
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Scott	D.	Fether,	scott.d.fether.mil@mail.mil	

PCAP Next Generation: Is Your Sniffer Up to Snuff?

GIAC (GCIA) Gold Certification

Author: Scott D. Fether, scott.d.fether.mil@mail.mil
Advisor: Johannes Ullrich

Accepted: February 22, 2018

Abstract

The PCAP file format is widely used for packet capture within the network and security
industry, but it is not the only standard. The PCAP Next Generation (PCAPng) Capture
File Format is a refreshing improvement that adds extensibility, portability, and the
ability to merge and append data to a wire trace. While Wireshark has led the way in
supporting the new format, other tools have been slow to follow. With advantages such as
the ability to capture from multiple interfaces, improved time resolution, and the ability
to add per-packet comments, support for the PCAPng format should be developing more
quickly than it has. This paper describes the new standard, displays methods to take
advantage of new features, introduces scripting that can make the format useable, and
makes the argument that migration to PCAPng is necessary.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 2

	

Author	Name,	email@addressmail.mil	 	 	

1. Introduction
The PCAP file format has been the de facto packet capture format for many

security tools for years, but there is a new format that is gaining support. The PCAP Next

Generation (PCAPng) Capture File Format is currently defined as an Internet

Engineering Task Force (IETF) Internet-Draft and is a "work in progress" (Tuexen,

Risso, Bongertz, Combs, & Harris, 2017). The format’s stated goals are to improve upon

the PCAP format by adding extensibility, portability, and the ability to merge and append

data to the file. PCAPng introduces more granular timestamps, the ability to capture

traffic from multiple interfaces, fields for useful metadata, and additional statistics

pertaining to dropped packets. PCAPng’s GitHub contains a list of its current

implementations. While most applications can read the new format, fewer can write it,

and even fewer use the format as their default. Libpcap, the library that the popular

tcpdump relies on, does not support the writing of PCAPng. Only one fork of Scapy

supports the ability to read PCAPng, and it cannot write the file ("PCAPng/PCAPng,"

2017). This information makes it apparent that more application development is

necessary if the security community is going to support PCAPng.

Of the applications listed on the PCAPng GitHub page, Wireshark supports

PCAPng more than any other application. PCAPng is currently the default format for

Wireshark and TShark and is the standard for packet captures. The support also extends

to several of the tools included with Wireshark. Wireshark started using PCAPng as its

default format in 2012 with the introduction of Wireshark 1.8. With one of the most

popular packet capture tools using PCAPng as its default, one would think that other

applications would also take advantage of the new features that PCAPng introduces.

While support has increased over the years, movement to the new standard has been

slow. Much of the delayed progress is attributed to the fact that many tools rely on

libpcap library, which will be discussed further in Section 2.1.

With or without backwards compatibility, the lack of standardized support for one

format over another can present problems for analysts that make frequent changes to

capture files. Compatibility issues are particularly evident when analysts transfer captures

from one security analyst to the next. If analysts do not have access to a compatible

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 3

	

Author	Name,	email@addressmail.mil	 	 	

application, the additional features of a PCAPng file become useless. Nevertheless,

conversion between formats is possible and is a common practice. Merging different

formats can also be problematic, however. Important metadata included in PCAPng files

can be lost or confused when merged with PCAP files. Undoubtedly, analysts have been

in these situations before. Despite compatibility issues, developers aren’t moving with

urgency to update code to support the new format. It is possible that the community has

not carefully considered the benefits of PCAPng. This paper will delve into features of

the file format to show why it's necessary for the industry to move more aggressively

towards supporting PCAPng. Tools that support the format will be used to demonstrate

its practical use during real-world scenarios. Before those scenarios can be demonstrated,

however, it’s important to understand the differences between PCAP and PCAPng, and

what added benefits PCAPng brings to the wire capture and analysis process.

2. File Format Comparison
2.1. PCAP

The PCAP file format is standardized with many popular networking tools such as

tcpdump. This format is the most widely accepted capture file among network analysis

tools. Libpcap is a portable C/C++ library for network traffic capture (“TCPDUMP &

LIBPCAP”, 2017). Packet capture files that often appear with the .pcap extension are

referred to as either PCAP files or libpcap files. This section, will focus on the file

format – not the portable library.

The general structure of a capture in the PCAP format is relatively simple. At the

beginning of the capture file, there is a global header that contains information for the

trace as a whole. This header only appears one time in the whole capture. It is followed

by a packet header that contains information for the proceeding packet. Each frame has a

separate packet header. The packet data that follows is a representation of the raw data

that appeared on the network at the time of capture. Figure 1 shows the general structure

of a PCAP file.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 4

	

Author	Name,	email@addressmail.mil	 	 	

Figure 1 (“Development/LibpcapFileFormat”, 2017) – PCAP Basic Structure

The global header provides a few useful pieces of information. The first four

bytes of this field consist of the magic number, which identifies the file as a PCAP file. It

also identifies the capture's "endianness." A Big Endian capture will use the value of

0xa1b2c3d4 while a Little Endian capture will use the swapped number of 0xd4c3b2a1.

These bytes are important because the system must determine what byte order to expect

for the remaining fields of the header. If the magic number is swapped, the fields that

remain will be swapped as well (“Development/LibpcapFileFormat," 2017). The magic

number is followed by the version number of the file format. Remaining fields include

information about the local time zone for the capture, accuracy of timestamps, the length

of the capture, and the link-layer header type.

