
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2016 The SANS Institute Author retains full rights.

Security Systems Engineering Approach in
Evaluating Commercial and Open Source Software

Products

GIAC (GCIA) Gold Certification

Author: Jesus Abelarde, jabelarde.jr@live.com
Advisor: Stephen Northcutt
Accepted: January 25, 2016

Abstract

The use of commercial and free open source software (FOSS) is becoming more

common in commercial, corporate, and government settings as they develop complex

systems. This carries a set of risks until the system is retired or replaced.

Unfortunately during project development, the amount of security resources and time

necessary to accommodate proper security evaluations is usually underestimated.

Also, there is no widely used or standardized evaluation process that engineers and

scientists can utilize as a guideline. Therefore, the evaluation process usually ends up

lacking or widely different from project to project and company to company. This

paper provides a suggested evaluation process and a set of methodologies, along with

associated costs and risks that projects can utilize as a guideline when they integrate

commercial and FOSS products during system development life cycle (SDLC).

Acknowledgments
I am grateful to Juan Carlos Arango, who is a fellow engineer and a coworker, for

insightful discussions that allowed us to come up with a concept for a software baseline

evaluation process of the use of commercial and open source software. This concept

served as the basis of my proposed evaluation process, which I discuss in this research

paper.

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

2

	

Author	Name,	email@address	 	 	

1. Introduction
Almost all systems currently in development leverage some type of commercial

and/or free open source software (FOSS), either in the development environment or

integrated into the system. This commercial and/or free open software is usually in the

form of software libraries and binaries (i.e., executable). The use of these software carries

a set of risks for the program that lasts throughout the system life cycle. It is critical that

both types of software be evaluated in similar rigor, as it only takes one vulnerability to

penetrate a system.

By analyzing the current common vulnerability and exposures metrics data from

the National Institute of Standards and Technology National Vulnerability Database, as

shown in Figure 1, one can better quantify and understand the potential risk and

vulnerabilities of using COTS/FOSS software. Figure 1 shows buffer overflow and

information disclosure issues trending up, which does not look promising in minimizing

system intrusion, as these issues are the typical vector of attack. However, many of these

reported vulnerability types can be mitigated by executing secure system engineering

during development, such as conducting proper analysis and evaluation of the

commercial/FOSS product used in the system in each phase of the SDLC. As an example,

Zitser, Lippman and Leek from MIT Lincoln Laboratory and D.E. Shaw Group tested

five modern static analysis tools to scan open source code like Sendmail, BIND and WU-

FTPD to determine how well those tools detect buffer overflow vulnerabilities. Their

research concluded about 57% to 87% detection rates (Zitser, Lippmann, & Leek, 2004).

At 57% detection rate, buffer overflow vulnerabilities alone could be reduced by more

than half. Therefore, applying proper secure system engineering principles in the

COTS/FOSS software development can decrease vulnerabilities significantly thus

minimizing intrusion risk.

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

3

	

Author	Name,	email@address	 	 	

Figure 1: Common Weakness Enumeration Over Time

(https://nvd.nist.gov/Visualizations)

1.1. System/Software Development Life Cycle (SDLC)
The risk mitigation and evaluation of these software products should start at the

earliest phase of the SDLC and continue until the system is destroyed or replaced. There

are several methodologies to develop software; two of the best-known methods are

Waterfall and Agile. Each methodology has its advantages and disadvantages, as each

was designed for different types of software products and acquisition strategies. (The

Open Web Application Security Project, 2010)

The Waterfall methodology (Figure 2) is used for complex software systems with

demanding requirements, strict processes and standards, thorough documentation, and a

long acquisition life cycle. Thus, it is heavily utilized by the Department of Defense.

Figure 2: Waterfall Development Process (The Open Web Application Security Project,

2010)

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

4

	

Author	Name,	email@address	 	 	

The Agile methodology (Figure 3) is the complete opposite of the Waterfall

methodology. It is used for simple software systems with fluid requirements, guidelines,

and processes, minimal documentation, and a quick acquisition life cycle (e.g., building

websites and prototypes).

