
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect
Artifacts for Supporting Network Forensic

Incident Response

GIAC (GCIA) Gold Certification

Author:	Gordon	Fraser,	Gordon.fraser@ctipc.com	
Advisor:	Richard	Carbone	

Accepted:	September	19,	2016	

Abstract	

A commonly accepted Incident Response process includes six phases: Preparation,
Identification, Containment, Eradication, Recovery, and Lessons Learned. Preparation is
key. It sets the foundation for a successful incident response. The incident responder
does not want to be trying to figure out where to collect the information necessary to
quickly assess the situation and to respond appropriately to the incident. Nor does the
incident responder want to hope that the information he needs is available at the level of
detail necessary to most effectively analyze the situation so he can make informed
decisions on the best course of action. This paper identifies artifacts that are important to
support network forensics during incident response and discusses an architecture and
implementation for a home lab to support the collection of them. It then validates the
architecture using an incident scenario.

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

1. Introduction
A commonly accepted Incident Response (IR) process includes six phases:

Preparation, Identification, Containment, Eradication, Recovery, and Lessons Learned

(Skoudis, Strand, and SANS, 2014). Preparation is key. It sets the foundation for a

successful incident response. The incident responder does not want to be trying to figure

out where to collect the information necessary to quickly assess the situation and to

respond appropriately. Nor does the incident responder want to hope that the information

he needs is available at the level of detail necessary to most effectively analyze the

situation so he can make informed decisions on the best course of action.

An important component of the IR Preparation Phase is to determine the types of

information that are potentially valuable in an incident response scenario. What log and

configuration files should be collected? What information should be captured in the log

files? How long should log files be retained? What are the organization’s data retention

policies? What configuration management process should be followed when

configuration files are changed? This paper identifies key artifacts that are important to

support network forensics during incident response. It discusses the setup of a home lab

architected to collect the artifacts using open source tools and validates the

implementation through a test scenario.

 The potential impact of not including these artifacts when preparing for an

incident is to assume the risk that critical information is not available when it is needed.

Even if the data exists, there is the risk that the incident responder is slowed down while

he is trying to figure out where to get the information and how to collect it. These are

risks that an organization can ill afford to take. The organization should make adequate

preparations to avoid and mitigate these risks. After all, the probability that the

organization will be compromised at some point in time is high. When it is, these

artifacts may be important in determining how to respond appropriately.

In addition to identifying the artifacts, consideration needs to be made on how

long the data is retained by the organization and how configuration management is done

with respect to configuration files. According to Mandiant in their M-Trends Report, the

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

median time it took for an organization to discover a breach or hear about it from an

external organization was 146 days from the time of compromise (Mandiant, 2016). The

median number of days was 56 days if the organization discovered the breach

themselves. When notification came from an external source the median number of days

until discovery jumped to 320 days. These figures give an indication of the period of

time the artifacts need to be retained to be useful for the investigation.

This paper focuses on the artifacts to collect and not the configuration

management processes or data retention policies of the organization. When configuration

files are included in the artifacts, the assumption is that the configuration files

corresponded to the time period when the network traffic data was captured.

2. Network Artifacts
Artifacts which provide evidence or insight into network communications can be

found in many places. Dynamic Host Configuration Protocol (DHCP) servers, Domain

Name System (DNS) servers, Web Proxy Servers, Intrusion Detection Systems (IDS),

and firewalls all can generate artifacts which can be helpful when responding to an

incident. The key here is that systems must be configured to generate and capture

artifacts and must be available to the incident responder when needed. This section

examines common artifact sources to consider when developing an incident response

plan during the IR Preparation Phase. This paper focuses on examples from Linux.

Equivalent or similar artifacts are available for other Operating Systems.

In addition to the artifacts, the configuration files themselves should be collected

so that the parameters concerning their collection are understood. For example, when

looking at DHCP logs, the analyst would want to know the duration of the lease so that

he would know when to expect lease renewal transactions to take place. The absence of a

lease renewal would indicate the computer left the network.

2.1. Network Time Protocol (NTP)
Time should be synchronized between different systems to allow for the effective

correlation of information generated from them. Synchronizing time saves the incident

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

4

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

responder much frustration and work by not requiring him to try and correlate times

between artifacts generated from different systems. The Network Time Protocol (NTP)

was developed to provide accurate time services on the network and to allow for

consistency among computers on a network.

2.2. Dynamic Host Configuration Protocol (DHCP)
For those computers that do not have a statically assigned IP address, DHCP

provides a computer an IP address and other network configuration information. The

computer must contact the DHCP server to be assigned an IP address before it can send

data on the network. Because DHCP traffic is predictable, DHCP logs can be an

excellent source of information during incident response. From these logs, the analyst

can determine when a computer joined the network, was present on the network, and the

time frame when it left the network.

2.3. Domain Name System (DNS)
DNS translates human-readable host names to IP addresses. It is a fundamental

service of Internet communications. Prior to initiating communication to another

computer based on the host name, the computer queries the DNS server to translate the

host name to an IP address. By examining DNS request/response traffic, an incident

responder can gain valuable information including, when communication with a

particular host began since the first step in the communication process generally is to

resolve the hostname to an IP address. It can be an indicator of who else might have also

been compromised by virtue of the fact that they also queried DNS to resolve the same

host name. In the event of multiple systems being compromised, records of DNS queries

can provide a lead to the initial vector of compromise by virtue of it being the first

request to resolve the host name.

Most DNS servers allow query logging, but not response logging (Hagen, 2015c).

While only logging DNS queries answers some questions about the network traffic, it

leaves out the responses. The absence of responses may be acceptable in some

circumstances, but in others, like cache poisoning or fast flux, it omits information that is

critical to understanding what is going on.

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

5

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

An alternative to DNS logging could be full packet capturing of DNS traffic. A

disadvantage of relying on packet capturing is the preprocessing that would be required

before analysis can take place (Hagen, 2015c). A better alternative would be to

implement a third party tool to perform passive DNS monitoring, which captures and logs

both requests and responses. PassiveDNS available from

https://github.com/gamelinux/passivedns is one such tool. (Hagen, 2015c; Fjellskål,

December 2015). This tool can monitor a network interface or read from a Pcap file to

generate DNS log entries that include both requests and responses.

2.4. Proxy Server Logs
A proxy server brokers traffic between a client and a server and are frequently

associated with web traffic. Many organizations use a proxy server between their internal

network and the Internet. They capture information that can be of value to the incident

responder. Proxy logs capture web traffic requests and response. They also cache copies

of resources retrieved from the web servers. The proxy cache may have copies of files,

like malware, that was retrieved from a web server (Hagen, 2015d). Squid is a popular

open source web proxy.

2.5. Firewall Logs
Firewalls are a specialized router designed to perform packet inspection and make

decisions on what traffic should be forwarded, logged, and blocked (Davidoff and Ham,

2012). Firewalls are flexible and can be configured to log traffic at various levels of

detail based on the needs of the organization. All traffic that has been denied based on

the firewall rules can be logged. Traffic, meeting specific conditions, can be logged. All

traffic permitted through the firewall can be logged. The IR Preparation Phase should

include defining what information is logged by the firewall to ensure it is available to

support incident response.

Another consideration of firewall logging is that during an incident, the

organization may make the decision to initially monitor an attack rather than just cut it

off to gather more information to determine the course of action in responding to the

incident. Firewall logging can assist with this. Special rules can be added during the

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

6

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

incident to log traffic associated with the incident (Davidoff and Ham, 2012). Part of the

IR Preparation Phase might be to establish protocols for doing so. Iptables is a standard

Linux based firewall.

2.6. Intrusion Detection System
Intrusion Detection Systems (IDS) are a common component of many corporate

environments. An IDS examines network traffic that crosses the network interface it is

monitoring and compares it against signatures or patterns of known malicious traffic to

identify suspicious network traffic. If the packets match a signature, then the IDS takes

the action defined in the rule such as logging the traffic in an alert file (Davidoff and

Ham, 2012; Hagen, 2015a). The alerts produced by the IDS can be valuable to the

analyst. They may provide a lead which will help the incident responder identify

suspicious traffic and allow him to focus his investigation.

The presence of an alert does not necessarily mean that it that it is an incident

requiring attention. A Microsoft IIS exploit targeting an Apache server may or might not

be considered an event of interest. Nor does the absence of an alert necessarily mean that

there is no malicious network traffic. It only means that no traffic that matches the

signatures that were being checked. This would be termed a false negative.

2.7. Arpwatch
A computer needs to know the physical address (MAC address) of the network

interface card of the destination system in order to communicate over the network.

Mapping of the IP address to the MAC address is accomplished using the Address

Resolution Protocol (ARP). When a computer does not know the MAC address, it

broadcasts an ARP request asking who owns an IP address. The owner of the IP address

responds with a unicast message indicating they own the IP address and provides the

MAC address of the network interface to which they will receive traffic addressed to that

IP address. Arpwatch monitors network traffic for ARP traffic and logs new IP/MAC

address pairings and changes in IP/MAC address pairings to syslog. These log entries

can be a good source of answering the questions such as when did a system first appear

on a network? Were there unusual changes to IP/MAC address pairings that might

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

7

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

indicate an ARP spoofing attack? Was there a significant, unexpected increase in the

number of new IP/MAC address pairings indicating a potential MAC flooding attempt?

The information logged by Arpwatch should corroborate the information captured

by the DHCP logs. Both identify when a system appears on the network based on

different transactions. Arpwatch looks for ARP requests and replies while DHCP looks

for DHCP lease requests. Arpwatch also captures static IP/MAC address pairings while

DHCP does not.

