
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Practical approaches for MTCP Security

GIAC (GCIA) Gold Certification

Author: Josh Lewis, Joshua.d.Lewis@gmail.com

Advisor: Rob VandenBrink

Accepted: Date

Template Version September 2014

Abstract

Multi-path TCP (MPTCP) is an emerging IETF standard for providing connection
resilience and bandwidth aggregation. MPTCP evolves the existing TCP protocol by
allowing multiple TCP flows for a TCP session. This provides exciting new possibilities
for mobile devices that can maintain TCP sessions as connection paths are added or
dropped, and multi-homed servers that allow TCP sessions to take advantage of a mesh
topology. However, current network security monitoring infrastructure solutions cannot
appropriately inspect MPTCP connections, leaving significant intrusion detection and
data loss blind spots. This paper will discuss practical approaches for MPTCP security.

Practical approaches for MPTCP Security! 2

Josh Lewis, Joshua.d.Lewis@gmail.com

1. Background

The goal of this research is to outline practical approaches to mitigate risks from

Multipath TCP (MPTCP) using current security tooling. This research will discuss the

MPTCP architecture, impact on security, use by an attacker, practical security

approaches, and future research.

MPTCP builds on top of the TCP protocol. Readers that are unfamiliar, or that have not

recently worked with the TCP are encouraged to brush up on connection setup, data

transfer, connection teardown, and header options, which is outlined in section 10.1.

2. MPTCP architecture

2.1. MPTCP use cases

Multipath TCP (MPTCP) is a draft IETF standard that extends TCP and enables the

simultaneous use of multiple IP addresses and ports (Ford, et al., 2011). MPTCP has two

primary use cases that cater to mobile endpoints and datacenters. Mobile endpoints

typically have built in cellular and 802.11 wireless network interfaces that have their own

IP addresses and paths to the Internet. A traditional TCP session established over an

802.11 wireless network will be lost if the user roams outside of the access point

coverage area. Likewise, a TCP connection established over a cellular network will not

utilize the additional bandwidth if an 802.11 wireless network connection becomes

available. MPTCP addresses these challenges by utilizing both interfaces to setup one or

more independent TCP sessions, called sub-flows, which are presented to the application

layer as one transparent connection. MPTCP will dynamically add or remove connection

paths, enabling session resiliency and the use of the collective bandwidth from each

connection path. Similarly, datacenters may have a mesh network with multiple paths

between endpoints. A traditional TCP connection can only use one path at a time to

exchange data. However, MPTCP sub-flows can be established over each path and used

to aggregate the bandwidth from each connection.

Practical approaches for MPTCP Security! 3

Josh Lewis, Joshua.d.Lewis@gmail.com

2.2. MPTCP conceptual overview

MPTCP can be thought of as a transport layer shim that interfaces with the application

layer and one or more TCP sessions (reference Figure 1). Applications are not required

to be MPTCP aware, and can interact with the MPTCP shim without modification to the

existing application code. The MPTCP shim receives data from the application layer,

and segments the data across the different TCP sub-flows. Each TCP sub-flow receives

data from the MPTCP shim and functions as an independent TCP session, which

manages segmentation, encapsulation, and re-transmission. The MPTCP shim manages

the setup of TCP sub-flows, segmentation of data received from the application layer, and

reassembly of data received from the TCP sub-flows.

Figure 1 - MPTCP conceptual layers example, concept derived from (Ford, et al., 2011)

2.3. MPTCP three-way handshake and interface discovery

To setup a MPTCP session an originating host will initiate a TCP three-way handshake

with the SYN flag set, an initial SYN sequence number, and a MPTCP option that 1)

specifies that the host is MPTCP capable and 2) provides a token generated by the

originating host to be used for authenticating sub-flows.

Practical approaches for MPTCP Security! 4

Josh Lewis, Joshua.d.Lewis@gmail.com

Figure 2 - MPTCP three-way handshake: SYN

If the remote host is listening on the corresponding port and also supports MPTCP, the

remote host will reply with the SYN and ACK flag set, an initial SYN sequence number,

the corresponding ACK sequence number, and a MPTCP option that 1) specifies that the

host is MPTCP capable and 2) provides a token generated by the remote host that can be

used for authenticating sub-flows.

Figure 3 - MPTCP three-way handshake: SYN/ACK

Practical approaches for MPTCP Security! 5

Josh Lewis, Joshua.d.Lewis@gmail.com

If the remote host does not support MPTCP, the remote host reply will not include any

MPTCP options, signaling to the originating host to default back to traditional TCP.

If the remote host replies with MPTCP capable, the originating host will respond with the

ACK flag set, the corresponding ACK sequence number and an MPTCP option

containing the originating and remote host tokens.

Figure 4 - MPTCP three-way handshake: ACK

Once the three-way handshake is completed, the originating host will set the ACK flag,

the corresponding acknowledgment number, and an MPTCP option that contains 1)

additional IP addresses on the originating host that can be used by the remote host and 2)

the originating hosts data sequence signal initial sequence number. MPTCP uses an

additional set of SYN and ACK sequence numbers called Data Sequence Signal (DSS).

DSS SYN and ACK sequence numbers order the segments received from each of the sub-

flows and allow data to be retransmitted when a sub-flow connection is lost. The remote

host will reply with an ACK flag set, the corresponding ACK sequence number, and an

MPTCP option that contains 1) information on additional IP addresses on the remote host

Practical approaches for MPTCP Security! 6

Josh Lewis, Joshua.d.Lewis@gmail.com

that can be used by the originating host and 2) the remote hosts DSS initial sequence

number. Section paraphrased from: (Bonaventure, 2013).

Figure 5 – Putting it all together: MPTCP three-way handshake with MPTCP option

2.4. MPTCP data transfer and sub-flow addition

Once the TCP three-way handshake for the first TCP sub-flow is complete, data can

begin to be exchanged. The originating host will set the PUSH and ACK flags, the SYN

and ACK sequence number corresponding to the three-way handshake, and a MPTCP

DSS SYN and ACK sequence number corresponding to the originating and remote host

initial DSS sequence numbers. The sub-flow TCP SYN and ACK sequence numbering

aid in connection level segment sequencing and retransmission. MPTCP also used the

DSS SYN and ACK sequence numbers for data level segmentation, sequencing and

retransmission across the sub-flows. After the first payload is sent, MPTCP will setup

additional TCP sub-flows. The originating host will initiate the TCP sub-flow three-way

handshake to the IP address advertised by the remote host that was previously sent in the

MPTCP option by setting the SYN flag, setting a new sub-flow specific initial SYN

sequence number, and a MPTCP option that contains 1) MPTCP join request, and 2) a

nonce value for the originating host. The remote host will reply with the SYN and ACK

flags set, an initial SYN sequence number that is specific to the sub-flow, a

corresponding ACK sequence number, and a MPTCP option that contains 1) a MTCP

connection join request, 2) a nonce value for the remote host, and 3) a truncated HMAC

of (the originating host nonce, the remote host key [note that the originating and remote

host keys were exchanged during the initial TCP three-way handshake for sub-flow

number one). The originating host will respond with the ACK flag set, a corresponding

ACK sequence number, and an MPTCP option containing 1) MPTCP join request, and an

Practical approaches for MPTCP Security! 7

Josh Lewis, Joshua.d.Lewis@gmail.com

HMAC of (the remote host nonce, the originating host key). The second TCP sub-flow is

now authenticated and can be utilized to send and receive data. Section paraphrased

from: (Bonaventure, 2013).

