CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.


http://www.giac.org
http://www.giac.org

SANS Security DC 2000 --- Practical Assignment

How to implement Security Policy on Border Routers

Dr. Thomas P. Braun

We are presented with a 'security policy' and asked to implement it in our local environment. This policy
mainly defines if and how each network services should accessible form the external network. Our task is to
find the best way to implement these requirements.

While the security policy can be rather generic, the implementation has to be specific. It has to fit into the
existing technical environment, especially into the local network architecture.

This tutorial describes a solution that implements an entire security policy on the border routers. While this is
a reflection of our network architecture, it is not at all limited to this particular environment. Every
organization that is large enough to require (or afford) a border router can apply this implementation.

Specific network topology

As a major educational institution with an entire class B address our network architecture is rather complex.
Throughout this tutorial I will use the fictitious address space 123.123.0.0/16.

Our local network consists of a dual backbone, where two 'Gigabit' switches (Cisco 5500) provide fast
connectivity between a number of internal routers (mostly Cisco 8540) for internal traffic, and to two border
routers (Cisco 7513) for connections with the public network. The subnets of individual departments or
administrative units (either switched or shared ethernet) are connected to the internal routers through an
additional layer of switches. For performance reasons (load balancing and redundancy) all traffic on our
backbone (between the border routers and the 'subnet switches') is dynamically routed through one of two
possible internal routers, one of two gigabit switches and either one of the two border routers (external traffic
only).

Because of this complex architecture, there is no central tfirewall system installed. But even if we cannot
know how the individual packets are routed (because of the dual backbone) we know that all traffic to and
from the public network has to be routed through one of the two border routers.

Therefore, these two border routers are the only points of defense (that protects all machines) for this
network architecture. We can (and do) provide additional security for individual hosts or entire subnets with
increased security requirements by local firewall systems and/or host-based protection.

The rules of the given security policy affect all hosts within our local area network. The policy will therefore
be implemented entirely on the border routers.

Implementation of the security policy

The security policy attempts to address the SANS Top Ten list of the "Most Critical Internet Security
Threats". It contains a number of services and connections that should not be accessible from the public
network.

Since most requirements of the security policy are related to incoming traffic (from the public network), we
can implement it by defining an access list for incoming packets (INGRESS ACL) on the external interfaces

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



of our border routers. There is, however one additional requirement in the security policy ('ICMP') that is
related to traffic leaving the local network. To block these packets we need to install an outbound filter
(EGRESS ACL) as well.

The implementation of the entire security policy is described at the end of this tutorial ('Putting it all
together"). First we will go through the list one item at a time to understand why these filters are necessary,
how they are implemented and what side effects we have to consider.

Security Policy
1. Block spoofed addresses and source routing
Spoofing

Packets with forged ('spoofed') source addresses cause major problems on the network. They are used
as 'decoys' in host and port scans and for many kinds of Denial of Service (DoS) attacks. By spoofing
the source addresses the attackers can hide their location, making it more difficult for us to uncover
their true identity.

We cannot defend our networks against these attacks if the attacker is forging legitimate addresses.
However, attackers frequently use the reserved address space as source addresses for their spoofed
packets.

RFC 1918 defines the ranges

10.0.0.0 - 10.255.255.255 (10.0.0.0/8)
172.16.0.0 - 172.31.255.255 (172.16.0.0/12)
192.168.0.0 - 192.168.255.255 (192.168.0.0/16)

as 'private addresses'. These packets (as well the 'loopback' network 127.0.0.0/8) should not be routed
in the public network. They can only originate from malicious or misconfigured sources. In either
case there is no need to accept these packets with 'invalid' source addresses. And since we are only
blocking illegitimate traffic, there are no adversary effects of this measure.

A filter rule to block incoming traffic from 'invalid' source addresses at the border routers could be
implemented by a simple STANDARD access list (ACL) on the external interface. The format of
STANDARD ACL's is quite simple:

access-list xx permit/deny source [wild card]
The wild card consists of four bytes and looks like a netmask. And like a netmask it determines
which logic bits are 'true bits'. But the syntax for wild cards specifies that the true bits represent the
bits that are not to be examined. So the filter 10.0.0.0 0.255.255.255 tests only the first field ('10"),
while 192.168.0.0 0.0.255.255 test the first two fields ('192.168"). The wild card 255.255.255.255
doesn't test any bits while 0.0.0.0 tests all bits. (This is the default if no wild card is given.)