2.8. Netflow
Netflow collects a summary of the packets that are flowing across the network.

Some of the key data captured includes the date and time, source and destination IP

addresses, source and destination ports, protocol, the number of packets, and the amount

of data transferred. From netflow data, the analyst can construct a detailed portrait of

network activity (Hagen 2015b; Davidoff and Ham, 2012). By looking at who talked to

who netflow data can be used to identify compromised hosts. By looking at data transfer

volumes, it can help identify data leakage. Netflow data can help an analyst identify

specific targets to help focus their investigation. It can be used as an index into full

packet captures. Nfdump is an example of open-source netflow suite of tools that collect

and processes netflow data (Hagen, 2015b; Haag, 2015.

2.9. Full Packet Capture
Full packet captures are valuable in that they provide a complete picture of what

crossed the network. From packet captures, an analyst can reconstruct what happened on

the network (Davidoff and Ham, 2012). Ideally, the analyst has access to the full packets

for the period of time covering the event. This is not always the case.

There are challenges with full packet captures. The volume of data in packet

captures can be considerable and as such, they will contain a lot of noise. A challenge is

how to identify the traffic of importance and how to reduce the distraction of the noise.

This is where other tools like netflow, DNS logs, DHCP logs, and IDS alerts can provide

assistance. Each of these can provide leads on where to look. These leads may enable

the analyst to focus on specific traffic, thus allowing for data reduction to reduce the

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

8

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

volume of data to examine and filtering out some of the noise. Another challenge is the

storage of the large amounts of data collected. Full packet captures may only be retained

for a short period of time. Tcpdump is a very popular packet capture tool included in

Linux.

2.10. Syslog
Syslog is the standard logging mechanism for UNIX and Linux. It is the

collection point for a number of log types like the DHCP logs. Based on the syslog

configuration, all of the log data can be consolidated into a single log file or divided into

multiple log files. Syslog also provides the option to send log entries to a central logging

server.

An advantage of sending the syslog data to a central logging server is that it can

be difficult and time-consuming to collect separate log files from many different servers.

Centralizing the logging can simplify correlating log entries from multiple sources in a

single location. Separating the logging from the server where the logging took place

provides a layer of security by preventing an attacker from being able to edit the log files

on the system that has been compromised to remove traces of their attack (Davidoff and

Ham, 2012).

The incident responder needs to understand the logging architecture of the

network in order to locate the log files. The configuration files can provide insight into

this architecture. They can also point out deviations from the architecture.

3. Lab Setup
This section describes the basic architecture of the test environment. The

Appendix contains detailed information about the installation and configuration of the

various software components of the architecture.

	

3.1. The Architecture
The lab environment connects to the Internet through a router that acts as the

Internet gateway with an IP address of 192.168.1.1 (see Figure 1). This router also

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

9

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

provides Internet DNS services. The Firewall/Router separates the internal network from

the Internet Gateway/Router. All traffic between the internal network and the Internet

must pass through this device. Traffic from the firewall/router accesses the internal

network through a switch. This switch is a managed switch that permits port mirroring.

A monitoring server is set up to collect network information. It captures network traffic

from a span port on the switch and has visibility for all traffic going to and from the

internal network and the Firewall/Router.

InternetInternet
Internet	
Gateway

192.168.1.1

Firewall/
Router

192.168.5.1
SwitchTap

Montoring	
Server

Desktops	&	
Laptops

Figure	1:	Physical	Network	Structure	

The Internet Gateway is a wireless router provided by the ISP. The

Firewall/Router System and the Monitoring System are physical Linux boxes running

Centos 7.2 with a static IP address assigned to them. Since this is a lab/home network,

the software is distributed between these two systems.

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
0

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

Internet
Gateway

Switch

Desktops/
Laptops

Span	port

Packet	Capture
(tcpdump)

PassiveDNS
(DNS	Logging)

Nfpcapd
(Netflow)

ArpWatch
(ARP	Logging)

Snort
(IDS)

Firewall/Router	System

Monitoring	System

Internet

DNS

Firewall
(iptables)

Squid
(Proxy)

DHCP

NTP

Figure	2:	Logical	Architecture	

Figure 2 shows the logical architecture. The Firewall/Router System in addition

to serving as a firewall/router, also hosts the internal network’s NTP server, DHCP

server, DNS server, and Squid proxy server. The Monitoring System hosts the full

packet capture (tcpdump), the IDS server (Snort), the DNS logging server (PassiveDNS),

ARPWatch, and Netflow server (nfpcapd).

4. Validation of the Network Artifact Architecture
A common initiator of incident response activities is an indicator that something

unusual may be occurring. The initiator could be the notification that a large quantity of

data was recently transferred to an external party. It could be an alert from the intrusion

detection system. It could result from something usual seen in a log. To validate the

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
1

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

architecture supports network forensics during incident response, an incident was

simulated, and then the data analyzed to determine that there was sufficient information

to reconstruct the event forensically.

4.1. The Scenario
Given the importance of DNS, it is a best practice not to outsource DNS to a

server on the Internet. Instead, a small number of internal DNS servers should reside on

the internal network. DNS resolution would be directed to internal DNS servers and

clients blocked from accessing external DNS servers (Hagen, 2015c). Internal DNS

servers forward DNS queries to external DNS servers, when necessary, on behalf of the

clients. In order to initiate our scenario two custom Snort rules were written to detect

when someone tries to do a DNS query directly against an Internet-based DNS system

rather than an internal one. The Snort rules are.

alert udp 192.168.5.0/24 any -> !192.168.5.1 53 (msg:"DNS query to external
DNS";sid:1000001;rev:0;)

alert tcp 192.168.5.0/24 any -> !192.168.5.1 53 (msg:"DNS query to external
DNS";sid:1000002;rev:0;)

The following activities were conducted to generate the event. The task is to

analyze the forensic data and be able to reconstruct this activity. This was done by:

• Attaching a computer to the internal network, which has never been on the

network before, on August 25, 2016, at 19:40 EST;

• Executing a DNS query directed to the external DNS server located at 8.8.8.8

by entering: "nslookup sra.com 8.8.8.8” in a cmd window at 19:52 to trigger

our custom Snort rules and generate a Snort alert;

• Connecting to the euspba.org (Eastern US Pipe Band Association) website at

19:53 using a Firefox browser, version 47;

• Displaying the Voice page, located at http://euspba.org/thevoice.aspx, by

selecting the Voice icon;

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
2

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

• Downloading the latest copy of the EUSPBA quarterly magazine, The Voice,

in PDF format by clicking on the download option displayed a PDF file,

http://euspba.org/voice/voice2016q2.pdf in the browser;

• Disconnecting the laptop from the network.

4.2. The Analysis
Two events occurred that triggered alerts with applications monitoring the

network. Arpwatch sent two emails indicating a new system appeared on the network.

The emails are:

From: root@serpent.fraser.local (Arpwatch)

To: root@serpent.fraser.local

Subject: new station

Message-Id: <20160825234023.C21D42000447@serpent.fraser.local>

Date: Thu, 25 Aug 2016 19:40:23 -0400 (EDT)

 hostname: <unknown>

 ip address: 169.254.111.154

 ethernet address: 8:d4:c:45:58:f3

 ethernet vendor: <unknown>

 timestamp: Thursday, August 25, 2016 19:40:23 -0400

From: root@serpent.fraser.local (Arpwatch)

To: root@serpent.fraser.local

Subject: new station

Message-Id: <20160825234026.E7DD92000447@serpent.fraser.local>

Date: Thu, 25 Aug 2016 19:40:26 -0400 (EDT)

 hostname: <unknown>

 ip address: 192.168.5.28

 ethernet address: 8:d4:c:45:58:f3

 ethernet vendor: <unknown>

 timestamp: Thursday, August 25, 2016 19:40:26 -0400

In addition to the Arpwatch alerts, five alerts appeared in the Snort alert log,

/var/log/snort/alert, triggered by one of the custom Snort rules that looked for DNS

queries bypassing the local DNS server and going directly to an external DNS server.

The output of the alert log for this event is listed below. Of particular interest is that both

sets of alerts are associated with the same IP address, 192.168.5.28.

