GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Integration of Network Conversation Metadata with
Asset and Configuration Management Databases

GIAC (GCIA) Gold Certification

Author: William Yeatman, wmyeatman@gmail.com
Advisor: Barbara Filkins
Accepted: May 16, 2015

Abstract

As an alternative the loss of access to plaintext IP payloads in an increasingly encrypted
and privacy conscious world, network layer security analysis requires a shift of attention
to examination and characterization of the packet and network conversation meta-
information derived from packet header information. These characteristics can be
incorporated into and treated as an integral part of asset and configuration management
baselines. Changes detected in the expected endpoints, frequency, duration, and packet
sizes can be flagged for review and subsequent response or adjustment to the baseline.

Network Conversation Metadata as Configuration Baseline Item | 2

1. Introduction

The use of encryption to protect the confidentiality of network communications is
on the rise. According to Sandvine’s 2014 Global Internet Phenomena Report, and as
reported by Wired Magazine, the volume of encrypted online communications has nearly
doubled in North America, tripled in Europe, and more than quadrupled in Latin America

since the 2013 Snowden revelations (Finley, 2014).

Consumer end users are not the only ones to see a rise in the use of network level
encryption. Enterprise encryption strategies show a trend toward encryption across both
external and internal networks. In the Ponemon Institute’s 2014 Global Encryption
Trends Study, 35% of respondents indicated their organization had extensively deployed
solutions for the encryption of external public networks, enterprise wide, with 47% of
respondents indicating they had at least started with partial or “point” deployments
(Ponemon, 2014). For encryption of internal network traffic, 32% of the respondents
indicated the extensive use of encryption technologies enterprise-wide and 46% indicated

some level of progress with partial deployments.

In the wake of high profile cyber security breaches and allegations of government
snooping into Internet traffic, proliferation of interest in the use of encryption for the
protection of network communications should come as no surprise. After all, for security
professionals, confidentiality is a core tenet of a good information security program. But
the good guys are not the only ones using encryption to try to protect privacy of
communications and foil cyber attacks. Malware Command and Control (C2) traffic is
usually encrypted nowadays and deprecated is the use of plaint-text C2 avenues such as

Internet Relay Chat (IRC) (Grosfelt, 2014).

Contrary to the notion of protecting the confidentiality of communication to
strictly the sender and receiver, the security analyst’s job is (was) often easier and more
colorful when the analyzed traffic is (was) plaintext. What commands was that malware
trying to execute and what other hosts may have been implicated? Easy! Pull the IRC
related network packets, fire up Wireshark or your favorite protocol decoder, and pick

through the strings. Obviously, plaintext payloads can be accessed, parsed, readily

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 3

understood, and often make for much more insightful and interesting analysis by the
security professional. An interesting question is raised. What happens when all (or at
least the majority of) network traffic is encrypted and the security analyst does not have
the decryption keys (which is usually the case when it comes to modern malware)? And
even when the analyst has access to the decrypted network stream, as in the case of SSL
proxies, there are times where the use of such a proxy is detectable by the end server and
terminated in the interest of absolute confidentiality and preventing a man in the middle

MITM attack.

So, of what use to us is the network security analyst in a world where all packet
payloads are encrypted? There are many answers, of course, and the good news is that
network monitoring is not dead just because the payloads and application content are
encrypted. But first, it is good to clarify what is meant by network conversation
metadata. For the remainder of this paper, network conversation metadata refers to the
plaintext header data and statistical information that can be derived from Internet
Protocol (IP) version 4 or 6 packets. The following packet capture is a basic illustration

of an IPv4 packet that has its encrypted payload:

No Time Source Protocol | Lengtl | Info

Destination

| 46 4.298128000 173.194.121.43, YR\, 252.168.9,116 TLSV1 99 Application Data

+ Frame 46: 99 bytes on wire (792 bits), 99 bytes captured (792 bits) on interface 0

