in clear text, whereas
the private key properties and export flag are stored as DPAPI blobs. DPAPI ensures that
only an authorized user will have access to the private key. The structure of the key-pair
file is detailed further in Appendix B.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 6

Author Name, email@address

4.2.3. The Certificate file
The EFS certificate file is stored in the

"%APPDATA%\Microsoft\SystemCertificates\My\Certificates" directory. This
certificate acts as the binding between the user, the EFS key-pair, and the encrypted file.
If the certificate file is deleted from the disk, the EFS encrypted files will no longer be
accessible. The structure of the EFS certificate file is detailed in Appendix C.

A user can create a new EFS certificate and key-pair by using the cipher /k

command. Any file subsequently encrypted by EFS will use the new certificate. If a user
needs to use the new key-pair for already encrypted files, they can do so using the cipher
/u command.

The thumbprint of the current EFS certificate is stored in the registry under

HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\EFS\CurrentKeys. This
thumbprint can also be viewed using the cipher /Y command.

4.2.4. The EFS0.TMP file
Before a file is encrypted, its plain-text contents are copied onto a temporary file

named EFS0.TMP. This is a hidden file owned by SYSTEM (Syngress, 2003) and is
created in the same directory of the file being encrypted. The EFS0.TMP is removed once
encryption completes.

When encrypting multiple files in a directory, the encryption proceeds
sequentially, one file at a time. Therefore the EFS0.TMP is created and removed for each
file getting encrypted. The only case where EFS0.TMP does not get created is when
encrypting a zero-byte file.

An implication of the EFS0.TMP file is the additional space requirement when
encrypting a file. For example, when a 500MB file is encrypted, the volume must have at
least 500MB of free space. This free space allows EFS0.TMP to temporarily hold the
contents of the plaintext file.

If a file getting encrypted has alternate data streams (ADS), then the same is
reflected in the EFS0.TMP file as well. Figure 4-4 shows a file
(010EditorWin64Installer100.exe) encrypted using the cipher command. This file is
downloaded from the internet and therefore has an alternate data stream named
Zone.Identifier (Openspecs-Office,2020a). The Zone.Identifier stream is also replicated
in EFS0.TMP as seen from the output of the fls command in The Sleuth Kit toolset
(Carrier B., n.d.)

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 7

Author Name, email@address

Figure 4-4: Illustrating EFS0.TMP creation with Alternate Data Streams

5. File Structure Analysis

5.1. Approach
File structure analysis involves studying a file’s structure in the MFT before and

after it is encrypted. To do this the mft2json tool is used (diyinfosec, 2020a). Mft2json is
a Python-based tool created by the author. The tool reads a file’s MFT record and prints it
in JSON format. The JSON format allows easy inspection of changes to a file’s MFT
record. To ensure the accuracy of results, the findings are also verified by analyzing the
MFT record with a disk editor (Active@ disk editor, n.d.)

A file in NTFS is a collection of attributes (NTFS File Types, n.d.). Each attribute
holds a particular type of information about a file like timestamps, content, etc. An
attribute structure has a header and a body. An attribute can either have a name or be
unnamed. An MFT record is 1024 bytes in size. If an attribute can fit entirely inside a
MFT record, this is called a resident attribute. If the contents of an attribute cannot fit
inside a MFT record, there will be pointers from the MFT record referring to the clusters
where the attribute information is stored. These attributes are called non-resident
attributes.

The upcoming section will walk through attributes commonly found in an
encrypted file and the changes to these attributes before and after encryption.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 8

Author Name, email@address

5.2. File Attribute Changes
5.2.1. The STANDARD_INFO attribute
Figure 5-1 shows a side-by-side comparison of the mft2json output of a file’s

STANDARD_INFO attribute before and after encryption. There are no changes to the
attribute header during encryption and three changes inside the attribute body.

The first is the change of metadata time (si_ctime). This corresponds to the file
encryption time. The second is the change to the access time (si_atime). The access time
is in line with the encryption time. Though disabled in Windows 10 until version 19H2,
access time updates appear to be on by default from Windows 10 version 20H1
(Suhanov, 2020). The third change is the file permissions (si_dos_perms) updated from
“Normal” to “Archive|Encrypted”.

Figure 5-1: The MFT STANDARD_INFORMATION attribute of a file before/after
encryption

5.2.2. The FILE_NAME attribute
There are no changes to the FILE_NAME attribute during file encryption.

However, if a file is created inside an encrypted directory then the FILE_NAME attribute
will have the same contents as the STANDARD_INFORMATION attribute.

5.2.3. The DATA attribute
The DATA attribute holds the contents of the file. It is the body of the DATA

attribute that gets encrypted by EFS. If a file has multiple DATA attributes or Alternate
Data Streams, all the data streams get encrypted.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 9

Author Name, email@address

Figure 5-2 shows the results of encrypting a resident DATA attribute. The data
attribute header contains a flag (attr_flags) to indicate that its contents are encrypted
(Russon R., n.d.).

Before encryption, this attribute was resident in the MFT. This can be inferred by
the non-resident flag (attr_non_res_flg) being set to 0. Additionally, the file’s content can
be seen inside the attribute body (attr_body). The hex value
“456E6372797074205468697321” corresponds to plain text “Encrypt This!”.

