
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

	
 	

	

	

The Role of Static Analysis in Hardening Open
Source Intrusion Detection Systems

GIAC (GCIA) Gold Certification

Author: Jeff Sass, jsass@adobe.com
Advisor: Stephen Northcutt
Accepted: March 28, 2016

Abstract

When deploying an open source Intrusion Detection System (IDS) into a network, it is
critical to harden it against attackers. An IDS is designed to detect attacks instead of
inadvertently enabling them. One approach to assist in this effort is to use static code
analysis on the source code of the IDS. This paper details how to use Coverity’s static
analysis tools on the Security Onion distribution to find security vulnerabilities. A look at
Coverity’s security code checkers, with a focus toward UNINIT, BUFFER_SIZE, and
USE_AFTER_FREE is discussed.

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

2

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

1. Introduction
Intrusion analysts use the principles of network security monitoring (NSM) to

help secure computer systems. NSM is “the collection, analysis and escalation of

indications and warnings to detect and respond to intrusions” (Bejtlich, 2013). NSM core

functions include intrusion detection systems (IDS), network based IDS (NIDS), host

intrusion detection systems (HIDS), and physical intrusion detection systems (Physical

IDS) (Berge, n.d). Analysts should evaluate software packages such as IDS and HIDS

before deploying them.

There are many different ways to determine how secure a given software package

is. One way is to use Aberlarde's security systems engineering approach (Abelarde,

2016). This approach details how commercial and open source software packages are

evaluated at each phase of the software development life cycle (SDLC) to determine their

security profiles. An advantage of examining open source software is direct access to the

code. With direct access, developers can use techniques such as code inspection and

static code analysis.

Static code analysis (SCA) is a way of finding issues in software without

executing it. The SCA tool accomplishes this by emulating the execution of the different

branches of the code by using possible input data. The SCA tool reveals both quality

issues (e.g. COPY_PASTE_ERROR, FORWARD_NULL, INCOMPATIBLE_CAST)

and security issues (e.g. UNINIT, BUFFER_SIZE, and USE_AFTER_FREE). The SCA

tool also shows specific fixes the developer can apply to the source code to reduce the

software's defect density. It calculates defect density by dividing the number of defects

by the size of the component (usually specified in lines of code). In 2014, the average

defect density for open source software was 0.61 per thousand lines of code or KLOC. In

contrast, commercial software's defect density was 0.76 per KLOC (Coverity, 2014).

There are many static analysis tools to choose from (OWASP, 2016). Coverity

has been gaining popularity in the last ten years after the Coverity Scan service was made

available (Coverity, 2016). Coverity Scan allows open source developers a way to submit

their code to Coverity’s cloud-based service for analysis and examine the results free of

charge. Coverity also offers the same analysis tools in a commercial product that can be

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

3

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

deployed locally in their customer’s environment. This paper demonstrates how

Coverity’s static code analysis can be used in both deployment scenarios to scan some of

the software packages that make up the Security Onion distribution.

2. Security Onion
Security Onion is a Linux distribution maintained by Doug Burks that includes

full packet capture, NIDS, HIDS, and a set of analysis tools (Burks, n.d.). Those tools

include:

• netsniff-ng for full-packet capture

• Snort, Suricata and Bro for NIDS

• OSSEC for HIDS

• Sguil, Squert, Snorby, and ELSA, for data analysis

Using the Security Onion distribution saves time when compared with configuring each

of the tools separately. Before starting development with this distribution, step-by-step

instructions for installing, configuring, and updating Security Onion should be followed

(Burks, 2016). Once that is complete, the developer can examine the source code of the

Security Onion software packages to look for security vulnerabilities.

3. Coverity Scan
The first deployment option for Coverity is Coverity Scan. Coverity Scan is a

cloud service where registered open source developers upload their source code for

analysis. The Coverity static analysis engine then executes against that source code.

Developers review the reported issues, follow the advice to fix the issues, and then re-

submit the source code. Coverity Scan is free to the open source community.

