
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion
Detection

GIAC (GCIA) Gold Certification

Author: Manuel Leos Rivas, MLeosRivas@mastersprogram.sans.edu

Advisor: Richard Carbone

Accepted: September 5, 2016

Abstract

Web application firewalls using generic “out of the box” configurations work well for
common vulnerabilities but lack the capability to address application-specific contexts.
Due to this lack of context, it is difficult for the firewall to determine what it is ‘good’
versus ‘bad’. In addition, several learning features of certain high-end devices are
inaccessible to companies and individuals. This document provides a generic approach to
protecting web applications using freely available software by configuring ModSecurity.
This approach enables differentiation between what is acceptable for the application and
what may be interesting for investigation purposes. The process for creating an
application profile should be well documented, repeatable, verifiable and automated as
much as possible to ease integration into the application development lifecycle.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

1. Introduction
Most web application firewalls (WAFs) inspect requests and responses by

searching for known abnormal or suspicious patterns. Achieving a good balance between

false positives and false negatives depends on the type and content of the web

application. Such a balance is difficult to achieve because applications encompass a wide

variety of content and encoding. WAFs that lean toward ease of implementation often use

a much more relaxed inspection policy, which may give a false sense of security. Thus, a

WAF’s effectiveness is greatly affected by its rule set and the context of the underlying

application.

Defining a profile describing the common usage of a web application is crucial

for identifying deviations or anomalies. Enhancing the intrusion detection process using

both positive and negative security approaches makes WAFs resilient to attack variations

and helps reduce false positives.

A detailed application profile can identify the deviations from normal usage for an

application. Such variations can be used to detect changes in the application, different

data or types of data, data locations, etc. Profile creation linked to the data acquired

during testing or monitoring is an iterative process that should be performed with each

new version of the application. Thus, automation is a desired feature due to the number of

times the actions will need to be performed.

Generating a profile that can later be transformed into WAF rules can be

automated, but it is highly advised to supervise the output to prevent the WAF from

generating false negatives. The extent to which the process and tools are automated will

allow it to scale up from small deployments to enterprise systems.

Many commercial tools and vendors provide features similar to those found in

open source tools. The open source tools examined in this paper include ModSecurity

(SpiderLabs, ModSecurity Open Source Web Application Firewall, 2016) and OWASP

CRS (OWASP, OWASP ModSecurity Core Rule Set Project, 2016) for WAF

capabilities, OWASP ZAP (OWASP, OWASP Zed Attack Proxy, 2016) as an

application proxy, zap2modsec (Barnett R., 2013) as a virtual patch generator and

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 3

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

WebAppProfiler (Leos Rivas, 2016), simplerules, profileeditor and other Python scripts

to automate profile and rule creation.

2. Web application profiling
Profiling a web application entails describing all the elements and types of

exchanges of the application. The idea is to understand what is normal as much as

possible so that alerts can be built into the WAF to detect anomalies.

Every change in the application requires a profile update to reduce false positives.

Thus, automation plays a major role in the process because complex web applications

may contain thousands of elements.

“The Web Application Profile constitutes a high-level XML description of web

applications which serve as a basis for positive security models for the applications.”

(Bockermann, 2007)

Figure 1 : Graphical representation of a basic profile

2.1. Elements used for profile creation
ModSecurity parses requests and responses to create variables to address every

item in an application. Each application has a particular set of characteristics that can be

used to create this context, including the uniform resource identifier (URI), method,

arguments, HTTP headers, cookies and body.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 4

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

Figure 2 : URI structure, see IETF RFC 3986 (Berners-Lee et al., 2005) and RFC 7320
(Nottingham, 2014).

2.1.1. Uniform Resource Identifier (URI)
The URI pattern depends on the application behind the WAF; it may be static

with a unique URI or dynamic with a single URI with called arguments, or it may build

the resource on demand. It is important to identify which resource is being accessed,

where it is being accessed from and by whom. Many applications perform sensitive

operations that should not be made available on the Internet or to the general public.

Application profiles typically need to include all the different URIs listed in the relevant

logs or database of connections as a basis for building listings of characteristics. Private

characteristics must be flagged to provide special alerts. For dynamic sites, a list that

includes regular expressions may be a better approach.

Some web or application servers have their own “hidden” functions such as

administrative consoles or status pages. The lack of a direct link to a URI on a website

does not necessarily mean that it does not exist. FuzzDB (Muntner , 2010) lists several

common types of resources and hidden pages.

The list of URIs can be used to deny access to private resources. Multiple lists can

be included such as common or public, private or sensitive, banned or fake resources. Not

all events are identical -- there should be no alarms on public resources, and events on

banned resources should respond automatically by closing the user session, banning the

user or source for a given period of time, or any other deceptive action or

countermeasure.

Each URI is described as a Resource element in the XML profile.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 5

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

2.1.2. HTTP request method
The GET and POST methods are used in virtually every web application. Other

commonly used methods include HEAD, OPTIONS, PUT and DELETE. Some

applications may use a combination of GET and POST, but they are not interchangeable.