Figure 3: Agile Development Process (The Open Web Application Security Project,

2010)

 Figure 2 and 3 were adapted from OWASP and further modified to reflect the

recommended security evaluation approach for each SDLC phase. As an example,

OWASP system verification only recommends Penetration testing, which may be

insufficient and may not be the best value in a resource and time constraints program.

The Waterfall process allows the security analyst more time to perform a more thorough,

process-driven evaluation and analysis of the software prior to any software deployment,

minimizing potential security vulnerabilities.

One can actually combine both methodologies to leverage the advantages of each

process and still give analysts sufficient time to properly conduct proper security

techniques in each phase to minimize vulnerabilities. As an example, the development

phase of the waterfall methodologies can have several small software builds similar to

Agile to allow security analysts to evaluate those builds during the development phase

instead of the test phase. This approach provides security feedback to developers

immediately improving the security posture of the software while significantly reducing

cost.

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

5

	

Author	Name,	email@address	 	 	

2. Evaluating Commercial/FOSS Software in SDLC
A phased analysis approach, where the software is derived, evaluated, and

analyzed at each phase of the SDLC, should be utilized when assessing the use of

commercial and FOSS software in a system.

2.1. Requirements
As shown in Figure 4, the requirement phase is where the operational/user

requirements are derived into system specifications and then further derived into domain

specific requirements (MIL-STD-498). There are no specific evaluation methodologies

for COTS/FOSS software in this phase, but this phase influences the level of effort

necessary to evaluate COTS/FOSS software.

Figure 4: Requirements Breakdown Process

2.2. Architecture & Design Phase
The architecture and design phase is where the integrated system architecture and

design gets developed. As shown in Figure 5, there are two security evaluation processes,

Threat Risk Modeling and Market Security Research that feed into the development of

the system security architecture framework and design. (The Open Web Application

Security Project, 2015)

Figure 5: System Architecture and Design Inputs

Threat risk modeling identifies potential security issues and determines the

necessary controls to mitigate those issues, reducing the total cost of development

(Microsoft, 2015). Microsoft provides free threat modeling tools that offer guidance on

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

6

	

Author	Name,	email@address	 	 	

creating and analyzing threat models such as SDL Threat Modeling Tool and Elevation

of Privilege Card Game (Microsoft, 2015). These tools are based on the Microsoft threat

modeling process shown in Figure 6 and designed for those with no security background.

The user can quickly draw a detailed diagram of the environment, as shown in Figure 6A.

Then, the tool will provide a set of suggested threats derived from the information

provided in the diagram, which is based on the interaction between objects. The tool does

allow you to add your own custom threat or modify existing threats. As an example using

Figure 6A, the http interaction between “Router/Switch” and “External Systems” may be

subject to sniffing as suggested by the tool. But, based on the user assessment, this threat

may be low, as the external system is located in a controlled monitored environment. The

website provides a video and tutorial information about threat modeling and how to use

the tool.

Figure 6: Microsoft Threat Modeling Process (The Open Web Application Security

Project, 2015)

Figure 6A: Microsoft Threat Modeling Process Example

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

7

	

Author	Name,	email@address	 	 	

As the system architecture and design get more detailed, potential COTS/FOSS

software is identified as part of the system or development environment, and market

security research can be performed. Market security research involves gathering data

about the products to determine the risks and subsequent mitigations of using that product

in the system or development environment. The market security research effort can be

divided into three phases, as shown in Figure 7.

The first phase is to determine pre-implementation evaluation criteria for each

identified COTS/FOSS software item. Some of these evaluation criteria items includes,

• Common Vulnerabilities and Exposures (https://nvd.nist.gov/home.cfm)

• Product-related information such as bug history and communities.

• Approve Software List (https://aplits.disa.mil/processAPList.action)

• Static Scan Repository Websites (https://scan.coverity.com/) *Highly

recommended especially for FOSS software*

The second phase involves correlation of those data to determine the risk of that

particular software based on the system use cases, environment, and other variables.

The third phase is to determine the type of analysis and evaluation to conduct for

each product based on the assigned risk level. Factoring in a project’s available resources

and time to conduct these analyses and evaluations for each software is recommended.

Figure 7 provides a generic process flow that should apply to most systems.