Following the global header, each packet has a separate packet header. This

header includes the following fields: ts_sec, ts_usec, incl_len, and orig_len. The ts_sec

field identifies (in seconds) the date and time when the packet was captured. This is

displayed in epoch time which is the value in seconds since January 1, 1970 00:00:00

GMT. The ts_usec field provides further granularity for packet capture time. Its value

represents microseconds as an offset to the ts_sec field. The incl_len field represents the

number of bytes that are saved in the file. The orig_len field is the length of the packet as

it appeared on the network (not necessarily the amount of data that was saved). It’s

important to note that depending on the parameters set at the time of capture, the PCAP

file may not save the entire packet. Data can be cut off if packets on the network are

larger than the maximum size allowed at the time of capture

(“Development/LibpcapFileFormat," 2017). Figure 2 provides a quick reference for the

fields contained in the PCAP packet header.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 5

	

Author	Name,	email@addressmail.mil	 	 	

Figure 2 (“Development/LibpcapFileFormat”, 2017) – Pcap Packet Header

The captured packet data will follow the packet header for the number of bytes

that were specified in the incl_len field. In essence, the PCAP file format is simply a

container for the captured data, providing little more than timestamps and link-layer

protocol data. For years, this method has worked well for network analysts in the way of

troubleshooting and network forensics. With the combination of timestamps and byte-

level data capture, an analyst can parse the data and understand what is happening at the

network level. In combination with protocol parsers, this has assisted in upper-layer

troubleshooting, incident response, and network forensics. As a simple network capture

file format, it has been implemented into many tools, but it is not without its drawbacks.

Because of its simplicity, the PCAP file format leaves some features to be desired.

Time resolution, for example, does not necessarily fit the needs of high-speed network

connections that are available in the modern environment. Increased time resolution in

nanoseconds is not possible with this format. Another limitation is that the format cannot

store packets for multiple interfaces of different link-layer types. It is not possible for

PCAP to capture on an Ethernet and on a Wireless interface in the same instance. This

can lead to the need to merge PCAPs which can cause timestamp collisions. Another

shortcoming of the format is the lack of statistics for packet drops. There are no

mechanisms in the format that provide this information. Another current feature that is

desired today is the ability to add comments to the header. PCAP files are often used in

incident response, and they can be passed from one analyst to another. In the case of

PCAP files, these transfers sometimes require separate documentation to help the new

analyst identify interesting traffic. A desirable feature would be the capability to include

notes directly in the packet header, so analysts can collaborate more easily.

An answer to some of these drawbacks is the development of PCAPng. PCAPng

provides a way to include more metadata in the packet capture itself, which can be useful

to network and security analysts. Improved time resolution and the ability to capture from

multiple interfaces are immediate improvements to the PCAP file format. In order to

understand the capabilities of the new format, the specifics of the file structure must be

considered.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 6

	

Author	Name,	email@addressmail.mil	 	 	

2.2. PCAP Next Generation
While the ultimate goal of capturing traffic on the wire is to view data at its most

basic byte level, PCAPng places special importance on the reading and writing of a

capture’s metadata. Metadata is data that describes information about an aspect of the

capture, and this is expressed in additional layers organized as blocks. PCAPng’s Internet

Draft (Tuexen, Risso, Bongertz, Combs, & Harris, 2017) describes the block types and

their structures. There are four types of blocks: Enhanced Packet Block (EPB), Simple

Packet Block (SPB), Name Resolution Block (NRB), and Custom Block (CB). Each

block type follows a standard structure which allows for easy processing and provides a

framework for the addition of new block types. Applications can skip blocks they may

not know how to process or don’t need. Figure 3 describes the basic block structure.

Figure 3 (Tuexen, Risso, Bongertz, Combs, & Harris, 2017) – Basic Block Structure

The Section Header Block (SHB) is mandatory and must appear at least once in

each file. It identifies the beginning of a section in the capture file. Optional blocks that

may appear in a file include the Interface Description Block (IDB), Enhanced Packet

Block (EPB), Simple Packet Block (SPB), Name Resolution Block (NRB), Interface

Statistics Block (ISB), and Custom Block (CB). This list is not all-inclusive, as there are

several experimental blocks that are being considered by the PCAPng authors for future

implementation (Tuexen, Risso, Bongertz, Combs, & Harris, 2017). Each of these blocks

may contain a number of options. A file must begin with an SHB, but there may be

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 7

	

Author	Name,	email@addressmail.mil	 	 	

multiple SHBs in a capture. A "section" is defined as the data that is delimited by SHBs

or the end of the file. It is likely that an analyst will see multiple SHB’s when a file is

merged. Figure 4 shows a graphical representation of how sections are identified.

Figure 4 (Tuexen, Risso, Bongertz, Combs, & Harris, 2017, p 7)

This graphic is a great example of the portability that PCAPng can bring to the

table. This type of packet capture is likely the concatenation of three PCAPng files that

came from different sources. Notice that two sections include a v1.0 SHB, but the middle

section includes v1.1. This indicates that the capture occurred on different devices. The

built-in portability features of the file format would permit an application that is only

compatible with SHB v1.0 to read the first section, skip the SHB v1.1 section that it does

not understand, and continue reading the third section. With so many blocks, the format is

much more robust than its PCAP predecessor. The added complexity comes with

capability, flexibility, and portability, however. A more complex block may look

something like Figure 5 at its basic level. This graphic represents packets captured from

three interfaces, the third of which begins after packets have arrived on other interfaces. It

also includes Name Resolution Blocks (NSB) and Interface Statistics Block (ISB)

(Tuexen, Risso, Bongertz, Combs, & Harris, 2017).