[**] [1:1000001:0] DNS query to external DNS [**]

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
3

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

[Priority: 0]

08/25-19:52:15.308135 192.168.5.28:55500 -> 8.8.8.8:53

UDP TTL:128 TOS:0x0 ID:19969 IpLen:20 DgmLen:66

Len: 38

[**] [1:1000001:0] DNS query to external DNS [**]

[Priority: 0]

08/25-19:52:15.370231 192.168.5.28:55501 -> 8.8.8.8:53

UDP TTL:128 TOS:0x0 ID:19970 IpLen:20 DgmLen:66

Len: 38

[**] [1:1000001:0] DNS query to external DNS [**]

[Priority: 0]

08/25-19:52:15.393163 192.168.5.28:55502 -> 8.8.8.8:53

UDP TTL:128 TOS:0x0 ID:19971 IpLen:20 DgmLen:66

Len: 38

[**] [1:1000001:0] DNS query to external DNS [**]

[Priority: 0]

08/25-19:52:15.415642 192.168.5.28:55503 -> 8.8.8.8:53

UDP TTL:128 TOS:0x0 ID:19972 IpLen:20 DgmLen:53

Len: 25

[**] [1:1000001:0] DNS query to external DNS [**]

[Priority: 0]

08/25-19:52:15.441037 192.168.5.28:55504 -> 8.8.8.8:53

UDP TTL:128 TOS:0x0 ID:19973 IpLen:20 DgmLen:53

Len: 25

 The first step in the analysis is to verify that NTP time services are running and

that the time is synchronized between servers. As previously mentioned, it is important

to verify the synchronization of timestamps in various log files and packet captures. The

output below is from the internal NTP server, firefly.fraser.local, indicating that it is

synchronizing with a stratus 2 time server, at 199.188.48.60. The time is synchronized to

within 77 ms.

ntpq -p

 remote refid st t when poll reach delay offset jitter

==

*tick.mdacore.ne 130.207.244.240 2 u 707 1024 377 20.830 -2.332 2.959

+fairy.mattnordh 200.98.196.212 2 u 706 1024 377 19.826 0.285 0.852

+a1.pcloud.com 200.98.196.212 2 u 686 1024 377 43.370 -1.566 0.617

-1.time.dbsinet. 64.113.32.5 2 u 398 1024 377 40.542 4.117 2.247

ntpstat

synchronised to NTP server (199.188.48.60) at stratum 3

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
4

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

 time correct to within 77 ms

 polling server every 1024 s

The second output is from the monitoring system. It indicates that the server is

synchronizing with the server NTP server, firefly.fraser.local, is a stratum 3 time server.

Time is synchronized to within 107 ms.

ntpq -p

 remote refid st t when poll reach delay offset jitter

==

*firefly.fraser. 66.228.59.187 3 u 1021 1024 377 0.170 -1.003 0.355

ntpstat

synchronised to NTP server (192.168.5.1) at stratum 4

 time correct to within 107 ms

 polling server every 1024 s

By examining the Arpwatch log, /var/log/messages, we learn that this is the first

time that Arpwatch has seen the IP Address 192.168.5.28. This corresponds with what

was reported in the emails. The new computer appeared on the network August 25, 2016

at 19:40.

grep arpwatch /var/log/messages | grep 8:d4:c:45:58:f3

Aug 25 19:40:21 serpent arpwatch: changed ethernet address 0.0.0.0
8:d4:c:45:58:f3 (30:5a:3a:d:99:6a)

Aug 25 19:40:23 serpent arpwatch: new station 169.254.111.154 8:d4:c:45:58:f3

Aug 25 19:40:26 serpent arpwatch: new station 192.168.5.28 8:d4:c:45:58:f3

Because of our knowledge of our environment, we know that the IP address of the

suspect computer falls within the range assigned by the DHCP server. Relevant

information from the DHCP configuration file, /etc/dhcp/dhcpd.conf, is:

default-lease-time 86400; # time in seconds - 1 days

max-lease-time 259200; # time in seconds - 3 days

authoritative;

log-facility local7;

subnet 192.168.5.0 netmask 255.255.255.0 {

 range 192.168.5.26 192.168.5.99;

 option routers 192.168.5.1;

 option broadcast-address 192.168.5.255;

}

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
5

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

Knowing that DHCP is involved leads us to check out DHCP logging, which is

found in /var/log/messages.

grep 192.168.5.28 /var/log/messages | grep dhcpd

Aug 25 19:40:25 firefly dhcpd: DHCPOFFER on 192.168.5.28 to 08:d4:0c:45:58:f3
(octopus) via enp5s2

Aug 25 19:40:25 firefly dhcpd: DHCPREQUEST for 192.168.5.28 (192.168.5.1) from
08:d4:0c:45:58:f3 (octopus) via enp5s2

Aug 25 19:40:25 firefly dhcpd: DHCPACK on 192.168.5.28 to 08:d4:0c:45:58:f3
(octopus) via enp5s2

The log output from the presence of the DHCPOFFER directive indicates that the

computer requested a DHCP lease. This is confirmed by examining the log file using the

computer’s MAC address. All four steps in the DHCP handshake requesting an IP

address – DHCPDISCOVER, DHCOFFER, DHCPRQUEST, and DHCPACK – are

present. This is further evidence indicating that the computer joined the network August

25, 2016 at 19:40.

grep 08:d4:0c:45:58:f3 /var/log/messages | grep dhcpd

Aug 25 19:40:24 firefly dhcpd: DHCPDISCOVER from 08:d4:0c:45:58:f3 via enp5s2

Aug 25 19:40:25 firefly dhcpd: DHCPOFFER on 192.168.5.28 to 08:d4:0c:45:58:f3
(octopus) via enp5s2

Aug 25 19:40:25 firefly dhcpd: DHCPREQUEST for 192.168.5.28 (192.168.5.1) from
08:d4:0c:45:58:f3 (octopus) via enp5s2

Aug 25 19:40:25 firefly dhcpd: DHCPACK on 192.168.5.28 to 08:d4:0c:45:58:f3
(octopus) via enp5s2

We also know from the log files that the computer did not remain on the network

for more than 12 hours. We know this because a computer will initiate the renewal of its

lease halfway through the lease period, which in this case is 12 hours. Since there are no

lease renewal transactions – DHCPREQUEST, DHCPACK – we can conclude the

computer is no longer on the network.

So far we know from the log files that a computer appeared on the network

August 25 at 19:40. It requested an IP address from the DHCP server and was assigned

192.168.5.28. We also know, from the Snort alert, that a computer at that IP address

contacted an external DNS server located at IP address 8.8.8.8 at 19:52.

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
6

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

To get a sense of what kind of traffic is flowing on the network from the suspect

computer (192.168.5.28) three netflow queries were run. One summarized all traffic.

One summarized UDP traffic. The other summarized TCP traffic. This can help to

identify what traffic to examine.

nfdump -R /var/log/netflow -O bytes -t '2016/08/25.14:00:00-2016/08/25.23:00'
-A proto -o 'fmt:%ts %te %pr %byt %fl' 'ip 192.168.5.28'

Date first seen Date last seen Proto Bytes Flows

2016-08-25 19:40:28.533 2016-08-25 19:58:07.574 TCP 25.0 M 215

2016-08-25 19:40:25.266 2016-08-25 19:56:32.253 UDP 74230 266

2016-08-25 19:40:26.892 2016-08-25 19:40:26.892 ICMP 28 1

Summary: total flows: 482, total bytes: 25076401, total packets: 11565, avg
bps: 188844, avg pps: 10, avg bpp: 2168

Time window: 2016-08-25 14:00:00 - 2016-08-25 21:24:58

Total flows processed: 2357, Blocks skipped: 0, Bytes read: 119736

Sys: 0.007s flows/second: 299035.8 Wall: 0.004s flows/second: 518135.9

nfdump -R /var/log/netflow -O flows -t '2016/08/25.14:00-2016/08/25.23:59' -A
srcip,dstport -o 'fmt:%sa -> %dp %byt %fl' 'proto udp and src ip 192.168.5.28'

 Src IP Addr Dst Pt Bytes Flows

 192.168.5.28 -> 53 6551 129

 192.168.5.28 -> 5355 1059 18

 192.168.5.28 -> 3289 132 6

 192.168.5.28 -> 3702 17392 5

 192.168.5.28 -> 1900 2298 1

 192.168.5.28 -> 137 2446 1

Summary: total flows: 160, total bytes: 29878, total packets: 246, avg bps:
247, avg pps: 0, avg bpp: 121

Time window: 2016-08-25 14:00:00 - 2016-08-25 21:34:58

Total flows processed: 2386, Blocks skipped: 0, Bytes read: 121176

Sys: 0.009s flows/second: 265022.8 Wall: 0.005s flows/second: 442589.5

nfdump -R /var/log/netflow -O flows -t '2016/08/25.14:00-2016/08/25.23:59' -A
srcip,dstport -o 'fmt:%sa -> %dp %byt %fl' 'proto tcp and src ip 192.168.5.28'

 Src IP Addr Dst Pt Bytes Flows

 192.168.5.28 -> 443 406528 61

 192.168.5.28 -> 80 84894 45

 192.168.5.28 -> 53 162 1

Summary: total flows: 107, total bytes: 491584, total packets: 3711, avg bps:
3976, avg pps: 3, avg bpp: 132

Time window: 2016-08-25 14:00:00 - 2016-08-25 21:34:58

Total flows processed: 2386, Blocks skipped: 0, Bytes read: 121176

Sys: 0.008s flows/second: 268240.6 Wall: 0.005s flows/second: 469500.2

The netflow analysis identifies three protocols associated with the suspect

computer. UDP and TCP constituted the majority of the traffic. There was only one

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
7

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

ICMP packet. Of the UDP traffic, the bulk of the traffic is on port 53. This is generally

DNS traffic. The TCP traffic is primarily on port 443, which is generally HTTPS traffic

and on port 80, which is generally HTTP traffic. There is one instance of TCP traffic on

port 53. Based on this information we can focus our investigation on DNS, HTTP, and

HTTPS traffic.