3.1. Coverity Scan Overview
Coverity Scan started in 2006 as a project funded by the Department of Homeland

Security. The main mission was to improve the quality of open source software that the

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

4

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

nation was beginning to use. The funding lasted three years until 2009 when Coverity

took full ownership of the project	
 (J. Croall, personal interview, January 21, 2016).

The Linux operating system was one of the original Coverity Scan users.

Currently, there just under 7,000 projects with over 15,000 individual users using

Coverity Scan. Some of the projects include Python, OpenSSL, PHP as well as packages

found in Security Onion like Snort, Bro, and Wireshark. To prevent overloading the

servers, Coverity Scan limits the number of uploads on projects with large codebases.

Developers are permitted to submit up to three builds a day and twelve builds per week if

their software package has less than 100,000 lines of code (Frequently Asked Questions,

2016). To help increase the security profile of one of the projects, developers request

contributor access from the maintainers.

3.2. Coverity Scan Example: Wireshark
Developers follow a four-step process when using Coverity Scan: build; analyze;

commit defects; and review results. For the build step, pass the native build command as

an argument to Coverity’s command line cov-build tool. Cov-build instruments the native

build and stores the information in the intermediate directory specified with the --dir flag.

Using Wireshark as an example, the Coverity compile command would be:

$ cov-build --encoding UTF-8 \

 --dir ~/cov-inter-wireshark make

For the analysis step, upload the intermediate directory to Coverity Scan manually

or with a continuous integration system (i.e. Travis-CI). Code analysis is performed on

the Coverity servers as opposed to locally on the developer's system. For the commit

defects step, Coverity handles this automatically. To review the results, log on to the

Coverity Connect web interface where the defects are shown inline with the source code.

Section 5 below details this process.

The Wireshark project is an active user of Coverity Scan. They have fixed

thousands of defects since 2006 and have a very low defect density of 0.26 per KLOC as

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

5

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

shown in Figure 1.

Figure 1: Coverity Scan: Wireshark

(https://scan.coverity.com/projects/wireshark)

4. Coverity Local Analysis
In contrast to Coverity Scan's cloud service, developers can choose to purchase

Coverity's commercial offering. The commercial offering runs locally on their network.

A standard Coverity deployment uses two machines in a client/server architecture.

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

6

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

Security Onion is the local development machine and acts as the client which sends the

results to the Coverity database server. By default, Security Onion's software packages

are installed as executables. Developers must compile and analyze the corresponding

source code by downloading it first. Appendix A lists each of the commands to install

Coverity, the GCC compiler, and the source code of the software under investigation.

Developers execute the code analysis on the client machine rather than using Coverity

Scan's servers. The database that stores the results is on a local network instead of on a

Coverity Scan server. Browsing the results is done by logging into the Coverity web

server and selecting the appropriate project (i.e. Wireshark) as shown in Figure 2.

Figure 2: Coverity Project Menu

Once a project is selected, select the Coverity Menu (the three-line icon) and

choose “Outstanding Security Risks” as shown in Figure 3.

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

7

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

Figure 3: Outstanding Security Risks Filter

This view filters all of the Coverity defects into a smaller list that only includes the

security issues. The examples in the next section use this filter.

5. Fixing Security Vulnerabilities
Before fixing the code, let's examine how the “do no harm rule” can be applied to

software as well as how compiler warnings fit into the static analysis picture.

5.1. Do No Harm
“Learning to write clean code is hard work” (Martin 2009). In the beginning,

source code can be elegant, but as time passes it can become “increasingly sucky”

(Skorkin, 2010). Reading source code that one did not write is a critical part of being a

good developer. For intrusion analysts who might not be as familiar with reading and

writing code, it can be a daunting task.

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

8

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

“The Boy Scouts of America have a simple rule that we can apply to
our profession. Leave the campground cleaner than you found it. If we

all checked-in our code a little cleaner than when we checked it out, the
code simply could not rot” (Martin, 2009).