- Ethernet II, Src: ZyxelCom Ze:78:b3 (10:7b:ef:2e:78:b3), Dst: Vmware 56:98:76 (00:0c:29:56:98:76)

+ Internet Protocol Version 4, Src: 173.194.121.49 (173.194.121.49), Dst: 192.168.9.116 (192.168.9.116)

+ Transmission Control Protocol, Src Port: https (443), Dst Port: 48237 (48237), Seq: 16002, Ack: 5505, Len: 33
Secure Sockets Layer

- TLSvl Record Layer: Application Data Protocol: http
Content Type: Application Data (23)
Version: TLS 1.0 (0x0301)
Length: 28

| Fnthypted Application Data: d&fal2f348f0815d05093a7b3aS0ec26c00ch0sesefcblc3. .,

020 09 74 Ol bb bc 6d a6 ¢c2 02 d0 Bc 71 25 le BO 18 ateceMee ouellaue
0030 02cbebdB 00000101 OB OaS29 ef SO0 03 ovvs vuvwsuses
0040 bo f5 17 03 01 00 1c BH a 12 t3 48 10 Bl 5d OS
sl Bl0S 33 7h 33 50 ec 26 cO Oc b0 es 6e fc bl c3 f2
0060 CN==lY

Note that the highlighted portion of the packet show that that payload is encrypted, but
the IP and Transmission Control Protocol headers are all still plaintext. There is much to
be gleaned from the IP and TCP headers — note above that we have access to basic

information such as the source and destination addresses, port numbers, TCP sequence

William Yeatman, wmyeatman(@gmail.com

© 2015 The SANS Institute Author retains full rights.

Network Conversation Metadata as Configuration Baseline Item | 4

numbers, and the like. Inherent also is information such as packet lengths, payload
lengths (whether encrypted or not), and other data that could be used to extrapolate and
characterize the conversations between networked peers. We are advised: “turning to
session data or statistics on the sorts of ports and addresses is a better way to identify
suspicious activity” (Bejtlich, 2005). This approach has found practical application in the
identification of compromised healthcare organizations by analyzing just
source/destination IP addresses and geo-location information over a period of one year

(Filkins, 2014).

It stands to reason that an asset-centric approach to monitoring may be helpful.
There would seem to be utility in capturing information about network conversations
from the wire and integrating the characteristics of the conversations into
asset/configuration management baselines. At a high level, this is akin to peer
whitelisting, but at the asset/configuration management level. In the asset/config
management system, we consciously annotate that host X was observed communicating
with host Y or host Z using some protocol (e.g., TCP) on some port (443, for example).
Other potentially interesting metadata such as conversation duration, packet counts, and
byte sizes could also be recorded and integrated as part of the baseline and configuration

management for host X.

While establishment of system profiles relative to event/incident response
efficiencies is not an entirely new concept (Karwaski, 2009), and approaches to
monitoring network behavior (i.e., tools for analysis of NetFlow records, Silk) have been
available for many years, the notion is advanced when we consider actually integrating

the network conversation characteristics as part of the baseline configuration for an asset.

Again, the idea is that most packet payloads will presumably, at some future
point, be unavailable for analysis due to increasingly prevalent use of transmission
encryption. Network layer security analysis thus continues shifting focus toward the
monitoring of the meta- and statistical information of network conversations during
analysis. The remainder of this paper discusses the concept of integrating this network
conversation meta-information into an existing asset/configuration management system.

Potential benefits and challenges are shared. Finally, a working example is presented to

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 5

offer a tangible view of what an approach of this nature might offer in the protection of

critical systems.

2. Handling Network Conversation Information as
Asset/Configuration Item

2.1. A Proposal

SANS Ceritical Security Controls (CSC) 1-1 and 2-2 recommend the deployment
of an automated asset inventory discovery tool and its use in building an asset inventory
of systems and software in use at an organization (SANS, 2014). CSC 1-4 and 2-4 then

indicate that the following attributes should be maintained in the inventory:
e Network address
e Machine name
e Purpose of system
e Asset owner
e Department associated with the device
e Operating system w/ version and patch level
e Installed applications w/ version and patch level

The addition of network conversation meta-information to this asset inventory, or
a configuration management database tied directly to it, would support an asset-based,

continuous view of the conversations occurring on the network.