The most common method for transferring information to the server consists of

either using arguments in the request line as part of the URI (GET method) or as part of

the body (POST method). The earlier method is riskier because the transferred

information visible in the request line may by bookmarked, cached or logged; thus, it

cannot be used for sending sensitive data (personal, financial, credentials, etc.).

The profile should list the methods allowed by the entire application as well as the

specific methods used to access each URI.

Each HTTP request method is described as a Method element nested under the

respective Resource element in the XML profile.

2.1.3. Arguments
ModSecurity can address the arguments by name. In a GET request, the

arguments are present in the query string. A POST request is part of the body, so it will

only be parsed by default if the content type is application/x-www-form-urlencoded with

the “urlencoded” processor. This is not the case for all other content types unless they are

explicitly set to use a specified processor such as JSON or XML.

The profile must list the arguments and expected types of values for each URI and

method. Values that are mandatory, sensitive or intended to be sanitized from the logs

should be stated as such in the profile.

A WAF can identify arguments as evil payloads depending on their contents as it

applies generic rules, causing certain words or symbols to block the request. A well-

designed validation pattern included in the profile outperforms a long list of banned

elements. The validation patterns of complex fields such as passwords and free text fields

may be challenging, and international characters further complicate matters, even if the

profile is forced to use generic wildcards. Fortunately, a maximum input length can be

set.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 6

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

Each argument is described as a Parameter element nested under the respective

Method element in the XML profile.

2.1.4. HTTP headers
HTTP headers serve several different functions, and in some applications they are

used for security purposes.

Specific headers have a significant impact on how a transaction is handled by the

server. For example, the Host header causes the server to serve particular content, while

other headers will cause the WAF to handle the request differently, i.e., Content-Type

defines how a request is to be parsed. Poorly configured WAFs may trust these headers

and disable further inspection. In text-based content, problems arise when the application

behind the WAF interprets it incorrectly, leading the filter to allow a bypass and cause

potentially serious consequences. Some headers affect how a client handles a request

such as via content security policy or X-XSS-Protection.

Special headers such as Proxy, X-Forwarded-For, X-Originating-IP, X-Remote-

IP, and X-Remote-Addr may have undesired results in the destination application and the

WAF. Headers consisting of any other type of user input cannot be trusted without

verification. Response headers (OWASP secure headers) may help to improve security.

The profile must include the headers and content types required to be present in

each URI request. If the header is sensitive, it must be sanitized from the logs and

responses (X-Powered-By forbidden, ASP-NET forbidden, X-AspNet-Version, etc.). As

there is a wide variety of clients with their own set of headers and values, non-required

headers may be dropped if they are not required by the application.

Each HTTP header is described as a Header element nested under the respective

Method element in the XML profile.

2.1.5. Cookies
The cookies that are exchanged between the client and server have important flags

-- such as httponly and secure -- that tell the client that a cookie value has restricted

access (e.g., no JavaScript access) and should only be sent over encrypted channels. In

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 7

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

addition, the domain, path and validity properties should be restricted when these types of

cookie values are sent to the server.

Session cookies are used to track a session over multiple requests, track the

client’s actions and grant access. Some WAFs offers a session tracking feature to validate

a session’s validity. ModSecurity uses the setsid action to identify a transaction as part

of a session.

The profile should list the cookies present in each request per URI in addition to

all the relevant flags. If a cookie path is set to “/”, it will be present on every resource.

Because this value is generic, there is no value in adding this attribute to the profile.

However, cookies used to identify sessions must also contain a “SessionCookie”

element so they can be used in the setup and tracking of the HTTP session.

Each cookie will be a Cookie element nested under the respective Method element

in the XML profile. The session cookies have an additional entry as a SessionCookie

element at the same level.

2.1.6. Body
Depending on the type of application, the request body can range from zero to

several kilobytes, or higher. The content may include text, encoded, XML, JSON, base64

encoded or multiple encoded types. Many applications send more data to the client than

what they receive, although other applications send less data to the client than what they

receive.

To perform the necessary decoding or transformations for handling anomalies, the

profile can list the request and response body characteristics per resource or URI, such as

maximum size, content type and encoding.

The arguments in an HTTP POST method are in the HTTP request body and must

be specified as “Parameter” elements with the attribute “scope” set to “body”.

2.1.7. HTTP response code
Response codes vary depending on the application at hand. Most applications

include 200 for normal responses, 404 for content not found, 403 for forbidden and 500

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 8

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

for server errors. Dynamic applications may use different or modified codes to send valid

responses.

The profile must include the allowable response codes. A different response code

may tell the WAF to redirect to a standard error page and prevent the leaking of valuable

information such as code dumps or other intelligence leaks.

2.2. Creating the web application profile
The web application profile can be manually created using any XML editor,

assisted with the profileeditor Python script or Web Profile Editor (Bockermann, Web

Profile Editor, 2007) or automatically generated using WebAppProfiler, which extracts

relevant elements to build profiles from ZAP sessions or ModSecurity audit logs. When

an automated process is used, a manual review can be performed to adjust the elements to

prevent false positives and false negatives.

