
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build a Manageable

and Sharable Intrusion Detection Lab

GIAC (GCIA) Gold Certification

Author: Shaun McCullough, cybergoof@gmail.com

Advisor: Adam Kliarsky
Accepted Date: September 2, 2016

Abstract

This paper investigates how the Vagrant software application can be used by Information
Security (InfoSec) professionals looking to provide their audience with an infrastructure
environment to accompany their research. InfoSec professionals conducting research or
publishing write-ups can provide opportunities for their audience to replicate or walk
through the research themselves in their own environment. Vagrant is a popular DevOps
tool for providing portable and repeatable production environments for application
developers, and may solve the needs of the InfoSec professional. This paper will
investigate how Vagrant works, the pros and cons of the technology, and how it is
typically used. The paper describes how to build or repurpose three environments,
highlighting different features of Vagrant. Finally, the paper will discuss lessons learned.

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 2

Shaun McCullough, cybergoof@gmail.com

1. Introduction to DevOps

In a recent survey by RightScale, 74% of respondents said they implemented

some form of DevOps in their organization in 2016 (Weins, 2016). Gartner defines

DevOps as “represents a change in IT culture, focusing on rapid IT service delivery

through the adoption of agile, lean practices in the context of a system-oriented approach.

DevOps emphasizes people (and culture), and seeks to improve collaboration between

organizations and development teams. DevOps implementations utilize technology --

especially automation tools that can leverage and increasingly programmable and

dynamic infrastructure from a life cycle perspective” (Woods, 2016).

In that definition, the key phrase is “improve collaboration between operations

and development teams”. While working as a web application developer in the 1990’s,

there were strict processes and purposeful barriers in place to move an application from

the development team to the operations team. We had multiple problems with the

development teams working off a different architecture configuration from that of the

operations team. Development teams might throw their new software “over the wall” to

the IT ops teams, who had to figure out how to place this round peg in their square hole

infrastructure. To fix this, organizations implemented Sequential Engineering which put

in place processes, oversight, change management meetings, and complex staging areas

(Wikipedia, n.d.). This took time, cost money, and kept teams from truly being agile.

As Gartner explained, DevOps processes will utilize technology to improve

collaboration and automation. The Vagrant software was created to bridge those teams

together, and get IT operations and developers working off the same infrastructure

configuration (HashiCorp, n.d.).

2. Vagrant Basics

Vagrant is a tool for building complete virtual environments. It supports a

workflow that focuses on automation and lowers the environment setup time (HashiCorp,

n.d.). Vagrant was started in January of 2010 by Mitchell Hashimoto as a side project. In

late 2012, HashiCorp was formed to provide an entire suite of products to support a full

DevOps workflow. As a bonus, most of the products from HashiCorp are open source.

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 3

Shaun McCullough, cybergoof@gmail.com

Vagrant provides an easy to configure, reproducible and portable work

environment built on top of industry standard virtual machine (VM) providers

(HashCorp, n.d.). Vagrant providers can be VirtualBox, VMWare, Amazon Web Services

(AWS), or any number of other providers. Vagrant also supports many standard

provisioning tools such as Chef, Puppet, Ansible, or even straight shell scripts. The

beauty of Vagrant is that it allows separation of the underlining VM provider

technologies from the chosen provisioning tools, and manages these configurations

through a standardized Vagrantfile.

For the developer, Vagrant will isolate dependencies and configurations within a

single, disposable, consistent environment while still supporting all the tools a user needs.

Vagrant is just a tool, and it’s up to the DevOps team to build the right workflow and

processes to support it, but Vagrant certainly helps.

2.1. A Docker Comparison

When talking about DevOps support tools, Docker is one of the more well-known

capabilities. Although Docker has a similar goal as Vagrant, the approach is very

different. Docker’s goal is to achieve agility and control for Development and IT

Operations teams to build, ship and run any app, anywhere (Docker, n.d.). Docker

supports DevOps processes by providing a generalized container for an app to run on,

and that container can be shipped and run on any number of Docker supported

infrastructures such as AWS (Amazon, n.d.), Azure (Iain Foulds, n.d.), or DigitalOcean

(Digitalocean, n.d.). A quick Google search yielded a large number of cloud services that

support Docker Containers.