What is interesting is the idea of using existing security analyst and network
capture tools to augment information in the asset/configuration management databases.
Such an approach provides visibility to system administrators and owners as to what their
systems are talking to, and which systems are talking to them. Integration of this
information with the asset/configuration management databases could facilitate review of
these conversations and provide an opportunity for formal approval as part of a baseline

for any particular set of systems. In the end, this helps answer the question “Do we know

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 6

what is connecting to and running (or trying to run) on our systems and networks?”’

(SANS, 2014).

Ultimately, the revised asset or configuration management database might appear

as follows:
e Network address
e Machine name
e Purpose of system
e Asset owner
e Department associated with the device
e Operating system w/ version and patch level
e Installed applications w/ version and patch level
e NEW: Approved Network Conversation Peers

As network layer intelligence is obtained from the wire, it can then be fed into the
asset/configuration management database where automatic comparisons can be made to
identify anomalies against the approved list of hosts authorized to communicate with the
asset in question. Ideally, the asset/configuration management interface would allow the
system administrator or owner to indicate that a newly identified connection is authorized

- or to potentially trigger the incident response process if it was not expected!

Ideally, the feeding of network layer intelligence into the asset/configuration
management system would be accompanied by correlation with other information sources
that aid the system administrator/owner in making a determination as to whether or not
the peers in the conversation are authorized to be communicating with one another. For
example, if the peer on either side of the observed connection is not already in the
asset/configuration database, then DNS, geolocation data, threat intelligence feeds and
other block list information can be queried and presented to the system
administrator/owner. Putting this information, automatically at the fingertips of the
system administrator/owner reduces the amount of additional research that would need to

be performed in discerning whether any given peer-to-peer conversation is expected.

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 7

Additional consideration would need to be given to the amount and granularity of

information that should be included.

2.1.1. Challenges

It is worth mentioning, upfront, the potential drawbacks to this asset-centric
approach. The first is, as any good security analyst knows, the potential to produce large
volumes of data that no administrator or system owner would practically be able to sift
through. This may be the case particularly with end user workstations and mobile
devices that have unfettered Internet connectivity. Overwhelming system administrators
with more data that leads to more work is not the goal of this exercise, so any attempt to
incorporate network traffic observations with the asset/configuration management system
needs to be done in a manner that reduces the amount of work that needs to be done in
researching and identifying peers (see discussion in Section 2.1 regarding automatically

integrating geo-location and other intelligence sources).

A second challenge is that the integration of network conversational data with the
asset/configuration management database will be incomplete if the network is not
properly equipped to capture all conversations. For example, in a network with only one
packet capturing device sitting on the external side of their Internet facing firewall (i.e.,
an umbrella IDS/sensor), it is possible that only packets that have had Network Address
Translation applied (e.g., packets that have been NATed), it would be difficult to
integrate with the approach described here since the original source IP would not be
available. This also becomes apparent when the topic of off-network devices and intra-
segment communications comes up. In the case of the former, it may prove difficult to
capture all communications from mobile devices that switch between, for example, the
monitored corporate wifi network and a wireless 4G carrier network. In the case of the
latter, it is the experience of the author that few organizations are willing to invest in
sensor infrastructure capable of capturing all network traffic within a single segment or

Virtual Local Area Network (VLAN).

It is worth mentioning that a host-based approach could be pursued wherein the
desired network conversation information is obtained directly from the host system and

fed into the asset/configuration management database. While this may well prove to be a

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 8

robust and informative source of network conversation information, and necessary
complement to any network layer monitoring initiative, further discussion is outside the

scope of this paper.