Figure 5 (Tuexen, Risso, Bongertz, Combs, & Harris, 2017, p 8)

Each of the blocks may contain a number of options. While some blocks have

options designed specifically for their block type, other options can be present in any

option field. These universally acceptable options are opt_endofopt (code 0),

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 8

	

Author	Name,	email@addressmail.mil	 	 	

opt_comment (code 1), and opt_custom (code 2988/2989/19372/19373). The

opt_endofopt option identifies the end of the optional fields and must be used only once

within the list of options (Tuexen, Risso, Bongertz, Combs, & Harris, 2017). The

opt_custom option is available for vendor-specific data. The opt_comment option, a

UTF-8 string which contains human-readable text, is extremely useful because it

describes something about that block. For example, an opt_comment option might be

modified for a section that appears interesting to an analyst. The analyst might insert the

text “This packet contains the text that triggered our snort signature! Investigate further!”

With tools that can write to PCAPng files, this field can be modified and saved as part of

the overall capture.

Now that the different types of blocks and options are understood, it’s important

to delve more deeply into the commonly seen blocks. This overview is not a complete

description, however. To fully understand the structure of each, block, it is best to

reference the internet draft in its original document. The Section Header Block (SHB)

appears in every capture, so it’s important to describe it in detail. Figure 6 shows the SHB

Format.

Figure 6 (Tuexen, Risso, Bongertz, Combs, & Harris, 2017, p 14) – SHB Format

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 9

	

Author	Name,	email@addressmail.mil	 	 	

The SHB Block Type field is always expected to equal 0x0A0D0D0A for a file

that is not corrupted. This can be used to identify SHBs when reading files in a hex

editor. The Block Total Length field is self-explanatory. Byte-Order Magic is the magic

number for PCAPng, and it is used to identify the “endianness” of the file. The value of

this field is 0x1A2B3C4D. Major and minor version fields assist applications with

identifying possible compatibility issues. The Section Length field identifies the length in

octets of the section that follows. This value does not include the length of the SHB itself,

and the field is padded to a 32-bit alignment. The options block is variable and can

include any of the standard options that were previously mentioned. In addition to

standard options, this field can also include options that identify the hardware name,

operating system name, and the name of the application used to create the section. These

SHB-specific options are identified as shb_hardware (code 2), shb_os (code 3), and

shb_userappl (code 4).

Another common block is the Interface Description Block (IDB). This block is

mandatory for most captures, and it contains information about the interface where the

capture occurred. This is one of the components that allows PCAPng to capture on

multiple interfaces at the same time. The IDB provides a mechanism to distinguish

between interfaces. There are a number of options for the IDB that are useful to other

blocks within the file including IP addresses, MAC addresses, speed of the interface, time

resolution, capture filters, and operating system information. These option fields can also

be valuable for the application that is reading the file. Figure 7 shows the options that are

valid within the IDB.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
0 	

Author	Name,	email@addressmail.mil	 	 	

Figure 7 (Tuexen, Risso, Bongertz, Combs, & Harris, 2017, p 18) – IDB Options

The if_name option shows the name of the device that captured the information.

Since one PCAPng file can consist of captures from multiple interfaces, the if_name

option is important for distinguishing between interfaces. The next few options also

contain identifying information such as if_description, if_IPv4addr, if_IPv6addr,

if_MACaddr, and if_EUIaddr. The speed of the interface is identified in the if_speed

option which consists of a 64-bit decimal number representing speed in bits per second.

Notably, the if_speed option only shows the speed of the interface performing the

capture. It does not define the time resolution of timestamps. Time resolution is contained

in the next option, if_tsresol.

The if_tsresol option is significant because adjusting this option can provide an

important improvement over PCAP’s current capability. PCAP can only provide time

resolution in microseconds (10^-6 seconds) which results in 999,999 packets per second.

This can make it difficult for PCAP to distinguish true timing between frames captured

even on a basic 1Gbps interface (Walls, 2012). As described by Walls:

The PCAPng format overcomes PCAP’s time resolution limitation by defining a

flexible format that can be used to adjust the resolution. Timestamps are now

expressed as a single 64-bit time unit, representing the number of time units since

1/1/1970. An associated resolution field (if_tsresol) specifies what the time units

mean. (Walls, 2012)

The default value for this option is still 10^-6 seconds, but it can be adjusted to a much

deeper resolution. As this option can express timestamps in nanoseconds, a much-needed

improvement for capturing on high-speed links is provided.

Another option available in this block is the if_timezone option, which identifies

the timezone for the capture. The if_filter option describes the filter that might have been

used to capture the traffic. If a capture filter was used to define only interesting traffic,

that filter information is defined directly in this optional field. The if_os option identifies

the operating system of the interface that performed the capture. Interestingly enough,

this can be different than the OS information provided in the SHB because the capture

could have been performed on a remote machine. Finally, the if_fcslen provides the

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
1 	

Author	Name,	email@addressmail.mil	 	 	

length of the Frame Check Sequence for this interface, and the if_tsoffset provides an

offset for obtaining an absolute timestamp if one is necessary (Tuexen, Risso, Bongertz,

Combs, & Harris, 2017, p 20).