The main difference in the Vagrant and Docker approaches is that Vagrant

deploys a full virtual environment, while Docker deploys the bare minimum “container”

to support running an app onto a standardize infrastructure. A particularly interesting

topic on www.stackoverflow.com discussed the difference between Docker and Vagrant

(Hykes, 2013). In this thread, the authors of Docker and Vagrant chimed in to discuss

their views of what was different about their products. Both authors are obviously

champions of their own product, and the feature lists have grown in the last 3 years since

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 4

Shaun McCullough, cybergoof@gmail.com

the post was made, but their responses provide a good insight into their goals of their

projects.

To test out a single application, such as using a Docker instance of Snort

(Coolacid, n.d.) to monitor a vulnerable instance of Wordpress (Vibioh, 2015), or running

malware analysis apps then Docker will work great (Zeltser, 2014). However, for an

InfoSec professional researching and sharing a realistic and feature rich target

environment, then the container architecture of Docker does not adequately match a real

target host environment. Furthermore, Docker containers use the resource isolation

features of the Linux kernel such as cgroups and kernel namespaces while avoiding the

overhead of the entire virtual machine (wikipedia, n.d.). Therefore, Docker apps run

inside Linux containers. Building a test environment that simulates psexec lateral

movement or monitoring for Mimikatz credential harvesting on Windows machines is

impossible at this time.

Microsoft has started investing in the Docker movement by tooling the Windows

Server 2016 to support Windows containers through Docker. Using the Windows Docker

Service on Windows Server 2016 will support Windows container images (Peterson,

Windows Container Images, 2016). However, the container sizes are huge (Peterson,

Windows Containers on Windows Server, 2016), seeming to limit the idea of lite weight

containers for each app.

I have developed software projects using Docker and Vagrant in the past for my

job. I found the Docker projects were more complicated when the software stack,

networking, or non-volatile data storage was more complicated and required multiple

applications. At its core, Vagrant uses Virtual Machine infrastructures which is a well-

known and well used container. You do need an entire OS running on a VM, but that

tradeoff is acceptable. This author believes Vagrant provides an easier, more realistic

implementation for a lab environment and will focus this paper on Vagrant technologies.

2.2. Using Vagrant

Vagrant is deceptively easy to use. One can create Vagrant environments to

deploy to any number of provider systems such as AWS, Digital Ocean, Google,

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 5

Shaun McCullough, cybergoof@gmail.com

OpenStack (Hashimoto, n.d.). For an InfoSec professional looking to share infrastructure

environments across a wide range of audience members, local host VirtualBox

technology provides a low cost and ease of use. VMware Fusion or Workstations is also

an option, but requires the purchase of a Vagrant Connector for $79 in addition to the

cost of the VMWare product (HashiCorp Pricing, n.d.)

To get started using Vagrant, install VirtualBox

(www.virtualbox.org/wiki/Downloads) and install Vagrant

(www.vagrantup.com/docs/installation/). Vagrant builds an environment from a VM

image with added metadata, packaged into a Vagrant box file (HashiCorp Boxes, n.d.). A

box file is built for a particular provider and can be used by anyone to bring up an

identical working environment. That is the real power of Vagrant, the ability to easily box

up the entire work environment for easy sharing. A Vagrant box file could be the entire

server already provisioned and configured for a specific research scenario.

Vagrant provides an easy mechanism to search and download box files that have

already been created. HashiCorp’s Atlas website at atlas.hashicorp.com/boxes/search

provides an easy way to search for box files based on deployment provider, operating

system, or keywords. The labs in this paper rely on the Trusty64 base image provided by

Ubuntu available for download at atlas.hashicorp.com/ubuntu/boxes/trusty64.

Since the box file is available directly from HashiCorp, the local Vagrant

application can pull what is needed from the website. First, create a working directory for

the new build environment. This directory is the Vagrant project root directory. Then

simply initiate the new Vagrant box file with “vagrant init ubuntu/trusty64” (Figure 1).