After encryption the DATA attribute becomes non-resident. The attr_non_res_flg
now has a value of 1 and attribute body (attr_body) contains an offset to encrypted
content.

The DATA attribute of an encrypted file will always have the non-resident flag
set to 1. This holds true even when encrypting a zero-byte file. However, a zero-byte file
does not have any clusters allocated on the disk even though the data attribute has the
resident flag set to 1.

Figure 5-2: The MFT DATA attribute of a resident file before/after encryption

Another noteworthy mention here is that EFS encryption happens at the cluster

level. In this example, the plain text is 13 bytes long (attr_real_size). However, when
looking at the cluster contents through Active@ Disk Editor, the entire cluster (4096
bytes in this case) was encrypted instead of just the 13 bytes of data.

Cluster-level encryption is an important factor to consider during file
decryption/recovery. The Sleuth Kit tool icat only dumps the content of an attribute based
on the real size (attr_real_size) and not the entire cluster. The author has raised an issue

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 10

Author Name, email@address

in the SleuthKit project to fix this behavior, i.e., when icat dumps an encrypted attribute it
should dump the last cluster entirely instead of rounding off to the real size found in the
attribute header (diyinfosec,2020b)

5.2.4. The LOGGED_UTILITY_STREAM

Figure 5-3: The MFT LOGGED_UTILITY_STREAM attribute of a file, created
after EFS encryption.

The LOGGED_UTILITY_STREAM is a new attribute that gets created and

added to a file during encryption. As seen in Figure 5-3, this attribute is always non-
resident (attr_non_res_flg is 1) and has the name “$EFS” (attr_name). The body of this
attribute will be referred to below as “EFS Stream”.

The EFS stream contains information to decrypt the file’s DATA attribute(s). This
information can be partially queried with the cipher /c <filename> command or by using
the Efsdump tool from SysInternals (Russinovich M., 2006).

The EFS stream contains variable-sized records called Data Decryption Fields
(DDF) or Data Recovery Fields (DRF). An EFS encrypted file will have at least one
DDF record corresponding to the user that encrypted the file. If multiple users have

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 11

Author Name, email@address

access to this file, then each user gets their own DDF record. A DRF record is created
only if a recovery agent is configured for EFS. The structure of the EFS stream is detailed
in Appendix D.

Inside a DDF record, there is the information required by EFS to decrypt the file.
This includes, among other fields, the username, the user’s public key thumbprint, and
the EFEK. The DRF record contains similar information as a DDF but is intended for use
by recovery agents.

During decryption, NTFS will need to parse the $EFS stream, extract the EFEK
corresponding to the user, obtain the protected private key from the key-pair file,
unprotect the private key using DPAPI, use the private key to decrypt the EFEK, and get
the FEK. Finally, this FEK can be used to decrypt the contents of the DATA attribute(s).

5.3. Other Considerations

This section adds additional observations related to EFS encryption.

5.3.1. Directory Encryption
When a directory is marked as “encrypted” then all the files created in that

directory are automatically encrypted. An encrypted directory also has a $EFS attribute
and even a FEK. But the directory’s FEK does not appear to serve any purpose. All the
files inside the directory have their own unique FEKs.

5.3.2. Sparse files
When a sparse file is encrypted, the clusters marked as sparse are actually

allocated on the disk and, then those clusters are encrypted. This results in a file
effectively losing its sparseness. Interestingly, an encrypted sparse file is still marked as
sparse (as queried using fsutil sparse queryFlag <filename>) even though all the clusters
are allocated on disk during encryption.

6. File Recovery in EFS
The focus of this section is to outline recovery options for EFS encrypted files.

Three types of recovery options are discussed here: Plain Text Recovery, Private Key
Recovery, and FEK Recovery.

6.1. Plain Text Recovery
This section discusses approaches and considerations for the recovery of plaintext

content of EFS encrypted files either in part or full.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 12

Author Name, email@address

6.1.1. Recovery using an EFS Recovery Agent
The simplest way to recover EFS encrypted files is to use the built-in agent-based

recovery feature (Deland-Han et al., 2020a). If a recovery agent is configured, the FEK is
also encrypted with the public key of the recovery agent and added to the $EFS stream.
The private key of the recovery agent can be stored separately and used during recovery.
The cipher /r command can be used to generate an EFS recovery key. The recovery key
can be exported as a PFX archive (eross-msft, 2017) and added as a recovery agent via
Group Policy.

6.1.2. Recovery from MFT Slack
The hypothesis here is that MFT record slack of a resident file might contain

remnants of the plain-text contents after the file is encrypted. To test this hypothesis, a
small plain-text file (468 bytes) was created, and then the file was encrypted using the
cipher /e command. Figure 6-1 shows the results of the test. We can see that the MFT
record slack space gets over-written with null bytes (0x00) during EFS encryption.
Therefore, we can conclude that recovery of plain text from MFT slack is not possible.

Figure 6-1: Comparing the MFT record of a resident file before/after encryption.

6.1.3. Recovery from Application temp files
There are file editing applications like Microsoft Word that create temporary

copies of a file in the same directory before saving it (Microsoft Support,2020a). These
applications might create a clear text temporary file when before saving an EFS
encrypted file. This temporary file can be easily recovered using The Sleuth Kit or other

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 13

Author Name, email@address

file recovery software. This problem does not exist if the directory containing the file is
encrypted because then the temporary file is also encrypted by default.