Ultimately, the integration of network layer conversation metadata with
asset/configuration management systems may be better suited to environments that have
relatively predictable sets of network communication peers. This could include internal
database/application/middleware servers, supervisory control and data acquisition
(SCADA) components, point of sale (POS) terminals, and other purpose built systems.
Taking the example of SCADA components to illustrate further, these are systems that
are typically recommended for placement within an air-gapped network that is physically
separate from any other network (Scott, 2014). Similarly, the Payment Card Industry
Data Security Standard 3.0 (PCI DSS 3.0) mandates the separation of systems that store,
process, or transmit cardholder information and the implementation of a “deny-by-
default” access posture. These types of environments, while perhaps not completely
immune to unauthorized access or compromise, do lend themselves to the formulation of

predictable sets of communication peers.

2.1.2. Benefits

Making network conversation meta-information a discrete configuration item in
system inventories and configuration management solutions, and putting intelligence
information about the peers involved readily at the fingertips of system
administrators/owners potentially helps to identify unauthorized or unusual
communications. This fosters an attitude of keeping the shop clean and knowing what’s
going on across the network, and the approach could be very useful for organizations that

have minimal staff dedicated to security monitoring.

Second, the opportunity to validate preventive controls is provided. Firewalls can
be misconfigured, can fail open, and malware solutions do not catch everything.
Inclusion of host-to-host conversations observed on the network and integrated with the
asset/configuration management system provides a detective control for assuring other

controls are properly configured and operating as expected.

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 9

Finally, if implemented properly, including network conversation information in
the asset/configuration management system could allow for a historical/longitudinal view
regarding the conversations in which any particular asset has participated. With the
exception of aforementioned mobile and end user systems, and publicly accessible
services, the number of peer systems with which a critical asset must communicate

should be relatively easy to track via the asset/configuration management system.

2.2. Working Example

In order to help visualize how the network connection metadata may appear
within the context of an asset/configuration management system, a working example is
provided. There are a wide variety of tools and approaches that can be used to
accomplish the task of capturing and integrating network conversation information with
asset and configuration management databases. The proof of concept shared here is

based entirely on open source tools and software.

Further exploration of ways to best achieve integration with any particular
asset/configuration management system is left as future work, and an exercise for the

reader.

2.2.1. Configuration Overview and Tools Utilized

The following tools were used to create the working example:

e Bro 2.3.2 running on Ubuntu 14.04.1 LTS was used for capturing packets
and connection information; Bro was selected because its connection log
provides the fastest way to glean high level information about the nature
of network connections observed on the network. This includes source
and destination IP address (both IP v4 and v6), protocol, port,
bytes/packets exchanged, connection session duration, and other
interesting meta-information about the conversation; additional

information about Bro can be obtained from www.bro.org;

e MySQL 5.6.19 is used for storing the connection information captured by
Bro. While Bro does a great job of capturing the important connection

information, it does not support logging to a database and typically stores

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1

its logs across multiple files that get compressed and archived on an
hourly basis by default. When taking an asset based view of network
conversation information, storing events across multiple compressed
archives could become unwieldy. Storing the connection event
information in a single, easily queried location facilitates the ability to
achieve a broader longitudinal view and seems more appropriate for

gaining an asset based perspective;

e Python 2.7.6 is used for reading the Bro connection logs and inserting data
about network talkers into the MySQL database for ease of query. Several
additional python modules are installed to facilitate IP address
conversions, connections to the mysql database (see appendix for code

listing, which includes the names of the imported modules);

e MaxMind Insight Subscription (50,000 query license) is used to obtain
geographical and other information about each public IP address observed
in the packet captures. As the asset/configuration centric picture is built
around the conversations occurring on the network, it becomes important
to quickly be able to identify the “traits” of an IP address, particularly
those that are external to the organization. Having the Autonomous
System Number (ASN), Internet Service Provider (ISP), domain,
geolocation and other information about any given IP address at the
fingertips of someone reviewing connection information is key for

efficiency when analyzing and reviewing.