The filter rule for a STANDARD ACL to block 'invalid' source addresses looks like this:

here we define the blocked subnets
access-1list 12 deny 10.0.0.0 0.255.255.255

access—-1list 12 deny 172.16.0.0 0.15.255.255
access-1list 12 deny 192.168.0.0 0.0.255.255
access-1list 12 deny 127.0.0.0 0.255.255.255

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



block packets pretending to come from
within our domain

"any" is a 'special keyword' for "0.0.0.0
access-list 12 permit any 255.255.255.255"

access-1list 12 deny 123.123.0.0 0.0.255.255

without his rule the implicit deny rule will
block all packets!

This approach would only work if all blocks could be implemented by a STANDARD ACL, or if the
more advanced filters could be placed on a separate firewall.

But since we have to block all unwanted incoming traffic (as defined by the security policy) with one
single INGRESS ACL on our border routers, we have to use an EXTENDED ACL instead of a
STANDOARD ACL (only one ACL can be used for any interface in any direction at the same time).

While STANDARD ACL's test only the source address, EXTENDED ACL's can examine both the
source and destination IP addresses, port number and protocol. The general syntax for an
EXTENDED ACL is:

access-list xxx permit/deny protocol source [wild card] \
destination [wild card] [options] [log]

I will explain details of the syntax as we use it for some of the more complex filters.

For the implementation of the 'anti spoofing' blocks we only need to change the change the access-list
number, add the protocol (IP) and specify the destination addresses (to all our hosts):

Note that EXTENDED ACL's
access-1list 112 deny ip 10.0.0.0 0.255.255.255 any

! ) have a number in the range 100-
access—-1list 112 deny ip 172.16.0.0 0.15.255.255 any 199
access-1list 112 deny ip 192.168.0.0 0.0.255.255 any
access-list 112 deny ip 127.0.0.0 0.255.255.255 any We block all ip traffic from
access-list 112 deny ip 123.123.0.0 0.0.255.255 any these source addresses to any of

our hosts

"implicit deny' also works with
access-1list 112 permit ip any any EXTENDED ACL's

Source routing

Normally, the routers between the source and destination determine the route a packet takes from its
source to its destination. But with 'source routing' the sender of a packet can include information in
the packet that determines the route the packet should take to reach its destination. There are many
ways in which this function can be (ab) used by an attacker. For example, the packet can be routed
through a network we trust and exploit this trust relationship.

In practice, source routing is used very little. The main legitimate use is for debugging network
problems or routing traffic over specific links for congestion control in special situations. It is
unlikely that we will have to debug the external network so turning off source routing should not
cause any problems.

The actual implementation is rather simple. We just execute the following command on our border
routers (from privileged or 'enable' mode):

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



no ip source-route
2. Login services

According to the security policy, login services through the network should be limited to machines on
the internal network. Remote login services are very powerful since they extend full user privileges to
the remote user. In addition, many of these services either transmit passwords in clear text or even
allow unauthenticated access (from 'trusted' hosts). Since we have no control over the external
(public) network, we should prevent this information from ever leaving our local network. Clear text
passwords can easily be intercepted (‘sniffed') and trust relationships are often used to gain access to
restricted systems.

The impact of this aspect of the security policy is rather drastic. Users will not be able to access their
machines from remote locations. I would anticipate major protests and prepare the helpdesk for a
flood of complaints!

Since we are restricting these services to the internal network, we can simply block access (for these
services) to and from all machines at the border routers (internal traffic is not routed through the
border routers and are therefore still permitted).