Figure 1: Initialize Vagrant environment

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 6

Shaun McCullough, cybergoof@gmail.com

Running the initialize command created a file called Vagrantfile. The Vagrantfile

is the instruction book Vagrant uses to build an environment (Figure 2). The Vagrantfile

is used to identify what box file to use, how to configure the environment’s network, how

to sync folders between the host and the guest, and specific information for each

supported provider, VirtualBox in this case. Vagrant provides more details in its help

documents online at www.vagrantup.com/docs/vagrantfile.

The Vagrantfile identifies the base box file for the environment. To stand up the

environment, simply run “vagrant up”. Vagrant looks for the Vagrantfile in the current

directory and sees the need for the Ubuntu/Trusty64 box. If it has not been downloaded

before, Vagrant will reach out to the atlas.hashicorp.com site and download this

particular box file.

This lab uses the Ubuntu/Trusty64 base system to build and provision a specific

environment. The original trusty64 box file, that was downloaded to the local host, will

never change when provisioning a system; it is always the original Trusty64 base box

file.

Figure 2: Inside Vagrantfile

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 7

Shaun McCullough, cybergoof@gmail.com

Vagrant is meant to easily create disposable and reloadable environments. To

completely wipe away and rebuild an environment just requires two easy commands,

“destroy” and then “up” again (Figure 3).

Section 3 of this paper demonstrates some of the ways that an InfoSec

professional can build and share full working environments that are easy for the audience

to acquire and start using.

Figure 3: Destroy and up Vagrant Environment

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 8

Shaun McCullough, cybergoof@gmail.com

3. Vagrant Labs

3.1. Vagrant as a Shareable Infrastructure

An InfoSec professional can spend countless hours researching new intrusion

detection techniques, documenting an improved analysis approach, or building exercises

for students to work through. Vagrant can provide a simple and repeatable process so the

audience can immediately download, provision, and begin interacting with exact copies

of the environment for themselves.

When learning to detect an attack on a web server, the Damn Vulnerable Web

Application (DVWA) is a feature rich application that lets a user work through 18

different web application attacks in nine categories. Once installed and running in an

environment, monitoring the network traffic to this web application would allow

someone to learn how to analyze a web application attack.

Installing the DVWA can be tricky, especially if the audience is unfamiliar with

standing up PHP/MySQL applications. With over 60 lines of instructions and commands,

it might take a while to get it right (nightmare-rg, n.d.).

Some Vagrant users have recreated the DVWA in Vagrant, which makes it simple

to stand up a full DVWA image. This Lab demonstrates setting up an available DVWA

Vagrant image to get an environment started quickly, and how to capture pcap files to

analyze the attacks.

First, in a working directory, clone the DVWA Github project from user

nightmare-rg with the command “git clone https://github.com/nightmare-rg/dvwa-

vagrant.git”. Next, change directories into the newly created Vagrant project directory

“dvwa-vagrant”. Cloning the project brought down a Vagrantfile, a bootstrap.sh file, and

the source code needed to run the DVWA (Figure 4). The Vagrantfile identifies the

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 9

Shaun McCullough, cybergoof@gmail.com

location of the box file to use, the ports that must be forwarded from the guest to the host,

and VirtualBox specific configurations (Figure 5).

DVWA uses the basic Ubuntu Trusty box file. The Vagrant file then calls the

“shell” provision command to run bootstrap.sh from inside the newly created VM (Figure

6). DVWA could have picked from any of the 13 described provisioning technologies

(HashiCorp Provisioning, n.d.). Building images for a production environment will

probably require a more sophisticated provisioning system such as Puppet, Ansible, or

Figure 4: Building DVWA environment

Figure 5: DVWA Vagrantfile

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 10

Shaun McCullough, cybergoof@gmail.com

Chef. However, a shell based provisioning is very easy to read and understand by the

audience.

Once the project is downloaded, starting the environment is easy as the command

“vagrant up” (Figure 7).

Figure 6: DVWA's bootstrap.sh file

Figure 7: Provisioning DVWA environment

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 11

Shaun McCullough, cybergoof@gmail.com

It only took three commands and less than three minutes to go from nothing to a

fully functioning web server running DVWA with Apache. Once the provisioning is

finished, going to “http://localhost:8088” brings up the DVWA webpage (Figure 8).