Figure 6 – Putting it all together: MPTCP data transfer and sub-flow addition

2.5. Graceful MPTCP connection termination

After the data exchange is complete, the MPTCP session can be gracefully or abruptly

terminated. In a graceful termination, an originating host will set the ACK flags, a

corresponding ACK sequence number, and an MPTCP option containing 1) the DSS

SYN and ACK sequence numbers and 2) a DATA_FIN to indicate the data transfer is

complete. The remote host will reply with an ACK flag set, and an MPTCP option

containing 1) the corresponding DSS SYN and ACK sequence number and 2) a

DATA_FIN to indicate the data transfer is complete. The originating host will then close

the TCP sub-flows in a similar manner as a traditional TCP session. For each sub-flow,

the originating host will send the FIN and ACK flags and the appropriate TCP SYN and

ACK sequence numbers. The remote will reply with the FIN and ACK flags set and the

appropriate TCP SYN and ACK sequence numbers. The originating host will set the

ACK flag and send the appropriate ACK sequence number. Section paraphrased from:

(Bonaventure, 2013).

Figure 7 – Putting it all together: MPTCP graceful connection close

Practical approaches for MPTCP Security! 8

Josh Lewis, Joshua.d.Lewis@gmail.com

2.6. Aborted MPTCP connection termination

A MPTCP connection can also be abruptly aborted, similar to a TCP reset. Sending a

TCP reset to a MPTCP sub-flow will result in the TCP connection being dropped, but the

MPTCP connection will continue over the remaining sub-flows. The MPTCP layer must

initiate the connection termination. The remote host will set the ACK flag, the

appropriate ACK sequence number, and an MPTCP option that includes FAST_CLOSE.

The originating host will respond by setting the RST flag and the appropriate SYN and

ACK sequence numbers that correspond to the data sent by the originating host and the

data sent by the remote host. Once the TCP sub-flow connection is reset is sent, no

additional segments will be sent across this sub-flow. The originating host will then send

a RST with the appropriate ACK sequence number to the remaining TCP sub-flows.

Section paraphrased from: (Bonaventure, 2013).

Figure 8 – Putting it all together: MPTCP aborted connection close

2.7. MPTCP options

MPTCP is designed to natively function on the majority of existing networks that support

TCP. This is achieved by extending the TCP header through the use of TCP options.

TCP options were designed to be an organic way to introduce new functionality without

major changes to the protocol, such as the selective acknowledgement option. TCP

options also have a lower chance of getting modified as they traverse through network

filtering infrastructure (Bonaventure, 2013). Therefor MPTCP uses a single variable

length TCP option to pass connection connection setup and maintenance information.

MPTCP is identified by a TCP option number 30 (1e in hex), a four bit length field to

specify the size of the MPTCP option data, a four bit sub-type field that identifies the

MPTCP action to perform, and variable length sub-type data field.

Practical approaches for MPTCP Security! 9

Josh Lewis, Joshua.d.Lewis@gmail.com

Value Symbol Name

0x0 MP_CAPABLE Multipath Capable

0x1 MP_JOIN Join Connection

0x2 DSS Data Sequence Signal (data ack

and data sequence mapping)

0x3 ADD_ADDR Add address

0x4 REMOVE_ADDR Remove address

0x5 MP_PRIO Change Sub-flow Priority

0x6 MP_FAIL Fallback

0x7 MP_FASTCLOSE Fast Close
Table 1 - MPTCP sub-type options (Cisco, et al., 2013)

The goal of this section is to provide a brief background on the architecture of MPTCP.

RFC 6182 and RFC 6824 further discuss additional architectural details such as design

considerations, congestion control, path priority, error handling, interaction with network

filtering infrastructure, and the security of the protocol itself. Additionally, RFC 6181

discusses a threat analysis of the MPTCP protocol. The subsequent sections in this

research will focus on why MPTCP is import for security and the practical approaches for

MPTCP security.

3. MPTCP impact on information security

MPTCP provides significant connection resiliency and bandwidth improvements for

mobile devices and meshed networked computing infrastructure in a datacenter.

However, MPTCP presents two primary challenges for existing Intrusion Detection

System (IDS), Intrusion Prevention System (IPS), and Data Loss Prevention (DLP)

technologies. The first challenge is that MPTCP sub-flows may utilize side-channel

cellular connections that enterprises may not be able to monitor. The second challenge is

that network security infrastructure may not properly re-assemble data across sub-flows.

These challenges enable attackers to evade IDS/IPS and DLP technologies. The

Practical approaches for MPTCP Security! 10

Josh Lewis, Joshua.d.Lewis@gmail.com

screenshot below showcases the ability to evade non-MPTCP aware signature detection

technologies through the use of a netcat connection between two MPTCP capable hosts.

The reassembled TCP conversation on eth0 captured the initial “evil” payload, while the

reassembled TCP conversation on eth1 captured the “stuff” payload. An existing

IDS/IPS or DLP technology with a signature for “evil stuff” would not alert on this

traffic.

Figure 9 - MPTCP evasion example

Beyond enterprise network security evasion, MPTCP is also being explored to provide

positive security benefits such as increasing anonymity and performance for the TOR

network (Rochet, Pereira, & Bonaventure, 2015) or increasing connection privacy by

utilizing cypher block chaining encryption across TCP sub-flows (Pearce C. , BSides

Knoxville 2015 - Multipath TCP - Breaking Today's Networks with Tomorrow's

Protocols, 2015). The scope of this paper does not address MPTCP use cases that can be

used for a security benefit.