The following network was used in creating this working example:

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1

LS

L W N VN

é viang i = port mirror w/ Bro 2.3.2 console/worker,
MySQL, Python
;F wian 99 | ySQL. Pyt
: switch ethl - 192.168.99.101

mercury
192.168.99.100

End user devices i
; viang9 eth0 Sniffer - Ubuntu 14.04

Note that “mercury” is the name of a test server that has tightly controlled egress
access at the firewall and will serve as the main asset that will be included and examined
in the example. Bro is started via broctl on the sniffer server and captures all VLAN 99
traffic on its ethO interface (including mercury’s and its own traffic), capturing all
connection information in the directory /usr/local/bro/logs/[yyyy-mm-dd]. Thus, it
records connections made by/to 192.168.99.100 and 192.168.99.101. The switch in the
above diagram is a D-Link DGS-1100-08 switch with port mirroring capabilities.

After installation of the toolset and successful configuration of the above, traffic

is captured for 36 hours.

2.2.2. Processing Bro’s Connection Data
Once Bro produces sufficient data, a python script called broconns.py is run to
process the archived Bro connection files. A listing of this very crude but effective code

is provided in the appendix.

To summarize its functionality, broconns.py is pointed to the location of the bro
log files. It recursively descends into each bro log subdirectory, finding and processing
the compressed connection logs. For each log file that it processes, the script extracts the
relevant information for each network connection event and inserts it into the backend
mysql database. The script also performs a lookup against the geolocation service to

glean intelligence about the IP addresses it comes across and adds that information to the

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1

database for later reference. Since Bro can produce many connection log files over time,
broconns.py keeps track of the files that it has processed in order to prevent duplicate

processing.

2.2.3. Providing the Asset/Configuration Management Perspective

After allowing bro to collect sample data and importing it into the mysql database,
the database can be queried to illustrate how the connectivity information might appear in
the context of an asset/configuration management system. Let’s start by looking at host
mercury, as shown in Figure 1. above. Mercury’s IP address is 192.168.99.100 and we
are using it as a secure file server used by the Information Security department. A mock

asset/configuration management database was created to reflect this:

p4, machine_naome, pur

Next, let’s take a look at the hosts with whom mercury has been communicating.

The following screenshots are snippets of the results from running this SQL query:

mysqgl> select dip4 as 'Dst IP', prot, dport, max(cast (duration as
unsigned)) as 'Max Duration', min(cast(duration as unsigned)) as 'Min
Duration', max(cast (orig bytes as unsigned)+cast (resp bytes as
unsigned)) as 'Max Bytes', min(cast(orig bytes as
unsigned) +cast (resp bytes as unsigned)) as 'Min Bytes', geoip country
as 'dst country', geoip city as 'dst city', geoip org as 'dst org',
geoip dom as 'dst domain', status from conn4 join ip4 intel on dip4=ip4

where sip4='192.168.99.100' and dip4 NOT LIKE '192.168%' and duration

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1

!= '-' group by sip4, dip4, prot, dport;

U R e |

I = =30
[y By T e R mow B

[non [A T Y
[|
T v |

=y
L

ountain Yiew
WULL) inc . din i M, requir

As shown above, the destinations with which host mercury has been communicating
are listed in the query results, along with the destination protocol and port. Also included
is information about each destination and statistical data about the session observed. The
country, city, organization, and domain corresponding to each destination are all listed.
This is all very important information to a system owner or administrator who is
reviewing and acknowledging the legitimacy of each connection. All too often, this
information is not directly at the fingertips of system administrators and owners, thus
leading to inefficient and ad-hoc information gathering about peer communications. And
while the example above is a rough sketch with simple command line queries, it
demonstrates the possibility of providing a more complete picture regarding the network

conversation activity for any given asset on the network.