This filter requires and EXTENDED ACL since we want to filter based on tcp ports. Hence, we have
to specify the protocol (‘tcp') and port number (‘eq xx'). For some services we could use the name
instead of the port number; I am old fashioned and my ACL reads:

Disable (from any host outside to any host
inside)

access-1list 112 deny tcp any any eq 21 ﬂp
access-list 112 deny tcp any any eq 22 Ssh

access-list 112 deny tcp any any eq 23 telnet
access—-list 112 deny tcp any any eqg

139 NetBIOS
access-1list 112 deny tcp any any eq

512 rexec
access—-1list 112 deny tcp any any eqg

513 rlogin
access-1list 112 deny tcp any any eqg

514 rshell

3. RPC and NFS

The Remote Procedure Calls combine a whole collection of services can be accessed remotely. Many
services use a portmapper (portmap or rpcbind) to bind the service to a particular port.

When an RPC server is started, it will tell portmap what port number it is listening to and what RPC
program numbers it is prepared to serve. Portmap then intercepts all client requests and forward the
packets (locally) to the appropriate server. Some of these services are powerful in their own right, but
the most important reason for shutting them down is the large number of buffer overflows that have
been found in these programs. Buffer overflows allow users to gain root access; and we don't want to

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



hand over the control over our machines.

The portmapper actually simplifies the blocking of these powerful services, since we only have to
block the ports that the portmapper is listening to: 111/tcp and 111/udp.

The Network File System is an elegant way to share files between different computers. Whole
directories can be mounted to different machines with full privileges. The access rights are given
without explicit authentication, a simple configuration file lists the directories are accessible to certain
'trusted' hosts. This leaves many open doors for intruders, so we want to limit access to our internal
network.

For this service, we have to block two more ports for both tcp and udp: 2049 and 4045.

Note that these services run on tep and udp

portmap/rpcbind
access-1list 112 deny tcp any any eq 111
access—-1list 112 deny udp any any eq 111

NFS
access—-list 112 deny tcp any any eq 2049
access-1list 112 deny udp any any eq 2049

lockd

access—-list 112 deny tcp any any eq 4045
access—-1list 112 deny udp any any eq 4045

4. NetBIOS in Windows NT and Windows 2000

The Network Basic Input/Output System is a suite of programs that allows applications on different
computers to communicate within a local area network (LAN). Originally developed by IBM it is
now the networking standard implemented by Microsoft.

As the definition implies, no NetBIOS packets should leave the local network. And since many
Windows machines are poorly configured (e.g. allowing anonymous access by default) exploiting
unprotected shares has become a major pastime of attackers. There is absolutely no need to share
local files and printers with users on the public network.

NetBIOS uses a number of ports, which we disable from all hosts outside our network:

access-1list 112 deny tcp any any eq 135
access-1list 112 deny udp any any eq 135
access-1list 112 deny udp any any eq 137
access-1list 112 deny udp any any eq 138
access-1list 112 deny tcp any any eq 139
access-1list 112 deny tcp any any eqg 445
access—-1list 112 deny udp any any eqg 445

5. X-Window

The X-Window server is a very useful system, but unfortunately it has some major security flaws. In
the typical application it allows remote users to write to the local display. This is very convenient e.g.
if you have remote access to a machine and want to use two X-terminals on the same display.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



But if remote users can gain access to a workstations’ X-display they can also monitor keystrokes
that a user enters, download copies of the contents of their windows, etc.

The X-Window server listens to ports number 6000/tcp, 6001/tcp, ... depending on the number of X-
displays available at the host system. Typically this number is small (<10) but in principle the server
1s capable of listening to all ports up to 6255/tcp. In order to protect all possible X-Window
connections, we have to exclude the entire range of port numbers.

Luckily, the syntax for EXTENDED ACL's allows this with one single command:

access—-1list 112 deny tcp any any range 6000 6255
6. Naming and directory services

The Domain Name Service is an essential service for the functionality of the Internet. It translates
host names such as www.sans.org into their 'real' address (167.216.133.33). In order for the world to
resolve our own addresses we have to offer this service. And with a large number of local users we
should also provide a name server to resolve external addresses.

Unfortunately, the program running on most name servers is notorious for the buffer overflows that
allow immediate root access to the attacker. It is for this reason that the Domain Name Service has
made it to the top of the SANS Top Ten list.

