
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7 Data Interfaces in Medical Environments:
Attacking and Defending the Achille’s Heel of

Healthcare

GIAC (GCIA) Gold Certification

Author: Dallas Haselhorst
Email: dallas@treetopsecurity.com / Twitter: @oneoffdallas

Advisor: Sally Vandeven
Accepted: August 2017

Abstract

On any given day, a hospital operating room can be chaotic. The atmosphere can make
one’s head spin with split-second decisions. In the same hospital environment, medical
data also whizzes around, albeit virtually. Beyond the headlines involving medical device
insecurities and hospital breaches, healthcare communication standards are equally as
insecure. This fundamental design flaw places patient data at risk in nearly every hospital
worldwide. Without protections in place, a hospital visit today could become a patient’s
worst nightmare tomorrow. Could an attacker collect the data and sell it to the highest
bidder for credit card or tax fraud? Or perhaps they have far more malicious plans such as
causing bodily harm? Regardless of their intentions, healthcare data is under attack and it
is highly vulnerable. This research focuses on attacking and defending HL7, the
unencrypted and unverified data standard used in healthcare for nearly all system-to-
system communications.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 2
	

Dallas	Haselhorst	

1. Introduction
Healthcare security is years behind all other critical industries – finances, retail,

and utilities. However, healthcare contains some of the most beneficial data for attackers.

Electronic health records (EHR) are loaded with protected health information (PHI) and

personally identifiable information (PII) necessary for a broad range of illegal endeavors.

As such, “Stolen EHR can be used to acquire prescription drugs, receive medical care,

falsify insurance claims, file fraudulent tax returns, open credit accounts, obtain official

government-issued documents such as passports, driver’s licenses, and even create new

identities” (Fuentes, 2017). The potential criminal activities are nearly endless using

high-quality medical records.

When a credit card gets stolen, the card issuer sends a new card with few, if any,

lasting consequences. In healthcare and associated data, a new social security number is

not possible except in extreme situations. Those affected by a PHI breach receive no

extra protection for their highly personal, exfiltrated healthcare data. While handled

similarly post-breach, the uses for stolen healthcare data are far greater than standard

financial data. As stated by the Health Care Industry Cybersecurity Task Force, “The

identity protection is only a help for credit-based identity theft, it does not provide the

patient with adequate protections based on the sensitivity, value, and permanence of their

health care data, which is priceless… Someone could steal a teenager’s medical history

today, only for it to become valuable when the individual achieves a prominent role in

public life.” (Health Care Industry Cybersecurity Task Force, 2017). Fortunately, we may

never see this Hollywoodesque, worst-case scenario. Regardless, one cannot argue the

potential threats associated with a stolen EHR.

Despite its ever-increasing value, an overwhelming amount of healthcare data is

mishandled every day, if not every second, due to a fundamental communications flaw.

HL7 [or Health Level 7] is a relatively obscure standard that provides most of the system-

to-system communications. It allows disparate systems in a hospital environment to speak

a similar language. In many ways, HL7 is the glue that allows various hospital systems to

interoperate. For that reason, it resides in nearly every corner of the healthcare industry.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 3
	

Dallas	Haselhorst	

Because HL7 works mostly behind-the-scenes, it often goes unnoticed when analyzing

risks in healthcare IT.

As part of the HL7 standard, different messages and message types are sent for

almost every event one might encounter during a hospital visit; each event triggers

different messages and message types. When a patient moves to a different room, an HL7

ADT (admissions, discharge, and transfer) message goes from one system to another

system that needs the updated information. When someone orders a test or drug, an ORM

(order) message is sent and received. When sending test results or telemetry data, an

ORU (observation result) message is expected to traverse the network. In most cases, a

single HL7 message will be relayed to an interface engine to assist with the distribution

of messages. The interface engine can transform the message and forward it to numerous

outlying systems to help the data stay in sync (Figure 1).

Figure	1:	HL7	Interfaces	Connecting		
Various	Hospital	Systems	

As expected, HL7 messages can carry some of the most sensitive data in a

hospital. In the ADT example message and corresponding table found in Figure 2 below,

an HL7 message will include complete patient information including birthdays, current

and past addresses, phone numbers, and social security numbers. It is also common to

find other information such as the patient’s relatives, email addresses, place of birth,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 4
	

Dallas	Haselhorst	

mother’s maiden name, etc. This additional information is important to recognize because

it is the type of information often used for secondary security questions when someone

sets up an online account, e.g., a bank account, a new email account, etc. The valuable

data found in EHRs is one of the many reasons healthcare is so attractive to cyber

criminals.