This limitation is not a flaw in EFS but rather an exposure introduced by
applications that are not EFS-aware. An example of an EFS aware application is
Microsoft Office 2019 Professional. Word 2019 creates encrypted temporary files even if
the directory itself is not marked as encrypted.

To avoid this type of file recovery, EFS provides a warning when encrypting only
a file instead of encrypting the entire directory.

Figure 6-2: EFS warning about application behavior during encryption

6.1.4. Recovery from the EFS0.TMP file
Some of the unofficial NTFS documentation (Issues with EFS., n.d.) mentions

that plain-text recovery is possible by recovering the EFS0.TMP file from the unallocated
space. However, in NTFS version 3.1, the EFS0.TMP is always fully over-written with
null bytes (0x00). Therefore plain-text recovery using EFS0.TMP is not possible in
NTFS version 3.1.

6.1.5. Recovery from NTFS $LogFile
The NTFS journaling file or the $LogFile is used to recover the file system during

a system crash or power failure (Cho G., Rogers M., 2012). The log file contains multiple
entries or log records. A log record contains, among other fields, an operation code, an
undo entry and a redo entry.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 14

Author Name, email@address

When a MFT resident file is encrypted, there is an entry created in the log file for
the DeleteAttribute Operation (Operation Code: 0x06). This entry contains the plaintext
contents of the file. After encryption, the original plaintext contents can be recovered by
searching the $LogFile for the DeleteAttribute operation (0x06) and the DATA attribute
type (0x80).

There are a few caveats to this approach. Firstly, this approach only works for
resident plain-text files that are subsequently encrypted. Secondly, the $LogFile entries
can get overwritten during normal file system operation. Additionally, running the cipher
/w command to cleanup unallocated space (Deland-Han et al., 2020a) can also hasten the
overwriting of data in the $LogFile.

Figure 6-3 – The NTFS $LogFile showing contents of a MFT resident file.

6.1.6. Hypothesizing with file metadata
EFS encrypts only the DATA attribute of a file. Other identifying information

about the file, such as the filename, timestamps, and size, is still in cleartext. Even if
content recovery is not possible, contextual inferences can be made from the file
metadata.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 15

Author Name, email@address

6.2. Private Key Recovery
The EFS private key does not directly provide access to an EFS encrypted file,

but it can be used to decrypt the EFEK, obtain the FEK, and use the FEK to decrypt the
file.

6.2.1. Extracting private key from the DPAPI blob
As discussed in the section “The Key-pair file”, the EFS private key is stored as a

DPAPI blob in a file inside the user’s APPDATA directory. The full workings of DPAPI
are outside the scope of this paper. However, the relevant parts are explained below.

A DPAPI blob is encrypted with a symmetric key known as Master Key
(Grafnetter M., 2020). The Master Key related to a user is stored as a file in the
C:\%APPDATA%\Microsoft\Protect\<SID>\ directory. There can be multiple Master
Keys for the user in this directory (Picasso F., 2014).

The Master Keys in turn are protected by a pre-key derived from the user’s
password. If the user’s password can be obtained through either social engineering/brute-
forcing etc., then the password can be used to generate the pre-key and the pre-key can be
used to decrypt the Master Key file. The mimikatz tool (Gentilkiwi, n.d.) can perform
offline decryption of the DPAPI blob and obtain the EFS private key. The overview of
the steps will be:

1. Extract all the available Master Keys

The below mimikatz command needs to be run for every Master Key file
available in the %APPDATA%\Microsoft\Protect directory. The output of this
command (given the correct user password) will be a Master Key.

dpapi::masterkey
/in:"C:\%APPDATA%\Microsoft\Protect\<SID>\<filename>"
/password:<user_password>

Alternately, the lsass.exe memory also holds a copy of all the Master Keys.
These can be carved from lsass.exe using the mimikatz command
“privilege::debug sekurlsa::dpapi dapapi::cache”. For domain-joined users,
the Domain Backup Key from Active Directory can also decrypt the Master
Key (Grafnetter M., 2015).

2. Use the Master Key to decrypt the private key DPAPI blob

The EFS private key files are found in either the
"%APPDATA%\Microsoft\Crypto\RSA\<SID>" or the
"%APPDATA%\Microsoft\Crypto\Keys" directories. To obtain the private
key with the Master Key the following mimikatz command can be used

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 16

Author Name, email@address

(Delpy B., 2017). Once the Master Keys are obtained, they can be iteratively
tried to decrypt the EFS private key using the below mimikatz command.
dpapi::capi /in:"C:\path\to\private\key\file " /masterkey:<masterkey>

6.2.2. Extracting private key from the EFSUI process
efsui.exe is a process started under lsass.exe that generates a prompt for the user

to back up their EFS certificate. The efsui.exe allows a user to export their EFS certificate
and the corresponding private key as a Publisher Information Exchange (PFX) file.
Theoretically, the EFS private key should be recoverable by carving the memory of the
efsui.exe process. Further research is needed to establish how the private key is stored
inside the efsui.exe process memory.