This is a great deal of information to take in, but just in this one block, PCAPng

provides some drastic improvements over the PCAP file format. It provides a way for an

analyst to capture on multiple interfaces and identify unique captures after they have been

merged. It also allows the analyst to increase timestamp resolution for capture on high-

speed interfaces. The ability to identify whether the capture was performed remotely is

quite possible when comparing OS information between the SHB and the IDB. Address

information is scalable between both IPv4 and IPv6 interfaces. The additional data can

assist an analyst in discovering the source of a capture.

 As the basic structure of a capture in PCAPng and a description of some of the

important blocks for capturing metadata has been presented, the next sections will focus

on the block that contains the captured data. There are two blocks that contain the data

coming from the network: the Enhanced Packet Block (EPB) and the Simple Packet

Block (SPB). The EPB is a fully-featured block and will provide the most information

about the captured data. The SPB is intended for use in a resource-constrained

environment because it is lightweight and easier to process. It is possible to see both

types of blocks in a capture because a tool could be configured to switch between the two

based on available resources (Tuexen, Risso, Bongertz, Combs, & Harris, 2017, p 25).

More specifically, the following examples will focus on the EPB. The structure of the

EPB is displayed in Figure 8 below.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
2 	

Author	Name,	email@addressmail.mil	 	 	

Figure 8 (Tuexen, Risso, Bongertz, Combs, & Harris, 2017, p 22) – EPB Format

The field for Interface ID must match the number provided in the IDB within the current

section of the capture. This is how a frame can be tied to a particular capture interface.

The Packet Data field will include the captured data from the network including link-

layer headers. Options available include epb_flags, epb_hash, and epb_dropcount. The

epb_hash is provided for integrity as data is being transferred from device to device. The

epb_dropcount option specifies the number of packets lost between this particular packet

and the one that was captured before it. This is another statistic that can be very useful for

an analyst since the epb_flags option provides link layer information such as whether the

packet was inbound or outbound, broadcast or multicast, or whether there are any link-

layer errors identified (Tuexen, Risso, Bongertz, Combs, & Harris, 2017, p 25).

The fields and options that have been described this far are the most common

makings of the PCAPng file format. There are many more options available, but the

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
3 	

Author	Name,	email@addressmail.mil	 	 	

SHB, IDB, EPB blocks make up the nuts and bolts of the new standard. These blocks

alone provide the ability to capture on multiple interfaces, increase time resolution on

timestamps, and add comments on a per-packet basis, which is a drastic improvement on

the PCAP format. Additional blocks provide even more capability such as better

processing for name resolution (Name Resolution Block), metadata for capture statistics

(Interface Statistics Block), information about compression (Compression Block),

encryption information (Encryption Block), or even information about events or security

alerts (Event/Security Block). The file format’s capability increases daily, and its added

benefits will surely impact the network and security communities in a positive way. Tools

used to read and write the file format must improve, but for now, Wireshark leads the

way.

3. Wireshark Application
Wireshark	started	as	a	project	called	Ethereal	which	was	released	in	1998	

under	the	GNU	Public	License	by	Gerald	Combs.	Ethereal	was	rebranded	in	2006	

under	the	name	Wireshark,	and	today	it	has	more	than	500	developers	who	actively	

contribute	to	the	project	(Sanders,	2017,	pp.	37-38).	Although	Wireshark	is	popular	

for	its	easy-to-navigate	GUI,	a	typical	install	includes	TShark	which	is	a	full-featured	

command	line	version	of	Wireshark.	TShark	has	all	the	same	capabilities	that	

Wireshark	does,	as	it	can	take	advantage	of	the	ability	to	read	and	write	PCAPng.	It	

also	comes	with	tools	such	as	EditCap,	MergeCap,	ReorderCap,	which	assist	in	

editing	and	manipulating	captures.	Wireshark’s	popular	GUI	makes	it	easy	to	take	

advantage	of	the	features	PCAPng	introduces.	For	example,	Figure	9	shows	the	

ability	to	capture	from	multiple	interfaces.	An	analyst	can	choose	one	of	the	active	

interfaces	on	a	machine,	hold	CTRL,	and	click	on	a	second	interface.	Wireshark	will	

capture	traffic	from	both	interfaces	at	the	same	time	–	a	feature	not	possible	without	

PCAPng’s	ability	to	distinguish	between	interface	ID’s.	

	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
4 	

Author	Name,	email@addressmail.mil	 	 	

	
Figure 9 – Perform a Capture
	

In	this	case,	the	analyst	can	capture	on	the	wired	and	wireless	interfaces	at	

the	same	time	which	saves	a	significant	amount	of	time.	These	examples	are	

executed	on	a	home	computer,	it	is	evident	how	easily	this	concept	could	be	applied	

in	a	situation	where	the	behavior	of	two	networks,	separated	by	physical	interfaces,	

might	need	to	be	captured	at	the	same	time.	Distinguishing	the	traffic	is	as	simple	as	

applying	a	display	filter	when	the	capture	is	complete.	Figure	10	shows	that	each	

packet	is	given	an	interface	ID	–	a	direct	benefit	of	the	fields	available	in	the	

Interface	Description	Block	(IDB)	and	Enhanced	Packet	Block	(EPB)	provided	by	

PCAPng.	Because	this	information	exists	in	the	capture,	analysts	can	distinguish	

between	the	two	interfaces	and	capture	at	the	same	time.	Timestamps	can	be	

compared	with	more	accuracy	using	this	method,	and	merging	becomes	less	

necessary.	Filtering	the	capture	to	display	information	from	only	one	interface	is	

simple.	As	displayed	in	Figure	10,	an	analyst	can	simply	right-click	on	the	interface	