Figure 3 : XML representation of a basic profile

As a python script, WebAppProfiler can be easily modified to change the XML

schema to be compliant with either the Bockermann (Bockermann, 2007) or Ristic &

Shezaf (Ristic & Shezaf, 2008) models. However, the initial version of the script

produces an XML profile compatible with the earliest tools such as jwall web application

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 9

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

profiler (Bockermann, 2007), and Web Profile Editor uses a graphical interface that can

be used to produce profiles manually but is not conducive bulk or automatic processing.

In addition, graphically designing the profile is much slower than scripting short

commands. The WebAppProfiler and profileeditor scripts may be used as modules to

further automate the process or used as APIs for graphical interfaces.

2.2.1. Automated data collection
For the initial application data collection for the present study, a testing

environment was set up with the Apache httpd 2.2 or 2.4 server (The Apache Software

Foundation, 2016, Apache HTTP Server Project), ModSecurity 2.9.0 or later, ZAP 2.5,

python 2.7 (The Python Software Foundation, 2016, Python 2.7), the required python-

owasp-zap-v2.4 API libraries (The Python Software Foundation, 2016, Python OWASP

ZAP API), HTTP-parser (The Python Software Foundation, 2016, Python HTTP-parser)

and tabulate (The Python Software Foundation, 2016, Python tabulate). The aim was to

test all the functionalities and use cases of the application as opposed to testing the

modsecurity rule set itself; thus, having a dedicated virtual host for this purpose was

highly worthwhile. The term Virtual Host refers to the practice of running greater than

one website (such as company1.example.com and company2.example.com) on a single

machine. “Virtual hosts can be IP-based, meaning that you have a different IP address for

every website, or name-based, meaning that you have multiple names running on each IP

address. The fact that they are running on the same physical server is not apparent to the

end user” (The Apache Software Foundation, 2016, Apache Virtual Host documentation).

Virtual hosts are required to have an independent audit log, and the ModSecurity

engine must be enabled. Configuring the host to apply/withhold rules prevents false

positives. In the testing environment, the ModSecurity objective is to summarize all the

requests and response elements to create a positive security model. The rules created with

the model cause warnings or blocks if anomalies are detected, and a second testing virtual

host is recommended for deploying any rules produced after processing the profile to

check that navigation is unaffected before deploying the rule set in the production

environment.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
0

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

A server or virtual host should be connected to the internet only after deploying

basic access controls and best practice techniques following Apache security tips (The

Apache Software Foundation, 2016, Apache security tips) and performing general

security hardening of the server (CIS, 2016) or working with an isolated host-only virtual

machine.

2.2.2. Performing application validation for profiling
Using an application proxy during the application validation phase can provide an

additional log point wherein additional checks can be performed to passively search for

defects. The resulting rule set can have virtual patches for any detected vulnerabilities. It

is desirable to avoid polluting the test results so the process can be automated; however,

rules that accept attacks or malformed requests should not be generated. If an exclusive

virtual host is not available, a control cookie or header must be added to subsequently

filter out the desired requests from the audit log or the zap persistent connection database.

For applications using Transport Layer Security (TLS), the application proxy

handles the connection by impersonating the target site using a self-generated certificate,

trusting the proxy certificate’s ability to prevent connection issues. Some browsers and

sites may detect that the certificate is not original. In such cases, the cache and history are

cleared for the connection to succeed.

Figure 4 : Sample connection for the testing environment

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
1

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

2.2.3. Configuring the ModSecurity audit log for profiling
As an alternative to ZAP, a ModSecurity audit log can be configured to log every

request or capture all the requests associated with regular application usage. The audit log

is the most stable source available for profiling purposes and is perfect for lengthy or

heavy testing.

The serial log format of ModSecurity is much easier to parse and script because

every transaction is sent into the same file instead of the concurrent type format. The

JSON format is supported in ModSecurity version 2.9.1 and beyond. “JSON (JavaScript

Object Notation) is a lightweight data-interchange format. It is easy for humans to read

and write. It is easy for machines to parse and generate” (Crockford., 1999). The

WebAppProfiler script parses the audit log to rebuild messages to their original state by

tracking the different log parts of every transaction id.

Figure 5 : ModSecurity settings for profile building

2.2.4. Configuring the ZAP application proxy for profiling
Using the OWASP Zed Attack Proxy (ZAP) to perform validation has multiple

benefits: every request and response is stored into a persistent session file, vulnerabilities

are identified in the application, the zap2modsec (Barnett R. , 2013) Perl script can be

used to generate ModSecurity rules, etc. Before testing commences, the mode is set to

Standard or Protected to prevent undesired automatic active testing. The WebAppProfiler

script extracts the message data from zap using the python ZAP API to extract and

aggregate the data while performing an initial profiling of the elements. This is

accomplished by comparing different instances of the same element and matching the

values against a set of basic regular expressions to guide profile generation.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
2

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

2.2.5. Generating the profile
WebAppProfiler can be used to inspect the resulting ModSecurity audit log or

ZAP using a persistent session once a test is completed. It parses the log and generates

the entry points, headers, cookies and arguments list, which is later converted into an

XML file that can be transformed into a set of ModSecurity rules. WebAppProfiler also

exports the output to an SQLite database that can be used to narrow the results or

discover additional patterns. WebAppProfiler requires the python-owasp-zap-v2.4,

HTTP-parser and tabulate libraries, and its configuration is based on the variables listed

in the initial section of the script.