6.2.3. Next Steps after obtaining the private key
Obtain the EFEK by parsing the $EFS attribute of the encrypted file (Appendix

B-4). Decrypt the FEK using the private key. Use the FEK to decrypt the file contents. A
walkthrough of decrypting an EFS encrypted file is available on the author’s Github page
(diyinfosec, 2020c).

6.3. FEK Recovery
Obtaining the FEK allows us to directly decrypt an EFS encrypted file. This

research identifies two areas in memory where the FEKs can be found. The first is the
kernel memory, and the second is the process memory of lsass.exe.

6.3.1. FEK recovery from Kernel Memory
The approach to identify FEK in kernel memory is documented in the author’s

blog (Diyinfosec,2021b), and only the results are mentioned here. FEKs can be found in
the non-paged pool region of the kernel memory. The kernel data structure containing the
FEK is identifiable by the pool tag "Efsm".

EFS FEKs are recoverable by scanning the memory for Efsm pool tags. These
keys are written to Efsm pool objects during EFS encryption and will be lost when the
host is shutdown/rebooted.

6.3.2. FEK recovery from lsass.exe
When an encrypted file is opened, it’s FEK is also loaded into the memory of the

lsass.exe process. The in-memory structure of the FEK is documented in the EFSRPC
protocol specifications (Openspecs-office, 2018e). It should be straightforward to carve
FEKs from lsass.exe memory based on this structure. The cipher /flushcache command
clears the FEK from lsass.exe memory if the corresponding file is no longer open.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 17

Author Name, email@address

6.3.3. Next Steps after obtaining the FEK
The challenge with obtaining the FEK from memory is that there is no clear

attribution between the FEK and the encrypted file. So the FEKs got using this approach
will have to be iteratively tried over all the EFS encrypted files in that host to check for
successful decryption. Once the FEK is obtained it can be used to decrypt a file. A
walkthrough of decrypting an EFS encrypted file is available on the author’s Github page
(diyinfosec, 2020c).

7. Conclusions
EFS is a robust system that provides transparent encryption/decryption of files in

an NTFS volume. EFS relies on the security of the user’s password to protect the private
key, which in turn protects the File Encryption Key.

This research has documented the structure and purpose of the artifacts generated
during EFS encryption from a digital forensics perspective. This has yielded a new
approach to identify the file name and path of deleted EFS encrypted files. Additionally,
a couple of techniques to identify EFS file encryption keys in memory have been
outlined.

There is potential for further research in EFS, especially around key recovery
from memory and the forensic artifacts generated by EFS when used with Windows
Information Protection (WIP).

8. References
Active@ disk editor. (n.d.). Active@ Disk Editor - Freeware Hex Viewer & Hex Editor

for raw sectors/clusters. https://www.disk-editor.org/index.html

Active@ File Recovery (n.d.). LSoft Technologies - Data Security, Data Backup, Data
Recovery, Industrial Solutions. https://www.lsoft.net/file-recovery/

Bruno (2014, April 30) How to get SSL-certificate sha1 fingerprint? Stack Overflow.
https://stackoverflow.com/questions/23371619/how-to-get-ssl-certificate-sha1-
fingerprint

Burzstein E., Picod J. (2010). Recovering Windows Secrets and EFS Certificates Offline

https://www.usenix.org/legacy/event/woot10/tech/full_papers/Burzstein.pdf

Carrier B. (n.d.) The sleuth kit.

https://www.sleuthkit.org/sleuthkit/

Cho G., Rogers M. (2012, January) Finding forensic information on creating a folder in
$LogFile of NTFS. ResearchGate.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 18

Author Name, email@address

https://www.researchgate.net/publication/288987157_Finding_Forensic_Informat
ion_on_Creating_a_Folder_in_LogFile_of_NTFS

Colridge R. (1996, August 19). The Cryptography API, or How to Keep a Secret.

Developer tools, technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/previous-versions/ms867086(v=msdn.10)

Deland-Han, xl989, simonxjx (2020, September 8). Back up recovery agent EFS private

key - Windows Server. Developer tools, technical documentation and coding
examples | Microsoft Docs. https://docs.microsoft.com/en-
us/troubleshoot/windows-server/identity/back-up-recovery-agent-efs-private-key

Deland-Han, xl989, simonxjx (2020b, September 8). Use Cipher.exe to overwrite deleted

data - Windows Server. Developer tools, technical documentation and coding
examples | Microsoft Docs. https://docs.microsoft.com/en-
us/troubleshoot/windows-server/windows-security/use-cipher-to-overwrite-
deleted-data

Delpy B. (2017, October 8). GitHub. https://github.com/gentilkiwi/mimikatz/wiki/howto-

~-decrypt-EFS-files

diyinfosec (2019, December 23). diyinfosec/010-Editor. GitHub.

https://github.com/diyinfosec/010-
Editor/blob/master/WINDOWS_CERTIFICATE_BLOB.bt

diyinfosec (2020a, October 29). diyinfosec/mft2json. GitHub.

https://github.com/diyinfosec/mft2json

diyinfosec (2020b, January 26). [NTFS - Encrypted Data attribute] icat should dump

entire cluster instead of using the init_size/real_size · Issue #1798 ·
sleuthkit/sleuthkit. GitHub. https://github.com/sleuthkit/sleuthkit/issues/1798

diyinfosec (2020c, March 27). YT_Exercises. GitHub.