Practical approaches for MPTCP Security! 11

Josh Lewis, Joshua.d.Lewis@gmail.com

4. MPTCP market landscape

MPTCP is experiencing increasing adoption, however MPTCP is not broadly installed by

default. Apple introduced MPTCP support in iOS 7 (Apple Inc., 2015) and OS X

Yosemite (Pearce K. , 2014) however, MPTCP is not enabled for all TCP connections by

default. Additionally, MPTCP extensions are available for some *nix and Android

distributions (Barre & Paasch, n.d.). The table below summarizes common operating

systems were tested for MPTCP support as September, 2015.

Table 2

Operating

System

MPTCP

installed by

default*

MPTCP enabled

by default (all

connections)*

MPTCP enabled by

default (selective

connections)*

MPTCP

extension

available

iOS 7-8 Yes No Yes, Apple Siri N/A

OS X

Yosemite

Yes No Unknown N/A

Windows 7 No No No No

Windows 8 No No No No

Windows 10 No No No No

Ubuntu 14.04 No No No Yes

Ubuntu 15.04 No No No Yes

Android 4.1-

4.4.2

No No No Yes

Table 3- MPTCP supporting operating systems as of September 2015

*Based on operating system testing as of September 2015.

Despite the fact that support and implementation of MPTCP is experiencing increasing

adoption, few network security vendors are able to detect, filter or reassemble MPTCP

traffic. The table below reflects MPTCP support and default configuration derived from

publically accessible vendor documentation available on the internet as of September,

2015.

Practical approaches for MPTCP Security! 12

Josh Lewis, Joshua.d.Lewis@gmail.com

Table 4 - MPTCP vendor landscape, September 2015

*Based on publically accessible vendor documentation available on the internet as of

September, 2015.

5. MPTCP from an attackers perspective

Based on the ability to evade network security filtering infrastructure and the increasing

prevalence of MPTCP, attackers will likely start utilizing MPTCP. From an attacker’s

perspective the primary abuse cases are to utilize MPTCP to evade: detection for the

delivery of an exploit payload, command and control traffic, and data exfiltration. The

instantiation of these abuse cases can be realized through MPTCP the setup and

configuration of MPTCP on the target and attackers endpoints.

Security

Product

Allow

MPTCP by

Default*

Reassemble

MPTCP

Sub-flows*

Capability

to block

MPTCP*

Revert

MPTCP

to TCP*

Reference

Cisco ASA No No Yes Yes (Cisco, 2013)

Cisco ASA

Next-Gen

Yes No Yes Yes (Cisco, 2013)

Cisco IPS No No Yes No (Cisco, 2013)

Snort IDS N/A No N/A N/A (Cisco, 2014)

Palo Alto

Firewall

Yes No No No (harshanataraja

n, 2015)

F5 BIG-IP No No Yes Yes (F5, 2015)

Blue Coat Could not find publically accessible documentation acknowledging

support

Checkpoint

IPS

Unknown No Yes Yes (Check Point,

2014)

HP

TippingPoint

Could not find publically accessible documentation acknowledging

support

Practical approaches for MPTCP Security! 13

Josh Lewis, Joshua.d.Lewis@gmail.com

5.1. MPTCP fast flux

The optimal configuration for an attacker’s infrastructure would be to leverage two or

more publically addressable MPTCP network interfaces. Increasing the number of

publically addressable MPTCP network interfaces will further fragment the application

data across MPTCP sub-flows. An attacker may prefer to utilize a cloud based

Infrastructure as a Service (IaaS) provider that can easily add several publically

addressable MPTCP network interfaces. Since MPTCP can dynamically add and remove

IP addresses during a session, an attacker may develop a capability that allows them to

continuously add and release the IaaS public IP addresses throughout the duration of the

MPTCP session. This concept is similar to DNS fast flux, but instantiated at a TCP

session level.

5.2. MPTCP evasion with one network interface

After an attacker has setup their infrastructure, they can perform a SYN scan to determine

if the target host supports MPTCP. If MPTCP is supported and not blocked by the

network filtering infrastructure, the attacker can setup a TCP session with the listening

service. Once the initial TCP session has been established, the target host will

automatically setup sub-flows to each of the attackers MPTCP interfaces, even if the

target host only has one network interface. If the target network filtering infrastructure is

not MPTCP aware, the network filtering infrastructure will see independent, unrelated

TCP sessions from one or more target host IP addresses to two or more attacker IP

addresses. The data from each of these TCP sessions will be independently reassembled.

Practical approaches for MPTCP Security! 14

Josh Lewis, Joshua.d.Lewis@gmail.com

Figure 10 - Client with one MPTCP interface communicating with a server that has multiple MPTCP

interfaces

In addition to using hosts that are have MPTCP built in or installed, an attacker can also

install MPTCP extensions. As discussed in the previous section, MPTCP extension are

available for *nix and Android devices. An attacker must download and install the

extension, modify the boot loader to boot to the kernel with the MPTCP, and reboot the

device (reference appendix section 10.1 for an example of setting up MPTCP). As long

as the attacker has at least two publically addressable MPTCP network interfaces,

application data will be split across sub-flows even if the target host only has one

network interface. While this attack scenario does seem to require a bit more effort, it is

still possible for an attacker to accomplish.

6. Practical approaches for MPTCP security

Based on the increasing prevalence of MPTCP, limited support in existing network

security products, and how attackers will likely begin to utilize MPTCP, a MPTCP

strategy should be employed to limit the risk of MPTCP abuse cases. In the near term (0-

Practical approaches for MPTCP Security! 15

Josh Lewis, Joshua.d.Lewis@gmail.com

12 months), MPTCP should be blocked for critical endpoints until network security

vendors can appropriately reassemble and inspect this traffic. The near term strategy

focuses on scanning the network to identify MPTCP capable endpoints, blocking MPTCP

traffic at the host level, and monitoring for the use of MPTCP at the network level.

Additionally, enterprises should issue support requests to network security vendors to

provide the ability to reassemble MPTCP sub-flows traversing the same path and to

provide the ability to terminate a malicious MPTCP connection.

6.1. Scanning the network for MPTCP capable endpoints

The first step to limit the abuse of MPTCP is to identify endpoints that are MPTCP

capable. Patrick Thomas developed a MPTCP scanner that is built in python and utilizes

Scapy to send a SYN to a listening port, with a TCP option 30 (MPCP), and sub-type 0

(MP_CAPABLE) [Reference Table 1 in section 2.7 to review TCP option 30 sub-types].