ID	and	choose	to	filter	on	that	interface	alone.	This	is	considered	a	“display	filter,”	

and	can	be	defined	at	any	time	after	a	capture	is	complete.	Wireshark	also	provides	

the	ability	to	apply	a	“capture	filter,”	which	tells	the	application	to	save	only	the	

information	allowed	by	the	filter.	For	example,	one	could	sniff	a	wireless	network,	

but	choose	to	save	only	http	traffic	to	the	PCAPng	produced	from	the	sniffing	

session.	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
5 	

Author	Name,	email@addressmail.mil	 	 	

	

	
Figure	10	-		Filter	on	Interface	ID	

	

Another	capability	that	is	beneficial	to	the	PCAPng	file	format	is	making	per-

packet	comments,	as	previously	mentioned.	The	opt_comment	option	allows	the	file	

format	to	accept	a	UTF-8	human-readable	string.	Since	each	packet	has	a	header	

capable	of	being	edited	by	an	upper-level	application,	it's	easy	to	place	analytical	

notes	directly	into	a	PCAPng	file.	Wireshark	takes	advantage	of	this	capability,	and	

comments	can	be	added	directly	to	a	packet.	By	simply	right-clicking	on	any	packet	

the	user	will	be	given	the	option	to	add	a	comment.	Figure	11	shows	the	simple	act	

of	adding	comments	to	packet	number	17,	the	completion	of	a	TCP	3-Way	

Handshake.		

	
Figure	11	-		Packet	Comment	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
6 	

Author	Name,	email@addressmail.mil	 	 	

	

For	this	example,	a	comment	has	been	added	to	packet	17	that	includes	a	

name	and	email	address.	This	shows	how	an	analyst	would	take	advantage	of	the	

commenting	ability	that	PCAPng	provides.	If	an	analyst	expects	that	other	analysts	

will	view	their	comments,	he	could	make	it	standard	practice	to	add	contact	

information	to	those	comments.	One	might	even	desire	to	add	comments	to	each	

packet	to	identify	who	captured	the	packet	and	when	the	capture	took	place.	This	

would	ensure	that	even	when	the	packet	capture	gets	split	up	into	multiple	files,	

each	packet	shows	the	time,	date,	and	circumstance	of	the	capture.	This	would	

contribute	to	shared	information	and	the	ability	for	analysts	to	collaborate.	Once	a	

comment	has	been	applied,	a	great	benefit	is	the	ability	to	filter	on	those	comments.	

In	this	example,	since	this	particular	comment	contains	a	name,	the	analyst	can	just	

filter	for	any	packet	that	contains	a	frame	comment	with	the	name	he	or	she	seeks.	

This	is	shown	in	Figure	12.	

	

	
Figure	12	–	Filter	for	Commented	Packet	

	

The	impressive	part	about	these	features	is	that	they	are	contained	within	

the	file	format.	These	features	are	portable,	and	they	are	carried	along	as	a	PCAPng	

file	is	transported	from	application	to	application.	If	the	application	supports	the	

reading	of	the	PCAPng	file	format,	comments	will	carry	over	as	part	of	that	file.	

TShark	can	be	implemented	to	further	display	how	analysts	can	take	advantage	of	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
7 	

Author	Name,	email@addressmail.mil	 	 	

these	new	features.	TShark	is	Wireshark’s	command	line	version	of	Wireshark.	

Because	it	is	CLI,	users	of	tcpdump	will	feel	comfortable	learning	TShark.	TShark	has	

the	added	advantage	of	being	able	to	read	and	write	to	the	PCAPng	file	format	which	

brings	all	the	additional	features	to	the	table.	

3.1 TShark and other Command Line Tools
TShark	has	many	options	and	display	capabilities	that	can	manipulate	the	

display	of	a	PCAPng	file	based	on	an	analyst’s	need.	The	intent	of	this	section	is	not	

to	teach	the	reader	how	to	use	TShark,	but	to	show	the	portability	and	usefulness	of	

PCAPng.	If	the	reader	feels	the	need	to	understand	the	options	used	in	these	

commands,	it	is	recommended	to	read	the	TShark	man-page	available	on	

Wireshark’s	website.	The	capture	used	in	the	previous	section	was	saved	to	a	file	

called	CommentedCaputre.pcapng	and	was	moved	into	the	directory	where	TShark	

is	installed.	A	simple	TShark	command	that	displays	commented	packets	shows	that	

the	packet	comment	used	in	this	example	was	transported	along	with	the	PCAPng	

file.	It	is	readable	by	TShark	and	would	be	readable	to	any	application	that	can	read	

the	file	format,	as	Figure	13	shows.	As	expected,	Frame	17	contains	the	comment	

created	in	the	Wireshark	GUI.	

	

	
Figure	13	–	Portable	Comments	

	

As	demonstrated,	TShark	can	read	PCAPng	files	with	comments.	TShark	can	

also	can	write	a	comment	to	an	entire	capture	when	TShark	is	the	tool	being	used	to	

perform	the	capture.	This	is	different	than	a	per-packet	comment,	however,	and	if	a	

capture	gets	split	into	two	files	at	a	later	time,	this	metadata	might	be	lost.	As	an	

example	of	TShark’s	implementation	of	a	capture	comment,	Figure	14	shows	a	

typical	capture	process.	The	first	command	uses	the	“-D”	option	which	displays	all	

the	interfaces	available	on	which	to	capture.	In	this	case,	interface	3	is	used	which	is	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
8 	

Author	Name,	email@addressmail.mil	 	 	

WiFi.	Using	a	typical	capture	command	along	with	the	“—capture-comment”	option,	

TShark	can	take	advantage	of	the	ability	to	comment	on	a	capture	as	a	whole.	An	

analyst	then	has	the	opportunity	to	add	his	or	her	name,	date,	and	purpose	of	

capture.	Finally,	using	another	tool	that	is	provided	with	Wireshark	called	CapInfos,	

the	comment	that	was	created	during	the	capture	is	displayed.	