https://github.com/diyinfosec/YT_Exercises/tree/master/NTFS_EFS_Decryption

diyinfosec (2020d, Oct 25). diyinfosec/efs_test. GitHub.

https://github.com/diyinfosec/efs_test/blob/main/efslog_extract.py

Diyinfosec. (2021a, January 27). Monitoring USN journal for changes. Medium.

https://diyinfosec.medium.com/monitoring-usn-journal-for-changes-
e72069b18441

Diyinfosec. (2021b, January 27). Scanning memory for FEK. Medium.

https://diyinfosec.medium.com/scanning-memory-for-fek-e17ca3db09c9

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 19

Author Name, email@address

DulceMontemayor, tiburd, VLG17, LauraKellerGitHub, garycentric, martyav, Dansimp,
imba-tjd, get-itips, Justinha, coreyp-at-msft, cloudhandler (2019, March 05).
Protect your enterprise data using Windows information protection (WIP).
Technical documentation, API, and code examples | Microsoft Docs.
https://docs.microsoft.com/en-us/windows/security/information-
protection/windows-information-protection/protect-enterprise-data-using-wip

eross-msft, john-par, mijacobs, coreyp-at-msft, b-r-o-c-k, lizap (2017, October 16).

Cipher. Developer tools, technical documentation and coding examples |
Microsoft Docs. https://docs.microsoft.com/en-us/windows-
server/administration/windows-commands/cipher

Gentilkiwi (n.d.). mimikatz. GitHub. https://github.com/gentilkiwi/mimikatz

Google (n.d.). rekall. GitHub. https://github.com/google/rekall

Grafnetter M. (2020, March 24) #CQLabs - Extracting roamed private keys from active

directory. CQURE Academy. https://cqureacademy.com/blog/extracting-roamed-
private-keys

Grafnetter M. (2015, October 26) Retrieving DPAPI backup keys from active directory –

Directory services internals. (n.d.). Directory Services Internals.
https://www.dsinternals.com/en/retrieving-dpapi-backup-keys-from-active-
directory/

Hao X. (2009, May 11) Attack Certificate-based Authentication System and Microsoft

InfoCard https://powerofcommunity.net/poc2009/xu.pdf

Issues with EFS. (n.d.). NTFS.com - Data Recovery Software, File Systems, Hard Disk

Internals, Disk Utilities. https://ntfs.com/issues-encrypted-files.htm

Ireland D. (2020, May 12). Padding schemes for block ciphers. CryptoSys cryptography

software tools for Visual Basic and C/C++/C# developers.
https://www.cryptosys.net/pki/manpki/pki_paddingschemes.html

juanlang et al. (2020, March 17). wine-mirror/wine. GitHub. https://github.com/wine-

mirror/wine/blob/master/include/wincrypt.h#L2426

Kexugit. (n.d.). Designing and implementing a PKI: Part III certificate templates.

Developer tools, technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/archive/blogs/askds/designing-and-
implementing-a-pki-part-iii-certificate-templates

NTFS File Types (n.d.) NTFS.com - Data Recovery Software, File Systems, Hard Disk

Internals, Disk Utilities. http://ntfs.com/ntfs-files-types.htm

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 20

Author Name, email@address

Karl-bridge-microsoft. (2018, December 05). Filetime (minwinbase.h) - Win32 apps.
Developer tools, technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/ns-
minwinbase-filetime

Klein A. (2020, January 21). EFS ransomware threat | SafeBreach labs. Breach and

Attack Simulation. https://safebreach.com/Post/EFS-Ransomware

Layout.h. (n.d.). Open Source - Releases. https://opensource.apple.com/source/ntfs/ntfs-
91.20.2/newfs/layout.h.auto.html

Lastnameholiu. (2018a, December 5). RSAPUBKEY structure (wincrypt.h) - Win32

apps. Developer tools, technical documentation and coding examples | Microsoft
Docs. https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-
wincrypt-rsapubkey

Lastnameholiu, drewbatgit, DCtheGeek, mijacobs, msatranjr (2018b, May 31)

Asymmetric Keys. Developer tools, technical documentation and coding
examples | Microsoft Docs. https://docs.microsoft.com/en-
us/windows/win32/seccrypto/public-private-key-pairs

Lastnameholiu, DCtheGeek, mijacobs, msatranjr (2018c, May 31). CNG DPAPI.

Developer tools, technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/windows/win32/seccng/cng-dpapi

Microsoft Support (2020a, November 20). Description of how Word creates temporary

files https://support.microsoft.com/en-ie/help/211632/description-of-how-word-
creates-temporary-files

Mikben, msatranjr (2018a, May 31). Change Journals. Developer tools, technical

documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-gb/windows/win32/fileio/change-journals

Mikben, DCtheGeek, drewbatgit, msatranjr (2018b, May 31). Master File Table (Local

File Systems). Developer tools, technical documentation and coding examples |
Microsoft Docs. https://docs.microsoft.com/en-us/windows/win32/fileio/master-
file-table

Openspecs-office. (2018a, September 12). [MS-GPEF]: Group policy: Encrypting file

system extension. Developer tools, technical documentation and coding examples
| Microsoft Docs. https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-gpef/14d3fd83-7537-41a2-af39-
8e52c19ef0e3

Openspecs-office. (2018b, September 12). [MS-EFSR]: ALG_ID. Developer tools,

technical documentation and coding examples | Microsoft

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 21

Author Name, email@address

Docs. https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-
efsr/4cc8e6ae-99aa-483e-99c1-ab4c0ee46294

Openspecs-office. (2018c, September 12). [MS-GPEF]: EFS additional options.