Perhaps the above example includes too much information. No worry, let’s roll it

up and just show the destination organization and corresponding autonomous system

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1

numbers of the hosts with which mercury (192.168.99.100) has initiated communication:

With Bro’s connection data being stored in a database and integrated with the
asset/configuration management database, so much more is possible. As a system
administrator or owner reviewing this connection information and updating the status to
flag if these are legitimate and expected connections, what if she wants to know more
about the connections to opendns.com? This looks strange since this is our secure file
server and all Domain Name Service (DNS) queries should be made against the internal
DNS server. A good place to start is by checking when this was first seen on the

network, and the last time it was observed:

Interestingly, this is not a DNS query, but an attempt to access a web server at OpenDNS.

Perhaps its time for Alice to log in to the server and investigate why it is attempting to

connect to OpenDNS.

This type of information is all readily available, starting with an asset-centric view
and then expanding and exploring from there. Connections can subsequently be marked

as authorized/verified.

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1
5

Finally, [Pv6 would need to be supported. In the working example, these
connections are captured and reviewed in the same manner as demonstrated above for

IPv4 connections:

icmp
icmp
udp
udp
icmg
Lazmg

=]

]

[B v}

+ —————— 4+ — +
o

2.2.4. Next Steps for Consideration

The use of this homegrown code and query examples would obviously not suffice
in a production environment. However the concept can be taken and applied to more
mature asset/configuration management solutions in use at an organization. There is no
lack of commercial and open source options, so there is an opportunity to advance the
concepts presented in this paper by attempting to integrate network layer metadata into an
existing configuration management solution. For example, chef is open source
configuration management software that provides an application programming interface

(API).

Similarly, Bro has worked well in this example, and indications are that it may
support direct logging to a MySQL database in the future. But there may be a more
suitable mechanism for capturing network conversation information and storing it for
later presentation in the asset and configuration centric views. Additional research is

required in this area.

Finally, additional consideration needs to be given to specifics of what network
metadata would be presented and how. For example, thresholds around session duration,
expected byte/packet counts, session state (fully established vs. attempted) may be

difficult to pinpoint in terms of what is considered normal. Initially, it may be more

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1

valuable to simply present such information in the context of a given asset so as to help

the system owner/admin decide which conversations are authorized/approved.

3. Conclusion

Increased use of encryption to protect confidentiality of network transmissions,
both internally and across public networks, is an impetus for evolving how network layer
security analysis is performed. One response to this is to consider integration of
unencrypted network layer conversation metadata, and characteristics of the nodes
involved, with asset and configuration management databases/baselines. Doing so
provides an asset-centric control and enhances the opportunity for review and
authorization/approval of network communications. In organizations that leverage good
configuration management as a security control, it serves as an additional layer of
detection of unauthorized network activity. The concept and working examples
presented can be advanced by integrating with an existing asset/configuration
management to further demonstrate the value of view network connectivity information

as a discrete configuration item.

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1

4. References

Bejtlich, R. (2005). The Tao of Network Security Monitoring: Beyond Intrusion
Detection. Addison-Wesley.

Filkins, B. (2014). Health Care Cyberthreat Report: Widespread Compromises Detected,
Compliance Nightmare on Horizon. Retrieved from http://www.sans.org/reading-
room/whitepapers/firewalls/health-care-cyberthreat-report-widespread-
compromises-detected-compliance-nightmare-horizon-34735

Finley, K. (2014, May 16). Encrypted Web Traffic More Than Doubles After NSA
Revelations | WIRED. Retrieved from http://www.wired.com/2014/05/sandvine-

report/
Grosfelt, J. (2014, January 15). Command and Control Encryption — Part [RSA blog

post]. Retrieved from https://blogs.rsa.com/command-control-encryption-part-1/

Karwaski, M. (2009). Efficiently Deducing IDS False Positives Using System Profiling.