In order to reduce the flow data to only the traffic of interest, the following

extracts were made. One for all traffic associated with 192.1685.28 – nfcapd.20160825-

28. One with only HTTP traffic – nfcapd.20160825-p80. And one with only HTTPS

traffic – nfcapd.201600825-p443.

nfdump -R /var/log/netflow -t '2016/08/25.14:00-2016/08/25.23:59' -w
/tmp/nfcapd.20160825 'proto tcp and ip 192.168.5.28'

nfdump -r nfcapd.20160825-28 -w nfcapd.20160825-p80 'port 80'

nfdump -r nfcapd.20160825-28 -w nfcapd.20160825-p443 'port 443'

nfdump -r nfcapd.20160825-p80 -O bytes -A srcip,dstip -o 'fmt:%sa %da %byt
%pkt %fl'

 Src IP Addr Dst IP Addr Bytes Packets Flows

 104.96.220.171 192.168.5.28 11.8 M 2705 3

 50.21.177.33 192.168.5.28 6.3 M 1993 7

 65.216.231.144 192.168.5.28 2.5 M 815 16

 192.168.5.28 50.21.177.33 24664 583 7

 192.168.5.28 104.96.220.171 21039 1015 3

 192.168.5.28 65.216.231.144 20609 345 16

 72.21.91.29 192.168.5.28 8668 41 2

 192.168.5.28 65.52.108.153 6333 9 1

 192.168.5.28 72.21.91.29 4291 39 2

 65.52.108.27 192.168.5.28 2674 11 2

 216.58.217.142 192.168.5.28 2458 23 3

 192.168.5.28 65.52.108.27 2238 15 2

 192.168.5.28 143.127.93.106 1501 11 4

 192.168.5.28 216.58.217.142 1403 25 3

 65.52.108.153 192.168.5.28 991 9 1

 143.127.93.106 192.168.5.28 956 10 4

 192.168.5.28 63.245.201.111 944 8 2

 63.245.201.111 192.168.5.28 926 9 2

 65.222.200.80 192.168.5.28 908 14 1

 131.253.61.68 192.168.5.28 767 5 1

 104.90.101.179 192.168.5.28 644 3 1

 192.168.5.28 63.245.197.112 518 5 1

 63.245.197.112 192.168.5.28 494 6 1

 104.96.221.145 192.168.5.28 463 4 1

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
8

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

 192.168.5.28 131.253.61.68 463 6 1

 192.168.5.28 104.96.221.145 418 6 1

 192.168.5.28 65.222.200.80 239 4 1

 192.168.5.28 104.90.101.179 234 5 1

Summary: total flows: 90, total bytes: 20671464, total packets: 7724, avg bps:
156152, avg pps: 7, avg bpp: 2676

Time window: 2016-08-25 19:40:28 - 2016-08-25 19:58:07

Total flows processed: 90, Blocks skipped: 0, Bytes read: 4344

Sys: 0.005s flows/second: 17314.4 Wall: 0.002s flows/second: 30395.1

nfdump -r nfcapd.20160825-p443 -O bytes -A srcip,dstip -o 'fmt:%sa %da %byt
%pkt %fl'

 Src IP Addr Dst IP Addr Bytes Packets Flows

 216.58.195.142 192.168.5.28 3.1 M 1025 2

 54.192.55.95 192.168.5.28 319009 116 2

 192.168.5.28 134.170.58.189 259192 106 2

 54.192.55.77 192.168.5.28 124020 56 2

 31.13.69.228 192.168.5.28 123916 60 1

 31.13.69.203 192.168.5.28 35530 25 1

 54.191.11.118 192.168.5.28 30431 22 1

 192.168.5.28 216.58.195.142 29335 844 2

 172.217.1.14 192.168.5.28 22610 44 1

 192.168.5.28 173.194.207.136 22560 30 2

 64.4.27.50 192.168.5.28 21542 23 2

 63.245.192.201 192.168.5.28 21175 47 6

 166.98.6.85 192.168.5.28 19836 40 4

 192.168.5.28 64.4.27.50 16429 23 2

 216.10.195.252 192.168.5.28 13022 22 3

 131.253.61.68 192.168.5.28 12988 10 1

 54.200.62.216 192.168.5.28 10765 28 2

 173.194.207.136 192.168.5.28 10757 28 2

 143.127.102.98 192.168.5.28 10598 25 3

 134.170.58.189 192.168.5.28 10212 101 2

 192.168.5.28 166.98.6.85 10164 40 4

 192.168.5.28 63.245.192.201 10146 40 6

 52.72.67.195 192.168.5.28 8960 9 1

 54.192.55.44 192.168.5.28 8387 21 2

 192.168.5.28 216.10.195.252 7116 23 3

 157.55.240.89 192.168.5.28 5988 9 2

 104.90.101.179 192.168.5.28 5479 6 1

 192.168.5.28 52.34.127.11 5275 17 2

 65.52.108.29 192.168.5.28 5240 8 1

 166.98.6.31 192.168.5.28 4903 11 1

 143.127.102.34 192.168.5.28 4823 9 1

 23.79.197.69 192.168.5.28 4583 6 1

 65.55.44.109 192.168.5.28 4431 7 1

 65.55.252.93 192.168.5.28 4400 6 1

 192.168.5.28 65.52.108.29 4095 10 1

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

1
9

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

 54.187.236.54 192.168.5.28 3978 13 1

 50.112.202.19 192.168.5.28 3857 13 1

 52.34.127.11 192.168.5.28 3836 15 2

 54.201.247.238 192.168.5.28 3792 13 1

 192.168.5.28 131.253.61.68 3744 13 1

 192.168.5.28 65.55.252.93 3404 10 1

 192.168.5.28 172.217.1.14 3326 31 1

 192.168.5.28 31.13.69.228 2789 50 1

 192.168.5.28 31.13.69.203 2662 30 1

 192.168.5.28 54.200.62.216 2549 33 2

 192.168.5.28 143.127.102.98 2440 25 3

 192.168.5.28 157.55.240.89 2307 14 1

 192.168.5.28 54.192.55.95 2220 70 2

 192.168.5.28 65.55.44.109 2158 10 1

 192.168.5.28 143.127.102.34 2010 8 1

 192.168.5.28 54.192.55.77 1754 49 2

 192.168.5.28 166.98.6.31 1581 10 1

 192.168.5.28 54.192.55.44 1292 23 2

 192.168.5.28 54.191.11.118 1290 19 1

 192.168.5.28 54.187.236.54 1213 15 1

 192.168.5.28 54.201.247.238 1155 14 1

 192.168.5.28 50.112.202.19 1044 15 1

 192.168.5.28 157.56.141.114 920 30 10

 192.168.5.28 23.79.197.69 813 8 1

 192.168.5.28 52.72.67.195 785 11 1

 192.168.5.28 104.90.101.179 760 9 1

 157.56.141.114 192.168.5.28 600 30 10

Summary: total flows: 123, total bytes: 4329353, total packets: 3478, avg bps:
35040, avg pps: 3, avg bpp: 1244

Time window: 2016-08-25 19:40:28 - 2016-08-25 19:56:57

Total flows processed: 123, Blocks skipped: 0, Bytes read: 5928

Sys: 0.005s flows/second: 22875.2 Wall: 0.003s flows/second: 39626.3

Digging deeper into the suspected DNS traffic using a netflow query shows that

most of the traffic, 225 flows, were between the computer of interest and the internal

DNS server (192.168.5.1). Five flows, which correspond with the five Snort alerts were

with the external DNS server (8.8.8.8). The time of these queries matches the timestamp

of the Snort alert. Furthermore, we also know that the first transaction to the internal

DNS server occurred at 19:40:26 and the last transaction occurred at 19:54:09.

nfdump -R /var/log/netflow -O tstart -t '2016/08/25.19:00-2016/08/25.20:00' -
A srcip,dstip,proto -o 'fmt:%ts %sa %da %pr %byt %fl' 'ip 192.168.5.28 and port
53'

Date first seen Src IP Addr Dst IP Addr Proto Bytes Flows

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
0

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

2016-08-25 19:40:26.926 192.168.5.28 192.168.5.1 UDP 6347 124

2016-08-25 19:40:26.926 192.168.5.1 192.168.5.28 UDP 43266 100

2016-08-25 19:52:15.308 192.168.5.28 8.8.8.8 UDP 204 5

2016-08-25 19:52:15.338 8.8.8.8 192.168.5.28 UDP 470 5

2016-08-25 19:54:09.627 192.168.5.1 192.168.5.28 TCP 1164 1

2016-08-25 19:54:09.627 192.168.5.28 192.168.5.1 TCP 162 1

Summary: total flows: 236, total bytes: 51613, total packets: 243, avg bps:
427, avg pps: 0, avg bpp: 212

Time window: 2016-08-25 19:00:02 - 2016-08-25 19:59:59

Total flows processed: 1196, Blocks skipped: 0, Bytes read: 59856

Sys: 0.011s flows/second: 107139.7 Wall: 0.006s flows/second: 187784.6

Since the passiveDNS log file stores the date in UNIX epoch time format, it is

advisable to preprocess the log file to convert the dates to a human readable format. The

following command does this while also filtering out records not associated with the

computer of interest (Hagen, 2015d). An MD5 hash was taken of the converted file.

grep 192.168.5.28 20160825_0001.log | sed 's/||/|/g' | awk -F'|' '{OFS="|";
printf("%s",strftime("%Y-%m-%d_%H:%M:%S",$1));$1=""; print $0}' >
/tmp/passivedns-20160825-humanreadable.log

md5sum passivedns-20160825-humanreadable.log

15db53575771968062662cc52a972377 passivedns-20160825-humanreadable.log

From the DNS log, we confirm that the traffic to 8.8.8.8 is DNS traffic. The

timestamp in the log file matches the timestamp in the Snort alert. We also identify the

request is for the IP address of sra.com. The response returned by DNS was

163.252.95.35.

grep 8.8.8.8 passivedns-20160825-humanreadable.log

2016-08-25_19:52:15|192.168.5.28|8.8.8.8|IN|8.8.8.8.in-addr.arpa.|PTR|google-
public-dns-a.google.com.|21599|1

2016-08-25_19:52:15|192.168.5.28|8.8.8.8|IN|sra.com.|A|163.252.95.35|2930|1

Next we query the netflow data to determine what traffic was exchanged with the

IP address 163.252.95.35. Our query does not turn up any traffic.

nfdump -R /var/log/netflow -O tstart -t '2016/08/25.19:00-2016/08/25.20:00' -
A srcip,dstip,proto -o 'fmt:%ts %sa %dap %byt %fl' 'ip 163.252.95.35'

Date first seen Src IP Addr Dst IP Addr:Port Bytes Flows

Summary: total flows: 0, total bytes: 0, total packets: 0, avg bps: 0, avg pps:
0, avg bpp: 0

Time window: 2016-08-25 19:00:02 - 2016-08-25 19:59:59

Total flows processed: 1196, Blocks skipped: 0, Bytes read: 59856

Sys: 0.009s flows/second: 121249.0 Wall: 0.005s flows/second: 229426.4

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
1

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

The investigation might end here labeling the Snort alert as uninteresting.