MSH|^~\&|SENDING_APPLICATION|SENDING_FACILITY|RECEIVING_APPLICATION|RECEIVING_F

ACILITY|20170613083617||ADT^A01|911576160110613083617|P|2.3||||

EVN|A01|20170613083617|||

PID|1||135769||MOUSE^MICKEY^||19281118|M|||123 Main St.^^Lake Buena Vista^FL^

32830||(407)939-5555^^^ohtoodles@notdisney.com|||||1719|999999999|||

|MOUSETOWN||||||||||||||||

NK1|1|MOUSE^MINNIE|WIFE||||||NK

PV1|1|O|||||^^^^^^^^|^^^^^^^^

AL1|1||^Penicillin||Anaphylactic shock

AL1|2||^Cat dander|Skin rash

	
	
Identifier Field Definition Field Contents

 Patient Name MOUSE^MICKEY

 Date/Time of Birth 19281118

 Patient Address 123 Main St.^^Lake Buena Vista^FL^32830

 Phone Number – Home (407)939-5555

 Email Address ohtoodles@notdisney.com

 SSN Number 999999999

 Birth Place MOUSETOWN

 Next of Kin MOUSE^MINNIE

 Allergies / Reactions
Penicillin / Anaphylactic Shock

Cat Dander / Skin Rash

Figure	2:	Sample	HL7	ADT	Message	&	Corresponding	Field	Definitions	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 5
	

Dallas	Haselhorst	

 Overall, HL7 helps healthcare function much more efficiently. It eliminates large

amounts of data entry and it provides nearly instantaneous distribution of lab results,

orders, and billing. Astonishingly, HL7 is most often passed system-to-system

completely unencrypted. The organization that produces and guides the standard, HL7

International, has a brief discussion on encryption to show they were not oblivious to it.

In their wiki, they state “In the Security TC we have assumed that encryption happens

below the application layer, e.g., via IPSec or TLS, not within HL7 messages” (HL7

International, 2007). Essentially, despite the sensitivity of the data, HL7 does not require

or even offer encryption, placing the sought-after patient information at risk.

The most glaring issue with HL7 is due to its clear-text communications, but other

security concerns exist as well. The HL7 standard also lacks authentication and by

default, any system can communicate with an HL7 receiving port. For the trained security

professional, native HL7 communications are similar to the security woes found in Telnet

and FTP. Still, those insecure protocols still have authentication mechanisms built-in.

Another potential oversight and significant factor to understand regarding how interfaces

operate is the many-to-one communication relationship. Interfaces work much like a web

server or any other client-server application, allowing multiple clients to connect to the

same port on a server at any given time. Not unlike a web server, numerous

unauthenticated clients can communicate with an open interface port.

Messages sent and received also have no method of verification. While HL7 does

have acknowledgments, they are not required and the acknowledgments often only

specify whether a message is received. An acknowledgment does nothing to identify

whether the data is valid or reasonable. If any data verification checks exist, it is the

responsibility of the receiving system. This methodology is inherently flawed as the

receiving system lacks complete visibility and does not recognize if some messages are

not received.

For a more in-depth discussion on the HL7 standard, please reference “HL7 Data

Interfaces in Medical Environments: Understanding the Fundamental Flaw in

Healthcare” at the website, https://www.linuxincluded.com/hl7-medical-fundamental-

flaw/. That HL7 research paper covers the value of stolen medical data, types of HL7

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 6
	

Dallas	Haselhorst	

messages, and even security concerns with the HL7 replacement, FHIR. It is also

available for download in the SANS Reading Room.

2. Attacking HL7
2.1. Denial of Service (DoS)

While many criminals search for ways to monetize their endeavors on the black

market or dark web, others thrive on chaos. Though service disruption attacks often

appear to lack motive, this type of activity has surfaced in several cyberattacks over the

years. Recently, it played a role in the Petya.2017 “fakesomware” campaign. The “not”

ransomware was discovered by Comae Technologies and Kaspersky Lab to be a wiper

because the attacker did not appear to have a way to recover the encrypted files (Suiche,

2017). It is possible the attack was a simple misconfiguration or a distraction. Whether an

exact motive exists or is known, these types of attacks will persist and reaffirm the notion

that “some men just want to watch the world burn.”

HL7 interfaces are susceptible to denial of service attacks. In a standard HL7

interface, two systems communicate with one another on an ad-hoc basis. When there are

no messages in the process of sending, the transmitting system will temporarily

disconnect. As shown in Figure 3, the interface on the listening/receiving side will switch

to “idle.” The “idle” state indicates the system is not receiving or polling for new

messages and it is ready for the next connection and subsequent message.

Figure	3:	An	Idle	Connection	in	the	Popular	Interface	Engine,	Mirth	
	

Figure 4 depicts a sample TCP listener configuration along with many of the

default configuration options. As highlighted by the red box, the maximum number of

listening connections is ten by default. Keep in mind that HL7 does not utilize

authentication so any system can connect to the HL7 listener. Even a simple Telnet

command will connect to an open interface port. Also, note that by default in this

interface engine, the “receive timeout” is disabled and the “keep connection open” option

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 7
	

Dallas	Haselhorst	

is set to “yes.” Consequently, the connection will remain open until the initiator decides

to close it regardless of whether traffic is sent or received. For a standard interface, this

serves as neither an advantage or disadvantage and depends on the operational needs of

the interface.