Retrieved from http://www.sans.org/reading-
room/whitepapers/detection/efficiently-deducing-ids-false-positives-system-
profiling-33223

Ponemon Institute. (2014). Global Encryption Trends Study. Retrieved from

https://www.thales-esecurity.com/knowledge-base/analyst-reports/global-

encryption-trends-study

Sandvine. (2014). Global Internet Phenomena Report: 1H 2014. Retrieved from

Sandvine website: https://www.sandvine.com/downloads/general/global-internet-

phenomena/2014/1h-2014-global-internet-phenomena-report.pdf
SANS. (2014). SANS Institute - Critical Security Control: 1. Retrieved from

http://www.sans.org/critical-security-controls/control/1

SANS. (2014). SANS Institute - Critical Security Control: 2. Retrieved from

http://www.sans.org/critical-security-controls/control/2
Scott, C. (2014). Designing and Implementing a Honeypot for a SCADA Network.
Retrieved from http://www.sans.org/reading-room/whitepapers/

detection/designing-implementing-honeypot-scada-network-35252

William Yeatman, wmyeatman(@gmail.com

Network Conversation Metadata as Configuration Baseline Item | 1

Appendix

broconns.py listing

from os import listdir
import re

import mysqgl.connector
import socket

import ipaddr

#import struct

import gzip

import geoip2.webservice
from IPy import IP
import logging

logging.captureWarnings (True)

brologpath = "/home/code/bro/logs/"
p = re.compile('conn\..*\.gz$') # match conn. at the beginning of filename
1 = re.compile(""["#1") # want to ignore # comment lines in bro files

mysgl_config = {
'host': '127.0.0.1"',
'user': 'sans',
'password': 'sans',
vdatabasev: v***********'l
'raise on_warnings': True

cnx = mysqgl.connector.connect (**mysgl config)
cursor = cnx.cursor ()

for dir in listdir (brologpath) :
for filename in listdir (brologpath + dir):
if p.match(filename) :
fullpath = brologpath + dir + "/" + filename
fpgry = ("SELECT filename FROM processed files WHERE filename=\'" + fullpath
CERARED
print (fpgry)
cursor.execute (fpqry)
row = cursor.fetchone()
if row is not None:
print "That file was already processed, skipping"
else:
print "That file does not appear to have been processed yet"

f = gzip.open(fullpath)
for line in f:
if l.match(line):
fields = line.rsplit()

ts = fields[O0]
sip str = fields]|
dip_str = fields|
dport = fields[5]
prot = fields[6]
svc = fields[7]
dur = fields[8]
orig bytes = fields[9]
resp bytes = fields[10]
orig pkts fields[16]
resp_pkts = fields[18]

]

2
4]

sip = ipaddr.IPAddress (sip_ str)

William Yeatman, wmyeatman(@gmail.com

© 2015 The SANS Institute Author retains full rights.

Network Conversation Metadata as Configuration Baseline Item

O —

dip = ipaddr.IPAddress (dip_str)
if sip.version == 4 & dip.version == 4:
conn data = {
'sip4': sip_str,
'dip4': dip_ str,
'prot': prot,
'dport': dport,
'sve': svc
}
add_conn = ("INSERT INTO conn4d "
" (sip4,dip4,prot,dport, svc, ts,"
"duration, orig bytes, resp bytes,
"orig pkt, resp_pkt) "
"VALUES (% (sip4) s, % (dip4) s, % (prot)s, "
"% (dport)s, % (svc)s, S (ts)s, S (dur)s,"
"% (orig_bytes)s, %(resp bytes)s,
"% (orig_pkts)s, %(resp_pkts)s)")

elif sip.version == 6 & dip.version == 6:
conn_data = {
'sip6': sip str,
'dip6': dip_str,
'prot': prot,
'dport': dport,
'sve': svc
}
add_conn = ("INSERT INTO conn6 "
" (sip6, dip6, prot, dport, svc, ts, "
"duration, orig bytes, resp bytes, "
"orig pkt, resp pkt) "

"VALUES (% (sip6)s, %(dip6)s, % (prot)s, "
"% (dport)s, %(svc)s, %(ts)s, (dur)s, "
s