A MPTCP capable client can be identified by a response that has a SYN/ACK, TCP

option 30, and sub-type 0. The script also performs a second check by sending a SYN to

a listening port, with a TCP option 30, sub-type 1 (MP_JOIN). If the host is MPTCP

capable it should respond with a RST, since a previous MPTCP session was not

established (Thomas, 2014). Reference section 10.4 for an example of the setup and use

of this MPTCP scanner. In large networks, consider scanning critical infrastructure first.

Depending on the environment, critical infrastructure may not have a legitimate use case

to utilize MPTCP.

6.2. Blocking MPTCP traffic at the host level

Based on the current network security infrastructure inability to appropriately reassemble

and inspect MPTCP sub-flows, MPTCP should be blocked for critical endpoints to

reduce the possibility of an IDS/IPS or DLP evasion. MPTCP traffic can be blocked at

the host by disabling the MPTCP kernel parameter and by setting an MPTCP iptables

rule. Depending on the host configuration and environment constraints, either or both of

these methods can be utilized to effectively block MPTCP traffic at the host level.

Practical approaches for MPTCP Security! 16

Josh Lewis, Joshua.d.Lewis@gmail.com

The first method of blocking MPTCP at the host level is to configure the MPTCP kernel

parameter. Modifying the MPTCP “enable” kernel parameter will turn off MPTCP for

all TCP connections. Identify the MPTCP “enable” kernel parameter by running the

command in Figure 11 (example output shown in Figure 12 and Figure 13). After the

kernel parameter is identified set the value to zero (disabled) by running the two

commands shown in Figure 14. The first command sets the MPTCP enabled parameter

to zero in the sysctl.conf file, which will enable the configuration to persist across host

restarts. The second command writes to the running MPTCP kernel parameter. These

configuration parameters could be deployed through a script or mobile device endpoint

agent. This method of controlling MPTCP is preferred based on ability to directly

modify the MPTCP configuration, without TCP retransmission delays (discussed in the

next section).

Figure 12 - Linux MPTCP kernel V0.89 enable

kernel parameter

Figure 13 - OS X Yosemite MPTCP enable

kernel parameter

The second method of blocking MPTCP at the host level is to utilize an iptables firewall

rules. Figure 15 illustrates an iptables rule to block new, inbound TCP (-p TCP) traffic

root@ubuntu:~# sysctl –a | grep mptcp

Figure 14 - Set MPTCP kernel parameter to disabled

Figure 11 - MPTCP kernel parameters

root@ubuntu:~# echo ‘net.mptcp.mptcp_enabled=0’ >> /etc/sysctl.conf

root@ubuntu:~#sysctl –w net.mptcp.mptcp_enabled=0

Practical approaches for MPTCP Security! 17

Josh Lewis, Joshua.d.Lewis@gmail.com

with a TCP option 30 (MPTCP). A remote host that is MPTCP capable will send a SYN

with a TCP option 30, subtype of 0x0 (MP_CAPABLE) to a local host on an open port.

The local host iptables rule in Figure 15 will block this connection. The remote host will

retransmit the TCP SYN with MPTCP capable packet based on the number of retries set

in the kernel parameters (Linux MPTCP Kernel V 0.89 defaults to 3 retries). Each retry

causes the remote host to wait prior to sending the next retry. After the MPTCP retry

limit has exceeded, the remote host will send a SYN without an MPTCP option, resulting

in the local host responding with a SYN/ACK. Although this method is effective in

preventing an inbound MPTCP connection, it will delay the TCP connection. A host that

defaults to three MPTCP retries will experience a ~15 second delay to complete the

three-way handshake (reference Figure 17). This method of controlling MPTCP

connections may not be appropriate for some use cases (e.g. web servers).

Figure 16 illustrates an iptables rule to block new, outbound TCP (-p TCP) traffic with a

TCP option 30 (MPTCP). This iptables rule will prevent the host from establishing a

MPTCP session. However, some MPTCP implementations may default to initiating all

TCP connections with MPTCP, causing TCP retries for each new TCP connection

(reference Figure 17).

demo@ubuntu:~$ sudo iptables -A INPUT -p tcp --tcp-option 30 -m state --state

NEW -j DROP
Figure 15 - Block inbound MPTCP connections

demo@ubuntu:~$ sudo iptables -A OUTPUT -p tcp --tcp-option 30 -m state --state

NEW -j DROP

Figure 16 - Block outbound MPTCP connections

Practical approaches for MPTCP Security! 18

Josh Lewis, Joshua.d.Lewis@gmail.com

Figure 17 - MPTCP retransmission delay with iptables rules blocking TCP Option 30

6.3. Blocking MPTCP at the network level

MPTCP can be blocked at the network level in a similar manner to the host level iptables

rules outlined above. Building and deploying these rules will vary depending on the

network security vendor. However, three additional factors should be considered prior to

implementing network level blocking of MPTCP traffic. First, some network security

products do not allow granular blocking of TCP options (reference

Table 4). Second, the scope of the network rules should be considered. Many user tier

endpoints or IoT devices may have legitimate use cases for MPTCP. The initial network

level blocking of MPTCP should focus on blocking MPTCP traffic to critical endpoints

or endpoints that do not have a legitimate use case for MPTCP. Finally, endpoints that

have side-channel connections (e.g. cellular interfaces) may initiate a connection over the

side-channel. Blocking MPTCP on the enterprise interface may result in all traffic being

pushed to the side-channel interface. Therefore, network level blocking of MPTCP

should only be utilized if 1) MPTCP cannot be controlled at the host level due to a

limited ability to control host configuration, 2) layer three filtering capabilities are placed

directly in front of critical infrastructure where MPTCP filtering can be limited to these

Practical approaches for MPTCP Security! 19

Josh Lewis, Joshua.d.Lewis@gmail.com

endpoints, 3) critical infrastructure does not have multiple connection paths (e.g. side-

channel connections), and 4) critical infrastructure use cases will not be effected by TCP

retransmission delays.

6.4. Monitoring MPTCP traffic

After the critical infrastructure or the broader enterprise has been scanned to identify

network stacks that support MPTCP, monitoring should be enabled for networks that

should not be running MPTCP. However, poorly segmented networks will make

monitoring difficult, since the scope of what is appropriate and inappropriate will be

challenging to define. At the time that this research was conducted, some network

security vendors were unable to log MPTCP traffic (reference

Table 4). This research will highlight two options to monitor MPTCP traffic that are

vendor agnostic.

The first MPTCP monitoring option (Figure 18) utilizes a tcpdump Berkeley Packet Filter

(BPF) bit-mask. The goal of this filter is to identify an established session (SYN and

ACK flags set [bit-mask 0x12] in TCP offset 13) and the TCP option 30 (30 decimal = 1e

in hex) at offset 40.