There are two benefits to the “do no harm rule”: developers improve their coding

skills; and the original authors will appreciate the responsible disclosure (Hughes, 2015).

5.2. Compiler Warnings
Another aspect of static code analysis is compiler warnings. Getting code to

compile is a mini-celebration in itself, so compiler warnings are often ignored. Taking an

example from the daq-2.0.6 package, line 859 of daq_afpacket.c declares the variable rc:

 int rc;

Line 866 contains:

rc = send(instance->peer->fd, NULL, 0, 0);

The compiler warning is:

daq_afpacket.c:859:25: warning: variable ‘rc’ set but not used

[-Wunused-but-set-variable]

 int rc;

 ^

The compiler is informing the developer that the return value from the call to send() is

set in the variable rc, but rc is not used later in the function. One fix would be to delete

line 859 and change line 866 to:

 (void) send(instance->peer->fd, NULL, 0, 0);

This change silences the compiler warning and keeps the code change as close to the

original as possible. By assigning the return value from the send() call to (void), the

code is ignoring it as it does currently. Another possible fix is to add additional code after

line 866, to check rc against all of the return values. That fix changes the program

execution and should be reviewed by the maintainers.

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

9

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

 Compilers also have the ability to “treat warnings as errors”. Turning on this

feature, is a good way to introduce a level of coding discipline in a phased approach to

the project. Developers can turn on one warning at a time, fix each one, and then turn on

additional warnings when time permits. On Adobe Photoshop, the compilers have the

option “treat warnings as errors” turned on which forces a higher level of awareness

amongst the team. The continuous build system fails the build with newly introduced

compiler warnings. If the build fails, the team fixes the errors quickly. Another reason to

turn on “treat warnings as errors”, is to minimize static analysis defects. It is better to

eliminate them from the code with the compiler’s help before adding another tool.

5.3. Coverity Security Checkers
Coverity 7.7 has over seventy checkers that apply to C and C++ and of these,

eighteen focus on security issues. This section focuses on UNINIT, BUFFER_SIZE, and

USE_AFTER_FREE.

5.3.1. UNINIT
In ANSI C, the “initial contents of a variable are undefined” (Roberts, 1997).

Because the language allows the definition of variables without initialization, there is

often a large amount of C code that doesn’t explicitly initialize variables. Some of that

code immediately fill the variable after its declaration, so initialization does happen.

Sometimes the compiler sets it to zero automatically. Because developers have to

remember these rules, there is room for security issues to enter the software. Although

there have been proposals to fix this for the C language, for now, developers need to

remember the rules (Myers, 2015).

One way to eliminate these issues is to use Coverity’s security checker UNINIT.

UNINIT looks for uninitialized stack variables and dynamically allocated memory on the

heap that could lead to crashes or security issues. Line 222 of sf_bpf_filter.c in the daq-

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

10

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

2.0.6 package declares an array of int32’s called mem.

Figure 4: mem declaration

Line 406 uses mem in a condition where it was not initialized.

Figure 5: mem assignment

Coverity simulated running through the loop exercising all code paths, as shown in the

green text. The simulation found that in at least one condition, the variable mem was

assigned to variable A before initialization. To fix this issue, explicitly zero-initialize the

array in line 222 as follows.

int32 mem[BPF_MEMWORDS] = {0};

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

11

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

5.3.2. BUFFER_SIZE
According to Michael Howard and David LeBlanc’s Writing Secure Code,

“buffer overruns that lead to a security patch can cost up to $100,000” (Howard, 2003).

Coverity’s security checker BUFFER_SIZE helps developers find and fix defects that

involve buffers in their C/C++ code. Taking an example from the snort-2.9.8.0 package,

line 962 of encode.c initializes the variable next of type PROTO_ID to PROTO_MAX.

PROTO_MAX is the last element of the PROTO_ID enum defined as:

typedef enum {

 PROTO_TCP

 PROTO_UDP

 ...

 PROTO_MAX

} PROTO_ID;

Line 960 defines the function UDP_Encode as shown in Figure 6.