Developer tools, technical documentation and coding examples | Microsoft Docs
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-
gpef/cc14847c-7ba5-4c34-a12c-f167bdc54d1e

Openspecs-office. (2018d, September 12). [MS-EFSR]: Glossary. Developer tools,
technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-
efsr/230807ac-20be-494f-86e3-4c8ac23ea584

Openspecs-office. (2018e, September 12). [MS-EFSR]: Encrypted FEK. Developer tools,
technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-
efsr/00933615-c9cf-4d51-9d9a-bb3fb33a3560

Openspecs-office. (2020a, August 26). [MS-FSCC]: Zone.Identifier Stream Name.

Developer tools, technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-
fscc/6e3f7352-d11c-4d76-8c39-2516a9df36e8

Picasso F. (2014), give me the password and I’ll rule the world
https://digital-forensics.sans.org/summit-

archives/dfirprague14/Give_Me_the_Password_and_Ill_Rule_the_World_Frances
co_Picasso.pdf

Russinovich M. (2006, November 01). EFSDump - Windows Sysinternals. Developer

tools, technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/sysinternals/downloads/efsdump

Russinovich M., Solomon D, Ionsecu A. (2012). Windows Internals.6th Edition, Part 2.

Redmond, WA: Microsoft Press.

Russinovich M (2020a, September 17). Process Monitor - Windows Sysinternals.

Developer tools, technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Russon R. (n.d.). Attribute - Concept - NTFS Documentation. FlatCap.
https://flatcap.org/linux-ntfs/ntfs/concepts/attribute_header.html

Suhanov M. (2020 June 03). OneDrive and NTFS last access timestamps. My DFIR

Blog. https://dfir.ru/2020/05/23/onedrive-and-ntfs-last-access-timestamps/

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 22

Author Name, email@address

Syngress (2003, February 28). MCSE/MCSA Implementing and Administering Security
in a Windows 2000 Network (Exam 70-214) - 1st Edition.

Toklima, eross-msft, lizap, coreyp-at-msft (2018b, August 21). fsutil. Developer tools,

technical documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/fsutil

Winefs.h header (2019, January 11). Win32 apps. Developer tools, technical

documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/windows/win32/api/winefs/

Winbase.h header (2019, January 11). Win32 apps. Developer tools, technical

documentation and coding examples | Microsoft Docs.
https://docs.microsoft.com/en-us/windows/win32/api/winbase/

9. Appendix

9.1. Appendix A – Structure of the EFS0.LOG file
The EFS0.LOG file consists of a single EFS log record. The log record is a

variable length data structure that begins with the signature G.U.J.R (Unicode) or '4700
5500 4A00 5200' (Hex). Figure B1-1 shows the fields identified inside a log record.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 23

Author Name, email@address

Byte Range Structure Name Validity Notes
0-7 char Signature Valid G.U.J.R (Unicode)
8-11 uint32 Unknown 1 Unknown Observed values: 100
12-15 uint32 encryption_chunk_size Questionable Observed values: 512
16-19 uint32 record_len Valid Length of the EFS Log record
20-23 uint32 Unknown 2 Unknown Observed values: 512
24-27 uint32 Unknown 3 Unknown Observed values: 0
28-31 uint32 offset_to_src_file_name Valid File to encrypt – name with path
32-35 uint32 src_file_name_len Valid Length of file to encrypt with path
36-39 uint32 offset_to_dst_file_name Valid Offset to temp file (EFS0.TMP) name with path
40-43 uint32 dst_file_name_len Valid Length of temp file with path
44-47 uint32 Unknown 4 Questionable Observed values: 512
48-51 uint32 mft_record_size Questionable Observed values: 1024
52-55 uint32 Unknown 5 Unknown Observed values: 0
56-59 uint32 Unknown 6 Unknown Observed values: 0
60-63 uint32 Unknown 7 Unknown Observed values: 0
64-67 uint32 Unknown 8 Unknown Observed values: 8
68-71 uint32 Unknown 9 Unknown Observed values: 0
72-75 uint32 mft_id_encrypted_file Valid MFT record number of the file to encrypt
76-79 uint32 Unknown 10 Unknown Observed values: 65536
80-83 uint32 Unknown 11 Unknown Observed values: 8
84-87 uint32 Unknown 12 Unknown Observed values: 0
88-91 uint32 mft_id_efs_tmp_file Valid MFT record number of temp file (EFS0.TMP)
92-93 uint16 Unknown 13 Unknown Observed values: 0
94-95 uint16 Unknown 14 Unknown Indeterminable
96-Variable char src_file_name Valid File to encrypt with path.
Variable char dst_file_name Valid Temporary file with path.
Figure A-1: Fields in the EFS0.LOG file

9.2. Appendix B – Structure of the EFS key-pair
The EFS key-pair files will be in binary format and can be parsed using mimikatz.

The structure of the key-pair file is different when using RSA and ECC, respectively.
Both formats are discussed below.