The second MPTCP monitoring option utilizes a host iptables rule. Iptables is able to

natively trigger actions by TCP option number. The command in Figure 19 appends (-A)

a rule to the OUTPUT chain, to monitor the TCP protocol (-p), for option 30 (MPTCP),

for a connection that is established (TCP three-way handshake completed), limiting the

number of connections logged to five connections per minute (–m limit --limit 5/min),

with a burst of five connections before the limit kicks in (--limit-burst 5), adding a unique

string to the log entry “IPTBLSDROP: MTCP OUT ESTAB “, and logging the IP/TCP

options. The command in Figure 20 is similar to the previous command, except it creates

a log for incoming (INPUT) MPTCP connections. Reference section 10.3 for a sample

iptables script. After the iptables rules are setup, rsyslog can be configured to send the

demo@ubuntu:~$ tcpdump –i eth0 ‘tcp[13] & 0x12 = 0x12’ and tcp[40] = 0x1e

Figure 18 - Capture MPTCP established connections

Practical approaches for MPTCP Security! 20

Josh Lewis, Joshua.d.Lewis@gmail.com

MPTCP events to a log file. The command in Figure 21 creates a configuration file that

looks for the unique string created in the iptables rules and outputs the results to an

mptcp.log file. Note that rsyslog monitors the /etc/rsyslog.d/ directory for any file name

*.conf.

 mp

6.4.1. Use of a proxy

Beyond blocking or logging TCP option 30 with a network firewall, a proxy can also be

utilized to block or monitor the use of MPTCP traffic. Using a proxy to connect to

external endpoints, a local host will setup a connection directly with the proxy. The

proxy will setup an independent connection with the desired remote endpoint and pass

traffic between the two established connections. Since the proxy performs the three-way

handshake with the remote endpoint, the proxy has the capability to negotiate the

supported TCP options. Depending on the vendor configuration, the proxy can forward

the MPTCP option unchanged, strip the MPTCP option, or ignore the MPTCP option and

negotiate TCP options based on the supported TCP options of the proxy. If the proxy

strips or does not initiate the TCP three-way handshake with the TCP option 30, the

demo@ubuntu:~$ sudo iptables –A OUTPUT –p tcp --tcp-option 30 –m state --state

ESTABLISHED –m limit --limit 5/min --limit-burst 5 –j LOG --log-prefix

‘IPTBLSDROP: MTCP OUT ESTAB ‘ --log-ip-options --log-tcp-options --log-tcp-

sequence

demo@ubuntu:~$ sudo iptables –A INPUT –p tcp --tcp-option 30 –m state --state

NEW –m limit --limit 5/min --limit-burst 5 –j LOG --log-prefix ‘IPTBLSDROP:

MTCP IN ATTEMPT ‘ --log-ip-options --log-tcp-options --log-tcp-sequence

Figure 20 - Log source hosts trying to establish a MPTCP connection

Figure 19 - Log outbound MPTCP established connections

root@ubuntu:~# echo ‘:msg,contains,"IPTBLSDROP: MTCP" /var/log/mptcp.log’ >

/etc/rsyslog.d/mptcp.conf

Figure 21 - Configure rsyslog to extract iptables MPTCP events to a log file

Practical approaches for MPTCP Security! 21

Josh Lewis, Joshua.d.Lewis@gmail.com

MPTCP capable remote endpoint will reply without the TCP option 30, since it perceives

that the originating host does not support MPTCP. When the originating local host

receives the connection from the proxy, the SYN/ACK reply will not contain the TCP

option 30 and the local originating host will fail back to regular TCP. Similarly, if the

proxy drops a sub-flow with the MP_JOIN, the sub-flow will not be utilized.

6.5. Network security vendor feature request

Scanning for MPTCP capable endpoints, blocking MPTCP connections to critical nodes,

and monitoring network traffic, is a good starting points to manage the risk from MPTCP

abuse cases. However, these initial steps should be paired with feature requests to

network security vendors to provide the ability to reassemble MPTCP sub-flows that

traverse a single path and for the capability to control a malicious MPTCP connection.

6.5.1. Reassemble MPTCP sub-flows that traverse a single path

The first feature request that should be submitted to network security vendors is for the

capability to reassemble multiple TCP sub-flows that traverse the same path. As

previously discussed in section 5, a host with one MPTCP capable interface can establish

multiple sub-flows to a remote endpoint that maintains multiple MPTCP capable

interfaces. An attacker can easily use this configuration to evade current network

IDS/IPS and DLP infrastructure, even though all MPTCP traffic traverses the same

enterprise network path. This capability should be a quick win for network security

vendors. However, a long term solution also needs to be developed to inspect MPTCP

traffic that utilizes a side-channel (non-enterprise network) connection.

6.5.2. Controlling a malicious MPTCP connection

The second feature request that should be submitted to network security vendors is for the

capability to terminate an established MPTCP connection. An established MPTCP

connection that has one or more sub-flows that traverse the enterprise network and one or

more sub-flows that traverse a side-channel network will be difficult to terminate unless

the enterprise controls the endpoint or the side-channel network. Using this example, an

enterprise network security device that blocks the IP address or performs a TCP RESET

will terminate the sub-flows traversing the enterprise network, resulting in all traffic

Practical approaches for MPTCP Security! 22

Josh Lewis, Joshua.d.Lewis@gmail.com

being pushed to the side-channel connections. At a minimum, network security vendors

should be able to perform a MPTCP FAST_CLOSE to force the reset of all TCP sub-

flows. Additionally, network security vendors may also provide the capability to tar pit a

malicious MPTCP connection by dynamically updating the TCP window field to zero

[similar to LaBrea Version 2 (The SANS Institute, 2015)]. The TCP window field

specifies the amount of bytes that can be buffered on the receiving host, and indicates to

the sending host how many bytes can be sent prior to an acknowledgement. MPTCP

utilizes a shared window across all TCP sub-flows, permitting a LaBrea Version 2 like tar

pit.

7. Future research

Based on the exploration of MPTCP in this paper, three areas were identified for further

research. The additional research areas include building a more robust MPTCP scanner,

determining how to utilize and disable MPTCP in OS X or iOS, and exploring the use of

MPTCP DSS sequence numbers to retransmit payloads sent over side-channel

connections.

7.1.1. Build an enhanced MPTCP scanner

The first area for future research focuses on building an enhanced MPTCP scanner. At

the time that this research was conducted, there was only one proof of concept MPTCP

scanner available for finding MPTCP capable end points. This scanner was built using

Python and Scapy. Additional scanners should be explored that provide more robust

functionality, such as the capability for multi-threading scanning.