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

12

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

Figure 6: out-of-bounds read example

The green text shows which execution path Coverity used. The value returned from the

NextEncoder function is stored in next which is of type PROTO_ID. There is a case

where the returned value could be PROTO_MAX, or 22, which is the last element of the

enum. Line 992 indexes into the encoders array at the position specified in next which

is one past the end of the array because array indexing starts at 0 instead of 1. To prevent

this possible buffer overrun, wrap line 992 in an if/else statement to check that next is

less than PROTO_MAX before it is used to index into the encoders array:

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

13

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

if (next < PROTO_MAX)

{

 err = encoders[next].fencode(enc, in, out);

}

else

{

 err = ENC_BAD_PROTO;

}

5.3.3. USE_AFTER_FREE
Defining variables reserves a place in memory for them. When the program

explicitly frees the memory, developers need to ensure there are no cases where the

memory is used after it is freed. Using memory in this way can lead to unpredictable

results and possible exploitation.

One way to eliminate these issues is to use Coverity's security checker

USE_AFTER_FREE. Taking an example from the netsniff-ng-0.6.0 package, line 304 of

curvetun_client.c declares a pointer to a structure called ahead as shown in Figure 7.

Figure 7: netsniff-ng - ahead declaration

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

14

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

Line 339 assigns the ahead pointer to ai as shown in Figure 8.

Figure 8: ahead pointer assignment

Coverity found in line 358 the ahead pointer was freed. The goto statement at line 367

jumps program execution back to line 311. The next time through the loop at line 339, the

pointer was assigned to ai without first checking the pointer for NULL. To fix the issue,

add the following line of code after line 358 to set the pointer to NULL.

ahead = NULL;

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

15

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

6. Responsible Disclosure
After fixing vulnerabilities, developers have an ethical responsibility to disclose

the issues back to the maintainers of the code. For projects like Wireshark that use

GitHub, fixes are submitted with a “git push” command by following the project

documentation (Wireshark Developer's Guide, 2014). Other projects have mailing lists or

defect tracking systems to submit the fixes.

7. Future Work
In January 2016, Coverity released version 8.0 of its static analysis tools. One of

the major new features was the ability to analyze Python code. Security Onion contains a

packet manipulation tool called Scapy. Scapy is gaining in popularity especially as

intrusion analysts investigate devices that make up the Internet of Things (The 2015

SANS Holiday Hack Challenge, 2015). A future project could examine the static code

analysis results of Scapy.

8. Conclusion
Hardening computer networks with an open source IDS requires the intrusion

analyst understand the security profile of the software packages on the system. By

utilizing static code analysis on the software that makes up the IDS, the analyst has a

better understanding of the security profile the open source software provides. John

Carmack, the co-founder of id Software, stated:

“The most important thing I have done as a programmer in recent
years is to aggressively pursue static code analysis” (Carmack, 2011).

Taking the advice from one the most famous software developers allows the intrusion

analyst to utilize some of the best practices from software developers.

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

16

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

References

Abelarde, J. (2016, January 25). Security Systems Engineering Approach in Evaluating

Commercial and Open Source Software Products. Retrieved February 2, 2016,

from https://www.sans.org/reading-room/whitepapers/OpenSource/security-

systems-engineering-approach-evaluating-commercial-open-source-software-

products-36687

About Coverity Scan. (n.d.). Retrieved February 08, 2016, from

https://scan.coverity.com/about

Bejtlich, R. (2013). The practice of network security monitoring: Understanding incident

detection and response. San Francisco: No Starch Press.