Figure	4:	TCP	Listener	Configuration	Options	

An attacker could launch ten Telnet clients from a command line causing a denial

of service. This action would prevent the receiving interface from processing HL7

messages sent by the actual sending interface system. A simple one-line ‘for’ loop from a

Linux bash shell (Figure 5) would achieve the same result spawning ten connections

almost instantaneously. The same attack could be performed natively with Linux TCP

sockets from the command line rather than using Netcat as well. Regardless of the DoS

method used, maxing the number of open connections results in blocking legitimate

communications as shown in Figure 6.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 8
	

Dallas	Haselhorst	

for((conn=1;conn<=10;conn++)); do nc 10.0.0.127 6661 & done

	

Figure	5:	DoS	Attack	Using	Linux	Command-Line	&	Netcat	

Figure	6:	DoS	Attack	on	an	HL7	Interface	
	

2.2. Unauthorized Senders
	

A basic HL7 interface consists of a single system sending messages and another

system receiving messages. These systems most often communicate via MLLP

(minimum lower layer protocol) encapsulated in TCP/IP packets. As shown in the DoS

example, an attacker only needs the IP address and TCP port to cause havoc. With that

same knowledge and a familiarity with the HL7 message format of the receiving system,

an attacker could also cause damage by sending additional, unauthorized messages.

In a standard interface configuration, nothing prevents an attacker from sending

messages to a receiving application. Errant messages could cause numerous problems and

confusion, significantly impacting patient care. Given HL7 is nothing more than

delimited text, a simple text editor can make any change imaginable. As seen in Figure 7,

with a few keystrokes on the HL7 allergy segment, a severe allergic reaction to penicillin

is modified to "no known allergies" instead. The ADT message also changes to an A08

(patient information update) message from an A01 (patient admission).

Figure	7:	HL7	Message	Changes	in	Text	Editor	
(Original	Message	on	the	Left)	

	
 Once the modifications are complete, the attacker requires a way to send the

fraudulent HL7 message. Fortunately for the attacker, there are a handful of freeware

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 9
	

Dallas	Haselhorst	

tools to perform this action. These software packages also properly accept and respond to

HL7 ACK (acknowledgment) messages with no additional configuration necessary. This

functionality is no fault of the tools themselves; this maleficence is leveraging

capabilities required for testing HL7 interfaces. A packet crafting/manipulation

application such as Scapy could also act as a messaging tool for an attacker with

knowledge of HL7. In Figure 8, the HL7 messaging application sends a modified

message to the specified IP address and port.

Figure	8:	Modified	HL7	Message	Sent	from	a	New	Host	
	

Even though the HL7 message originates from a new IP address, the message

processes as normal and the receiver sends an ACK back to the originator. Using chaos as

the sole motive, an attacker could send discharge messages (ADT-A03) for every patient

in a hospital. The mass chaos could act as a distraction for another, more profitable

criminal endeavor. Erroneous update messages (ADT-A08) could be sent to remove drug

allergy information. A fraudulent order (ORM message) for the known drug allergy

might follow the ADT-A08 message. It is not difficult to understand the potentially fatal

outcome of such an attack.

2.3. Man-in-the-Middle (MITM) & ARP Spoofing
A discussion on the insecurities of clear-text protocols and communication is not

complete without an understanding of man-in-the-middle (MITM) attacks. HL7 is highly

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 10
	

Dallas	Haselhorst	

susceptible to MITM because the standard does not address the two means to combat it –

authentication (prevention) and tampering detection. Without either of these controls, an

attacker can easily intercept the communications between two systems. The captured data

could be sold immediately on the dark web or it could be stored for future mischief as

discussed by the Health Care Cybersecurity Task Force. MITM also provides ample

opportunities for an attacker to make changes to HL7 messages in real-time.

While numerous MITM techniques exist, the most common and likeliest

candidate for a local network attack is ARP (address resolution protocol) spoofing, also

known as ARP poisoning. This attack would work on the sending system, the receiving

system, or the interface engine. As with any MITM technique, the goal of ARP spoofing

is for the attacker to intercept traffic between endpoints. The endpoints can be between

any two networked devices – computer to server, computer to firewall, server to server,

etc. By sending gratuitous ARP packets to a targeted system, an attacker can re-associate

their own MAC address with the legitimate IP addresses of another system. The traffic

then routes to the attacker instead of the secondary system. If the attacking system

forwards the traffic, neither system is aware their packets are being intercepted and

instead “believe” they are communicating directly with one another. Figure 9 shows an

ARP spoofing attack. This graphic also accurately illustrates the IP and MAC addresses

used in the technical examples throughout this research.