7.1.2. Utilize MPTCP is OS X and iOS

The second area for future research focuses on utilizing MPTCP for OS X and iOS. At

the time that this research was conducted, OS X Yosemite and iOS 7+ had an

implementation of MPTCP installed, but was not used by default for all TCP

connections. Enabling MPTCP on these platforms will allow the previously outlined

MPTCP abuse cases to be realized on these platforms. Once MPTCP can be leveraged,

Practical approaches for MPTCP Security! 23

Josh Lewis, Joshua.d.Lewis@gmail.com

attackers can begin to use this for data exfiltration or obfuscation. This research should

also discuss how to properly disable MPTCP if desired by enterprise security.

7.1.3. Retransmit MPTCP payloads sent through side-channels

The third area for future researches focuses on utilizing MPTCP DSS SYN sequence

numbers to retransmit data sent over side-channel connections. A firewall, IDS/IPS,

proxy or DLP solution that sees DSS SYN sequence number one and DSS SYN sequence

number three traverse through the inspection engine, may be interested in issuing a

retransmission for DSS SYN sequence number two, in order to fully reassemble the

payload. At the TCP layer acknowledged data cannot be re-transmitted. Per the RFC

6824, data with the same sequence number can be retransmitted on a different sub-flow.

Additionally, “An MPTCP sender MUST NOT free data from the send buffer until it has

been acknowledged by both a data ACK received on any sub-flow and at the sub-flow

level by all sub-flows on which the data was sent” (Cisco, et al., 2013). MPTCP should

be tested to determine if a retransmission request can be reliably reissued over the

enterprise path which is potentially faster than the side-channel path, or if the continuous

retransmission of payload data sent over the side-channel connection will cause MPTCP

to determine that the side-channel is unreliable and close the side-channel connection.

The retransmission of DSS sequence numbers should be explored to aid in non-enterprise

sub-flow visibility and inspection.

Figure 22 - Re-transmitting DSS sequence numbers for reassembly visibility

Practical approaches for MPTCP Security! 24

Josh Lewis, Joshua.d.Lewis@gmail.com

8. Conclusion

MPTCP is an exciting evolution of TCP that has performance and reliability benefits for

user endpoints and datacenter infrastructure. MPTCP also presents some exciting

opportunities to enhance security. The current adoption of MPTCP is increasing, with

OS X Yosemite and iOS 7+ shipping with MPTCP installed and enabled in the kernel, as

well as the availability *nix and Android extensions. However, current network security

infrastructure lacks the ability to reassemble MPTCP sub-flows, resulting in possible

IDS/IPS or DLP evasion abuse cases. Based on the lack of the current network security

vendors ability to properly reassemble MPTCP sub-flows, MPTCP should be tightly

controlled for critical endpoints by the identification of hosts with MPTCP enabled,

blocking of MPTCP at the host level, and monitoring for MPTCP traffic at the network

level. Additionally, enterprises should submit feature request to network security

vendors for the ability to reassemble MPTCP sub-flows that traverse a single path and for

the capability to control a malicious MPTCP connection.

9. References

Apple Inc. (2015, 4 1). iOS: Multipath TCP Support in iOS 7. Retrieved from

support.apple.com: https://support.apple.com/en-us/HT201373

Barre, S., & Paasch, C. (n.d.). MultiPath TCP - Linux Kernel Implementation. Retrieved

from multipath-tcp.org: http://multipath-tcp.org

Bonaventure, O. (2013, 03). Decoupling TCP from IP with Multipath TCP. Retrieved

from multipath-tcp.org: http://multipath-tcp.org/data/MultipathTCP-netsys.pdf

Check Point. (2014, 9 1). Check Point Advisories. Retrieved from checkpoint.com:

http://www.checkpoint.com/defense/advisories/public/2014/cpai-31-aug.html

Cisco. (2013, 9 17). MPTCP and Product Support Overview. Retrieved from Cisco.com:

http://www.cisco.com/c/en/us/support/docs/ip/transmission-control-protocol-

tcp/116519-technote-mptcp-00.html

Practical approaches for MPTCP Security! 25

Josh Lewis, Joshua.d.Lewis@gmail.com

Cisco. (2014). SNORT Users Manual 2.9.7. Retrieved from manual.snort.org:

manual.snort.org

Cisco, Raiciu, C., Ford, A., Politechnica of Bucharest, U., Handley, M., College London,

U., . . . catholique de Louvain, U. (2013, 01). TCP Extensions for Multipath

Operation with Multiple Addresses (RFC 6824). Retrieved from ietf.org:

https://tools.ietf.org/html/rfc6824

F5. (2015, 7 24). Overview of the TCP Profile. Retrieved from support.f5.com:

https://support.f5.com/kb/en-us/solutions/public/7000/500/sol7559.html

Ford, A., Roke Manor Research, Raiciu, C., Handley, M., University College London,

Barre, S., . . . Franklin and Marshall College. (2011, 03). Architectural Guidelines

for Multipath TCP Development: RFC 6182. Retrieved from ietf.org:

http://tools.ietf.org/html/rfc6182

harshanatarajan. (2015, 1 16). Multi-Path TCP on Palo Alto Networks Firewalls.

Retrieved from live.paloaltonetworks.com:

https://live.paloaltonetworks.com/t5/Technologies-Articles/Multi-Path-TCP-on-

Palo-Alto-Networks-Firewalls/ta-p/61710

Information Sciences Institute: University of Southern California. (1981, September).

Transmission Control Protocol: RFC 793. Retrieved from ietf.org:

https://tools.ietf.org/html/rfc793

Pearce, C. (2015, 6 2). BSides Knoxville 2015 - Multipath TCP - Breaking Today's

Networks with Tomorrow's Protocols. Retrieved from

http://www.securitytube.net/video/13161

Pearce, C., & Thomas, P. (2014). Multipath TCP: Breaking today's networks with

tomorrow's protocols. Retrieved from Blackhat.com:

https://www.blackhat.com/docs/us-14/materials/us-14-Pearce-Multipath-TCP-

Breaking-Todays-Networks-With-Tomorrows-Protocols.pdf

Pearce, K. (2014, 10 20). MPTCP Roams Free (By Default!) - OS X Yosemite. Retrieved

from Neohapsis Labs: http://labs.neohapsis.com/2014/10/20/mptcp-roams-free-

by-default-os-x-yosemite/

Rochet, F., Pereira, O., & Bonaventure, O. (2015, 1 15). Moving Tor Circuits Towards

Multiple-Path: Anonymity and Performance Considerations. Retrieved from

Practical approaches for MPTCP Security! 26

Josh Lewis, Joshua.d.Lewis@gmail.com

uclouvain.be:

http://www.uclouvain.be/crypto/services/download/publications.pdf.96a2ad0c887

87dbb.6d756c7469706174685f616e645f746f725f61636d5f666f726d61742e7064

66.pdf

The SANS Institute. (2015). Security 503: Intrustion Detection In-Depth.