Figure 7: Market Security Research Process

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

8

	

Author	Name,	email@address	 	 	

2.3. Development Phase
The development phase is the implementation or coding of the architecture to

satisfy system specifications and stakeholder performance requirements. In order to

minimize potential vulnerabilities of the software and create secure systems, developers

should, at a minimum, use security coding standards, perform secure code reviews, and

execute better business practice software quality processes. (Acquisition Community

Connection, 2013)

Security coding standards, as defined by the Software Engineering Institute (SEI),

encourage programmers to follow a uniform set of rules and guidelines determined by the

requirements of the project and organization, rather than by the programmer’s familiarity

or preference (CERT, 2015). SEI has an abundance of information that can support

development of a project’s secure coding standard (CERT, 2015).

Software quality is a process for developing software products that meet defined

desirable software characteristics derived from user needs. Some of these software

quality characteristics are functional suitability, reliability, operability, performance

efficiency, security, compatibility, maintainability, transferability, effectiveness,

efficiency, satisfaction, safety, and usability (Houston). A set of metrics is usually

defined in order to validate these software characteristics. One of the most important

quality metrics that can be used to evaluate commercial/FOSS software is the cyclomatic

complexity of the code. If the code has high complexity, then there is a higher risk of

vulnerabilities. There are many tools available that can help capture the quality of a

software. As an example, Google Codepro Analytix is a free Java testing tool that helps

reduce errors while a code is being developed and keeps coding practice in line with

organizational guidelines. It has as an automated metric feature that measures and reports

on key quality indicators in a body of Java source code (Google, 2015).

Secure code review is a software inspection process used to identify hard-to-find

vulnerabilities. There are two types of code reviews, a manual review and a static code

analysis review (The Open Web Application Security Project, 2010). The manual code

review involves different people reviewing the code as it is being implemented. This can

be conducted in numerous ways, from least to most formal (i.e. ad hoc review,

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

9

	

Author	Name,	email@address	 	 	

passaround, pair programming, walkthrough, team review and inspection). At a

minimum, if the source code is available, some type of manual code review is

recommended on each commercial/FOSS software that will be utilized in the system. The

OWASP organization has a good recommendation for a secure code review process,

shown in Figure 8.

Figure 8: OWASP Secure Code Review Process (The Open Web Application Security

Project, 2010)

Static code analysis review employs a source code analysis tool (The Open Web

Application Security Project, 2015). These tools are designed to analyze source code to

aid analysts to focus on security relevant portions of the code and find flaws more

efficiently. Performing static code analysis is usually an afterthought due to resource and

time constraints, as it produces a high number of false positives that must be evaluated.

Moreover, the tools only find a percentage of security flaws, as many types of security

vulnerabilities are very difficult to find automatically (e.g. logic). It also cannot prove

that the identified security issue will be an actual vulnerability. Even with all these

drawbacks, it is recommended that static code review be integrated as part of the software

development process, especially in evaluating commercial/FOSS software.

Here is a list of some open source/free and commercial tools:

• Open Source: Google CodeSearchDiggity, Google Codepro Analytix,

FindBugs, FxCop, PMD, Prefast, RATS/RIPS, Flawfinder, RIPS,

Brakeman, Codesake Dawn, VCG.

• Commercial: BugScout, Contrast, AppScan, Insight, Parasoft Test, Pitbull,

Seeker, Source Patrol, Code Secure, Kiuwan, Checkmarx Static Code

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
0

	

Author	Name,	email@address	 	 	

Analysis, Coverity security advisor, PVS-Studio, Fortify Source Code

Analysis, Veracode and Sentinel Source Solution.

Here is a suggested approach on how to integrate static code analysis review as

part of a development process.

1. During Program Management planning phase, allocate sufficient resources

and time for these efforts (i.e., analyze, review, and fix).

2. Select applicable Common Weakness Enumeration (CWE) (CWE, 2015)

checkers to be used by the tool. If the project has resource and time

constraints, then SANS/CWE Top 25 Most Dangerous Software Errors

(SANS Institute, 2011) may be utilized as checkers.

3. Depending on the results and constraints, target the highest priority first,

then medium, and then low.