Figure	9:	ARP	Spoofing	Example	With	IP	&	MAC	Addresses	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 11
	

Dallas	Haselhorst	

	
 ARP spoofing is easy with the help of penetration testing distributions such as

Kali Linux. In fact, there are multiple tools installed by default to assist in performing

ARP spoofing. If an attacker is familiar with the command line, the "echo 1" command in

Figure 10 enables IP forwarding. The second line in Figure 10 is the arpspoof command,

which specifies the two target IP addresses. In the example, the “-t” specifies the target IP

address and the “-r” is used to enable bi-directional poisoning (host and target spoofing in

one command). The arpspoof command will continue sending packets periodically until

the operator terminates the process. A gratuitous ARP every few seconds is more than

sufficient to maintain a constant MITM presence since most systems have a minimum

ARP cache timeout of a few minutes. Depending on the manufacturer, some routers

default to several hours for ARP cache timeouts. Figure 11 shows the ARP cache from

the affected systems pre- and post-ARP poisoning. Once the ARP poisoning attack

completes, the associated MAC address for the neighboring IP address is now that of the

attacker (00:50:56:2F:29:76).

	

echo 1 > /proc/sys/net/ipv4/ip_forward
arpspoof -r 10.0.0.126 -t 10.0.0.127
0:50:56:2f:29:76 0:c:29:7f:16:f3 0806 42: arp reply 10.0.0.126 is-at
0:50:56:2f:29:76
0:50:56:2f:29:76 8:0:27:1d:a6:c2 0806 42: arp reply 10.0.0.127 is-at
0:50:56:2f:29:76
…

Figure	10:	IP	Traffic	Forwarding	&	arpspoof	Command	

Windows system ARP entries - pre-ARP poisoning
C:\>arp -a
 Internet Address Physical Address Type
 10.0.0.127 00-0c-29-7f-16-f3 dynamic
Windows system ARP entries - post-ARP poisoning
C:\>arp -a
 Internet Address Physical Address Type
 10.0.0.127 00-50-56-2f-29-76 dynamic
Linux system ARP entries - pre-ARP poisoning
arp -a
? (10.0.0.126) at 08:00:27:1d:a6:c2 [ether]
Linux system ARP entries - post-ARP poisoning

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 12
	

Dallas	Haselhorst	

arp -a
? (10.0.0.126) at 00:50:56:2f:29:76 [ether]

Figure	11:	MAC	Addresses	Pre-	and	Post-ARP	Poisoning	

Once all traffic between the two systems is being intercepted and forwarded by

the attacking system, the attacker can run another command to collect the data. A

common networking tool, tcpdump, can be used for this part of the process. In the

tcpdump example found in Figure 12, the “host” and “port” are used as capture filters to

narrow down the network packets captured as both the IP address and HL7 TCP port are

known. The "-w" parameter will store captured traffic to a filename of choice

(hl7_capture.pcap). Since tcpdump follows the well-known packet capture standard, other

tools such as tshark or Wireshark (Figure 13) can view the data as well.

tcpdump host 10.0.0.126 and port 6661 -w hl7_capture.pcap

	

Figure	12:	tcpdump	Capturing	Interface	Traffic	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 13
	

Dallas	Haselhorst	

Figure	13:	Using	Wireshark	to	Read	an	HL7	Message		
Captured	During	an	ARP	Spoofing	Attack	

Other tools can perform these same tasks in a graphical environment. Ettercap

GUI provides many of the capabilities discussed above in a single, easy-to-use

application. It also simplifies the ARP spoofing portion of the attack point-and-click

(Figure 14) while providing

benefits such as connection data

(Figure 15). In the connection data

window, Ettercap improves the

legibility of the HL7 message

exchange by identifying the

original message [on the left] and

its corresponding ACK [on the right] (Figure 16). This feature of Ettercap shows

relationship context between the two transmissions similar to the “follow stream”

functionality in Wireshark.

Figure	14:	Ettercap	-	Adding	Targets

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 14
	

Dallas	Haselhorst	

Figure	15:	Ettercap	-	Connection	Information	
	

Figure	16:	Ettercap	-	HL7	Message	(Left)	&	ACK	(Right)	
	

An attacker familiar with the environment or a receiving system/interface may

already understand the various nuances of the HL7 interface implementation. If not,

general information to guide an attacker’s research is often readily available on vendor

websites under “HL7 interface specifications.” If an attacker does not understand the

intricacies of the receiving system or have access to vendor specifications, he or she

could setup a MITM attack. Using MITM, the attacker could capture the messages, make

modifications, and send errant messages as shown previously. Altered messages would

ensure a much higher level of success than attempting to mint new messages from

scratch.