"% (orig bytes)s, % (resp_bytes)
"% (orig_pkts)s, %(resp_pkts)s)

else:
print ("Mismatched ip versions detected")

stats data = {
'ts': ts,
'dur': dur,
'orig bytes': orig bytes,
'resp bytes': resp bytes,
'orig pkts': orig pkts,
'resp_pkts': resp pkts

}

conn data.update (stats data)

cnx = mysgl.connector.connect (**mysgl config)
cCursor = cnx.cursor ()

try:
cursor.execute (add_conn, conn_data)
except mysgl.connector.Error as err:
print ("error: ")
print (err)
else:
cnx.commit ()

get intel on the sip, and dip
if it is rfcl918, then just do hostname

if dip.version == 4:
gry = ("SELECT ip4 FROM ip4 intel "
"WHERE ip4 = \'" + dip_str + "\'")
print gry
cursor.execute (qry)
row = cursor.fetchone/()
if row is not None:
print "IP already in intel table, no geo query needed"

William Yeatman, wmyeatman(@gmail.com

© 2015 The SANS Institute Author retains full rights.

Network Conversation Metadata as Configuration Baseline Item | 2
0

else:
print "IP not in intel table, better do the lookup and
insert”
ip = IP(dip_str)
ip_type = ip.iptype ()
if ip_type == 'PRIVATE':
do a hostname lookup
print "DEBUG: in PRIVATE section"
#name, alias, addresslist =
socket.gethostbyaddr (dip_str)
print "*** " + dip str + "xEFM

add_intel = ("INSERT INTO ip4 intel "
" (ip4) VALUES (%(dip_str)s)")
intel data = {
'dip str': str(dip str)
}
try:
cursor.execute (add_intel, intel data)
except mysgl.connector.Error as err:
print ("error: ")
print (err)
else:
cnx.commit ()

elif ip type == 'PUBLIC':
get the geo info
print "DEBUG: in PUBLIC section"
geoclient = geoip2.webservice.Client (####4#, '****x',
'geoip.maxmind.com')
response = geoclient.city(dip str)

asn = response.traits.autonomous_ system number
asn_org =
response.traits.autonomous_system organization
org = response.traits.organization
isp = response.traits.isp
dom = response.traits.domain
country = response.country.name
city = response.city.name
queries left = response.maxmind.queries remaining

print "remaining queries: + str(queries left)
add intel = ("INSERT INTO ip4 intel "

" (ip4, geoip asn num, geoip asn org, geoip org,
geoip isp, geoip _dom, geoip country,

"

geolp city)
" VALUES (%(dip_str)s, %(asn)s, %(asn _org)s, "
" %(org)s, %(isp)s, %(domain)s, % (country)s, "
" %(city)s)")

intel data = {

'dip str': str(dip str),
'asn': asn,
'asn_org': str(asn_org),

'org': str(org),
'isp': str(isp),
'domain': str (dom),

'country': str(country),
'city': city
}
try:
cursor.execute (add_intel, intel data)
except mysgl.connector.Error as err:
print ("error: ")
print (err)
else:
cnx.commit ()
else:
print str(ip.iptype) + "found"
cursor.close ()

William Yeatman, wmyeatman(@gmail.com

© 2015 The SANS Institute Author retains full rights.

Network Conversation Metadata as Configuration Baseline Item | 2
1

cnx.close ()

#insert filename
cnx = mysqgl.connector.connect (**mysql config)

cCursor = cnx.cursor ()

add_file processed = ("INSERT INTO processed files "
"(filename) VALUES (\'" + fullpath + "\'")")

print "gry: " + add file processed

fname data = {

'fullpath': fullpath
}
try:
cursor.execute (add _file processed)
except mysgl.connector.Error as err:
print ("error: ")
print (err)
else:
cnx.commit ()

William Yeatman, wmyeatman(@gmail.com

© 2015 The SANS Institute Author retains full rights.