One of the most dangerous features of name servers is their ability to share all their information with
a secondary ('backup') name server. This is a necessary and very useful feature since it ensures that
our public addresses can be resolve even if we have a local problem with our name server. However,
if we don't configure our name server properly, it might give this information not only to our trusted
secondary name server but also to any hosts that requests this information. There it is a good idea to
restrict this particular service (call a 'zone transfer') to only our secondary name server(s).

The Lightweight Directory Access Protocol (LDAP) allows remote users to access directory services.
It is an other fast method to provide a lot of information about your organization. In addition to this
problem, there are buffer overflows known for LDAP servers. Since we cannot expect that all servers
are running secure, patched versions, we better disable the service entirely. (Of course this service is
still available within the local network).

ACL's operate on a 'first match' principle: if the conditions of an ACL entry are fulfilled the required
action (deny or permit) is applied to the current packet. If we first permit access to all allowed hosts
and then deny access to 'everybody' (else), the allowed hosts are not affected by the subsequent 'deny’.

Assume that we have two name servers with the addresses 123.123.10.10 and 123.123.10.11 and that
our external secondary name server is 167.216.133.33 (a very trusted system :-)

The ACL for restricting DNS access would then look like this:

allow dns
access-1list 112 permit udp any host 123.123.10.10 eqg 53 client
access—-1list 112 permit udp any host 123.123.10.11 eqg 53

requests

to our

name

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



servers
but to no

access-1list 112 deny udp any any eq 53 other host
Allow
zone
transfers
from the
secondary
name
server
...only!

access—-1list 112 permit tcp host 167.216.133.33 host 123.123.10.10 eqg 53
access-1list 112 permit tcp host 167.216.133.33 host 123.123.10.11 eq 53

access-list 112 deny tcp any any eq 53

Disable
access-1list 112 deny tcp any any eg 389 LDAP

access-1list 112 deny udp any any eqg 389 from

outside
7. Mail

It is somewhat surprising that a service as old and important as email (can anybody even remember a
life before email?) still suffers from poorly written programs. But this is exactly the situation with
'sendmail’, the most commonly used mail server program. 'Poorly written' is probably too strong a
criticism the problem is that sendmail is often just 'too nice'. It will do everything possible to make
sure the mail gets to the intended destination. And in doing so it will often use your resources for
other purposes than just accepting and delivering your mail.

While patches for e.g. sendmail are made available frequently, there are still many servers running
old versions that have known exploits, again often utilizing buffer overflows. But this is by no means
the only risk of running a mail server: often an 'open' configuration allows relaying of any mail that
reaches the host; in this case you can be sure that your site will soon be known as a 'spam amplifier'
sending thousands of unwanted messages to annoyed users all over the globe (with your address for
in the header).

The best strategy is to limit the number of mail servers within your organization and make sure that
they are patched and configured 'up to date'.

Mail servers have two serve to masters: on the one hand they receive mail from all possible hosts
form both your local and the public network; on the other end, they have to deliver them to the local
recipients. POP and IMAP are two different protocols that allow (local) users to access their emails
on the mail server. While it might be convenient to be able to read emails from abroad, our security
policy establishes that these services should only be available from within our local network.

To implement this policy we use the same approach as with the name servers: first we explicitly
permit access to the dedicated hosts, and then we deny access to all (i.e. the other) hosts. POP and
IMAP are disabled for all external hosts.

Assume we have only three external mail servers with the addresses 123.123.10.20, 123.123.10.21
and 123.123.10.22. The ACL for this setup reads:

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



access—-list 112 permit tcp any host 123.123.10.20 eqg 25
access—-1list 112 permit tcp any host 123.123.10.21 eqg 25
access-1list 112 permit tcp any host 123.123.10.22 eqg 25
access-1list 112 deny tcp any any eqgq 25

only to our external mail
servers

Disable POP (109 and

access-list 112 deny tcp any any eq 109 110/tcp) and IMAP

access—-list 112 deny tcp any any eq 110 (143hcp)ii0nlexﬁxnal
access-1list 112 deny tcp any any eqgq 143 hosts

8. Webserver

The only Internet application that is more popular than email is surfing the web. Since webservers
nowadays come preinstalled with (or are easily available for) many operating systems it is tempting to
just let everybody put up their own webserver. However, there is a magnitude of vulnerabilities
associated with the operation of a webserver. Again, buffer overflows are known for some servers,
but more importantly, there is a million ways to configure a webserver insecurely. This begins with
improper permissions on directories (allowing the surprised surfer to browse through all your files)
and goes on to vulnerable cgi scripts. The number of known exploits is countless and constantly
increasing.