Thomas, P. (2014, 8 6). Neohapsis / mptcp-abuse. Retrieved from github.com:

https://github.com/Neohapsis/mptcp-abuse

VanWagner, S. (2014, 8 10). How To Set Default Grub / kernel / boot option on Ubuntu

GNU/Linux 14.04. Retrieved from humans-enabled.com: http://www.humans-

enabled.com/2014/08/how-to-set-default-grub-kernel-boot.html

10. Appendix

10.1. TCP background

TCP is a connection oriented and reliable protocol. This means that TCP keeps track of

the order that data should be passed to the application layer and retransmits data that has

been lost or corrupted. TCP performs the ordering and retransmission through the use of

Synchronize (SYN) and Acknowledgement (ACK) sequence numbers. The initial

exchange of SYN and ACK sequence numbers is known as a three-way handshake, and

establishes the concept of TCP session. For additional details beyond what is discussed

in this section, please reference RFC 793. Section paraphrased from: (The SANS

Institute, 2015).

10.1.1. TCP three-way handshake

A TCP session exists between an IP address and port pair. A host indicates the desire to

setup a TCP session by sending a TCP packet with a SYN flag and SYN sequence

number to reference the data that this host sends. If the remote host is listening on the

corresponding port, the remote host will reply with a SYN flag and SYN sequence

number to reference the data that is sent by the remote host as well as and ACK flag and

an ACK sequence number to verify the receipt of data sent by the originating host. The

Practical approaches for MPTCP Security! 27

Josh Lewis, Joshua.d.Lewis@gmail.com

originating host will then send an ACK flag and ACK sequence number to verify receipt

of the remote host data. TCP sequence numbers are used to order segments during the

reassembly process, and increment based on the number of payload bytes sent. TCP

sequence numbers also increment by one when a SYN or FIN flags is set. ACK numbers

increment by one to indicate the next expected sequence number. Section paraphrased

from: (Information Sciences Institute: University of Southern California, 1981).

Figure 23 – Putting it all together: TCP three-way handshake

10.1.2. TCP data exchange

Once the TCP three-way handshake has completed and a TCP session has been

established, data can be exchanged. The host sending data sets the PUSH flag with the

corresponding sequence numbers based on the initial SYN and length of the payload as

well as an ACK flag and acknowledge number to verify receipt of the remote host data.

The PUSH flag informs the originating host to empty the write buffer and send the data

segment(s) to the receiving host. If the data is received, the remote host will respond

with ACK flag set and an ACK sequence number to verify the receipt of data sent by the

originating host.

Figure 24 – Putting it all together: TCP data exchange

10.1.3. TCP session termination

After the data exchange is complete, the TCP session can be gracefully or abruptly

terminated. In a graceful termination, an originating host will send the FIN and ACK

flags set, a SYN sequence number incremented by one to reference data previously sent

by the originating host, and a corresponding ACK sequence number. If the packet is

Practical approaches for MPTCP Security! 28

Josh Lewis, Joshua.d.Lewis@gmail.com

received by the remote host, the remote host will acknowledge the FIN by incrementing

the ACK sequence number by one. Since TCP connections are full duplex, the remote

host must also set the FIN flag and send the corresponding SYN sequence number that

references the previous data sent by the remote host. The originating host will send a

FIN flag with an ACK sequence number incremented by one to acknowledge the

successful termination of the remote host connection. Once these three steps are

completed, a TCP session is successfully terminated. Section paraphrased from: (The

SANS Institute, 2015).

Figure 25 – Putting it all together: Graceful termination of a TCP connection

In addition to a graceful TCP session termination, a session can also be abruptly aborted.

In an abrupt TCP session termination, the originating host will send the RST flag with the

corresponding SYN and ACK sequence numbers that correspond to the data sent by the

originating host and the data sent by the remote host. Once the connection reset is sent,

no additional segments will be sent. Section paraphrased from: (The SANS Institute,

2015).

Figure 26 – Putting it all together: Aborted TCP session termination

Beyond TCP connection setup, data transfer, and connection teardown, an understanding

of TCP options is import prior to discussing MPTCP. TCP options extend the TCP

header by providing a location to store additional parameters. A TCP header without

options is 20 bytes long, which allows for 44 bytes of TCP options (Bonaventure, 2013).

Practical approaches for MPTCP Security! 29

Josh Lewis, Joshua.d.Lewis@gmail.com

TCP options are frequently used in TCP connections. Some of the common TCP options

include maximum segment size (MSS), window scale, timestamp, selective

acknowledgement, and no operation. During the TCP three-way handshake, the

originating host sends the TCP options that it supports such as the Maximum Segment

Size (MSS), window scale, and selective acknowledgement in the initial SYN. The

remote host will acknowledge the TCP options that it supports in the SYN/ACK reply.

Based on the response from the remote host, the originating host will specify the options

that are supported by both endpoints in the ACK reply to the remote host.

10.2. MPTCP setup

Step 1: Install MPTCP

Step 2: Boot to the MPTCP kernel

Step number two seems to be missing from the directions provided on multipath-tcp.org.

This step modifies grub to boot to the MPTCP kernel by default. The commands in

Figure 28 create a copy of the grub file, then identify the submenu string. Copy the

submenu string, shown in Figure 29, to a text editor. Identify the MPTCP kernel string,

shown in Figure 31, by running the command in Figure 30. Concatenate the submenu

string, followed by “>” character, followed by the MPTCP kernel string and copy the

concatenated string into the “GRUB_DEFAULT” section of the grub file (reference

Figure 32 and Figure 33). Finally, update grub and reboot the host (VanWagner, 2014).

demo@ubuntu:~$ wget -q -O - http://multipath-tcp.org/mptcp.gpg.key | sudo apt-key

add –

root@ubuntu:~# echo ‘deb http://multipath-tcp.org/repos/apt/debian trusty main’ >>

/etc/apt/sources.list.d/mptcp.list

root@ubuntu:~# apt-get update

root@ubuntu:~# apt-get install linux-mptcp

Figure 27 - Install MPTCP (Barre & Paasch)!

root@ubuntu:~# cp /etc/default/grub /etc/default/grub.bak

root@ubuntu:~# grep submenu /boot/grub/grub.cfg
Figure 28 - Identify grub submenu!