With RSA, the key-pair file is in the legacy Crypto API or CAPI format. This file

is created in the "%APPDATA%\Microsoft\Crypto\RSA\<SID>" directory and can be
parsed by mimikatz using the dpapi::capi module. CAPI here refers to the legacy
Microsoft crypto API introduced in Windows NT 4.0 (Colridge R.,1996)

Figure B-1 shows the data structures obtained from running the mimikatz

command, dpapi::capi /in:<key-pair-file-name>. We can see that the key-pair file starts
with a Crypto API header and a unique provider name value. This unique provider name
provides the link between the key-pair file and the certificate file.

Following the unique provider name is the RSA public key. This RSA public key

will be in clear text and will follow the RSAPUBKEY struct format defined in wincrypt.h
(Lastnameholiu, 2018a). After the public key, there are two DPAPI protected blobs. The
first blob contains an encrypted version of the RSA private key and the second blob

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 24

Author Name, email@address

contains an encrypted Export flag. The RSA private key is used to decrypt the EFEK,
typically when the user opens an EFS encrypted file. The Export flag contains one of the
values defined under NCRYPT_EXPORT_POLICY_PROPERTY in ncrypt.h (Hao X,
2009).

With ECC, the location and structure of the key-pair are different than when using

RSA. The key-pair file is created under a users’ "%APPDATA%\Microsoft\Crypto\Keys"
directory.

The ECC key-pair file is in binary format and can be parsed with mimikatz using

the dpapi::cng module. CNG here refers to Cryptography Next Generation API,
introduced in Windows Vista as a long-term replacement for the legacy Crypto API
(Lastnameholiu, 2018c).

Figure B-1: Structure of the key-pair file when RSA algorithm is used.

Figure B-2 shows the data structures obtained from running the mimikatz

command, dpapi::cng /in:<key-pair-file-name>. The key-pair file starts with a CNG API
header and a unique provider name followed by a few ECC Public key property
structures. The first public key property indicates the last modified time of the key-pair
file in FILETIME format (Karl-bridge-microsoft, 2018). The next property is the ECC
public key and the last one is the ECC certificate encoded using Distinguished Encoding
Rules (DER) algorithm. The public key properties are in clear text. After the public key

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 25

Author Name, email@address

properties, there are two DPAPI blobs, similar to the RSA key-pair file. The first blob
contains an encrypted version of the key export flag, and the second blob contains the
encrypted ECC private key.

Figure B-2: Structue of the key-pair file when ECC algorithm is used.

9.3. Appendix C – Structure of EFS certificate
“A certificate is a collection of attributes and extensions that can be stored

persistently. The set of attributes in a certificate can vary depending on the intended
usage of the certificate.” (Openspecs-office, 2018d)

As mentioned in “The Certificate file” section, the certificate serves as a link
between the key-pair file and the encrypted file. The connection between the certificate
and the key-pair is the unique provider name value. This value is found in both the key-
pair file and also in the EFS certificate file as the CERT_KEY_PROV_INFO_PROP_ID
attribute (Hao X, 2009). The certificate file also contains information about the user for

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 26

Author Name, email@address

whom the certificate is issued and the certificate thumbprint. The certificate thumbprint is
the SHA1 hash of the DER-encoded version of the certificate (Bruno, 2014). Lastly, the
$EFS attribute contains the certificate thumbprint and the username info, linking it to the
certificate.

Figure C-1: Relationship between key-pair file, certificate file and the encrypted

file

The attributes of the EFS certificate can be defined at the Enterprise Certificate

Authority level using Certificate Templates (Kexugit, n.d.). If this is not set up or if the
computer is not a part of a domain-joined environment, EFS will create a self-signed
certificate. The self-signed certificate is valid for one hundred years by default.

Structurally, the certificate file contains a repeating array of Type-Length-Value
(TLV) entries in the format defined in Figure B3-2. The Property ID is an integer that
maps to the property definitions of CertSetCertificateContextProperty in wincrypt.h. The
Property Data is the value of the property.

Structure Name Validity Notes
uint32 Property ID Valid Defined in wincrypt.h
uint32 Unknown 1 Unknown Observed values: 1
uint32 Property Size Valid Size of Property Data
variable Property Data Valid The actual value
Figure C-2: The structure used to store certificate attributes on-disk

The author has also created a 010 Editor template that can be used to parse a

certificate file (diyinfosec, 2019). The property ID to property name mapping was
obtained from the wincrypt.h implementation in WINE (juanlang et al., 2020).

9.4. Appendix D – Structure of the $EFS attribute
In terms of structure, the EFS stream contains a stream header followed by a

number of variable sized records. These records are called Data Decryption Fields (DDF)
or Data Recovery Fields (DRF). Each user having access to the encrypted file will have a
DDF record entry. Likewise, each recovery agent will have a DRF entry. The structure of
a DRF record is the same as the DDF record, but instead of user information, it will have

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 27

Author Name, email@address

information about the recovery agent.

The structure of the EFS stream is given in Figure B4-1. This information was
obtained from the “layout.h” file in Apple’s open-source implementations of NTFS
(Layout.h, n.d.). If the user or a recovery agent uses an ECC certificate, then the
structure of the EFS stream changes. This new structure is documented in Figure B4-2.