Capturing the network traffic between the host system and the DWVA takes a few

more commands. VirtualBox provides tools to capture all network traffic to a VM and

store it in a pcap file. First, use Vagrant to halt the Virtual Machine in order to make the

network modifications (Figure 9).

Figure 8: DVWA Webpage

Figure 9: Halt Vagrant environment

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 12

Shaun McCullough, cybergoof@gmail.com

Next, use the program VboxManage.exe to modify the Virtual Machine to turn on

NIC Tracing and output it to a file in c:\temp\ (Figure 10).

Now, all network traffic coming across the first interface will output to

dvwa.pcap. Restart the DVWA with “vagrant up” again, re-open the DVWA web

application from the host browser, and perform a very basic SQL Injection (Figure 11).

Figure 10: Turn on NIC tracing

Figure 11: Perform SQL Injection

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 13

Shaun McCullough, cybergoof@gmail.com

Opening the pcap file in Wireshark, the HTTP Get with the SQL Injection attack

is easily identified (Figure 12). Using a Vagrant environment as the target environment,

and collecting the pcap from a network interface can allow the audience to analyze

attack, and setup for the environment took a matter of minutes.

Figure 12:Wireshark output

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 14

Shaun McCullough, cybergoof@gmail.com

3.2. Creating and Sharing a Vagrant Environment

The last lab demonstrated how easy it was to download and setup a Vagrant

environment to run a web application attack, then capture and analyze the network traffic.

Only a few commands to stand up and setup the entire environment. Using the

prepackaged and tested Vagrant environment enables the audience to quickly get to the

heart of the research without troubleshooting the infrastructure and server installation

problems. This lab will investigate how to create a new Vagrant environment from

scratch and package it up for easy distribution.

The target server will be an Apache web server running on Ubuntu/Trusty64.

Snort will be installed on the server to monitor network connections. In this lab, a second

Kali2 VM will be running to conduct a denial of service (DoS) attack against the Apache

server.

Creating a new Vagrant environment starts with a Vagrantfile (Figure 13). In

order to use the second Kali VM to attack the server, Vagrant needs to use a

private_network and assign an IP Address. The private_network is the same as Host-only

Adapter.

Figure 13: Simple Vagrantfile

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 15

Shaun McCullough, cybergoof@gmail.com

In this lab, the provisioning work will be done through a bootstrap file that

Vagrantfile will run in a shell command. The file bootstrap.sh does all the configuration

and setup of the server (Figure 14). First, it updates the base Ubuntu operating system.

Next, it will install the Apache2 web server. Last, it installs the necessary Snort

applications. Since this paper is more focused on how Vagrant can be used in a lab

environment, rather than a focus on Snort, the Snort configuration is simple.

Figure 14: Lab2 Vagrantfile

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 16

Shaun McCullough, cybergoof@gmail.com

The following command, “vagrant up”, will start up the VM, update the

networking, and run the bootstrap.sh file from within the VM. Once complete, the

command “vagrant ssh” from the host computer will create an SSH session between the

host and the Vagrant VM using the Vagrant created user “vagrant”. Next, just start

Apache and Snort to start monitoring the interface (Figure 15). From the host web

browser, go to http://192.168.33.10 to see that apache is working and available (Figure

16).

Figure 15: Restarting Apach2 and Snort

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 17

Shaun McCullough, cybergoof@gmail.com

Now, Snort is monitoring the interface and should detect the denial of service

(DoS) attack. The apache_mod_isapi attack in Metasploit should be detected by Snort,

but will not actually DoS your newly installed Apache server (Rapid7, 2016). Figure 17

shows the commands to run the apache_mod_isapi DoS attempt in Metasploit. Figure 18

is the snort output when snort is monitoring, but without any rules loaded.

Figure 16: Apache2 default webpage

Figure 17: Metasploit auxillary apache_mod_isapi

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 18

Shaun McCullough, cybergoof@gmail.com

Creating a Vagrantfile and bootstrap.sh file that provisions a basic Ubuntu image

into the desired target environment is nice, but Vagrant can support an even easier build

and share solution. Vagrant can package the entire VM, provisioned and configured as

desired, into a new Vagrant box file and made available on https://atlas.hashicorp.com for

anyone to use, hosted for free.