Practical approaches for MPTCP Security! 30

Josh Lewis, Joshua.d.Lewis@gmail.com

Figure 29 – grub.cfg submenu string

Figure 31 - grub.cfg MPTCP kernel string

Figure 33 - Copy the concatenated string into the GRUB_DEFAULT line

Step 3: Configure routing

For a lab environment, routing does not need to be configured for network interfaces on

the same subnet. For example, two virtual networks can be utilized, with a virtual

machine that has a network adapter in each virtual network. Refer to multipath-tcp.org

for additional routing configuration examples and automatic configuration scripts.

root@ubuntu:~# grep gnulinux /boot/grub/grub.cfg

Figure 30 – grep for grub.cfg MPTCP kernel string!

root@ubuntu:~# update-grub

root@ubuntu:~# reboot

Figure 34 - Update grub and reboot!

root@ubuntu:~# vi /etc/default/grub

Figure 32 - Edit GRUB_DEFAULT in the grub file!

Practical approaches for MPTCP Security! 31

Josh Lewis, Joshua.d.Lewis@gmail.com

10.3. Sample iptables script for MPTCP lab testing

This iptables script is provided for configuration and testing of MPTCP in a lab. Iptables

rules should be carefully considered based the appropriate traffic for an enterprise.
#!/bin/sh
IPTABLES=/sbin/iptables
IP6TABLES=/sbin/ip6tables
RLIMIT="-m limit --limit 5/min --limit-burst 5"
LOGIPTCPOPTIONS="--log-ip-options --log-tcp-options --log-tcp-sequence"

#Reset existing rules
$IPTABLES -F
$IPTABLES -X

Clear packet and byte counters
$IPTABLES -Z
$IPTABLES -t nat -Z
$IPTABLES -t mangle -Z

Set default policies ipv4
$IPTABLES -P INPUT DROP
$IPTABLES -P FORWARD DROP
$IPTABLES -P OUTPUT DROP

Set default policies ipv6
$IP6TABLES -P INPUT DROP
$IP6TABLES -P OUTPUT DROP
$IP6TABLES -P FORWARD DROP

root@ubuntu:~# echo eth1 ip address 10.10.10.154

root@ubuntu:~# ip rule add from 10.10.10.154 table 1

root@ubuntu:~# echo eth1 ip address 10.10.50.100

root@ubuntu:~# ip rule add from 10.10.50.100 table 2

root@ubuntu:~# echo default gateway for eth1 10.10.10.1

root@ubuntu:~# ip route add 10.10.10.0/24 dev eth1 scope link table 1

root@ubuntu:~# ip route add default via 10.10.10.1 dev eth1 table 1

root@ubuntu:~# echo default gateway for eth0 10.10.50.1

root@ubuntu:~# ip route add 10.10.50.0/24 dev eth0 scope link table 2

root@ubuntu:~# ip route add default via 10.10.50.1 dev eth0 table 2

root@ubuntu:~# echo default gateway for internet traffic

root@ubuntu:~# ip route add default scope global nexthop via 10.10.10.1 dev eth1
Figure 35 – MPTCP routing configuration (Barre & Paasch)!

Practical approaches for MPTCP Security! 32

Josh Lewis, Joshua.d.Lewis@gmail.com

#Allow loopback
$IPTABLES -A INPUT -i lo -j ACCEPT
$IPTABLES -A OUTPUT -o lo -j ACCEPT

#Track state
$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Block Rules
#MPTCP log and block
$IPTABLES -A INPUT -p tcp --tcp-option 30 -m state --state NEW $RLIMIT
-j LOG --log-prefix 'IPTBLSDROP: MTCP IN ATTEMPT ' $LOGIPTCPOPTIONS
$IPTABLES -A INPUT -p tcp --tcp-option 30 -m state --state NEW -j DROP
$IPTABLES -A OUTPUT -p tcp --tcp-option 30 -m state --state ESTABLISHED
$RLIMIT -j LOG --log-prefix 'IPTBLSDROP: MTCP OUT ESTAB '
$LOGIPTCPOPTIONS
$IPTABLES -A OUTPUT -p tcp --tcp-option 30 -m state --state NEW -j DROP

Accept Rules
#DNS
$IPTABLES -A OUTPUT -p udp --dport 53 -m state --state NEW,ESTABLISHED
-j ACCEPT
$IPTABLES -A INPUT -p udp --sport 53 -m state --state ESTABLISHED -j
ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 53 -m state --state NEW,ESTABLISHED
-j ACCEPT
$IPTABLES -A INPUT -p tcp --sport 53 -m state --state ESTABLISHED -j
ACCEPT

#Incoming SSH
$IPTABLES -A INPUT -p tcp --dport 22 -m state --state NEW,ESTABLISHED -
j ACCEPT
$IPTABLES -A OUTPUT -p tcp --sport 22 -m state --state ESTABLISHED -j
ACCEPT

#Outbound SSH
$IPTABLES -A OUTPUT -p tcp --dport 22 -m state --state NEW,ESTABLISHED
-j ACCEPT
$IPTABLES -A INPUT -p tcp --sport 22 -m state --state ESTABLISHED -j
ACCEPT

#Incoming HTTP
$IPTABLES -A INPUT -p tcp -m multiport --dport 80,443 -m state --state
NEW,ESTABLISHED -j ACCEPT
$IPTABLES -A OUTPUT -p tcp -m multiport --sport 80,443 -m state --state
ESTABLISHED -j ACCEPT

#Outbound HTTP
$IPTABLES -A OUTPUT -p tcp -m multiport --dport 80,443 -m state --state
NEW,ESTABLISHED -j ACCEPT
$IPTABLES -A INPUT -p tcp -m multiport --sport 80,443 -m state --state
ESTABLISHED -j ACCEPT

Display results
$IPTABLES –nvL

Practical approaches for MPTCP Security! 33

Josh Lewis, Joshua.d.Lewis@gmail.com

10.4. MPTCP proof of concept scanner

Download and extract the zip file from github: https://github.com/Neohapsis/mptcp-

abuse.

Figure 37 - MPTCP poc scanner sample output

root@ubuntu:~# apt-get install python-pip

root@ubuntu:~# pip install netaddr

root@ubuntu:~# cd /home/demo/Documents/mptcp-abuse-master

root@ubuntu:/home/demo/Documents/mptcp-abuse-master# python

mptcp_scanner.py 10.10.10.239 22

Figure 36 - MPTCP poc scanner commands