Figure 6 : WebAppProfiler initialization variables

To generate a profile using ZAP, the browser or application must be configured to

use it as a proxy and perform full-site navigation and testing. Some validation tools allow

for the creation of automated test cases to replay on demand, which is useful for this type

of task.

If a test has already been performed, the ModSecurity audit for the testing virtual

host is retrieved, and the “audit_log” variable is adjusted to match the path and file

name.

2.3. Generating the ModSecurity rules
Turning transaction logs into ModSecurity rules is quite straightforward. With

minimal user input, the tool shows a summary of all the locations, arguments, cookies

and headers, and all the transactions are stored in an SQLite database, which is used for

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
3

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

aggregation after parsing. Basic regular expressions are evaluated against the contents of

every element to find the best match, which is compared against every iteration of the

same element and adjusted to be its most permissive value. For example, if an argument

is first detected to contain all numeric digits, but later found to contain digits and letters,

it will be switched to alphanumeric, and the longest length will be kept.

2.3.1. Using WebAppProfiler
By default, WebAppProfiler is configured to use ZAP running in localhost IP

address 127.0.0.1 in port 8080 to retrieve messages with the 200, 301, 302, 304, 401, 500,

and 501 response codes. The parseable codes are defined in the “parseablecodes”

variable, the IP address and port of the ZAP proxy are specified in the “zap” variable, the

name of the working database is defined under the “db” variable and the output file to

store the XML profile is defined in the “output_file” variable. To switch from a ZAP

connection to a ModSecurity audit log, the “audit_log” variable is set to the name of

the log.

ModSecurity rule numbering is controlled by the variable

“modsecurity_starting_ruleid”, and its value is the first number the script uses to

assign the identifier to every element. During the transformation phase, the script uses the

“input_xml” and “transformation_xslt” variables.

The mandatory headers, parameters and cookies are dictionaries that can be

customized with the name of the elements along with the “False” boolean value for

optional elements, the “True” boolean value for mandatory elements or a mandatory

“string” value. In addition, the cookies dictionary can accept “SessionCookie” string

values. If there is a cookie match to the dictionary containing a SessionCookie value, it

will be added to the additional session handling element and processing rules.

When WebAppProfiler starts in ZAP connected mode, it displays a list of

available sites to choose from, whereas if it is configured in audit log mode, it starts

processing immediately. After parsing the messages, it displays a summary of the parsed

elements, including the scheme (http or https), the HTTP method used (GET, POST,

etc.), the resource (URI) number or different arguments detected (#arg), the list or

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
4

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

arguments (args), the best matching regular expression (regex+) and the possible list of

characters that may be problematic (regex-). The same details are also displayed for

headers (#head, head, hregex+, hregex-) and cookies (#coo, cook, cregex+, cregex-).

Figure 7 : WebAppProfiler aggregation summary

SQLite tables are built while parsing the messages for each of the different

elements and are related by their resource identifier. After parsing, a profile is written in

XML describing the site. Certain settings are assumed, which can be configured from the

XML profile to subsequently add properties such as “required”, “rule score”, etc.

Once the profile is built, a simple transformation xslt file is used to generate

ModSecurity compliant rules from the resulting XML profile. The independent

simplerules transformation script is called as a module.

The process of generating the perfect rule set for a website’s needs may require

performing multiple iterations and modifying the attributes of every element to obtain the

ModSecurity rule with the desired actions for the requested elements.

2.3.2. Modifying an XML profile
The profileeditor script provides several commands to modify the profile either in

bulk or with respect to specific elements. The input XML profile can be changed or

displayed with the input command, and the “print” command will display the current

input file. If the “pretty” option is selected, the profile will be formatted with a

hierarchical view. The location command adds or removes resource elements (URIs), and

the set command configures the scope of the changes of location and methods. By

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
5

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

default, both commands are set to affect every location and every available method. The

method command adds or removes methods to the location in scope. The cookie, header,

parameter and sessioncookie commands are linked to the location and methods in scope.

If the location or method does not exist, nothing happens. If a method exists only in some

locations, it affects only these locations.

Figure 8 : profileeditor help screen

Figure 9 : profileeditor parameter check

If the cookie, header, parameter and/or sessioncookie commands are called

without arguments, an interactive mode is elicited to obtain the details of the element to

add or remove. If the command is called with arguments, it will perform the action

without asking for confirmation as long as the location is in scope and the method exists.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
6

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

Figure 10 : profileeditor adding parameters in bulk mode

 By default, location match blocks are used to contain the rules that are solely

relevant to a particular resource. Each location is also split into multiple method blocks

wherein the arguments, headers and cookies are checked. Alerts are triggered if there are

missing elements or mismatches to the original regular expression and length.