Returning to the host terminal, to the directory with the Vagrantfile, use the

command “vagrant package” to package up a new box file (HashiCorp Package, n.d.). In

the case of Figure 19, the file will be named lab2.box.

Figure 18: Snort detecting DoS attack

Figure 19: Command to package box file

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 19

Shaun McCullough, cybergoof@gmail.com

This lab2.box file is a new Vagrant box file that can be used to create a whole

new, fully provisioned Vagrant environment. After creating an account on

atlas.hashicorp.com, a new box file can be uploaded and made available to the world.

Atlas hosts the box file for free, provides the ability to tag the box file with labels or

keywords for easier discovery, and supports basic versioning (Figure 20). Downloading,

installing and running the image is as simple as calling “vagrant init” on the desired box

file (Figure 21).

This lab showed how easy it is to package an environment and share it with

anyone running Vagrant and VirtualBox. Either building off a base operating system

Figure 21: Initializing new environment

Figure 20: Atlas page

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 20

Shaun McCullough, cybergoof@gmail.com

(OS) so the audience can make any necessary changes, or simply providing the entire

installed and configured server as a packaged box file. InfoSec professionals can package

their complete environment and provide it without any need for additional provisioning.

This can eliminate provisioning problems if someone were to attempt to run the research

years later and the original software packages are no longer available. At this point, this

paper has shown how to use Linux based guest operating systems. The final lab will show

how to use Windows as a guest OS and some of the problems it brings.

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 21

Shaun McCullough, cybergoof@gmail.com

3.3. Working with Windows

Besides the Linux environments in the previous lab, Vagrant also supports

Microsoft Windows VM’s, but there are not as many available Vagrant environments as

in Linux. Microsoft does not allow redistribution of their operating system by users

(Microsoft, 2015). Searching the Atlas site does show some Windows based Vagrant box

files. Microsoft itself uses Atlas to distribute box files, but at the time of this paper, only

Windows 10 was provided at http://atlas.hashicorp.com/Microsoft. For InfoSec

professionals needing Windows 7 and 8.1, Microsoft’s Developer website has box files

available at https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/ (Figure 22).

This lab will use a Vagrant box file from the Microsoft Developer website. Once

the box file is unzipped, add the newly downloaded Vagrant box file to the local Vagrant

repository. The command “vagrant box add lab3 IE8-Win7.box” will do this (Figure 23).

Figure 22: Downloading Windows Vagrant environment

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 22

Shaun McCullough, cybergoof@gmail.com

The box file is now called lab3. Now, initializing the Vagrant environment is as

simple as “vagrant init lab3” and a new generic Vagrantfile has been created. Oddly,

Microsoft did not configure the Windows 7, 8.1 or 10 box files to support Vagrant

provisioning. The Vagrantfile must be changed to use WinRM, network ports opened and

the proper username/password set. Also, once started, Windows will need to be

configured with the proper networking type and turn on WinRM.

After changing the Vagrantfile as show in Figure 24, issue the “vagrant up”

command. The guest Windows OS GUI is now available. However, looking at the host

terminal, Vagrant is failing to authenticate with the newly started Windows VM (Figure

25).

Figure 23: Add box file to Vagrant

Figure 24: Windows Vagrantfile after changes

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 23

Shaun McCullough, cybergoof@gmail.com

The guest Windows OS needs WinRM configured in order for Vagrant to interact

with it. As soon as the Windows GUI is available, interact with the GUI and follow the

configuration based on feedback from Andre Pereira (andreptb, 2015). First, set the

networking to either Home or Work (Figure 26).

Next, run the following script as administrator on the guest Windows OS (Figure

27).

Figure 25: Windows Vagrant environment starting

Figure 26: Windows networking set to "work"

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 24

Shaun McCullough, cybergoof@gmail.com

Returning to the host terminal, it should start communicating and eventually

complete with success (Figure 28). The configuration can be verified by going to the

guest Windows OS validating that a shared directory named c:\vagrant is now there. This

directory is shared with the base Vagrant root directory on the host.