Once the attacker establishes a MITM foothold, real-time data manipulation is

also possible. Numerous tools exist for this type of packet altering, but the previously

mentioned Ettercap is well-suited for this task too. A basic Ettercap filter such as the one

in Figure 17 can change the text within HL7 messages on-the-fly. In the example, a mild

case of hives linked to sushi replaces the life-threatening penicillin allergy causing

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 15
	

Dallas	Haselhorst	

anaphylactic shock. This change is limited to any HL7 message containing the word

MOUSE, which happens to be the last name of the patient. Using the Ettercap filter, the

before and after HL7 messages with highlighted differences are in Figure 18.

only apply filter to TCP data on port 6661 (receiving port)
if (ip.proto == TCP && tcp.dst == 6661) {
 # only modify HL7 messages with MOUSE in them
 if (search(DATA.data, "MOUSE")) {
 replace("Penicillin","Sushi"); # replace allergy
 replace("Anaphylactic shock","Hives"); # replace allergy reaction
 msg("Modified HL7 message!\n"); # send message to user
 }
}

Figure	17:	Ettercap	Filter	to	Replace	HL7	Text	(With	Comments)

Figure	18:	HL7	Message	Modified	in	Transit	Using	Ettercap	Filter	

Aside from modifying allergies and sending potentially fatal drug orders, there are

numerous other disturbing possibilities. There is the possibility of altering a patient’s

weight via an ADT message in advance of determining a weight-based drug prescription

dosage. Other unfortunate outcomes might involve a crash cart showing up in the wrong

room because of swapped patient telemetry data. Or perhaps flawed test results for a

cancer patient come back clear. Who would be at fault? Someone would need to shoulder

the blame and it is doubtful whether anyone would properly identify the errant messages.

Consequently, the doctor might be sued for malpractice because his or her flawed

diagnosis caused the patient mental anguish. The "creativity" of an attacker is the only

limiting factor associated with the potential dangers of HL7 message tampering.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 16
	

Dallas	Haselhorst	

3. Defending HL7
As important as it is to discuss why an attacker might target EHRs and even the

attack vectors they might use, it would be a disservice to ignore ways to protect interfaces

from these attacks. Defending against these attacks requires some analysis of the

sensitive medical data itself. Understanding the “what, where, and how” go a long way to

mitigating risk with healthcare data (Tarala & Tarala, 2015). While the what is generally

understood, where it is located or stored and how to secure it can get murky. This

uncertainty is profoundly accurate for HL7. IT departments might realize attackers are

targeting medical data so servers and healthcare applications themselves receive

additional attention. However, very few recognize the hidden, criminal possibilities for

stolen PHI and PII contained in HL7 messages. Even fewer healthcare organizations have

sufficient defense measures configured for their otherwise vulnerable interfaces.

If an interface analyst and hospital management were interested in a more secure

alternative to HL7, there is a possibility the vendor does not support it. The other concern

is whether the new solution provides legitimate security improvements. Large HL7

interfaces were frequently multi-month projects requiring extensive configuration. Aside

from their complicated setup and testing, interfaces often involve assistance from

numerous departments as well as vendors. To further compound the issue, there is a high

probability the original designers are no longer with the organization. Given these

concerns, it is doubtful an organization would re-architect an interface solution from the

ground-up solely for the sake of security. But what can be done to improve the security of

existing HL7 interfaces without altering the complex, underlying components of the

configuration? There are numerous ways to work around the insecurities of HL7 with

advantages and disadvantages to each method.

3.1. Manual Validation
Though often forgotten in a high-tech world, manual validation can provide some

level of defense. In its most basic form, manual validation is the act of checking whether

the numbers on system one match those found on system two. It is an important

discussion as it tests data validity outside of the insecure HL7 process. On a billing

interface, the check might verify if the totals match. This form of checks and balances

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 17
	

Dallas	Haselhorst	

would uncover deleted charges with relative ease. Similarly, someone could confirm the

number of admissions, discharges, and transfer events match on both sides. While manual

validation is a staple for billing processes, it unfortunately does not work for any other

interface type. An interface engine will often discard certain message types because a

receiving system cannot handle them. Thus, while system one would send an HL7

message, the interface engine may remove it entirely so system two never sees the

message. Aside from limited usage based on interface types, manual validation does not

scale well. Finally, errant or modified messages are still possible because manual

validation cannot verify if the HL7 messages or totals are valid.

3.2. Host-based Firewall
A host-based firewall could provide some level of protection for HL7 interfaces.

Most notably, it could prevent unauthorized systems from communicating with interfaces

and sending HL7 messages. It would also prevent random systems from performing DoS

attacks via the maximum port connections technique. Unfortunately, a host-based firewall

provides zero protection for the otherwise clear-text data. A host-based firewall also does

not protect against ARP spoofing attacks. Blocking all ARP traffic via a firewall rule

would be ill-advised since ARP helps devices communicate. IP-specific firewall rules

would also fail to protect since the MAC address of the attacking system would re-

associate with the IP address rule; the firewall rule would allow traffic to pass because it

would still match on the IP address despite the incorrect, new MAC address. One of the

few benefits of this approach is that the need for vendor involvement might not be

necessary, but it falls short otherwise.

3.3. Network Segmentation
Network segmentation can limit the visibility of the interfaces (and interface

engine) from less sensitive networks. Segmenting user-facing systems from systems

handling sensitive data can prove extremely advantageous since user systems are often

the biggest threat due to phishing campaigns (Zurier, 2016). For this reason alone,

network segmentation is an excellent defense strategy for any sensitive data and HL7 is

no different. The primary issue with this approach lies in the role of an interface engine.