Berge, M. (n.d.). Intrusion Detection FAQ: What is Intrusion Detection? Retrieved

February 19, 2016, from https://www.sans.org/security-

resources/idfaq/what_is_id.php

Burks, D. (n.d.). Security Onion. Retrieved February 2, 2016, from

https://github.com/Security-Onion-Solutions/security-onion

Burks, D. (2016, January 20). Security Onion Installation. Retrieved February 09, 2016,

from https://github.com/Security-Onion-Solutions/security-onion/wiki/Installation

Carmack, J. (2011, December 27). In-Depth: Static Code Analysis. Retrieved February

18, 2016, from

http://www.gamasutra.com/view/news/128836/InDepth_Static_Code_Analysis.ph

p

Coverity Scan Open Source Report Shows Commercial Code Is More Compliant to

Security Standards than Open Source Code - Coverity. (2015, July 29). Retrieved

February 05, 2016, from http://www.coverity.com/press-releases/coverity-scan-

open-source-report-shows-commercial-code-is-more-compliant-to-security-

standards-than-open-source-code/

Coverity Scan: Wireshark. (n.d.). Retrieved February 15, 2016, from

https://scan.coverity.com/projects/wireshark

Frequently Asked Questions (FAQ). (n.d.). Retrieved February 15, 2016, from

https://scan.coverity.com/faq/

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

17

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

Howard, M., & LeBlanc, D. (2003). Public Enemy #1: The Buffer Overrun. In Writing

Secure Code. Redmond, WA: Microsoft Press.

Hughes, M. (2015, September 15). Full or Responsible Disclosure: How Security

Vulnerabilities Are Disclosed. Retrieved February 15, 2016, from

http://www.makeuseof.com/tag/responsible-disclosure-security-vulnerabilities/

OWASP. (2016, January 16). Source Code Analysis Tools. Retrieved February 6, 2016,

from https://www.owasp.org/index.php/Source_Code_Analysis_Tools

Martin, R. C. (2009). [Introduction]. Clean Code: A Handbook of Agile Software

Craftsmanship. Upper Saddle River, NJ: Prentice Hall.

Martin, R. C. (2009). Clean Code. In Clean Code: A Handbook of Agile Software

Craftsmanship. (pp. 1-15) Upper Saddle River, NJ: Prentice Hall.

Myers, S. (2015, November 13). Breaking all the Eggs in C. Retrieved February 18,

2016, from http://scottmeyers.blogspot.com/2015/11/breaking-all-eggs-in-c.html

Roberts, E. (1997). An Overview of ANSI C. In Programming abstractions in C: A

Second Course in Computer Science. Reading, MA: Addison Wesley.

Skorkin, A. (2010, May 19). Retrieved February 08, 2016, from

http://www.skorks.com/2010/05/why-i-love-reading-other-peoples-code-and-you-

should-too/

The 2015 SANS Holiday Hack Challenge. (2015, December). Retrieved February 18,

2016, from https://www.holidayhackchallenge.com/

Wireshark Developer's Guide. (2014, December 28). Retrieved February 18, 2016, from

https://www.wireshark.org/docs/wsdg_html_chunked/ChSrcContribute.html#ChS

rcSend

What is an Intrusion Detection System (IDS)? - Definition from Techopedia. (n.d.).

Retrieved February 04, 2016, from

https://www.techopedia.com/definition/3988/intrusion-detection-system-ids

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

18

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

Appendix A
Integrating Coverity 7.7 with Security Onion 14.04.3.1

Prerequisites: Install Security Onion 14.04.3.1 per the steps at:

https://github.com/Security-Onion-Solutions/security-

onion/wiki/QuickISOImage

Ensure you have a minimum of 8GB of RAM and a 40GB hard drive

/* Install development tools, install updates and reboot */

$ sudo apt-get install build-essential

$ sudo apt-get update

$ sudo apt-get dist-upgrade

$ sudo reboot

/* Download source code in .tar.gz format with a web browser to

~/Downloads with their default names*/

bro-2.4.1.tar.gz

daq-2.0.6.tar.gz

netsniff-ng-0.6.0.tar.gz

ossec-hids-2.8.2.tar.gz

snort-2.9.8.0.tar.gz

suricata-3.0.tar.gz

wireshark-2.0.1.tar.bz2

/* Download Coverity and the license file with a web browser to

~/Downloads with their default names*/

cov-analysis-linux64-7.7.0.tar.gz

license.bat

/* Download and Install Coverity at root of user’s home directory */

$ cd ~

$ mv ~/Downloads/cov-analysis-linux64-7.7.0.tar.gz .