However, because this is an unknown computer, we will continue on a little further and

examine the HTTP traffic.

A netflow query for port 80 traffic to and from our system of interest generates

the following output. The two top talkers are 32 flows with 65.216.231.144 and 14 flows

with 50.21.177.33. Also of note is that there are a large number of bytes transferred with

65.216.231.144 (2.5 M), 50.21.177.33 (6.3 M), 104.96.220.171 (11.8 M). This is a good

place to start.

nfdump -r nfcapd.20160825-p80 -O flows -A srcip,dstip -o 'fmt:%sa %da %byt
%pkt %fl'

 Src IP Addr Dst IP Addr Bytes Packets Flows

 65.216.231.144 192.168.5.28 2.5 M 815 16

 192.168.5.28 65.216.231.144 20609 345 16

 192.168.5.28 50.21.177.33 24664 583 7

 50.21.177.33 192.168.5.28 6.3 M 1993 7

 192.168.5.28 143.127.93.106 1501 11 4

 143.127.93.106 192.168.5.28 956 10 4

 216.58.217.142 192.168.5.28 2458 23 3

 104.96.220.171 192.168.5.28 11.8 M 2705 3

 192.168.5.28 104.96.220.171 21039 1015 3

 192.168.5.28 216.58.217.142 1403 25 3

 192.168.5.28 72.21.91.29 4291 39 2

 63.245.201.111 192.168.5.28 926 9 2

 65.52.108.27 192.168.5.28 2674 11 2

 72.21.91.29 192.168.5.28 8668 41 2

 192.168.5.28 65.52.108.27 2238 15 2

 192.168.5.28 63.245.201.111 944 8 2

 192.168.5.28 63.245.197.112 518 5 1

 192.168.5.28 65.222.200.80 239 4 1

 192.168.5.28 104.96.221.145 418 6 1

 63.245.197.112 192.168.5.28 494 6 1

 131.253.61.68 192.168.5.28 767 5 1

 65.52.108.153 192.168.5.28 991 9 1

 192.168.5.28 131.253.61.68 463 6 1

 104.96.221.145 192.168.5.28 463 4 1

 192.168.5.28 65.52.108.153 6333 9 1

 104.90.101.179 192.168.5.28 644 3 1

 65.222.200.80 192.168.5.28 908 14 1

 192.168.5.28 104.90.101.179 234 5 1

Summary: total flows: 90, total bytes: 20671464, total packets: 7724, avg bps:
156152, avg pps: 7, avg bpp: 2676

Time window: 2016-08-25 19:40:28 - 2016-08-25 19:58:07

Total flows processed: 90, Blocks skipped: 0, Bytes read: 4344

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
2

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

Sys: 0.005s flows/second: 17367.8 Wall: 0.002s flows/second: 30110.4

The DNS logs provided the identity of the hosts at 65.216.231.144, 50.21.177.33,

and 104.96.220.171.

grep 50.21.177.33 passivedns-20160825-humanreadable.log

2016-08-
25_19:56:27|192.168.5.28|192.168.5.1|IN|euspba.org.|A|50.21.177.33|3600|1

2016-08-
25_19:56:28|192.168.5.28|192.168.5.1|IN|www.euspba.org.|A|50.21.177.33|3600|1

2016-08-
25_19:56:28|192.168.5.28|192.168.5.1|IN|www.euspba.org.|A|50.21.177.33|3600|1

2016-08-
25_19:56:27|192.168.5.28|192.168.5.1|IN|euspba.org.|A|50.21.177.33|3600|1

grep 65.216.231.144 passivedns-20160825-humanreadable.log

2016-08-
25_19:51:01|192.168.5.28|192.168.5.1|IN|a568.d.akamai.net.|A|65.216.231.144|9|2

grep 104.96.220.171 passivedns-20160825-humanreadable.log

2016-08-
25_19:43:03|192.168.5.28|192.168.5.1|IN|a1670.dspg2.akamai.net.|A|104.96.220.17
1|20|1

Additional insight can be obtained by looking at the HTTP host header in the full

packet capture. The host header for 65.216.231.144 identifies this as Symantec

liveupdate traffic.

tshark -n -r 20160825_1901.pcap -T fields -e ip.src -e ip.dst -e http.host -Y
'http.request and ip.addr==192.168.5.28' | sort | uniq

192.168.5.28 104.90.101.179 go.microsoft.com

192.168.5.28 104.96.220.171 wscont.apps.microsoft.com.edgesuite.net

192.168.5.28 104.96.221.145 ctldl.windowsupdate.com

192.168.5.28 131.253.61.68 login.live.com

192.168.5.28 143.127.93.106 spoc-pool-gtm.norton.com

192.168.5.28 216.58.217.142 clients1.google.com

192.168.5.28 239.255.255.250 239.255.255.250:1900

192.168.5.28 50.21.177.33 euspba.org

192.168.5.28 63.245.197.112 stats.norton.com

192.168.5.28 63.245.201.111 stats.norton.com

192.168.5.28 65.216.231.144 liveupdate.symantecliveupdate.com

192.168.5.28 65.222.200.80 liveupdate.symantec.com

192.168.5.28 65.52.108.153 statsfe2.update.microsoft.com

192.168.5.28 65.52.108.27 g.bing.com

192.168.5.28 72.21.91.29 ocsp.digicert.com

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
3

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

Running an nslookup query on liveupdate.symantec.com confirms that this is an

alias for a568.d.akamai.net. We will classify this traffic as normal and ignore it for this

analysis.

>nslookup liveupdate.symantec.com

Server: firefly.fraser.local

Address: 192.168.5.1

Non-authoritative answer:

Name: a568.d.akamai.net

Addresses: 96.6.113.35

 96.6.113.8

Aliases: liveupdate.symantec.com

 liveupdate.symantec.d4p.net

 symantec.georedirector.akadns.net

A Similar examination of the HTTP host header for 104.96.220.171 identifies the

site as wscont.apps.microsoft.com.edgesuite.net. A nslookup confirms that this is an

alias for a1670.dspg2.akamai.net. We will classify this traffic as normal and ignore it for

our analysis.

C:\Users\fraserg>nslookup wscont.apps.microsoft.com.edgesuite.net

Server: firefly.fraser.local

Address: 192.168.5.1

Non-authoritative answer:

Name: a1670.dspg2.akamai.net

Addresses: 2600:1400:a::1743:faa1

 2600:1400:a::1743:faab

 104.96.221.90

 104.96.221.97

Aliases: wscont.apps.microsoft.com.edgesuite.net

Next is the examination of the traffic with the IP address 50.21.177.33,

euspba.org. The Squid access.log, shown below, can provide more information. The

User Agent string identifies the browser as Firefox. The website was first accessed at

19:56:27 and last accessed at 19:56:39.

There were three pages displayed in this exchange – http://euspba.org/,

http://euspba.org/thevoice.aspx, and http://euspba.org/voice/voice2016q2.pdf. The other

HTTP request/responses were for objects on the pages. It would appear that

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
4

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

http://euspba.org was entered into the browser because there is no referer specified. The

Squid result code of TCP_MISS indicates that the objects were not found in the Squid

cache. The Hierarchy code of HIER_DIRECT indicates that the object was retrieved

from the original server (Squid wiki, 2015).

 Http://euspba.org/thevoice.aspx was accessed by clicking on a link of the

http://euspba.org site. We know this because euspba.org is specified as the referrer.