	
Figure	14	–	TShark	Capture	with	Capture	Comment	

	

In	order	to	add	per-packet	comments	to	a	capture,	one	must	use	EditCap,	

which	is	another	tool	that	comes	with	a	basic	Wireshark	installation.	EditCap	can	

add,	delete	or	modify	information	on	a	previously	saved	PCAPng	file.	For	example,	if	

an	analyst	wants	to	comment	his	name	on	the	very	first	packet	in	the	capture	that	

was	edited	in	Wireshark,	he	can	use	EditCap	as	shown	in	Figure	15.	With	the	“-a”	

option	in	EditCap,	an	analyst	can	add	a	comment	to	one	frame.	Now	instead	of	

having	just	one	comment	on	Frame	17,	there	is	also	a	comment	on	Frame	1.	

Unfortunately,	there	is	no	option	to	add	the	same	comment	to	a	range	of	frames.	For	

example,	it	may	be	desirable	to	add	capture	information	to	each	frame,	which	would	

ensure	that	the	information	would	survive	most	variations	done	in	EditCap.	

Currently,	there	is	no	easy	way	to	do	this.	

	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 1
9 	

Author	Name,	email@addressmail.mil	 	 	

	
Figure	15	–	Comments	with	EditCap	

	

The	TShark	and	EditCap	tools	both	have	major	limitations.	TShark,	for	

example,	can	only	write	comments	on	a	per-capture	basis.	Even	this	"per-capture"	

commenting	capability	is	limited	because	it	can	only	be	used	at	the	time	of	capture.	

The	proper	use	of	this	ability	was	displayed	in	Figure	14.	TShark	cannot	add	

comments	to	a	previously	saved	file.	TShark	is	not	able	to	write	per-packet	

comments	to	a	PCAPng	file.	These	limitations	require	the	use	of	multiple	tools	

within	a	command-line	environment	to	take	advantage	of	the	commenting	features	

provided	by	PCAPng.	

EditCap	has	the	ability	to	add	comments	to	a	packet,	but	there	is	no	way	to	

add	comments	to	a	range	of	packets.	The	“-a”	option	depicted	in	Figure	15	only	

works	one	frame	at	a	time.	EditCap	also	requires	an	input	file	which	means	that	

comments	cannot	be	added	during	a	capture.	The	PCAPng	file	must	be	fully	written	

before	it	can	be	adjusted	by	EditCap.	Clearly,	the	tools	provided	in	Wireshark	

provide	an	analyst	the	most	comprehensive	ability	to	take	advantage	of	additional	

options	and	fields	that	the	PCAPng	file	format	introduces.	As	a	developing	format,	

Wireshark	could	be	improved	to	support	some	more	advanced	operations,	however.	

The	ability	to	add	per-packet	comments	at	the	time	of	capture	would	be	a	desirable	

improvement,	for	example.	This	capability	applied	to	specific	packets	within	a	

capture	could	help	Wireshark	take	full	advantage	of	commenting	capabilities.	In	the	

meantime,	analysts	resort	to	scripting	to	take	advantage	of	PCAPng's	new	features.	

3.2 Scripting It Out
	
Although	PCAPng	has	some	clear	advantages	over	its	predecessor,	the	

challenge	for	analysts	becomes	how	to	use	these	features	while	their	favorite	tools	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 2
0 	

Author	Name,	email@addressmail.mil	 	 	

are	slow	to	advance	their	capabilities.	This	section	will	pivot	over	to	a	Linux	system	

to	use	the	features	of	bash	scripting.	Since	the	ability	to	write	PCAPng	files	is	not	

fully	supported	in	some	languages,	scripting	combined	with	Wireshark’s	tools	can	

be	used	to	take	advantage	of	PCAPng.	This	example	will	show	how	a	script	can	be	

used	to	filter	interesting	traffic	from	any	capture,	and	how	comments	can	be	added	

to	each	of	those	packets.	As	stated	previously,	tools	like	EditCap	rely	on	a	fully	

written	PCAPng	file,	so	this	is	a	post-capture	task.	It	can	save	time	and	help	the	

analyst	comment	on	interesting	traffic	through	automation.	

During	script	development,	a	Linux	distribution	that	had	Wireshark	installed	

along	with	TShark,	EditCap,	and	MergeCap	was	used.	The	script	will	also	work	on	a	

Windows	system	with	Bash	installed.	Bash	provided	the	easiest	way	to	manipulate	

the	data	and	pass	it	between	Wireshark’s	different	tools.	The	SIFT	Workstation	from	

SANS	was	downloaded	for	this.	Since	it	has	already	been	demonstrated	how	to	

capture	traffic	from	TShark,	this	demonstration	uses	a	previously	captured	PCAPng	

file	that	had	a	large	amount	of	web	traffic.	Chris	Sanders	has	a	multitude	of	PCAPng	

files	posted	on	his	GitHub.	I	chose	one	called	lotsofweb.pcapng	(Sanders,	2017).	