Byte Range Structure Name Validity Notes
0-3 uint32 attribute_size Valid Size of the entire attribute in bytes
4-7 uint32 unknown1 Unknown Unidentified
8-11 uint32 efsVersion Questionable Observed values: 4
11-15 uint32 cryptoAPIVersion Questionable Observed values: 0
16-31 byte unknown_hash_1 Questionable Possibly MD5 of some struct.
32-47 byte unknown_hash_2 Valid Possibly MD5 of some struct.
48-63 byte unknown_hash_3 Valid Possibly MD5 of some struct.
64-67 uint32 offset_to_ddf_array Valid Offset to DDFs from start of header
68-71 uint32 offset_to_drf_array Valid Offset to DRFs from start of header
72-83 byte unknown2 Unknown Unidentified

Byte Range
(Relative)

Structure Name Validity Notes

0-3 uint32 num_dxf_records Valid Number of DxF records

Byte Range
(Relative)

Structure Name Validity Notes

0-3 uint32 dxf_record_size Valid Size of the DxF record

4-7 uint32 pkey_details_offset Valid
Offset to the struct containing public key
information

8-11 uint32 efek_size Valid Size of the encrypted FEK in bytes.
12-15 uint32 efek_offset Valid Offset to the Encrypted FEK.
16-19 uint32 unknown1 Unknown Unidentified
20-variable struct PKEY_DETAILS Valid
variable byte efek Valid The Encrypted FEK

Byte Range
(Relative)

Structure Name Validity Notes

0-3 uint32 pkey_details_size Valid Size of the PKEY_DETAILS structure in bytes.
4-7 uint32 sid_offset Valid Offset to the authorized user's SID

8-11 uint32 cred_type Questionable
1 = CryptoAPI container, 2 = Unknown, 3 =
Certificate thumbprint.

12-variable byte cred_value Valid

Value corresponding to the cred_type. The
size of this will be (pkey_details_size-12)
bytes. The structure varies based on the type
of credential. Full details can be found in the
NTFS layout.h file in opensource.apple.com

PKEY_DETAILS

EFS Stream Header

Data Decryption Fields (DDF) and Data Recovery Fields (DRF)

The fields in the DDF and DRF structures are exactly the same so the structs will be referred commonly as DxF
for ease of documentation. The DDF structure appears first followed by the DRF structure.

DxF Section Header

DxF Record(s)

Figure D-1: Structure of the $EFS attribute when RSA algorithm is used for
asymmetric encryption.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

A Forensic Analysis of the Encrypting File System 28

Author Name, email@address

Byte Range Structure Name Validity Notes
0-3 uint32 attribute_size Valid Size of the entire attribute in bytes
4-7 uint32 unknown1 Unknown Unidentified
8-11 uint32 efsVersion Questionable Observed values: 4
11-15 uint32 cryptoAPIVersion Questionable Observed values: 0
16-31 byte unknown_hash[16] Questionable Possibly MD5 of some struct.
32-35 uint32 offset_to_ddf_array Valid Offset to DDFs from start of header
36-39 uint32 offset_to_drf_array Valid Offset to DRFs from start of header
40-43 uint32 unknown2 Unknown Unidentified

44-45 uint16 entity_count_ddf Questionable
Each DDF/DRF record appears to contain an array of "ENTITY" structures as
described below. Number of ENTITY structs in a DDF record.

46-47 uint16 entity_count_drf Questionable Number of "ENTITY" structures in a DRF record
48-51 uint32 alg_id Questionable Likely alg_id in wincrypt.h
52-53 uint16 struct1_len Valid Length-value structure
54-variable byte struct1 Unknown Unidentified
variable uint16 struct2_len Valid Length-value structure
variable byte struct2 Unknown Unidentified

Byte Range
(Relative)

Structure Name Validity Notes

0-3 uint32 size_of_all_dxfs Valid Size of all DxF records including header in bytes.
4-5 uint16 num_dxf_records Valid Number of DxF records
6-13 byte unknown Unknown Unidentified

Byte Range
(Relative)

Structure Name Validity Notes

0-12 byte dxf_record_header Valid DxF Record Header

26-variable struct DxF_ENTITY Valid
Each DDF record will have a number of "ENTITY" records as defined in the
entity_count_dxf field in the $EFS Section Header.

Byte Range
(Relative)

Structure Name Validity Notes

0-1 uint16 entity_length Valid Length of the ENTITY

2-3 uint16 entity_type Questionable
Type of the ENTITY. 1=Thumbprint, 2=EFEK, 3=User Name, 6=SID, 4= CNG
Container Name, 5 = CNG Provider Name

4-5 uint16 unknown1 Unknown
6-7 uint16 unknown2 Unknown
7-variable Unknown unknown3 Unknown Between zero to two uint16 values observed.
variable byte entity_value Valid Value corresponding to entity_type. This is the last field in the ENTITY.

DxF_ENTITY

EFS Stream Header

Data Decryption Fields (DDF) and Data Recovery Fields (DRF)

The fields in the DDF and DRF structures are exactly the same so the structs will be referred commonly as DxF for ease of documentation. The
DDF structure appears first followed by the DRF structure.

DxF Section Header

DxF Record(s)

Figure D-2: Structure of the $EFS attribute when ECC algorithm is used for
asymmetric encryption.