Even in a well-segmented environment, an interface engine by nature must communicate

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 18
	

Dallas	Haselhorst	

with numerous systems residing on different networks. Also, many interfaces were

configured before widespread use of security best practices such as network

segmentation. Network segmentation is difficult if it requires an IP scheme change for a

receiving interface and all the systems connecting to it. While network segmentation will

inevitably improve security, it will not mitigate the risk entirely. If an attacker could gain

access to a network switch, the HL7 data would still transmit as clear-text.

3.4. ARP Spoofing Defenses
Network administrators are quick to dismiss static ARP entries as having no

security benefits. While static ARP entries do provide speed improvements and can cut

down on network noise, they can also improve security. A static ARP entry creates a

permanent MAC and IP address association in the ARP cache so it cannot get changed

with gratuitous ARPs. On Windows, a static ARP entry receives a “static” designation in

place of "dynamic" under the type column as shown in Figure 19. On Linux, a "PERM"

tag identifies a static ARP entry. Regardless of the underlying operating system, static

ARP entries successfully prevent ARP spoofing attacks as expected.

Create a static ARP entry in Windows (from an administrator prompt)
C:\>netsh interface ipv4 add neighbor "Local Area Connection"
10.0.0.127 00-0c-29-7f-16-f3 store=persistent
Windows system ARP entries - post-static ARP entry
C:\>arp -a
 Internet Address Physical Address Type
 10.0.0.127 00-0c-29-7f-16-f3 static
Create a static ARP entry in Linux (as root or using sudo)
arp -s 10.0.0.126 08:00:27:1d:a6:c2
Linux system ARP entries - post-static ARP entry
arp -a
? (10.0.0.126) at 08:00:27:1d:a6:c2 [ether] PERM

	

Figure	19:	Creating	&	Verifying	Static	ARP	Entries

If an administrator cannot modify the OS, networking equipment such as a switch

or router could also perform this defense-based role. Similar to the shortcomings of

network segmentation, static ARP entries do nothing to protect or encrypt the data. An

attacker could still collect HL7 information by gaining access to an intermediate

networking device. Another possible approach to protecting a network against ARP

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 19
	

Dallas	Haselhorst	

spoofing is through detection rather than prevention. Tools such as arpwatch can monitor

and alert on MAC and IP address pairing changes, which would alert when malicious

ARP traffic is detected.

3.5. Virtual Private Networks (VPN)
If HL7 messages receive protection, a VPN is the most common means. Based on

first-hand observation alone, interfaces only utilize VPN solutions when the data is sent

over the Internet or shared with a different location, i.e., not for internal communications.

Even then, a site-to-site VPN provides encryption between the tunnel endpoints, but it

does nothing to protect the data before reaching the point of encryption. One cannot

overlook the security of the HL7 data pre-encryption when analyzing the risks associated

with handling insecure data. The combination of proper network segmentation and a site-

to-site IPSEC tunnel can offer adequate defenses, although a thorough understanding of

the environment is necessary to confirm limited exposure.

Most organizations choose to deploy router and firewall-based site-to-site tunnels

even though host-to-host VPN options are available. A host-based tunnel and proper

configuration would eliminate any concerns regarding data in transit. However, host-

based VPN tunnels can be difficult to configure. A host-to-host VPN solution in any form

would potentially require some level of assistance from the medical software vendor. If

the software vendor also manages the OS where the software resides, their involvement is

almost guaranteed. Aside from configuration and IP address changes at the OS-level,

both ends of the VPN would need configuration along with changes on the interface

itself.

3.6. SSH Tunneling
VPN tunnels and SSH tunneling are the only two defense methodologies

discussed here that protect HL7 data by encrypting the data. Due to added benefit of

encryption alone, VPNs and SSH tunneling are the most thorough options to protect

existing HL7 interfaces. An SSH tunnel is often easier to configure than a VPN and the

software is commonly available for free. Amazingly, utilizing SSH tunneling is not

frequently discussed as an option to protect HL7 data. SSH tunneling is little more than a

passing mention in knowledge base articles (iNTERFACEWARE, 2013) or tucked away

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 20
	

Dallas	Haselhorst	

in vendor documentation as an alternative to VPN tunnels (athenahealth, 2016). This lack

of attention given to SSH tunneling might result from the overall lack of interest in

securing HL7.

Figure 20 depicts how an HL7 connection over SSH works (lower boxes) in

comparison to a standard HL7 connection (upper boxes). Instead of the direct connection

via port 6661 found in the standard connection, the SSH tunnel sends all traffic destined

for port 6661 to port 22. System 1 encrypts the data before it leaves the host and System

2 decrypts it upon arrival. System 2 sends the decrypted data internally to port 6661 to

complete the transmission. With SSH tunneling, unencrypted HL7 data is never visible

outside of the two endpoints.