When	analyzing	new	captures,	I	often	spend	time	looking	for	new	TCP	

connections.	This	is	especially	interesting	when	analyzing	web	traffic.	One	could	

also	be	looking	for	connections	to	IP	addresses	that	might	be	untrusted	or	

adversarial.	For	captures	that	have	a	lot	of	TCP	connections,	it	can	be	helpful	to	add	

a	comment	to	each	new	connection.	Because	of	this,	I	decided	to	write	the	script	so	

it	filters	on	new	TCP	connections	and	creates	a	new	PCAPng	file	that	includes	

comments	on	the	first	SYN	packet	for	new	connections.	In	Wireshark,	the	filter	for	

this	type	of	traffic	could	be	tcp.flags.syn==1	&&	!(tcp.flags.ack==1).	This	will	filter	

out	only	the	initial	SYN	packet	from	a	TCP	three-way	handshake.	The	script	is	

posted	in	Figure	16.	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 2
1 	

Author	Name,	email@addressmail.mil	 	 	

	
Figure	16	–	PCAPng	Comment	Script	

	

The	FOR	loop	utilizes	TShark	to	filter	on	our	TCP	SYN	connections	and	

extracts	the	frame	number	for	each	of	those	frames.	The	frame	number	is	important	

because	it	uniquely	identifies	each	frame.	Within	the	loop,	the	frame	number	is	

appended	to	a	file	called	“exclusion”	for	later	use.	Each	frame	that	was	identified	in	

the	filter	is	temporarily	written	to	its	own	individual	file.	After	it	has	been	written	to	

an	individual	file,	EditCap	is	used	to	add	the	comment	"New	TCP	SYN"	to	the	frame.	

At	the	end	of	the	FOR	loop,	each	frame	exists	in	its	own	temporary	file	which	has	

been	commented	on.	The	reason	I	decided	to	break	each	frame	out	to	individual	files	

is	that	EditCap	requires	an	input	and	output	file	and	can	only	add	comments	one	

frame	at	a	time.	Using	it	in	a	FOR	loop	seemed	the	most	efficient	way	to	do	it	with	

those	limitations.	

Once	the	FOR	loop	has	commented	on	the	individual	frames,	the	script	has	to	

merge	the	data	back	together.	While	writing	the	script,	I	discovered	that	simply	

using	MergeCap	to	add	the	individual	files	to	the	original	capture	results	in	duplicate	

frames.	This	cannot	be	resolved	by	using	the	dedupe	option	in	EditCap	because	the	

additional	comment	changes	the	md5	hash	of	the	duplicated	packet.	For	this	reason,	

the	script	keeps	track	of	which	frames	were	edited	in	the	"exclusion"	file.	This	

makes	it	simple	to	remove	the	edited	frames	from	the	original	capture	and	rename	

it	“excluded_$file.”	The	script	then	merges	all	the	commented	temporary	files	and	

the	excluded_$file	to	produce	the	final	product.	The	end	result	of	the	script	is	a	new	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 2
2 	

Author	Name,	email@addressmail.mil	 	 	

PCAPng	file	named	“Commented_$file.”	The	only	difference	in	the	new	file	is	that	all	

initial	SYN	packets	are	commented	on.	All	temporary	files	are	removed	upon	

completion	of	the	script.	The	only	files	that	remain	are	the	original	capture	and	the	

newly	commented	capture	files.	

In	order	to	run	the	script,	the	capture	file	is	placed	in	the	same	directory	as	

the	script.	Simply	run	the	command	./connections.sh	inputfile.pcapng.	Figure	17	

shows	the	process.	The	script	will	display	feedback	to	the	terminal	as	each	frame	is	

processed.	

	
Figure	17	–	Running	the	Script	

	

When	the	script	is	complete,	a	new	file	called	Commented_$file.pcapng	will	

be	placed	in	the	current	directory.	In	this	case,	the	file	is	called	

“Commented_lotsofweb.pcapng.”	Using	Wireshark,	opening	the	new	file	will	show	

that	all	TCP	SYN	frames	are	now	commented	with	“New	TCP	SYN”.	We	can	filter	on	

these	using	the	Wireshark	filter	frame.comment==”New	TCP	SYN”.	We	can	now	

filter	on	the	comment	and	view	the	initial	connection	to	all	TCP	streams.	This	is	just	

one	way	to	take	advantage	of	the	PCAPng	commenting	feature.	The	filter	is	shown	in	

Figure	18.	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 2
3 	

Author	Name,	email@addressmail.mil	 	 	

	
Figure	18	–	Commented	Frames	

	

The	script	can	automate	comments	for	various	types	of	filters	that	need	to	be	

applied.	The	only	changes	necessary	would	be	to	change	the	filter	used	on	the	

original	TShark	command	in	the	FOR	loop	–	then	change	the	comment	in	the	

EditCap	line	to	whatever	the	analyst	desires.	The	script	can	be	a	great	way	to	take	

advantage	of	commenting	features	that	the	PCAPng	file	format	is	capable	of.	Until	

other	tools	incorporate	some	of	these	features,	scripting	is	a	great	way	to	take	

advantage	of	PCAPng.	I	encourage	others	to	edit	the	script	for	their	own	use.	The	full	

script	is	included	in	Appendix	A.	