For FOSS software evaluation, Coverity Scan by Coverity, a free online service

that provides the results of analyses on open source projects to open source code

developers, is highly recommended. It allows for build uploading and analysis, in which

Coverity’s back end scanning tools will test every line of code and potential execution

paths to find and fix defects in Java, C/C++, C# or Javascript. Then, the tool will provide

the results that explain the root cause of the potential defect. It can also solicit help from

the online community to analyze and fix vulnerabilities in source code. The Coverity

Scan website also proves very useful during market security research for the FOSS

software product evaluation phase. There is a high probability that the FOSS software

product selected has already been scanned, analyzed, and some fixes have been done by

the community. (Coverity)

2.3.1. Coverity Scan Example
As an example, a user might be interested in utilizing a GNU RTP stack like

ccRTP for a streaming media or VoIP application. Before incorporating that library, a

user may utilize the free Coverity scan environment to either do a search if the ccRTP

library has already been scanned as shown in Figure 9 or upload it for analysis. Coverity

was able to find 32 issues in which 7 were of high impact category level.

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
1

	

Author	Name,	email@address	 	 	

Figure 9: ccRTP Coverity Result

A typical user would begin analyzing issues with a high-level impact first. The

“Out-of-bounds read” issue may be very concerning to the user, especially if this will be

utilized for a VoIP system. This particular issue has been labeled by MITRE as CWE-125

(Common Weakness Enumeration, 2015), where the software reads past the end, or

before the beginning of the intended buffer, which can cause corruption of sensitive

information, a crash, or code execution. A user may still decide to use this library, as the

user may be able to lower the probability of exploits by utilizing libgcrypt or openssl and

by tunneling the protocol via a VPN (GNU Telephony, 2006). Moreover, if the user has a

coding background, Coverity provides the code where it found the vulnerability for

analysis, as shown in Figure 10.

Figure 10: ccRTP Out-of-bounds read code snippet

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
2

	

Author	Name,	email@address	 	 	

Alongside manual and static code reviews, a product level behavioral analysis is

recommended, especially for commercial/FOSS software that does not have source code

available for review. A behavioral analysis is a black box testing method that focuses on

the external visible behavior of the software, as the tester usually has access only to the

application’s user interface (Michael, van Wyk, & Radosevich, 2005). It is recommended

that the unit under test (UUT) be hosted in a standalone controlled environment that is

instrumented with test tools. As an example, a virtual machine can be used to host the

UUT products and install applicable monitoring and injection tools (e.g. wireshark,

OllyDbg, hping).

2.3.2. Behavioral Analysis Example
A good example that shows the benefits of behavioral testing was done by Lukas

Stefanko when he analyzed an Android Trojan Spy Proxy APK. This malware was

developed about two years ago and it still now cannot be detected by most Antivirus

programs, as shown in Figures 11 and 12. (Stefanko, 2015)

Figure 11: Anti-Virus Scanner Results 1 ((http://b0n1.blogspot.com/2015/04/android-

trojan-spy-goes-2-years.html?spref=tw))

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
3

	

Author	Name,	email@address	 	 	

Figure 12: Anti-Virus Scanner Results 2 ((http://b0n1.blogspot.com/2015/04/android-

trojan-spy-goes-2-years.html?spref=tw)

 By analyzing the network traffic and audit logs, Stefanko concluded the following

behavior:

Malware Trigger Events: Receiving text message or Phone changing connectivity or User

unlocks phone.

Malware Intent:

• Gathers victim’s personal data such as messages, call log history, location,

received SMS, WiFi Info including SSID, cellular data status, IMEI and user

account names.

• These personal data are then stored on the phone primary external storage in a log

text file that also includes system logs (time, current action, exceptions, server

response code, etc.). These logs are then sent to a remote server as shown in

Figure 13 via unencrypted HTTP protocol every 30 minutes. As of January 2016,

the remote server IP address is still active.

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
4

	

Author	Name,	email@address	 	 	

Figure 13: Wireshark Sniffer Output (http://b0n1.blogspot.com/2015/04/android-trojan-

spy-goes-2-years.html?spref=tw)

• If phone WiFi or cellular data is disabled, malware will enable cellular data as

soon as the phone screen is turned off to send log file to remote server. Then the

malware disables cellular data as soon as it finished, as shown Figure 14.