Likewise, http:// euspba.org/voice/voice2016q2.pdf was accessed by clicking on a link on

the Http://euspba.org/thevoice.aspx since it is listed as the referer.

grep euspba access.log

192.168.5.28 - - [25/Aug/2016:19:56:27 -0400] "GET http://euspba.org/ HTTP/1.1"
200 58570 "-" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101
Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:27 -0400] "GET http://euspba.org/_style.css
HTTP/1.1" 200 6282 "http://euspba.org/" "Mozilla/5.0 (Windows NT 6.3; WOW64;
rv:47.0) Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:27 -0400] "GET
http://euspba.org/WebResource.axd? HTTP/1.1" 200 23533 "http://euspba.org/"
"Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0"
TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:27 -0400] "GET
http://euspba.org/WebResource.axd? HTTP/1.1" 200 27421 "http://euspba.org/"
"Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0"
TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET http://euspba.org/DXR.axd?
HTTP/1.1" 200 51895 "http://euspba.org/" "Mozilla/5.0 (Windows NT 6.3; WOW64;
rv:47.0) Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET
http://euspba.org/images/logo_euspba.gif HTTP/1.1" 200 2391
"http://euspba.org/" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0)
Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET http://euspba.org/DXR.axd?
HTTP/1.1" 200 484 "http://euspba.org/" "Mozilla/5.0 (Windows NT 6.3; WOW64;
rv:47.0) Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET
http://euspba.org/images/logo_euspba_text_bk.gif HTTP/1.1" 200 3212
"http://euspba.org/" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0)
Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET
http://euspba.org/images/thevoice.jpg HTTP/1.1" 200 24158 "http://euspba.org/"
"Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0"
TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET
http://euspba.org/images/bkgd_body.jpg HTTP/1.1" 200 1416
"http://euspba.org/_style.css" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0)
Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET
http://euspba.org/App_Themes/BlackGlass/GridView/Loading.gif HTTP/1.1" 200
10962 "http://euspba.org/" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0)
Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
5

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET
http://euspba.org/images/bkgd_site.jpg HTTP/1.1" 200 2541
"http://euspba.org/_style.css" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0)
Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET http://euspba.org/DXR.axd?
HTTP/1.1" 200 213048 "http://euspba.org/" "Mozilla/5.0 (Windows NT 6.3; WOW64;
rv:47.0) Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET http://euspba.org/DXR.axd?
HTTP/1.1" 200 585
"http://euspba.org/DXR.axd?r=1_10,1_12,1_1,0_413,0_570,0_415,0_574,0_406,1_5,0_
408-ukyRc" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101
Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET http://euspba.org/DXR.axd?
HTTP/1.1" 200 8338
"http://euspba.org/DXR.axd?r=1_10,1_12,1_1,0_413,0_570,0_415,0_574,0_406,1_5,0_
408-ukyRc" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101
Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET http://euspba.org/DXR.axd?
HTTP/1.1" 200 16539
"http://euspba.org/DXR.axd?r=1_10,1_12,1_1,0_413,0_570,0_415,0_574,0_406,1_5,0_
408-ukyRc" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101
Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:28 -0400] "GET
http://euspba.org/favicon.ico HTTP/1.1" 404 5703 "-" "Mozilla/5.0 (Windows NT
6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:29 -0400] "GET
http://euspba.org/favicon.ico HTTP/1.1" 404 5703 "-" "Mozilla/5.0 (Windows NT
6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:31 -0400] "GET
http://euspba.org/thevoice.aspx HTTP/1.1" 200 21552 "http://euspba.org/"
"Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0"
TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:31 -0400] "GET http://euspba.org/DXR.axd?
HTTP/1.1" 200 21823 "http://euspba.org/thevoice.aspx" "Mozilla/5.0 (Windows NT
6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:31 -0400] "GET http://euspba.org/DXR.axd?
HTTP/1.1" 200 84106 "http://euspba.org/thevoice.aspx" "Mozilla/5.0 (Windows NT
6.3; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:31 -0400] "GET
http://euspba.org/images/logo_voice.jpg HTTP/1.1" 200 18580
"http://euspba.org/thevoice.aspx" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0)
Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:38 -0400] "GET
http://euspba.org/voice/voice2016q2.pdf HTTP/1.1" 206 33774
"http://euspba.org/thevoice.aspx" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0)
Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

192.168.5.28 - - [25/Aug/2016:19:56:39 -0400] "GET
http://euspba.org/voice/voice2016q2.pdf HTTP/1.1" 200 5604277
"http://euspba.org/thevoice.aspx" "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:47.0)
Gecko/20100101 Firefox/47.0" TCP_MISS:HIER_DIRECT

The Squid access log mirrors the information captured in the full packet capture

as reported by tshark.

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
6

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

tshark -n -r 20160825_1901.pcap -T fields -e frame.time -e
http.request.method -e http.host -e http.request.uri -Y 'http.request and
ip.addr==192.168.5.28' | grep euspba

Running as user "root" and group "root". This could be dangerous.

"Aug 25, 2016 19:56:27.433348000 EDT" GET euspba.org /

"Aug 25, 2016 19:56:27.708645000 EDT" GET euspba.org
/DXR.axd?r=1_10,1_12,1_1,0_413,0_570,0_415,0_574,0_406,1_5,0_408-ukyRc

"Aug 25, 2016 19:56:27.709414000 EDT" GET euspba.org /_style.css

"Aug 25, 2016 19:56:27.709615000 EDT" GET euspba.org
/WebResource.axd?d=sK_ws0WXRC8s0oBVsdV_B9Cyb_sn0TckvwP-
lHaCpd2tTzMyWEFofPoSgV5KBr6jz9-qf4Lts4t_pr3PE_fx-
TUudAbAd3vw0E0z8tDcg4M1&t=635823490080000000

"Aug 25, 2016 19:56:27.711276000 EDT" GET euspba.org
/WebResource.axd?d=PI_DeH2Sjjs-
iUkarBhiXDo9uHb4GwVWue0iZIFIqDvw5KV8TsPMRnBmU0S1YicA2PlDPLoYdAgJYqSnpfsFIRKZQyM
9GuuiI8B-zgf2Eqs1&t=635823490080000000

"Aug 25, 2016 19:56:27.712465000 EDT" GET euspba.org
/DXR.axd?r=1_171,1_94,1_164,1_91,1_156,1_162,1_147,1_104,1_138,1_114,1_121,1_11
3,1_98,1_154,1_106,1_152,1_97,1_150-ukyRc

"Aug 25, 2016 19:56:28.023660000 EDT" GET euspba.org
/images/logo_euspba.gif

"Aug 25, 2016 19:56:28.023969000 EDT" GET euspba.org
/images/logo_euspba_text_bk.gif

"Aug 25, 2016 19:56:28.024481000 EDT" GET euspba.org
/DXR.axd?r=1_15-ukyRc

"Aug 25, 2016 19:56:28.024498000 EDT" GET euspba.org
/App_Themes/BlackGlass/GridView/Loading.gif

"Aug 25, 2016 19:56:28.026324000 EDT" GET euspba.org
/images/thevoice.jpg

"Aug 25, 2016 19:56:28.077885000 EDT" GET euspba.org
/images/bkgd_body.jpg

"Aug 25, 2016 19:56:28.087142000 EDT" GET euspba.org
/images/bkgd_site.jpg

"Aug 25, 2016 19:56:28.363643000 EDT" GET euspba.org
/DXR.axd?r=0_411-MjyRc

"Aug 25, 2016 19:56:28.365135000 EDT" GET euspba.org
/DXR.axd?r=0_414-MjyRc

"Aug 25, 2016 19:56:28.365152000 EDT" GET euspba.org
/DXR.axd?r=0_571-MjyRc

"Aug 25, 2016 19:56:28.903780000 EDT" GET euspba.org /favicon.ico

"Aug 25, 2016 19:56:28.958335000 EDT" GET euspba.org /favicon.ico

"Aug 25, 2016 19:56:31.357109000 EDT" GET euspba.org /thevoice.aspx

"Aug 25, 2016 19:56:31.530683000 EDT" GET euspba.org
/DXR.axd?r=1_10,1_12,1_1-ukyRc

"Aug 25, 2016 19:56:31.532771000 EDT" GET euspba.org
/DXR.axd?r=1_171,1_94,1_164,1_91,1_156,1_162,1_147-ukyRc

"Aug 25, 2016 19:56:31.602186000 EDT" GET euspba.org
/images/logo_voice.jpg

"Aug 25, 2016 19:56:37.992256000 EDT" GET euspba.org
/voice/voice2016q2.pdf

"Aug 25, 2016 19:56:38.828108000 EDT" GET euspba.org
/voice/voice2016q2.pdf

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
7

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

The PDF file was extracted from the packet capture using Wireshark. This was

done by locating the packet containing the PDF file using the filter: http.request.uri

contains voice2016q2.pdf. On expanding the Hypertext Transfer Protocol section, a link

was displayed labeled Request in frame: xxx. The display filter had to be cleared in order

to make the response packet available. Then clicking on the link for response in frame

xxx brings up the response record. The PDF file was exported by right-clicking on the

Media type field and selecting the “Export Packet bytes” menu option. The file was

saved as a raw file.

In order to verify that the file exported from the packet capture was indeed the file

that was downloaded, an MD5 hash was done of the original file and compared to the

MD5 hash of the file that was downloaded. As shown below, the MD5 hashes match.

Sometimes when a file is exported from packet captures, the analyst does not know what

type of file it is. The Linux command “file” can be used to identify the type of file.

[root@serpent fraserg]# file export.raw

export.raw: PDF document, version 1.7

[root@serpent fraserg]# md5sum export.raw

fc3ad7cb0825a65ee3321d629cd3d399 export.raw

[root@serpent fraserg]# file voice2016q2.pdf

voice2016q2.pdf: PDF document, version 1.7

[root@serpent fraserg]# md5sum voice2016q2.pdf

fc3ad7cb0825a65ee3321d629cd3d399 voice2016q2.pdf

4.3. The Results
Table 1 presents a timeline of the events that were discovered using the forensic

information captured by our network architecture. Using the network artifacts captured

by our network architecture we were able to reconstruct all of the network events

accurately. These events matched the actions that were used to generate the test scenario.

Traffic, we classified as normal, is not included in the table.