As with electronic mail, the best advise is to centralize the service and (try to) make sure that these
webservers (and their content) are as secure as necessary.

While the Hypertext Transfer Protocol (http) is used for most web-based applications, SSL (Secure
Socket Layer) is being used for encrypted communications. We implement the restrictions for both
protocols and also block access to some common proxy ports.

Let's say our external web servers have the addresses 123.123.10.30, 123.123.10.31, ... to
123.123.10.37. Then we can restrict access with the following ACL:

allow http only to our

access-list 112 permit tcp any host 123.123.10.30 eg 80 (ex&xnaD\Nebservm$

access-1list 112 permit tcp any host 123.123.10.31 eqg 80
access—-1list 112 permit tcp any host 123.123.10.32 eq 80
access-1list 112 permit tcp any host 123.123.10.33 eqg 80
access-1list 112 permit tcp any host 123.123.10.34 eqg 80
access—-1list 112 permit tcp any host 123.123.10.35 eg 80
access-1list 112 permit tcp any host 123.123.10.36 eqg 80
access-1list 112 permit tcp any host 123.123.10.37 eqg 80
access-1list 112 deny tcp any any eqg 80

apply the same restriction

access—-1list 112 permit tcp any host 123.123.10.30 eqg 443 for ssl

access-1list 112 permit tcp any host 123.123.10.31 eqg 443
access—-1list 112 permit tcp any host 123.123.10.32 eqg 443
access—-1list 112 permit tcp any host 123.123.10.33 eqg 443
access-1list 112 permit tcp any host 123.123.10.34 eqg 443
access-1list 112 permit tcp any host 123.123.10.35 eq 443
access—-1list 112 permit tcp any host 123.123.10.36 eqg 443
access-1list 112 permit tcp any host 123.123.10.37 eqg 443
access—-1list 112 deny tcp any any eqg 443

Block known HTTP proxy

access-1list 112 deny tcp any any eqg 8000 ports

access-list 112 deny tcp any any eq 8080
access—-list 112 deny tcp any any eq 8888

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



9. "Small services"

The so-called "small services" reside on the ports below 20/tcp and 20/udp. They include services
like 'echo’, 'chargen' or 'daytime'. These services can be very helpful for trouble shooting network
problems. In a time where everybody on the Internet played according to the rules, these services
would be used for their intended purposes and nobody had to worry about them.

Unfortunately times have changed and many attackers use these services to either probe or flood our
networks. A well-known DoS attack uses the 'chargen' service of one machine and the 'echo' service
of another machine to generate never-ending traffic. Since this phenomenon is well known, there are
two simple commands to disable these services altogether:

no service udp-small-servers
no service tcp-small-servers

We also have to manually disable one more 'small' service (‘time' 37/tcp and 37/udp):

access-1list 112 deny udp any any eqgq 37
access-1list 112 deny tcp any any eq 37

10. Miscellaneous

The security policy list a number of further services that should not be accessible from the external
network:

o TFTP (69/udp)

The 'trivial file transfer protocol' allows transferring files between computers. In contrast to
'ftp' it uses the udp protocol, which is stateless but can be faster under certain circumstances.
While there might be a justification to use 'tftp' within a LAN, it is definitely obsolete for
transfers over the public network.

o finger (79/tcp)

This service allows a remote user to query information about the local users. This information
can include their real names, phone and room numbers and even projects they are working on.
In short it provides a lot of information that you probably don't want to share.

o NNTP (119/tcp)

The 'Net News Transfer Protocol' allows users to post and retrieve messages from central

message boards. If you decide to offer this service at all, it should be run from a dedicated
(and properly configured) server, and access to it should probably be restricted to internal
users.

o NTP (123/tcp)