Sharing research involving a Windows OS is not nearly as easy as the first two

labs. However, it only takes a few more steps to configure the Microsoft OS, and writing

the research steps with the Vagrant Windows OS will ensure that all audience members

are starting with the same configuration. The shared c:\vagrant directory can be used to

provide scripts that will perform all the necessary configurations.

@echo off
set WINRM_EXEC=call %SYSTEMROOT%\System32\winrm
%WINRM_EXEC% quickconfig -q
%WINRM_EXEC% set winrm/config/winrs @{MaxMemoryPerShellMB="300"}
%WINRM_EXEC% set winrm/config @{MaxTimeoutms="1800000"}
%WINRM_EXEC% set winrm/config/client/auth @{Basic="true"}
%WINRM_EXEC% set winrm/config/service @{AllowUnencrypted="true"}
%WINRM_EXEC% set winrm/config/service/auth @{Basic="true"}

Figure 27: Script to run on Windows guest

Figure 28: Successful Vagrant environment provisioning

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 25

Shaun McCullough, cybergoof@gmail.com

4. Putting it into Practice

4.1. The Pitfalls of Vagrant

There are a few limitations when strictly using a Vagrant and VirtualBox solution

for sharing environments. When attempting to setup a lab network at work with a

Windows VM and a Linux VM operating in Bridge mode, so that the Linux VM could

monitor the subnet, Vagrant itself had problems interacting with the Windows VM over

the primary NAT adapter. This appeared to be a limitation in VirtualBox rather than

Vagrant. VMWare’s virtual switch technology may provide a more realistic and effective

networking environment; however, the Vagrant/VMWare connector must be purchased

(HashiCorp Package, n.d.). The cost is not prohibitive at $79, but that will limit the

potential audience for particular labs.

When I first started using Vagrant, I was primarily working from a Windows Host

running Linux and Windows VM environments. I found some inconsistencies in Vagrant

errors, more complications when trying to interact with Vagrant over SSH, and a couple

of software bugs only found in the Windows implementation (cybergoof, 2016). I found

the Vagrant workflow works a little better from a Mac OSX host. This is not a show

stopper, but something to keep in mind.

Anyone can create and share a Vagrant environment, and the quality of that

environment is up to the individual. There is no rating system for Vagrant images, like

the Stack Exchange (www.stackexchange.com) use of a merit and badge system to

support quality questions and answers. Unlike a Github project where the source code is

exposed, a packaged Vagrant box file could harbor less than desirable software.

However, in the context of InfoSec professionals providing packaged environments to

support an exercise or research, the audience will have to decide the trustworthiness of

the source. In general, I would recommend anyone providing the a fully packaged

environment through Atlas also provide a Vagrantfile and bootstrap scripts in Github so

that the audience can build, and alter, the configuration as desired.

Vagrant does have a larger ecosystem of tools to support DevOps. Vagrant and

Packer (www.packer.io) is heavily focused on the development, while HashiCorp cloud

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 26

Shaun McCullough, cybergoof@gmail.com

services such as Atlas (atlas.hashicorp.com) and Terraform (www.terraform.io) can help

deliver environments for multiple provider hosting options and even manage them. These

products could be used by InfoSec professionals who needs a more sophisticated lab

environment, is part of a larger teams, or is building and supporting organized training.

4.2. Conclusion

Vagrant appears to be a great tool for InfoSec professionals looking for an easy to

use, free, and portable toolset to package and share consistent environments. Researchers

can build Vagrant images that demonstrate their research, best practices, or exercises for

others to use and participate. Vagrant easily uses VirtualBox and supports Windows or

Linux host, enabling a wide range of exercise environments. More sophisticated network

based environments may be more difficult with just VirtualBox, but implementation in

VMWare or AWS may be appropriate for those advanced audiences.