$ tar xvfz cov-analysis-linux64-7.7.0.tar.gz

/* Install license file to Coverity bin directory */

$ cp ~/Downloads/license.dat ~/cov-analysis-linux64-7.7.0/bin

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

19

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

/* edit user’s .bashrc to update path to include Coverity binaries

 replace “username” with your username */

$ export PATH="$PATH:/home/username/cov-analysis-linux64-7.7.0/bin"

$. ./.bashrc

/* BRO --*/

/* Install prerequisites for Bro */

$ sudo apt-get install python-dev swig

/* Configure and compile Bro with Coverity */

$ cd ~/src

$ cp ~/Downloads/bro-2.4.1.tar.gz .

$ tar xvfz bro-2.4.1.tar.gz

$ cd bro-2.4.1/

$./configure

$ cov-build --encoding UTF-8 --dir ~/cov-inter-bro make

/* Confirm Coverity returns “compilation units (100%)” then

 analyze Bro with all of the Coverity checkers */

$ cov-analyze --dir ~/cov-inter-bro --all --enable-callgraph-metrics

/* Commit defects to Coverity stream “bro-mainline”
 replace “username” with your Coverity username and “myserver.com”
 with your Coverity database server */
$ cov-commit-defects --host myserver.com --dataport 9090 \

 --stream bro-mainline --dir ~/cov-inter-bro --user username

/* DAQ --*/

/* Configure and compile DAQ with Coverity */

$ cp ~/Downloads/daq-2.0.6.tar.gz .

$ tar -xvzf daq-2.0.6.tar.gz

$ cd ~/src/daq-2.0.6/

$ cov-build --encoding UTF-8 --dir ~/cov-inter-daq/ make

/* Confirm Coverity returns “compilation units (100%)” then

 analyze DAQ with all of the Coverity checkers */

$ cov-analyze --dir ~/cov-inter-daq/ --all --enable-callgraph-metrics

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

20

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

/* Commit defects to Coverity stream “daq-mainline”
 replace “username” with your Coverity username and “myserver.com”
 with your Coverity database server */
$ cov-commit-defects --host myserver.com --dataport 9090 \

 --stream daq-mainline --dir ~/cov-inter-daq/ --user username

/* netsniff-ng --*/

/* Install prerequisites for netsniff-ng */

$ sudo apt-get install ccache flex bison libnl-3-dev \

 libnl-genl-3-dev libnl-route-3-dev libgeoip-dev \

 libnetfilter-conntrack-dev libncurses5-dev liburcu-dev \

 libnacl-dev libpcap-dev zlib1g-dev libcli-dev libnet1-dev

/* Configure and compile netsniff-ng with Coverity */

$ cd ~/src

$ cp ~/Downloads/netsniff-ng-0.6.0.tar.gz .

$ tar xvfz netsniff-ng-0.6.0.tar.gz

$ cd netsniff-ng-0.6.0/

$./configure

$ cov-build --encoding UTF-8 --dir ~/cov-inter-netsniff-ng make

/* Confirm Coverity returns “compilation units (100%)” then

 analyze netsniff-ng with all of the Coverity checkers */

$ cov-analyze --dir ~/cov-inter-netsniff-ng --all \
 --enable-callgraph-metrics

/* Commit defects to Coverity stream “netsniff-ng-mainline”
 replace “username” with your Coverity username and “myserver.com”
 with your Coverity database server */
$ cov-commit-defects --host myserver.com --dataport 9090 \
 --stream netsniff-ng-mainline --dir \
 ~/cov-inter-netsniff-ng --user username

/* ossec-hids ---*/

/* Configure and compile ossec-hids with Coverity */

$ cd ~/src

$ cp ~/Downloads/ossec-hids-2.8.2.tar.gz .