To avoid processing unnecessary rules and variables, there are multiple “skip”

actions in the rules to flag whether a check was performed. If this flag is missing at the

end of the process, an alarm is triggered. The rule set adds session score counters to

enable tracking across different transactions; however, the mechanism for initiating the

session requires adding the ‘SessionCookie’ attribute to acceptable cookies.

Risk ratings are not identical for all applications, and certainly not for each and

every resource or element within an application; thus, for the sake of prioritizing alerts,

scores are assigned to differentiate the most important sections from innocuous content,

and the profile must be adjusted to have higher score values for sensitive elements or

resources and low scores for the majority of the items. This allows for some alarms to be

triggered without blocking the request. If a banned action is detected, it should have a

high score so the transaction can be blocked.

ModSecurity supports multiple actions that may be added in the xslt file to match

website policies and requirements. By default, the tool will not add any blocking action if

there is no valid resource match, with the exception of a redirection action. In detection

only mode, the rule engine will not perform redirection.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
7

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

By default, many of the rules have audit log and log actions, which increase the

amount of logging performed. For most elements, it is adequate to activate the log action

only, removing the audit log and enabling it solely for sensitive operations.

Figure 11 : WebAppProfiler ModSecurity rule generation

2.3.3. Transforming from conceptual language to actionable rules
Once the conceptual model is fully described in the XML profile, the xslt

transformation finishes in a matter of seconds. Before proceeding, the transformation

adjusts attributes such as scores, values and session cookie identification. The simplerules

python script takes the XML as input and uses the SimpleTransformation.xslt file to

generate ModSecurity rules that are ready to be loaded into the server.

Figure 12 : Running the simplerules transformation script

The automatically generated rules may be modified independently in the resulting

file, but for changes that apply to all the rules, it is advisable to modify the xslt file.

Figure 13 : Session handling block in the xslt file

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
8

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

The rule id must be unique, so the xslt takes the id property of the element, if

available, and applies the generic id 9931733, and the simplerules script replaces it while

creating the rules. It will not check for duplicates; thus, any manual addition of elements

must use the generic id 9931733 so they can be replaced during the transformation

phase.

Figure 14 : ModSecurity rules produced by the xslt session handling block

3. Deploying the profile
The ModSecurity rules produced by the simplerules script can be imported

directly into the virtual host using the Apache httpd server Include or IncludeOptional

directives, and the files should be located in different directories depending on the

operating system.

3.1. Preparing the production environment
In the production environment, ModSecurity setup is where all the previously

generated rules are installed for improving the intrusion detection capabilities of the site

and protecting the application from undesired anomalies. It is highly advisable to use a

complementary rule set for detecting known attacks such as SQL injection and cross-site

scripting. The volume of requests to internet servers, including malicious requests, may

be very high. These requests produce a massive volume of logs to be rotated, compressed

and archived. Frequently, the ModSecurity audit engine settings only log transactions

with response status codes in the 400-599 range, with the exception of 404 (not found),

and the body of the response is rarely logged (part E).

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 1
9

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

Figure 15 : ModSecurity settings in a production server

3.2. Apache, ModSecurity, OWASP CRS
Apache is currently the most commonly used web server, with 34.48% (Netcraft,

2016) of internet sites using it. Any server connected to the internet must be hardened

(CIS, 2016), and its logs must be frequently monitored. Running a web application

firewall to protect internet servers from attacks is useful, but a WAF is only as good as

the rules it uses. The combination of OWASP CRS and the newly created profile

complement each other to improve an application’s security. The CRS detects known

anomalies, while the profile highlights any unusual value in the transaction and indicates

whether new elements have been discovered

One shortcoming of a negative security approach is that most of the rules are

static and require updates due to the endless race of evolving hacking tools, bypasses,

vulnerabilities and techniques.

Because a WAF typically gives the best visibility into web application traffic,

positive security measures in conjunction with a negative security rule alert feed into a

security incident and event management (SIEM) system can enhance monitoring and

detection capabilities (Pubal, 2015).

3.3. Basic logs available and their purpose
Apache provides two major log types, one for including all the transactions

processed by the server and another for errors. The format of the log may be modified

(The Apache Software Foundation, 2016, log formats) to have multiple fields, which are

limited to the characteristics of the transaction, the query string, protocols, methods,

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
0

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

ciphers and the original IP address. As described by the httpd documentation, the error

log is “the most important log file. This is the place where Apache httpd will send

diagnostic information and record any errors that it encounters in processing requests”

(The Apache Software Foundation, 2016, Apache error logs). The error log is also

updated by ModSecurity if the log action is present in the rule.

ModSecurity also has logs, and it will write the request and response headers and

body in addition to all the ModSecurity output when a rule is triggered as long as the

audit log rule is present in the rule, depending on the configuration.

3.3.1. Logging considerations
A log’s growth rate and its frequency of review directly affect its retention and

rotation. A higher log volume requires more frequent rotation, and if there is a central log

collection and correlation system available, it is likely to offer a mechanism for log

secure transportation, including encryption and compression. In addition, several file

elements are frequently repeated, making log files highly compressible in general.