'Network Time Protocol' provides the accurate time. It is essential to synchronize your hosts,
© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



e.g. if they are accessing the same data or if you rely on the exact time for a central
authorization service. In a large organization it might necessary to deploy a number of
different ntp servers to guarantee the availability of the service. But unless you are a very
large organization that offers this service to a part of the public network, you should restrict
access to this service too to internal users only.

o LPD (515/tcp)

The 'line printer daemon' listens to print requests from remote hosts. It could run on a 'fully
networked' printer or on a host that offers this service for locally connected printer. Either
way, if we don't allow our own users to login to their accounts from the external network, we
definitely don't want anybody to remotely print on our printers.

o syslogd (514/udp)

Syslogd is a very useful tool that allows logging many different events on a large number of
hosts on a central logging facility. This is very convenient if you have to administer a large
number of hosts. The only(?) problem with syslogd is the fact that it accepts connections from
any host. If you allow access to external hosts they could easily launch a Denial of Service
attack by flood your logging facility.

o SNMP (161and 162, tcp and udp) and BGP (170/tcp)

The 'Simple Net Management Protocol' and the 'Border Gateway Protocol' are used to
communicate with and configure network devices such as routers or switches. Nobody from
the outside should even know the IP addresses of these devices; much less have access to
them.

o SOCKS (1080/tcp)

A Socks proxy server allows multiple hosts to share a common network connection. It is
typically used in home environments to share the access cost for the network. The problem
with SOCKS is that is a symmetrical proxy: just as it allows internal machines access to the
public network, it will possibly allow any host on the public net to 'share' your access.

This will allow external users to use hosts on your local area network as the 'source' for their
traffic.

The following entries to our growing EXTENDED ACL block these services:

access—-1list 112 deny udp any any eqg 69

access-1list 112 deny tcp any any eqgq 79

access—-1list 112 deny tcp any any eqgq 119
access—-1list 112 deny udp any any eq 123
access-1list 112 deny tcp any any eqgq 123
access—-1list 112 deny udp any any eq 161
access—-1list 112 deny tcp any any eq 161
access-1list 112 deny udp any any eq 162
access—-1list 112 deny tcp any any eq 162
access—-1list 112 deny udp any any eqgq 179
access-1list 112 deny tcp any any eqgq 179

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



access—-list 112 deny udp any any eq 514
access—-1list 112 deny tcp any any eqg 515
access-1list 112 deny tcp any any eq 1080
access—-list 112 deny udp any any eq 1080

11. ICMP

The Internet Control Message Protocol is (supposed to be) used to troubleshoot network connections.
A remote user can establish if a local host is running, which protocols and ports are available, if
source routing is allowed, if there was a fragmentation error, and many more rather detailed
information about your local host. While all these messages have very legitimate purposes it is no
longer a good idea to volunteer this information to just everybody who asks for it.

As a first step, we have to make sure that no icmp requests can reach our hosts from the public
network. This is done by blocking the icmp 'echo' command:

access—-1list 112 deny icmp any any eqg echo

But some of these messages are sent as a result of a failed connection attempt. These 'error messages'
can be very specific and we want to disable that service to external hosts.

The security policy therefore also requires blocking some outgoing icmp packets.

Since these blocks have to be applied to outbound traffic, we also have to define an EGRESS access
list on the border routers. And because we want to filter based on protocol (and even more specific on
service) we have to use an EXTENDED ACL.

So far I have been using the actual port numbers to describe the filters in the access list. This could
be also done for ICMP services, but it seems to be more common to use the service type instead.
ICMP messages are identified by a 'type' and a 'code' field (RFC792 and others). By blocking the
type of service we automatically block all codes within that type.

The required blocks are realized by the following (short) EGRESS ACL. We first explicitly deny
three services and than permit all (others). Note that we have to use a different access-list number for
this ACL:

access—list 122 deny icmp any any eq echo-reply
access—-list 122 deny icmp any any eq time-exceeded
access-1list 122 deny icmp any any eq unreachable
access-1list 122 permit ip any any

Putting it all together

The security policy contains a long list of required blocks. It is by no means comprehensive but constitutes a
minimal requirement. In addition to the filters required by the security policy I would recommend to

e extend the EGRESS ACL to block spoofed addresses from leaving your network

¢ disable all direct broadcasts (no ip direct-broadcast)

e protect the router itself (no ip bootp server, no ip http server, no service finger,
banner incoming) and limit access to it (define access-class, secure snmp with a community name
other than 'public' or 'private')