Figure 14: Log Output (http://b0n1.blogspot.com/2015/04/android-trojan-spy-goes-2-

years.html?spref=tw)

Even though there was no antivirus signatures, users can still mitigate their risk of

contamination by following the Google Alert Notice not to install the app, as shown in

Figure 15.

Figure 15: Google Warning Banner (http://b0n1.blogspot.com/2015/04/android-trojan-

spy-goes-2-years.html?spref=tw)

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
5

	

Author	Name,	email@address	 	 	

Taking Stefanko’s analysis further, the malware APK was reverse engineered, and

the AndroidManifest.XML was extracted to validate Stefanko’s findings via static code

analysis. Here are some xml and code snippets results:

• The AndroidManifest.XML file is always included as part of any APK, as this

provides essential information about the app to the Android system before it can

run any of the app's code (App Manifest). The user permission portion of the

AndroidManifest.XML file is very important for behavioral analysis. The

following is the user permission snippets of this malware that needs to be granted

for the apps to be installed which is questionable as proxy software should not

need access to accounts, external storage, SMS, contacts, disable key guard

function and change network state function.

Figure 16: AndroidManifest.XML Code Snippet

• The QueryPhoneLog() method, as shown in Figure 17, parses from the phone call

logs the number, name, date, duration, type (call in/call out) and last phone time.

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
6

	

Author	Name,	email@address	 	 	

Figure 17: QueryPhoneLog() Code Snippet

• The QuerySMSLog() Method, as shown in Figure 18, parses from the SMS logs

the address, body, date and type (SMS in/out)

Figure 18: QuerySMSLog() Code Snippet

• The toggleMobileData() Method as shown in Figure 19, enable and disable

cellular data.

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
7

	

Author	Name,	email@address	 	 	

Figure 19: toggleMobileData() Code Snippet

Furthermore, by reverse engineering the code, a user can utilize that information

in writing an IDS rules. The following are two snort IDS rules examples derived from

Figure 13 and Figure 20. The snort rules below utilize the fact that the string “http://

proxylog.dyndns.org/proxy/log.php?id=” is hard coded in the source code:

Ø Alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg: “Potential Android

Trojan Proxy Virus Server DNS Query”; flow:established, from_server; content:

“proxylog.dyndns.org”; nocase; content; “Standard query”; nocase; sid: 18758;)

Ø Alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg: “Potential Android

Trojan Proxy Virus”; flow:established, from_client; content: “

proxy/log.php?id=”; nocase; content; “POST”; nocase; sid: 18757;)

Figure 20: ProxyThread() Code Snippet

2.4. Verification and Validation Phase
The verification and validation phase requires system level testing to verify that

selected work products meet their specified requirements and validate that the product

component meets the user’s requirements when placed in its intended environment

(Acquisition Community Connection, 2012). It is strongly recommended that testing be

conducted in a traceable manner, which means the implemented software must be tested

first on domain-specific requirements (e.g. Software Requirement, Security Requirement,

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
8

	

Author	Name,	email@address	 	 	

Hardware Requirements etc.), then on the system level specifications, and finally ensured

to meet end user operational requirements, as shown in Figure 21.

This phase will evaluate the commercial/FOSS software at a system level,

compared to the development phase in which the software is evaluated at a unit level. All

the testing in this phase will be system level, black box testing via system level security

assessments, auditing, and pen-testing.

Figure 21: Verification and Validation Phase

A system security audit is a systematic evaluation of the security posture by

measuring how well it follows to established policies such as HIPAA, PCI, etc. (Rouse).

The auditing effort can run in parallel with testing and assessment during this phase,

since they have different objectives. It is recommended that the security audit be

integrated into the overall audit strategy plan.

System security penetration testing is an attempt to validate whether the potential

vulnerabilities of the system can be exploited (Core Security). It is recommended that a

pen-testing effort be conducted prior to deployment. This testing will help verify whether

the vulnerabilities of the selected commercial/FOSS software can be a vector of attack.

Also, it can help realize the potential impact of the vulnerabilities that can be exploited.