The format (The Apache Software Foundation, 2016, Apache mod_log_config) of

the log is important, as any changes will affect the parsing tools and configurations of

scripts and SIEM; thus, it is important to set it up properly from the beginning. The

default format is often sufficient, but a few additions can be useful, such as replacing the

host name (%h) by the client IP address (%a) to prevent DNS requests. If the server

receives requests from reverse proxies or load balancers, the client IP will provide either

the balancer or proxy; thus, if they are trusted, it is advisable to include the underlying

peer IP (%{c}a), which uses the information provided in the headers to get the original

IP. As any header can be manipulated by the client, only headers coming directly from

trusted servers are trusted. If multiple servers are being managed, it is also wise to have

the server address (%A) and the transaction unique id (SpiderLabs, ModSecurity

reference manual, 2016) (%{UNIQUE_ID}e or %L) (The Apache Software Foundation,

2016, Apache custom log formats) to ease correspondence with the ModSecurity audit

and server error log.

In Apache 2.4, the error log format is customizable. The log ID format (%L) is a

must-add because it produces a unique id for a connection or request. Because

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
1

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

ModSecurity requires mod_unique_id (The Apache Software Foundation, 2016, Apache

module mod_unique_id) to be loaded, all the log files use the same identifier per

transaction.

Logs should be reviewed often, and an automated process to normalize and

aggregate the events may be mandatory for managing multiple servers or high traffic

sites. To this end, there are freely available products from elastic (Elastic, 2016) and jwall

(Bockermann, jwall AuditConsole, 2015) AuditConsole (Pubal, 2015) that simplify the

log review process, and “Your best choice for a log centralization and GUI tool is

AuditConsole” (Ristic, 2012).

3.3.2. Log protection and sanitization
Many companies and countries are subject to privacy and sensitive data protection

laws and regulations, some of which impose huge fines for compromised data. One side

effect of the ModSecurity audit log is that it can dump the entire request and response

into the audit log, potentially creating a large repository of data including card holder

data, personal data, health care data and user credentials.

The log files and the containing directory must be secured, restricting the access

as much as possible, following Apache security recommendations (The Apache Software

Foundation, 2016, Apache security tips). Whenever possible, sensitive data should be

removed from the logs, and it is highly advisable to avoid writing such data to the logs in

the first place.

The audit log may be full of sensitive data, often in the request or response body

section (C, E and I parts). In such cases, the SecAuditLogParts (SpiderLabs, ModSecurity

reference manual, 2016) directive should not list the affected log areas. It is important to

remember that some rules may dynamically change these settings, i.e., certain rules in the

OWASP CRS have the “ctl:auditLogParts=+E” action, which puts the response

body in the transaction’s audit log.

ModSecurity has multiple actions to sanitize (SpiderLabs, ModSecurity reference

manual, 2016) log elements, including “sanitiseArg” for arguments,

“sanitiseMatched” for rule target matches, “sanitiseMatchedBytes” for only the

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
2

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

rule matching bytes and “sanitiseRequestHeader” and

“sanitiseResponseHeader” for HTTP headers.

Figure 16 : ModSecurity log sanitization rules (SpiderLabs, 2016)

Apache logs can also create leaks of sensitive data. This generally happens when

sensitive data are sent in the query string. A special condition can be added to create an

environmental variable whenever this is detected to prevent the transaction from being

logged and log it without the offending item.

3.4. Maintaining the profile
The simplerules generated ModSecurity rules have multiple events that must be

reviewed and used as feedback to update or improve the profile. Depending on the extent

of validation used, the number of items to modify will change over time. It is thus

necessary to identify all the relevant events that signify whether a request contains

anomalies such as missing elements or elements with values that do not match the

validation regular expression.

3.4.1. Identify significant events
In positive security model rules, the events generated are related to missing

elements such as cookies, headers, session cookies and parameters, resources that are not

listed in the permitted locations and the use of methods that are not allowed in a given

location.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
3

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

ModSecurity will write an event in the audit log as per the configuration of the

xslt transformation file.

An ‘Invalid URL requested’ event is triggered when a requested URI is not listed

in the profile and the xslt file contains two variants of this event. The default rule logs the

requested URI and the parameters but still allows the request. In addition, the other rule

redirects the request to a non-existent page, and the client receives an error message.

'Missing required parameter/cookie/header/sessioncookie’ events are triggered

when these elements have the “required” attribute and are not present in the request.

The elements are compared against a regular expression; if a value does not match

the expression, the transaction risk score is increased, and a ‘transaction-score’ event is

generated, which includes a summarization, after checking all the elements in the

transaction. If session cookies are declared, collection is initiated, and the session-score is

tracked across all the transactions and connections containing the same session-cookie.