A real advantage

to using SSH tunneling is

the easy implementation.

SSH tunneling requires

very few adjustments on

either end and does not

require changes to the

interface messaging or

HL7 formatting, making it

very attractive to secure

existing interfaces. Leaving most of the configuration untouched is significant because

the initial setup of HL7 interfaces is notoriously challenging. If both ends are Unix or

Linux variants, there is a high likelihood that SSH may already exist on the operating

system and no additional software is necessary.

If either endpoint is using Windows, there are several free options available. After

many stalled attempts over the years, Microsoft has finally added SSH into the Windows

operating system. To install SSH on Windows, one can also use the Win32-OpenSSH

PowerShell package. Follow the instructions at the first link below to install the package.

If OpenSSH from Microsoft is a little too bleeding edge, the developers of OpenSSH

have a non-PowerShell setup (second link). Although it would be excessive for SSH

Figure	20:	HL7	Over	SSH	Tunnel	Comparison

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 21
	

Dallas	Haselhorst	

tunneling features alone, Cygwin also provides an SSH server and client as a part of its

feature-rich, Unix-like environment for Windows.

https://github.com/PowerShell/Win32-OpenSSH/wiki/Install-Win32-OpenSSH

http://www.mls-software.com/opensshd.html

 Once the software installation is complete, the remaining setup for an SSH tunnel

conversion consists of three phases – 1) configuring password-less SSH access, 2)

configuring the SSH tunnel, and 3) modifying the interface engine settings. The steps to

create a tunnel on Windows and Linux are very similar. While some commands may

differ, the thought process, overall configuration, and outcome are the same.

The creation of public keys often occurs during the initial SSH setup and if not,

the ‘ssh-keygen' command can accomplish this task as shown in Figure 21. Once the key

generation is complete, copy the public key (.pub) over to the .ssh/authorized_keys file

on the other system. On Windows or Linux, copying/pasting the public key can be

performed manually.

Generate an SSH public/private key pair
administrator@BASE-PC C:\Program Files\OpenSSH>ssh-keygen -t ed25519
Generating public/private ed25519 key pair.
Enter file in which to save the key
(C:\Users\administrator/.ssh/id_ed25519):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
C:\Users\administrator/.ssh/id_ed25519.
Your public key has been saved in
C:\Users\administrator/.ssh/id_ed25519.pub.

Copying over the public key file – Method #1
ssh-copy-id <user>@<hostname>
Copying over the public key file – Method #2
cat ~/.ssh/<file>.pub | ssh <user>@<hostname> 'cat >>
.ssh/authorized_keys'

Figure	21:	Generating	SSH	Keys	&	Configuring	Password-less	SSH

On Linux, one can use the ‘ssh-copy-id' method found in Figure 21 if the system has it. If

not, the second method uses standard tools available on nearly every Linux installation.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 22
	

Dallas	Haselhorst	

Once complete, a simple ‘ssh <user>@<host>’ command will test the configuration. If

the key copying goes as planned, the user will now have access to the second system and

bypass the login prompt entirely. If this is a long-term solution, hardening the SSH

configuration (sshd_config) is strongly recommended. Hardening SSH would include

steps such as disabling password authentication and disabling version 1 of the SSH

protocol.

 Once the password-less SSH is tested and working, the creation of the SSH tunnel

is next. The one-line command for the tunnel is in Figure 22 below. The "-f" backgrounds

the SSH session and the "-L" forwards the localhost port. The IP address is that of the

remote system while 6661 is both the local and remote port. The "-N" means do not run a

command on the remote system and only forward ports. In a more permanent

arrangement, a tool such as autossh or a shell script could automatically restart the SSH

connection in the event it dies. During testing, the “-f” should be substituted with a “-v”

to see the verbose output from the tunnel. With verbosity enabled, each communication

including “test connections” will generate logs.

C:\>ssh.exe -f root@10.0.0.127 -L 6661:10.0.0.127:6661 -N

	

Figure	22:	Creating	the	SSH	Tunnel

Different ports could be used for the newly formed SSH interface if the interface

administrator chose to do so. This approach might prove helpful during the testing stage,

but changes to the ports would also require modifications to the corresponding ports on

the sending and receiving interfaces. Conversely, using the previously configured port

numbers would only require a single change to the sending interface configuration.

Instead of the data sending directly to the receiving system IP address of 10.0.0.127, the

HL7 traffic redirects to the localhost as shown in Figure 23. The SSH tunnel then handles

the system-to-system communication. On the receiving side, no additional modifications

are required in the interface application as SSH handles the traffic redirection back to

6661. The lack of changes to the receiving interface is tremendously helpful if a vendor

controls the configuration.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 23
	

Dallas	Haselhorst	

Figure	23:	TCP	Sender	Modifications	for	SSH	Tunneling	

SSH tunneling protects extremely well against the earlier MITM ARP spoof

attack. As previously discussed, HL7 data sends as clear-text by default. The Wireshark

example below in Figure 24 is from an HL7 interface over an SSH tunnel. Although the

SSH tunnel did not prevent the ARP spoof attack from occurring, it neutralizes the

effectiveness of the attack. The HL7 data is unreadable due to encryption and as

important, the data remains confidential and unaltered.