System security assessment is the process of determining how effectively an

entity being assessed (e.g. host, system, networks) meets specific security objectives

(Scarfone, Souppaya, Cody, & Orebaugh, 2008). This assessment provides a list of

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

1
9

	

Author	Name,	email@address	 	 	

potential known security vulnerabilities of the system and its subcomponents, including

any commercial/FOSS software being used. This assessment also captures the impacts of

those vulnerabilities if exploited. If vulnerabilities are not addressed, it is recommended

that a pen-testing be executed to validate the vulnerability and/or a risk management

review be performed. It is suggested that two security assessments be executed, an initial

system assessment when the system is first fully integrated and another assessment prior

to system deployment, which ensures that any findings from the initial assessment are

fixed.

2.4.1. Security Assessment Sample
For projects that have resource and time constraints, a security assessment should

be conducted, at a minimum. The following is a brief example:

1. Pre-scan Preparation:

a. Capture system under test configurations (i.e. software builds)

b. Capture assessment tools configurations (i.e. plugins, builds, etc.)

2. Reconnaissance: Use of Network Mapping and Fingerprint tools (e.g.

NMAP) (Lyon)

a. Find hosts in the network.

i. ./nmap –n –sP IP Addresses

b. Perform Port Scan from 1-65535 for each host found.

i. ./nmap –n –sT IP Address –p 1-65535

c. Perform OS Fingerprint on open ports for each host.

i. ./nmap –n –o –ST –p Ports Open IP Address

d. Perform Software Version scanning on open ports for each host.

i. ./nmap –n –sV –p Ports Open IP Address

3. System Assessment Scanning: Use of vulnerability scanning tool (e.g.

Nessus) to assess the system. While Tenable Nessus is a widely known

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

2
0

	

Author	Name,	email@address	 	 	

vulnerability scanning tool (Tenable), it is beneficial to augment

assessments with additional vulnerability scanners. The new version from

Tenable is Nessus professional, which is very easy to set up and exhibits a

rework of the graphical user interface to make it more user friendly and

easy to use. Additionally, the tool now has a set of preconfigured scan

templates that are tailored to audit policy compliance (e.g. FFIEC,

HIPAA, PCI, etc.). The tool also provides informative, easy to read scan

results. The following are some recommendations for using Nessus:

a. Update plugins.

b. Capture configuration information of the plugins.

c. Use Ports and IP addresses found in the reconnaissance phase.

d. If dangerous plugins will be used in the assessment, please review

those plugins.

e. Run a packet capture tool, such as TCPdump, while Nessus is

running. This proves to be very helpful, as the new version of

Nessus was found to be buggy on some versions of the Linux

operating system. Some of the bugs found are the following:

i. When conducting a scan with a list of ports, the tool will

miss using one of those ports.

ii. When conducting a scan with a list of IP addresses, the tool

will miss using one of those IP address.

iii. When conducting a large scan (numerous ports and IP

addresses), the tool will display that it is still scanning even

though all host found are 100% assessed and there is no

more traffic to and from the scanning machine.

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

2
1

	

Author	Name,	email@address	 	 	

3. Summary
 There are numerous instances in the software development life cycle to evaluate

the use of commercial/FOSS software products in the system to minimize and mitigate

potential risks. Each phase allows the security engineer to properly analyze and alleviate

potential impacts of that chosen software product while in development, thus saving

significant cost and minimizing potential vulnerabilities especially intrusion types that

can be exploited after system deployment.

4. References
1. (n.d.). MIL-STD-498.

2. GNU Telephony. (2006, October 2). Retrieved from www.gnu.org:

http://www.gnu.org/software/ccrtp/

3. The Open Web Application Security Project. (2010, September 9). Retrieved

from www.owasp.org:

https://www.owasp.org/index.php/Security_Code_Review_in_the_SDLC

4. The Open Web Application Security Project. (2010, September 9). Retrieved

from www.owasp.org:

https://www.owasp.org/index.php/Security_Code_Review_in_the_SDLC

5. SANS Institute. (2011, June 27). Retrieved from www.sans.org:

https://www.sans.org/top25-software-errors/

6. Acquisition Community Connection. (2012, April 20). Retrieved from

https://acc.dau.mil/CommunityBrowser.aspx:

https://acc.dau.mil/CommunityBrowser.aspx?id=509245

7. Acquisition Community Connection. (2013, September 5). Retrieved from

acc.dau.mil:

https://acc.dau.mil/CommunityBrowser.aspx?id=676387&lang=en-US

8. AcqNotes. (2015). Retrieved from www.AcqNotes.com:

http://acqnotes.com/acqnote/careerfields/commercial-off-the-shelf-cots

9. CERT. (2015). Retrieved from www.cert.org: http://www.cert.org/secure-

coding/research/secure-coding-standards.cfm?