3.4.2. Analyzing the event and identifying the related events
Invalid URI identification is achieved by searching for ‘Invalid URL requested’

events in the audit log. These events also include the requested resource and the

arguments of the request. If the redirection rule is enabled in the xsl file, ModSecurity

will reject any requests not listed in the profile by default. Otherwise, it triggers the alert

without affecting the request in any way. For all allowable resources, new locations must

be added into the profile, which must include the allowed method, cookies, headers,

parameters and session cookies.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
4

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

Figure 17 : profileeditor adding a location

The XML profile changes are performed at the moment the commands are

executed in profileeditor. After the changes are completed, the “print pretty”

command can be used to visualize the entire file. New location additions are located at

the end of the file, and all other changes are located at the end of their respective parents.

Figure 18 : XML elements added to create a location

The more strict and accurate a regular expression is, the better it works for the

positive security model, and generic expressions such as “.*” must be avoided as much

as possible. Profileeditor generates the entire rule set in seconds. For version control, the

previous rule set can be renamed and then replaced with the new file, and a server reload

enables the new configuration.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
5

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

Figure 19 : ModSecurity rules of the added location

To identify the elements that are not present in the allowed list, the ‘Found new’

events can be extracted 1) from the logs, using SIEM search capabilities or 2) from the

command line, using tools such as grep and egrep (see examples below) to get the

triggered rule id, the new element found and the location where it was found. Some

elements cause much higher levels of log noise than others; thus, verifying anomalies in

reverse order is a good idea because fixing the most recurrent event will result in the

largest log volume reduction.

$ egrep -o "\[id.+Found new parameter '/.+/' in [^\"]+"

modsec_audit.log |sed -rn "s,\[id (.+)\].+Found.+'/(.+)/' in

(.+),\1 \2 \3,p" |sort |uniq -c |sort -nr

The values contained in these elements can then be extracted from the log to

identify the different types of characters or values used.

$ egrep -o "argument=.+" modsec_audit.log |sort |uniq

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
6

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

The value list can be analyzed, and a regular expression to match the values cam

be made as restrictive as possible, i.e., ^[a-zA-Z]{5,10}$; if there are only a few different

values, a list can be used instead, i.e., ^(?:apples|oranges|bananas)$, and profileeditor can

be used to modify the XML profile, followed by simplerules to replace the current set of

rules with a new set of rules.

The approach is identical for adjusting cookies headers and session cookies:

identify new elements from the events, search for the values in the audit log by searching

for the rule id, verify whether the element is normal for the application and should be

allowed to access the particular resource and method, get the different values of every

instance of the element, write a filter that will solely match these values, update the XML

profile accordingly, generate a new set of rules based on the new profile, test and deploy.

Figure 20 : Maintaining the profile process

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
7

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

4. Conclusion
Not all web application firewalls are identical. Some favor ease of integration

over security, and most out-of-the-box products are capable of protecting web

applications using a negative security model to identify potential anomalies. A negative

security model requires continuous maintenance and evolution to stay on top of attacks,

vulnerabilities and bypasses.

A positive security model can be used to generate ModSecurity rules to allow

recognized and valid values to pass through the firewall and generate an alert or block

access if the received values differ from the expected values.

Using a combination of negative and positive models offers improved application

protection and detection capabilities. If it is impossible to use a positive security filter, the

negative model prevents known faulty patterns from being entered. Simultaneously, if the

negative filter ignores a new type of filter bypass or attack, the positive filter limits the

amount and type of receivable input.

Automation allows for the quick generation of a basic blanket policy, and its

effectiveness can be significantly enhanced by making the filters more specific to the

elements and context by accepting only a few known values and rejecting everything

else.

As with any other security control method, intrusion detection in web application

firewalls must be cyclic and encompass log review, the identification of anomalies and

false positives, profile improvements, rule set regeneration, testing and deployment.

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
8

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

5. References
Auger, R., Barnett, R., Cano, C., Chuvakin, A., Estrade, M., Ristic, I., et al. (2006,

January). Web Application Firewall Evaluation Criteria. Retrieved from Web

Application Security Consortium Project:

http://projects.webappsec.org/f/wasc-wafec-v1.0.pdf

Barnett, R. (2013). zap2modsec. Retrieved from SpiderLabs github:

https://github.com/SpiderLabs/owasp-modsecurity-

crs/blob/master/util/virtual-patching/zap2modsec.pl

Barnett, R. C. (2012). Web application defender’s cookbook: Battling hackers and

protecting users. United States: Wiley, John & Sons.

Berners-Lee, T., Fielding, R., Masinter, L., Day Software, Adobe Systems, & W3C/MIT.

(2005, January). RFC3986 Uniform Resource Identifier (URI): Generic Syntax.

Retrieved from IETF: https://tools.ietf.org/html/rfc3986

Bockermann, C. (2007, April 05). A Meta-Language for Web Application Profiles.