Figure	24:	Encrypted	HL7	Message	Captured	During	ARP	Spoofing	Attack		

4. Conclusion
As healthcare and security professionals deepen our understanding of how

healthcare data can be misused, protecting data at rest or in transit should be a priority.

There is no doubt healthcare is receiving plenty of attention from cybercriminals. Though

targeted attacks are unlikely to subside, medical data is far too valuable for the current

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 24
	

Dallas	Haselhorst	

level of protection. Likewise, it is important to understand where the data lies and where

it travels so we can protect it. When recognizing where significant gaps exist in

protecting medical data, HL7 should be near the top of the list.

Perhaps the relationship between security, HL7, and its impact on healthcare is

best summarized by Scott Rohleder, the CIO at HaysMed, part of The University of

Kansas Health System:

When a person enters a healthcare facility for care, there is a certain level of

implicit trust that the information in their medical record is precise. One of the

last things on their minds is that their healthcare-related data might be at risk due

to insecure communication protocols. However, with the current implemented

base of HL7 interfaces that may not be the case… Since all organizations utilize

this method to conduct business, it is very important that everyone understands

the risks (personal communication, May 5, 2017).

Information security and IT professionals alike have worked tirelessly over the

years toward removing insecure communications such as Telnet and FTP. Meanwhile, an

obscure standard known as HL7 is used in nearly every hospital worldwide and it

possesses many of the same vulnerabilities we have worked diligently to eliminate. The

situation is more dangerous considering HL7 messages carry some of the most sensitive

data found in a hospital. Yes, the attacks described above require local network access,

but that has proved to be a minor barrier in the past decade or more. The ease of gaining a

local foothold on a network halfway around the world and pivoting toward more valuable

data such as HL7 falls far short of complex for motivated attackers.

There are strengths and weaknesses to each HL7 defense method described. When

implemented without additional compensating controls, they all improve security to some

degree and eliminate potential attack vectors. However, none of the defenses are perfect

by themselves. Instead, a combination of protections will ultimately yield a proper

defense-in-depth methodology. All the defense mechanisms work for existing HL7

interfaces, i.e., there is no need to re-design or re-architect an existing HL7 interface.

Healthcare needs to do more to protect data and that change needs to happen now.

Defenders cannot ignore the extraordinary amount of damage an attacker can cause by

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 25
	

Dallas	Haselhorst	

collecting HL7 data or using it for more nefarious purposes. Sensitive HL7 and patient

medical data cannot continue sitting in the open, waiting for the next major breach to

occur. Our data is too valuable.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

HL7: Attacking and Defending the Achille’s Heel of Healthcare 	 26
	

Dallas	Haselhorst	

References

athenahealth, Inc. (January 2016) Connectivity Methods Overview. Retrieved from

https://www.athenahealth.com/~/media/athenaweb/files/developer-

portal/connectivity_methods_overview.docx?la=en

Fuentes, Mayra Rosario. (2017). Cybercrime and other Threats faced by the Healthcare

Industry. Retrieved from

https://www.trendmicro.com/content/dam/trendmicro/global/en/security-

intelligence/research/reports/wp-cybercrime-&-other-threats-faced-by-the-

healthcare-industry.pdf

Health Care Industry Cybersecurity Task Force. (June 2017). Report on Improving

Cybersecurity in the Health Care Industry. Retrieved from

https://www.phe.gov/Preparedness/planning/CyberTF/Documents/report2017.pdf

HL7 International. (2007, August 31). Implementation FAQ: Encryption and Security.

Retrieved January 26, 2017, from

http://wiki.hl7.org/index.php?title=Implementation_FAQ:Encryption_and_Security

iNTERFACEWARE. (2013, December 5). Secure Protocols for HL7. Retrieved February

13, 2017, from http://help.interfaceware.com/kb/164

Medical Informatics Engineering. (2016, July 6). Sample HL7 Messages. Retrieved June

1, 2017, from http://www.mieweb.com/wiki/Sample_HL7_Messages

Suiche, Matt. (June 2017). Petya.2017 is a Wiper, Not Ransomware. Retrieved July 1,

2017, from https://securelist.com/expetrpetyanotpetya-is-a-wiper-not-

ransomware/78902/

Tarala, James & Tarala, Kelli. (April 2015). The What, Where and How of Protecting

Healthcare Data. Retrieved from https://www.sans.org/reading-

room/whitepapers/dlp/what-protecting-healthcare-data-35887

Zurier, Steve. (December 2016). 91% Of Cyberattacks Start With A Phishing Email.

Retrieved May 1, 2017, from http://www.darkreading.com/endpoint/91--of-

cyberattacks-start-with-a-phishing-email/d/d-id/1327704