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 27

Shaun McCullough, cybergoof@gmail.com

References

Amazon. (n.d.). Docker Basics. Retrieved from Amazon Web Services:

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-

basics.html

andreptb. (2015, 02 16). Setup ModernIE Vagrant Boxes. Retrieved from GitHub:

https://gist.github.com/andreptb/57e388df5e881937e62a

Coolacid. (n.d.). docker-snort. Retrieved from GitHub:

https://github.com/coolacid/docker-snort

cybergoof. (2016, 01 27). Atlas Push Not Working on Windows. Retrieved from GitHub:

https://github.com/mitchellh/vagrant/issues/6938

Digitalocean. (n.d.). Docker on Digital Ocean. Retrieved from DigitalOcean:

https://www.digitalocean.com/community/tutorials/how-to-use-the-digitalocean-

docker-application

Docker. (n.d.). Why Docker. Retrieved from Docker: https://www.docker.com/enterprise

HashiCorp Boxes. (n.d.). Boxes. Retrieved from Vagrant Up:

https://www.vagrantup.com/docs/boxes.html

HashiCorp Package. (n.d.). Package. Retrieved from Vagrant Up:

https://www.vagrantup.com/docs/cli/package.html

HashiCorp Packer. (n.d.). Packer. Retrieved from Packer: https://www.packer.io/

HashiCorp Pricing. (n.d.). Pricing & Purchase. Retrieved from Vagrant Up:

https://www.vagrantup.com/vmware/#buy-now

HashiCorp Provisioning. (n.d.). Provisioning. Retrieved from Vagrant Up:

https://www.vagrantup.com/docs/provisioning/

HashiCorp. (n.d.). Why Vagrant. Retrieved from Vagrant Up:

https://www.vagrantup.com/docs/why-vagrant/

Hykes, M. a. (2013). StackOverflow. Retrieved from StackOverflow:

http://stackoverflow.com/questions/16647069/should-i-use-vagrant-or-docker-for-

creating-an-isolated-environment

© 2016 The SANS Institute Author retains full rights.

Using Vagrant to Build Labs 28

Shaun McCullough, cybergoof@gmail.com

Iain Foulds. (n.d.). Using the Docker VM Extension to deploy your environment.

Retrieved from Microsoft Azure: https://azure.microsoft.com/en-

us/documentation/articles/virtual-machines-linux-dockerextension/

Microsoft. (2015, 08 15). License Terms. Retrieved from Windows.net:

http://modernievirt.blob.core.windows.net/vhd/release_notes_license_terms_1_5_

15.pdf

mitchellh. (n.d.). Vagrant. Retrieved from Github:

https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins

nightmare-rg. (n.d.). dvwa-vagrant. Retrieved from GitHub:

https://github.com/nightmare-rg/dvwa-vagrant

Peterson, N. (2016, 5 25). Windows Container Images. Retrieved from

msdn.microsoft.com: https://msdn.microsoft.com/en-

us/virtualization/windowscontainers/management/manage_images

Peterson, N. (2016, 5 27). Windows Containers on Windows Server. Retrieved from

msdn.microsoft.com: https://msdn.microsoft.com/en-

us/virtualization/windowscontainers/quick_start/quick_start_windows_server

Rapid7. (2016). Apache Range Header DOS. Retrieved from Rapid7:

https://www.rapid7.com/db/modules/auxiliary/dos/http/apache_range_dos

Vibioh. (2015, 06 18). vibioh/wordpress. Retrieved from Docker Hub:

https://hub.docker.com/r/vibioh/wordpress/builds/bvvpygxfwd2svkdjwxdpnxp/

Weins, K. (2016, May 11). Cloud Management Blog. Retrieved from RightScale:

http://www.rightscale.com/blog/cloud-industry-insights/new-devops-trends-2016-

state-cloud-survey

Wikipedia. (n.d.). Traditional Engineering. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Traditional_engineering

Woods, V. (2016, April 6). The Science of DevOps Decoded. Retrieved from Gartner:

http://www.gartner.com/smarterwithgartner/the-science-of-devops-decoded/

Zeltser, L. (2014, 12 10). Running Malware Analysis Apps as Docker Containers.

Retrieved from SANS Digital Forensics and Incident Response Blog:

https://digital-forensics.sans.org/blog/2014/12/10/running-malware-analysis-apps-

as-docker-containers