Retrieved from jwall java based web security tools:

http://www.jwall.org/web/profile/meta-language.pdf

Bockermann, C. (2007, April 05). jwall web application profiler. Retrieved from jwall

java based web security tools: https://www.jwall.org/web/profiler/

Bockermann, C. (2007, April 05). Web Application Profiles. Retrieved from jwall java

based web security tools: http://jwall.org/web/policy/lang.jsp

Bockermann, C. (2007, April 05). Web Profile Editor. Retrieved from jwall java based

web security tools: http://www.jwall.org/web/profile/editor.jsp

Bockermann, C. (2015, 01 15). jwall AuditConsole. Retrieved from jwall java based

web security tools: http://jwall.org/web/audit/console/index.jsp

Crockford, D. (1999). JavaScript Object Notation JSON. Retrieved from Introducing

JSON: http://www.json.org/

Crockford., D. (1999). Introducing JSON. Retrieved from JSON JavaScript Object

Notation: http://www.json.org/

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 2
9

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

Elastic. (2016). Logstash Elastic. Retrieved from Elastic:

https://www.elastic.co/products/logstash

The Python Software Foundation. (2016). Python 2.7. Retrieved from Python:

https://www.python.org/

The Python Software Foundation. (2016). Python HTTP-parser. Retrieved from

Python Software: https://pypi.python.org/pypi/http-parser/

The Python Software Foundation. (2016). Python OWASP ZAP API. Retrieved from

Python: https://pypi.python.org/pypi/python-owasp-zap-v2.4

The Python Software Foundation. (2016). Python tabulate. Retrieved from Python

Software: https://pypi.python.org/pypi/tabulate/

The Apache Software Foundation. (2016). Apache custom log formats. Retrieved

from Apache:

https://httpd.apache.org/docs/2.4/en/mod/mod_log_config.html#formats

The Apache Software Foundation. (2016). Apache error log. Retrieved from Apache:

https://httpd.apache.org/docs/2.4/en/logs.html#errorlog

The Apache Software Foundation. (2016). Apache HTTP Server Project. Retrieved

from Apache: http://httpd.apache.org/

The Apache Software Foundation. (2016). Apache mod_log_config. Retrieved from

Apache: https://httpd.apache.org/docs/2.4/en/mod/mod_log_config.html

The Apache Software Foundation. (2016). Apache module mod_unique_id. Retrieved

from Apache: http://httpd.apache.org/docs/2.4/mod/mod_unique_id.html

The Apache Software Foundation. (2016). Apache security tips. Retrieved from

Apache: http://httpd.apache.org/docs/2.4/misc/security_tips.html

The Apache Software Foundation. (2016). Apache Virtual Host documentation.

Retrieved from Apache: http://httpd.apache.org/docs/2.4/vhosts/

Leos Rivas, M. (2016, August). WebAppProfiler. Retrieved from Spartantri github:

https://github.com/spartantri/webappprofiler

Meyer, R. (2008, January 26). Detecting attacks on Web applications from log files.

Retrieved from SANS reading room: https://www.sans.org/reading-

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 3
0

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

room/whitepapers/logging/detecting-attacks-web-applications-log-files-

2074

Muntner , A. (2010). Official FuzzDB project repository. Retrieved from FuzzDB:

https://github.com/fuzzdb-project/fuzzdb

Netcraft. (2016, July). July 2016 Web Server. Retrieved from Netcraft:

https://news.netcraft.com/archives/2016/07/19/july-2016-web-server-

survey.html

Nottingham, M. (2014, July). RFC7320 URI Design and Ownership. Retrieved from

IETF: https://tools.ietf.org/html/rfc7320

OWASP. (2016). OWASP ModSecurity Core Rule Set Project. Retrieved from OWASP

CRS:

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rul

e_Set_Project

OWASP. (2016). OWASP Zed Attack Proxy. Retrieved from OWASP ZAP:

https://www.owasp.org/index.php/ZAP

Pubal, J. (2015, March 13). Web Application Firewalls Enterprise Techniques.

Retrieved from SANS reading room: https://www.sans.org/reading-

room/whitepapers/application/web-application-firewalls-35817

Ristic, I. &. (2008, August). Enough with default allow. Retrieved from ModSecurity:

http://blog.modsecurity.org/files/Breach_Security_Labs-

Enough_with_Default_Allow.pdf

Ristic, I. &. (2008, June 30). No More Signatures: Defending Web Applications from 0-

day attacks. Retrieved from BlackHat:

https://www.blackhat.com/presentations/bh-usa-

08/Ristic_Shezaf/BH_US_08_No_More_Signatures_Ivan_Ristic_Ofer_Shezaf_W

p.pdf

Ristic, I. (2012). ModSecurity handbook: The complete guide to the popular open

source web application Firewall. London, United Kingdom: Feisty Duck.

Security, C. f. (2016). CIS security benchmarks. Retrieved from the Center for Internet

Security: https://benchmarks.cisecurity.org/downloads/benchmarks/

© 2016 The SANS Institute Author retains full rights.

Profiling Web Applications for Improved Intrusion Detection 3
1

Manuel Leos Rivas;MLeosRivas@mastersprogram.sans.edu

SpiderLabs, T. (2016). ModSecurity Open Source Web Application Firewall. Retrieved

from ModSecurity: http://modsecurity.org/

SpiderLabs, T. (2016). ModSecurity reference manual. Retrieved from ModSecurity:

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

W3C. (1999). XSLT Namespace. Retrieved from World Wide Web Consortium (W3C):

http://www.w3.org/1999/XSL/Transform