$ tar xvfz ossec-hids-2.8.2.tar.gz

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

21

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

$ cd ossec-hids-2.8.2/

$ cd src

$ cov-build --encoding UTF-8 --dir ~/cov-inter-ossec make all

/* Confirm Coverity returns “compilation units (100%)” then

 analyze ossec-hids with all of the Coverity checkers */

$ cov-analyze --dir ~/cov-inter-ossec --all --enable-callgraph-metrics

/* Commit defects to Coverity stream “ossec-mainline” */
 replace “username” with your Coverity username and “myserver.com”
 with your Coverity database server */

$ cov-commit-defects --host myserver.com --dataport 9090 \

 --stream ossec-mainline --dir ~/cov-inter-ossec --user username

/* snort --*/

/* Install required prerequisites for snort */

$ sudo apt-get install libpcap-dev libpcre3-dev libdumbnet-dev \
 bison flex

/* Install optional prerequisites (adds Adobe Flash support) */

$ sudo apt-get install liblzma-dev libnuma-dev

/* Configure and compile snort with Coverity */

$ cd ~/src

$ cp ~/Downloads/snort-2.9.8.0.tar.gz .

$ tar -xvzf snort-2.9.8.0.tar.gz

$ cd snort-2.9.8.0

$./configure

$ cov-build --encoding UTF-8 --dir ~/cov-inter-snort2/ make

/* Confirm Coverity returns “compilation units (100%)” then

 analyze snort with all of the Coverity checkers */

$ cov-analyze --dir ~/cov-inter-snort2/ --all \

 --enable-callgraph-metrics

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

22

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

/* Commit defects to Coverity stream “snort2-mainline” */
 replace “username” with your Coverity username and “myserver.com”
 with your Coverity database server */
$ cov-commit-defects --host myserver.com --dataport 9090 \

 --stream snort2-mainline --dir ~/cov-inter-snort2/ --user username

/* Suricata ---*/

/* Install prerequisites for Suricata */

$ sudo apt-get install libyaml-dev libcap-ng-dev libmagic-dev

/* Configure and compile Suricata with Coverity */

$ cd ~/src

$ cp ~/Downloads/suricata-3.0.tar.gz .

$ tar xvfz suricata-3.0.tar.gz

$ cd suricata-3.0/

$./configure

$ cov-build --encoding UTF-8 --dir ~/cov-inter-suricata make

/* Confirm Coverity returns “compilation units (100%)” then

 analyze Suricata with all of the Coverity checkers */

$ cov-analyze --dir ~/cov-inter-suricata --all \
 --enable-callgraph-metrics

/* Commit defects to Coverity stream “suricata-mainline”
 replace “username” with your Coverity username and “myserver.com”
 with your Coverity database server */
$ cov-commit-defects --host myserver.com --dataport 9090 \

 --stream suricata-mainline --dir ~/cov-inter-suricata --user username

/* Wireshark --*/

/* Install prerequisites for Wireshark */

$ sudo apt-get install qt-sdk libgtk-3-dev

/* Configure and compile Wireshark with Coverity */

$ cd ~/src

$ cp ~/Downloads/wireshark-2.0.1.tar.bz2 .

$ bunzip2 wireshark-2.0.1.tar.bz2

The Role of Static Analysis in Hardening Open Source Intrusion Detection Systems
	

23

	

Jeff	
 Sass,	
 jsass@adobe.com	
 	
 	

$ tar xvf wireshark-2.0.1.tar

$ cd wireshark-2.0.1/

$./configure

$ cov-build --encoding UTF-8 --dir ~/cov-inter-wireshark make

/* Confirm Coverity returns “compilation units (100%)” then

 analyze Wireshark with all of the Coverity checkers */

$ cov-analyze --dir ~/cov-inter-wireshark --all \

 --enable-callgraph-metrics

/* Commit defects to Coverity stream “wireshark-mainline”
 replace “username” with your Coverity username and “myserver.com”
 with your Coverity database server */
$ cov-commit-defects –host myserver.com --dataport 9090 \

 --stream wireshark-mainline --dir ~/cov-inter-wireshark \

 --user username