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



e enable logging to syslog. I include logging of the most important blocks in the listing below. This is
not part of the requirements, but I think it is indispensable. We log all denied packets explicitly; the
packets to hosts other than the announced external hosts (web server, mail server, DNS server) are
logged with the line 'permit ip any any log' at the end of the ACL. (The address of the syslog server is
assumed to be 123.123.100.1)

These recommendations cover only the most important additions. Two excellent prototype ACL's can be
found at:

http://geek-speak.net/papers/access_lists.html
and: http://www.pasadena.net/cisco/secure.html.

In designing the final version of our ACL we have to keep three things in mind:

1. Readability
Our ACL will be quite long. If cannot remember why we put one or the other line in there, it should
at least be possible to find out again later.

2. Performance
ACL's are examined from top to bottom. Each logical operation costs CPU time, which will slow
down the router and consume resources. Therefore the filer rules for the most common packets
should be as high in the ACL as possible.

3. Order dependence
The order of some filter rules is critical. We used the combination of 'specific permit'/'general deny'
to regulate access to some of our servers (dns, mail web). It is essential that these rules be not
preceded by any rule that would allow actually permitted traffic.

I tried for the best possible compromise of these conflicting requirements for the INGRESS ACL.:

First we have to deny access to the 'invalid' source addressed (spoofing). Otherwise they might be allowed
by a subsequent 'permit any' rule.

Then we apply the rules for the most frequent services: www and mail. (Within these blocks the order is
exactly as described above.)

We continue with the third service that has to be restricted to dedicated servers, dns.

At this point, the order of the remaining blocks doesn't matter anymore. We could probably do some fine-
tuning according to the expected use of one or the other server. Or we could try to group the filters according
to our security policy. I decided to go with readability: the remaining filters are listed in increasing port
number.

The following list could be used to 'cut and paste' program the order routers. For each of the routers we have
to login and enter the privileged mode (‘enable'). In additions to the filter rules described in the preceding
sections | added the commands necessary to actually activate the ACL's. The list contains some comments,
indicated by the exclamation mark (!), the standard "comment" command for Cisco routers.

All 'local' IP addresses ('123.123.X.Y") are fictitious.

167.216.133.33 is not the address of our secondary name server (it is the name
server of SANS)

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



Please substitute these addresses with the correct addresses of your local
network.

! set some options
logging 123.123.100.1
no ip source-route
no service udp-small-servers
no service tcp-small-servers

! reset ACL 112 (INGRESS)
no access-list 112

! block invalid addresses
access—-list 112 deny ip 10.0.0.0 0.255.255.255 any log
access—-1list 112 deny ip 172.16.0.0 0.15.255.255 any log
access-1list 112 deny ip 192.168.0.0 0.0.255.255 any log
access-1list 112 deny ip 127.0.0.0 0.255.255.255 any log
access—-1list 112 deny ip 123.123.0.0 0.0.255.255 any log

' "www' (allow access to our external web servers 123.123.10.30-37)
access—-1list 112 permit tcp any host 123.123.10.30 eg 80
access-1list 112 permit tcp any host 123.123.10.31 eqg 80
access-1list 112 permit tcp any host 123.123.10.32 eqg 80
access-1list 112 permit tcp any host 123.123.10.33 eqg 80
access-1list 112 permit tcp any host 123.123.10.34 eqg 80
access-1list 112 permit tcp any host 123.123.10.35 eqg 80
access-1list 112 permit tcp any host 123.123.10.36 eg 80
access-1list 112 permit tcp any host 123.123.10.37 eqg 80
access—-1list 112 deny tcp any any eqg 80 log
access-1list 112 permit tcp any host 123.123.10.30 eqg 443
access-1list 112 permit tcp any host 123.123.10.31 eqg 443
access—-1list 112 permit tcp any host 123.123.10.32 eqg 443
access-list 112 permit tcp any host 123.123.10.33 eq 443
access-1list 112 permit tcp any host 123.123.10.34 eq 443
access-1list 112 permit tcp any host 123.123.10.35 eq 443
access-list 112 permit tcp any host 123.123.10.36 eq 443
access—-list 112 permit tcp any host 123.123.10.37 eq 443
access—-1list 112 deny tcp any any eq 443 log