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
8

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

Table	1:	Event	Timeline	(all	events	occurred	on	August	24,	2016)	
Time (EDT) Event Source
2016-08-25
19:40:26

Received an email indicating a new system
appeared on the network

Arpwatch

2016-08-25
19:40

Computer requested IP address from the
DHCP server; obtained a lease on 192.18.5.28

DHCP server log

2016-08-25
19:40

Traffic (UDP, TCP, ICMP) began on the
network associated with 192.168.5.28

Netflow

2016-08-25
19:52:15

Snort alert triggered saying that a DNS query
was made directly to an external DNS server

Snort

2016-08-25
19:52

Computer queried external DNS server
(8.8.8.8) requesting IP address for sra.com

Snort Alert
DNS log

2016-08-25
19:52

Confirmed DNS queries made to 8.8.8.8
requesting the IP address for sra.com; answer
returned was 163.252.95.35.

Netflow,
DNS logs

 No traffic was directed to 163.252.95.35 Netflow
2016-08-25
19:56:27

Firefox (47) used to access the website at
http://euspba.org

Squid – access.log,
tshark

2016-08-25
19:56:31

Webpage http://euspba.org/thevoice.aspx was
accessed via link on the eusba.org web page.

Squid – access.log,
tshark

2016-08-25
19:56:38

Web page containing a PDF file was accessed
via link on the http://euspba.org/thevoice.aspx
web page.

Squid – access.log,
Tshark, wireshark

2016-08-25
19:58:07

Last packet from 192.168.5.28 was seen Netflow

2016-08-26
7:40

Computer not present on network; Noted by
the absence of a DHCP lease renewal request.

DHCP log

	
In addition to being able to construct a timeline of the events, we obtained a copy

of the PDF file from the network artifacts that was downloaded from the website. A copy

was extracted from the full packet capture and compared to the original. The MD5 hash

of each file matched, indicating the extract was an exact match of the file that was

downloaded.

It should be noted that multiple artifacts were used to identify each event. These

are important in that they corroborate the existence of the event given that multiple

sources indicate it happened. Multiple sources of information are important in that some

of the sources might not be available at the time when an analysis is performed. For

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

2
9

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

example, the analysis might be done after the retention time for a full packet capture has

expired. Squid caches information for a specified period of time. Once that time has

passed, the information might not be retrievable from Squid’s cache.

5. Conclusion

This paper identified key artifacts that are important to support network forensics

during incident response. It discussed the setup of a home lab architected to collect the

artifacts using open source tools and validated the implementation of the architecture

through a test scenario.

The test scenario was a simple test designed to perform some common activities

on the network. The validation challenge presented was to see if, by using the network

artifacts collected by the proposed architecture, an analyst could reconstruct the actions

taken by the tester. The test was a success. It was possible to generate a timeline of the

user’s actions on the network as shown in Table 1.

The architecture used tools that are representative of tools that could be used for

the collection of different types of artifacts. There are other tools that can serve the same

purpose. For example SiLK, the System for Internet-Level Knowledge, is an open-

source tool that provides similar functionality to nfdump.

More can be added to the architecture. Logging from the firewall could have

been used in the analysis. Software for log aggregation could be added.

The architecture presented in this document provides a good starting point. It

provides an environment in which to experiment and develop experience and skills

without a big price tag. It also defines basic functionality that one might expect in a work

environment.

	

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
0

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

Appendix A: Software Installation and Configuration

 Firewall/Router
To setup a Linux server as a router IP Forwarding needs to be configured. This is

configured by setting the following in the /etc/sysctl.conf file:

net.ipv4.ip_forward = 1

There are two options for firewalls on Centos 7 systems – firewalld and iptables.

Firewalld is the newer of the two and the default. Iptables was chosen for this exercise.

In order to use iptables, it must be installed and firewalld must be disabled. This is done

using the commands:

yum install iptables-services

systemctl stop firewalld

systemctl disable firewalld

The key commands in a bash file that are needed to setup the routing using

iptables with NAT are:

#!/bin/bash

INTERNET="enp2s0"

LAN="enp5s2"

iptables -t nat -A POSTROUTING -o $INTERNET -j MASQUERADE

iptables -A FORWARD -i $INTERNET -o $LAN -m state /

--state RELATED,ESTABLISHED -j ACCEPT

iptables -A FORWARD -i $LAN -o $INTERNET -j ACCEPT

Much more should be done to configure iptables, but that is beyond the scope of

this paper. Some additional iptables commands are described in later sections of this

paper where appropriate. Logging is not required, nor is it automatic when using

iptables. Logging must be configured.

Iptables is established to run as a service using the command:

systemctl enable iptables

systemctl start iptables

A bash file, like that started above can be used to initialize the iptables rules.

These rules can then be saved so that they persist beyond a reboot of the system using the

command:

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
1

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

service iptables save

This will save the rules in the file /etc/sysconfig/iptables.

 Time Services (NTP)
The firewall/router was established as the internal NTP server. NTP was installed

using the command:

yum install ntp

The NTP server configuration file, /etc/ntp.conf, was modified to allow clients on

the local network to synchronize their time with the time server using:

 # Hosts on local network are less restricted.
restrict 192.168.5.0 mask 255.255.255.0 nomodify notrap

Additionally, the NTP server was configured to synchronize itself with Internet-based

time server with:

Use public servers from the pool.ntp.org project.

server 0.centos.pool.ntp.org iburst

server 1.centos.pool.ntp.org iburst

server 2.centos.pool.ntp.org iburst

server 3.centos.pool.ntp.org iburst

The following rules were added to iptables to allow the NTP server to

synchronize their time with the Internet-based time servers and to allow internal servers

to synchronize with it.

iptables -A OUTPUT -o $INTERNET -p udp --dport 123 -j ACCEPT

iptables -A INPUT -i $INTERNET -p udp --sport 123 -j ACCEPT

iptables -A INPUT -i $LAN -p udp --dport 123 -j ACCEPT

iptables -A OUTPUT -o $LAN -p udp --sport 123 -j ACCEPT

For the NTP clients on the local network, the server command needs to be

modified to add the internal NTP server, firefly, as shown below and the public servers

need to be commented out.

Sync with internal ntp time server

server firefly.fraser.local iburst

Use public servers from the pool.ntp.org project.

Please consider joining the pool (http://www.pool.ntp.org/join.html).

#server 0.centos.pool.ntp.org iburst

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
2

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

#server 1.centos.pool.ntp.org iburst

#server 2.centos.pool.ntp.org iburst

#server 3.centos.pool.ntp.org iburst

The systemctl command can be used to manage the NTP server and the NTP

clients.

 Dynamic Host Configuration Protocol (DHCP)
The firewall/router was established as the internal DHCP server. DHCP was

installed using the command:

yum install dhcp

The following is the DHCP configuration (/etc/dhcp/dhcpd.conf) for the lab.

DHCP Server Configuration file.

see /usr/share/doc/dhcp*/dhcpd.conf.example

see dhcpd.conf(5) man page

ddns-update-style none;

option domain-name-servers 192.168.5.1;

option domain-name "fraser.local";

default-lease-time 86400; # time in seconds – 1 day

max-lease-time 259200; # time in seconds – 3 days

authoritative;

log-facility local7;

subnet 192.168.5.0 netmask 255.255.255.0 {

 range 192.168.5.26 192.168.5.99;

 option routers 192.168.5.1;

 option broadcast-address 192.168.5.255;

}

Since the DHCP server is located on the firewall system, rules need to be

established to allow the systems on the internal network to communicate with it.

iptables -A INPUT -i $LAN -p udp --sport 67 -j ACCEPT

iptables -A INPUT -i $LAN -p udp --sport 68 -j ACCEPT

iptables -A OUTPUT -o $LAN -p udp --dport 67 -j ACCEPT

iptables -A OUTPUT -o $LAN -p udp --dport 68 -j ACCEPT

DHCP logs to /var/log/messages.

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
3

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

 Domain Name Server (DNS)
The firewall/router was established as the internal DNS server. DNS was

installed using the command:

yum install bind bind-utils

There are several configuration files that need to be setup to make DNS work.

These include the /etc/named.conf, /var/named/forward.zone, and

/var/named/reverse.zone.

Since the internal DNS server is located on the firewall system, rules need to be

established to allow the systems on the internal network to communicate with it and for it

to communicate with an upstream DNS to resolve external addresses. The iptables rules

are as follows:

iptables -A OUTPUT -o $INTERNET -p udp -d 192.168.1.1/32 --dport 53 -j LOG --
log-prefix "iptables: "

iptables -A INPUT -i $INTERNET -p udp -s 192.168.1.1/32 --sport 53 -j LOG --
log-prefix "iptables: "

iptables -A OUTPUT -o $INTERNET -p udp -d 192.168.1.1/32 --dport 53 -j ACCEPT

iptables -A INPUT -i $INTERNET -p udp -s 192.168.1.1/32 --sport 53 -j ACCEPT

iptables -A OUTPUT -o $INTERNET -p tcp -d 192.168.1.1/32 --dport 53 -j ACCEPT

iptables -A INPUT -i $INTERNET -p tcp -s 192.168.1.1/32 --sport 53 -j ACCEPT

 Full Packet Capture
Full packet captures are valuable in that they provide a complete picture of what

crossed the network. One of the most popular applications used for capturing packets is

tcpdump (Banks, 2013). Tcpdump was set up as a service on the monitoring server.

There are a few considerations that must be taken into account when setting up

tcpdump as a service. Root access is generally required to capture network traffic, but it

is not desirable to run the service as root. Systemd is the service manager for Centos

Linux. It initiates processes initially as root and then shifts to the user tcpdump. The

capture files are stored owned by the user tcpdump.