4. Conclusion
There	is	no	doubt	that	PCAPng	is	an	improvement	over	the	old	libpcap	file	

format.	Its	additional	capabilities	such	as	multiple	interface	capture,	per-packet	

comments,	and	improved	time	resolution	make	the	transition	a	worthy	one.	So	far,	

packet	capture	applications	have	failed	to	fully	implement	the	capabilities	of	the	

new	format.	Even	Wireshark,	which	is	responsible	for	much	of	PCAPng’s	

advancement	to	date,	shows	limitations	in	its	ability	to	take	advantage	of	the	new	

fields.	The	necessity	to	pass	a	PCAPng	file	from	tool	to	tool	is	unfortunate,	and	

analysts	could	increase	efficiency	if	tools	were	more	supportive	of	the	format.	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 2
4 	

Author	Name,	email@addressmail.mil	 	 	

Further	research	on	this	topic	would	seek	to	integrate	the	PCAPng	file	format	

into	more	tools	so	its	new	fields	can	be	harnessed	for	advanced	research	and	

increased	cyber	forensic	capability.	As	networks	grow	faster	and	more	complex,	

cyber	defenders’	capability	to	analyze	threats	must	be	accurate	and	provide	as	much	

metadata	as	possible.	This	research	intends	to	show	application	developers	the	

benefits	of	the	new	file	format.	Additionally,	it	is	my	hope	that	it	gives	them	the	

encouragement	to	integrate	it	into	their	code	so	these	benefits	are	supported	across	

a	multitude	of	tools.	Packet	analysis	will	continue	to	play	an	important	role	in	

defending	networks	and	analyzing	malware,	especially	with	the	increased	use	of	

file-less	malware.	It	is	important	that	projects	such	as	PCAPng	are	supported	so	that	

they	can	continue	to	provide	adaptable	solutions	to	problems	that	defenders	will	

face	in	the	future.	

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 2
5 	

Author	Name,	email@addressmail.mil	 	 	

References
	
Development/LibpcapFileFormat. (n.d.). Retrieved November 14, 2017, from

https://wiki.wireshark.org/Development/LibpcapFileFormat#Libraries

Koch, M. (2016). Implementing Full Packet Capture. Retrieved October 5th, 2017, from

https://www.sans.org/reading-room/whitepapers/forensics/implementing-full-

packet-capture-37392.

NIST. (2016). NIST Special Publication 800-53 Rev4. Retrieved from NIST.gov:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

P. (n.d.). Pcapng/pcapng. Retrieved November 13, 2017, from

https://github.com/pcapng/pcapng/wiki/Implementations

Packet Foo. (2014). The trouble with multiple capture interfaces. Retrieved from

https://blog.packet-foo.com/2014/08/the-trouble-with-multiple-capture-interfaces/

Sanders, C. (2017, June 19). Chrissanders/packets. Retrieved February 18, 2018, from

https://github.com/chrissanders/packets

Sanders, C. (2017). Practical packet analysis: using Wireshark to solve real-world

network problems. San Francisco, CA: No Starch Press

Sanders, C., & Smith, J. (2014). Applied Network Security Monitoring.

TCPDUMP & LIBPCAP. (n.d.). Retrieved November 14, 2017, from

http://www.tcpdump.org/

Tuexen, E., Risso, F., Bongertz, J., Combs, G., Harris, G., (2017). PCAP Next

Generation (pcapng) Capture File Format. Retrieved October 10, 2017, from

http://xml2rfc.tools.ietf.org/cgibin/xml2rfc.cgi?url=https://raw.githubusercontent.

com/pcapng/pcapng/master/draft-tuexenopsawg-

pcapng.xml&modeAsFormat=html/ascii&type=ascii#rfc.section.9

Walls, J. (2012, October 02). Five Reasons to Move to the Pcapng Capture Format (by

Jason Walls). Retrieved December 12, 2017, from

http://www.lovemytool.com/blog/2012/10/five-reasons-to-move-to-the-pcapng-

capture-format-by-jason-walls.html

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

PCAP	Next	Generation	 2
6 	

Author	Name,	email@addressmail.mil	 	 	

Appendix A

Commenting	Script	

#	Author:	Scott	Fether	

#	February	21,	2018	
#	This	script	will	identify	new	TCP	Connections	and	add	per-packet	comments	to	

#	the	initial	SYN	frame.	The	script	filters	specifically	on	new	TCP	connections,	but	

#	it	can	be	modified	to	filter	on	anything	TShark	accepts.	Comments	can	be	changed	
#	to	describe	the	interesting	traffic.	

	

#!/bin/bash	
file=$1	

for	framenumber	in	`tshark	-r	$file	-Y	"tcp.flags.syn==1	&&	!(tcp.flags.ack==1)"	-T	
fields	-e	frame.number`	

do	

				frame=$framenumber	
				echo	$frame	>>	exclusion		 	

				tempfile="tmp_`echo	$frame`.pcapng"	

				echo	"Processing	packet	in	frame	$frame	to	$tempfile”	
				tshark	-r	$file	-w	$tempfile	-Y	"frame.number==$frame"	

				editcap	-a	1:"New	TCP	SYN"	$tempfile	Commented_$tempfile			
done	

	

exclude=`cat	exclusion`	
editcap	$file	excluded_$file	$exclude	

mergecap	-w	Commented_$file	Commented_tmp_*.pcapng	excluded_$file	
rm	tmp_*.pcapng	

rm	Commented_tmp_*.pcapng	

rm	excluded_*.pcapng	
rm	exclusion	