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

2
2

	

Author	Name,	email@address	 	 	

10. CERT. (2015, July 16). Retrieved from www.cert.org:

https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+C

oding+Standards

11. Common Weakness Enumeration. (2015, December 8). Retrieved from

cwe.mitre.org/index.html: http://cwe.mitre.org/data/definitions/125.html

12. CWE. (2015, December 7). Retrieved from cwe.mitre.org:

https://cwe.mitre.org/

13. Google. (2015, November 16). Retrieved from developers.google.com:

https://developers.google.com/java-dev-tools/codepro/

14. Microsoft. (2015). Retrieved from www.microsoft.com:

https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx

15. Microsoft. (2015). Retrieved from www.microsoft.com:

https://www.microsoft.com/en-us/SDL/adopt/eop.aspx

16. Mitre. (2015, July). Retrieved from www.mitre.org:

http://www.mitre.org/publications/systems-engineering-guide/enterprise-

engineering/engineering-informationintensive-enterprises/open-source-

software

17. The Open Web Application Security Project. (2015, March 8). Retrieved from

www.owasp.org: https://www.owasp.org/index.php/Threat_Risk_Modeling

18. The Open Web Application Security Project. (2015, March 8). Retrieved from

www.owasp.org: https://www.owasp.org/index.php/Threat_Risk_Modeling

19. The Open Web Application Security Project. (2015, July 15). Retrieved from

www.owasp.org:

https://www.owasp.org/index.php/Source_Code_Analysis_Tools

20. App Manifest. (n.d.). Retrieved from

http://developer.android.com/guide/topics/manifest/manifest-intro.html

21. Chubirka, M. (2014, May 14). InformationWeek. Retrieved from

www.informationweek.com/: http://www.informationweek.com/strategic-

cio/it-strategy/open-source-vs-commercial-software-a-false-dilemma/d/d-

id/1252665

© 2016 The SANS Institute Author retains full rights.

Security	Systems	Engineering	Approach	in	Evaluating	Commercial	and	Open	Source	
Software	Products	

2
3

	

Author	Name,	email@address	 	 	

22. Core Security. (n.d.). Retrieved from www.coresecurity.com:

http://www.coresecurity.com/penetration-testing-overview

23. Coverity. (n.d.). Retrieved from scan.coverity.com: https://scan.coverity.com/

24. Houston, D. (n.d.). American Society for Quality. Retrieved from

www.asq.org: http://asq.org/learn-about-quality/software-

quality/overview/overview.html

25. Lyon, G. (n.d.). Retrieved from https://nmap.org/: https://nmap.org/

26. Michael, C. C., van Wyk, K., & Radosevich, W. (2005, December 28). Build

Security In Project. Retrieved from buildsecurityin.us-cert.gov:

https://buildsecurityin.us-cert.gov/articles/tools/black-box-testing/black-box-

security-testing-tools

27. Rouse, M. (n.d.). TechTarget. Retrieved from searchcio.techtarget.com:

http://searchcio.techtarget.com/definition/security-audit

28. Scarfone, K., Souppaya, M., Cody, A., & Orebaugh, A. (2008). Technical

Guide to Information Security Testing and Assessment. Nation Institute of

Standards & Technology. Retrieved from

http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf

29. Stefanko, L. (2015, April 21). Retrieved from

http://b0n1.blogspot.com/2015/04/android-trojan-spy-goes-2-

years.html?spref=tw

30. Tenable. (n.d.). Retrieved from http://www.tenable.com/:

http://www.tenable.com/products/nessus/nessus-professional

31. Zitser, M., Lippmann, R., & Leek, T. (2004). Testing static analysis tools

using exploitable buffer overflows from open source code. Proceedings of the

12th ACM SIGSOFT twelfth international symposium on Foundations of

software engineering (SIGSOFT '04/FSE-12) (pp. 97-106). New York: ACM.

doi:http://dx.doi.org/10.1145/1029894.1029911