Running services within Systemd is done through the use of unit files. Here is a

Systemd unit file to run tcpdump as a service. This configuration executes a script,

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
4

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

/usr/local/scripts/tcpdump.sh, with a user id of tcpdump and group of tcpdump. Restart is

configured and it uses the process id (pid) that is stored in /var/log/tcpdump/tcpdump.pid.

[Unit]

Description=tcpdump capture daemon

After=network.target

[Service]

Type=forking

ExecStart=/usr/local/scripts/tcpdump.sh

PIDFile=/var/log/tcpdump/tcpdump.pid

Restart=always

User=tcpdump

Group=tcpdump

[Install]

WantedBy=multi-user.target

Alias=tcpdump.service

The following is the script that the unit file executes.

#!/bin/bash

IFACE="enp1s0"

DATADIR="/var/log/tcpdump"

cd $DATADIR

start process in backgroud

/usr/sbin/tcpdump -s0 -nn -i $IFACE -G3600 -w "%Y%m%d_%H%M.pcap" &

sleep 5

get pid

echo $! > /var/log/tcpdump/tcpdump.pid

Several other system configurations must be made for this to work. The

/var/log/tcpdump directory must be owned by the tcpdump user and group to allow the

process to write to it. In order to permit a non-root user to capture traffic using tcpdump,

the setcap utility must be run.

$ setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump

This setting can be verified using the command:

$ getcap /usr/sbin/tcpdump

/usr/sbin/tcpdump = cap_net_admin,cap_net_raw+eip

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
5

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

The service can be managed – started, enabled at boot, stopped, etc. -- using the

systemctl command.

 DNS Logging
PassiveDNS was installed from source code according to the instructions

provided on the PassiveDNS github site

(https://github.com/gamelinux/passivedns/blob/master/doc/INSTALL).

$ yum groupinstall "Development tools"

$ cd passivedns/

$ autoreconf --install

$./configure

$ make

To configure PassiveDNS as a systemd service, the same process as used for

tcpdump was used. The /etc/systemd/system/passivedns.service unit file is:

[Unit]

Description=passivedns logging daemon

After=network.target

[Service]

Type=forking

ExecStart=/usr/local/scripts/passivedns.sh

PIDFile=/var/log/passivedns/passivedns.pid

Restart=always

User=tcpdump

Group=tcpdump

[Install]

WantedBy=multi-user.target

Alias=passivedns.service

The following script, /usr/local/scripts/passivedns.sh, is called from the systemd

unit file to start the service.

#!/bin/bash

IFACE="enp1s0"

DATADIR="/var/log/passivedns"

FILENAME=$(date +"%Y%m%d_%H%M.log")

cd $DATADIR

start process in backgroud

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
6

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

/usr/local/bin/passivedns -i $IFACE -l $FILENAME -L
/var/log/passivedns/passivedns.log -p /var/log/passivedns/passivedns.pid -u
tcpdump -g tcpdump -D &

Since PassiveDNS reads the traffic from the network interface using libpcap, the

setcap command must be run to grant the executable the capability to capture traffic as a

non-root user.

$ setcap cap_net_raw,cap_net_admin=eip /usr/local/bin/passivedns

The log file directory, /var/log/passivedns, needs to be owned by the user

tcpdump and the group tcpdump.

 Netflow
Nfpcapd was installed from source code according to the instructions provided on

the nfdump github site (Haag, 2015). The option for the ./configure command –enable-

nfpcapd was used to allow nfpcapd to be used to read pcap files created by tcpdump.

Configuring netflow packet capture as a systemd service was done similar to what

was done for tcpdump. Here is the /etc/system/system/nfpcapd.service unit file:

[Unit]

Description=netflow logging daemon

After=network.target

[Service]

Type=forking

ExecStart=/usr/local/scripts/nfpcapd.sh

PIDFile=/var/log/nfdump/nfpcapd.pid

Restart=always

User=tcpdump

Group=tcpdump

[Install]

WantedBy=multi-user.target

Alias=nfpcapd.service

The following is the script, /usr/local/scripts/nfpcapd.sh, that the nfpcapd.service

file calls:

#!/bin/bash

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
7

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

IFACE="enp1s0"

DATADIR="/var/log/nfdump"

cd $DATADIR

start process in backgroud

/usr/local/bin/nfpcapd -i $IFACE -l /var/log/nfdump -P
/var/log/nfdump/nfpcapd.pid -t 300 -D

Since nfpcapd reads traffic from the network interface using libpcap, we need to

use the setcap command to grant the executable the capability to capture traffic as a non-

root user.

$ setcap cap_net_raw,cap_net_admin=eip /usr/local/bin/nfpcapd

The log file directory, /var/log/nfdump, needs to be owned by the user tcpdump

and the group tcpdump.

 Intrusion Detection System (Snort)
Snort was installed using the instructions by William Parker (Parker, 2015). The

version of Snort was 2.9.8.0, the version of DAQ was 2.0.6, and the version of Snort

rules was 2980. Where the installation deviated from Parker’s instructions was with the

startup script. In order to use systemd services, the system service file, snort.service,

listed below was used instead.

[Unit]

Description=Snort IDS Daemon

After=syslog.target network.target

[Service]

Type=simple

ExecStart=/usr/local/bin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i
enp1s0

[Install]

WantedBy=multi-user.target

 Arpwatch
Arpwatch was installed using the command:

sudo yum install arpwatch

Once Arpwatch was installed, the environment file, /etc/sysconfig/arpwatch, was

modified to add the interface to the options using “-i enp6s0”. It appears that the

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
8

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

interface must have an IP address to work. The installation includes the systemd unit file,

aprwatch.service, so the systemctl commands can be used to start, stop, enable, and check

the status of the process. Arpwatch logs to /var/log/messages.

 Proxy Server (Squid)
Squid ProxyServer, version 3.3.8, was installed using the command:

sudo yum install squid

Once the software was installed several configuration changes needed to be made

in the /etc/squid/squid.conf file. The configuration parameter pid_filename

/var/log/squid/squid.pid needed to be added to correct a permissions problem. The

line beginning with cache_dir needed to be uncommented to enable caching. The word

transparent needed to be added to the end of the line beginning with http_port to enable

transparent proxying.

In order to make the squid server work the following lines needed to be added to

the iptables configuration:

iptables -t nat -A PREROUTING -i $LAN -p tcp --dport 80 /

-j REDIRECT --to-port 3128

iptables -A INPUT -i $LAN -p tcp --dport 3128 -m state /

--state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT -o $LAN -p tcp --sport 3128 -m state /

--state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT -o $INTERNET -p tcp --dport 80 -m state /

--state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -i $INTERNET -p tcp --sport 80 -m state /

--state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT -o $LAN -p tcp --sport 80 -m state /

--state ESTABLISHED,RELATED -j ACCEPT

The installation includes the systemd unit file, squid.service, so the systemctl

commands can be used to start, stop, enable, and check the status of the process.

© 2016 The SANS Institute Author retains full rights.

Building a Home Network Configured to Collect Artifacts for Supporting Network
Forensic Incident Response	

3
9

	

Gordon	Fraser,	Gordon.fraser@ctipc.com	 	 	

References
Banks, Derek. (2013). Custom Full Packet Capture System. Retrieved April 18, 2016,

from https://www.sans.org/reading-room/whitepapers/logging/custom-full-

packet-capture-system-34177.

Davidoff, Sherri and Ham, Jonathan. (2012). Network Forensics: Tracking Hackers

through Cyberspace. Prentice Hall: Upper Saddle River, NJ.

Fjellskål, Edward Bjarte. (August 2015). PassiveDNS Readme. Retrieved April 18,

2016, from https://github.com/gamelinux/passivedns.

Fjellskål, Edward Bjarte. (December 2015). PassiveDNS Install. Retrieved April 18,

2016 from https://github.com/gamelinux/passivedns/blob/master/doc/INSTALL

Haag, Peter. (2015). Nfdump Readme. Retrieved April 18, 2016, from

https://github.com/phaag/nfdump.

Hagen, Phil (2015a). Advanced Network Forensics and Analysis: Logging and OPSEC,

and Footprint. The SANS Institute: Bethesda, MD.

Hagen, Phil. (2015b). Advanced Network Forensics and Analysis: Netflow Analysis,

Commercial Tools, and Visualization. The SANS Institute: Bethesda, MD.

Hagen, Phil. (2015c). Advanced Network Forensics and Analysis: Network Protocols and

Wireless Investigations. The SANS Institute: Bethesda, MD.

Hagen, Phil (2015d). Advanced Network Forensics and Analysis: Off the Disk and Onto

the Wire. The SANS Institute: Bethesda, MD.

Mandiant. (February, 2016). M-Trends 2016. FireEye, Inc.: Milpitas, CA. Retrieved

April 15, 2016 from https://www2.fireeye.com/M-Trends-2016.html.

Parker, William. (December 24, 2015). Getting Snort working in Centos 6.x/7.x and

Virtual Box 5.x.x. Retrieved July 1, 2016, from

https://www.snort.org/documents.

Skoudis, Ed, Strand, John, and SANS. (2014). Incident Handling Step by Step and

Computer Crime Investigation. The SANS Institute: Bethesda, MD.

Squid Wiki. (November 18, 2015). Squid Log Files. Retrieved August 25, 2016, from

http://wiki.squid-cache.org/SquidFaq/SquidLogs#Squid_result_codes