! SMTP (allow access to our external mail servers 123.123.10.20-22)
access—-1list 112 permit tcp any host 123.123.10.20 eqg 25
access-1list 112 permit tcp any host 123.123.10.21 eqg 25
access—-list 112 permit tcp any host 123.123.10.22 eqg 25
access—-1list 112 deny tcp any any eqg 25 log

! DNS (allow access to our external DNS and zone transfer to 167.216.133.33)
access-1list 112 permit udp any host 123.123.10.10 eqg 53
access-1list 112 permit udp any host 123.123.10.11 eqg 53
access—-1list 112 deny udp any any eq 53 log
access-1list 112 permit tcp host 167.216.133.33 host 123.123.10.10 eqg 53
access-1list 112 permit tcp host 167.216.133.33 host 123.123.10.11 eq 53
access—-1list 112 deny tcp any any eq 53 log

! block all tcp/udp to these ports
access-1list 112 deny tcp any any eq 21 log
access—-1list 112 deny tcp any any eq 22 log
access-1list 112 deny tcp any any eqgq 23 log
access—-1list 112 deny udp any any eq 37 log

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



access-1list 112 deny tcp any any eqg 37 log
access—-1list 112 deny udp any any eq 69 log
access—-1list 112 deny tcp any any eq 79 log
access-1list 112 deny tcp any any eq 109 log
access—-1list 112 deny tcp any any eq 110 log
access—-1list 112 deny tcp any any eq 111 log
access-1list 112 deny udp any any eq 111 log
access—-1list 112 deny tcp any any eq 119 log
access-list 112 deny udp any any eq 123 log
access-1list 112 deny tcp any any eq 123 log
access—-1list 112 deny tcp any any eq 135 log
access-list 112 deny udp any any eq 135 log
access—-list 112 deny udp any any eq 137 log
access—-1list 112 deny udp any any eq 138 log
access-1list 112 deny tcp any any eq 139 log
access—-list 112 deny tcp any any eq 143 log
access—-1list 112 deny udp any any eq 161 log
access-1list 112 deny tcp any any eq 161 log
access—-list 112 deny udp any any eq 162 log
access—-1list 112 deny tcp any any eq 162 log
access-1list 112 deny udp any any eq 179 log
access—-1list 112 deny tcp any any eq 179 log
access—-1list 112 deny tcp any any eq 389 log
access-1list 112 deny udp any any eq 389 log
access—-1list 112 deny tcp any any eq 445 log
access—-1list 112 deny udp any any eq 445 log
access-1list 112 deny tcp any any eq 512 log
access—-1list 112 deny tcp any any eq 513 log
access—-1list 112 deny tcp any any eq 514 log
access-1list 112 deny udp any any eq 514 log
access—-1list 112 deny tcp any any eq 515 log
access—-list 112 deny tcp any any eq 1080 log
access-1list 112 deny udp any any eq 1080 log
access-1list 112 deny tcp any any eq 2049 log
access—-list 112 deny udp any any eq 2049 log
access-1list 112 deny tcp any any eq 4045 log
access—-1list 112 deny udp any any eq 4045 log
access-list 112 deny tcp any any range 6000 6255 log
access-1list 112 deny tcp any any eqg 8000 log
access-1list 112 deny tcp any any eqg 8080 log
access-list 112 deny tcp any any eq 8888 log

! icmp
access-1list 112 deny icmp any any eq echo log

! allow everything else
access-1list 112 permit ip any any log

! reset ACL 122 (EGRESS)
no access-1list 112

! icmp
access-1list 122 deny icmp any any eq echo-reply log
access—-1list 122 deny icmp any any eq time-exceeded log
access—-1list 122 deny icmp any any eq unreachable log

! allow everything else
access—-list 122 permit ip any any log

I 'S0' is our external interface
int s0

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



ip access-group 112 in
ip access-group 122 out
exit

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.



