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Abstract 

The unique and intrinsic methods by which Linux application containers are created, 
deployed, networked, and operated do not lend themselves well to the conventional 
application of methods for conducting intrusion detection and analysis in traditional 
physical and virtual machine networks. While similarities exist in some of the methods 
used to perform intrusion detection and analysis in conventional networks as compared to 
container networks, the effectiveness between the two has not been thoroughly measured 
and assessed: this presents a gap in application container security knowledge. By 
researching the efficacy of these methods as implemented in container networks 
compared to traditional networks, this research will provide empirical evidence to 
identify the gap, and provide data useful for identifying and developing new and more 
effective methods to secure application container networks 
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1. Introduction 
This research systematically assesses the efficacy of intrusion detection and 

analysis methods as applied to Docker Linux application container environments 

compared to the effectiveness of similar methods applied in traditional networks. Linux 

application container technologies can provide many benefits, but can also introduce 

complexity and vulnerabilities. Furthermore, the means and methods for securing 

container environments are young and not evolving as rapidly as the container 

technologies themselves. With the rapid evolution and adoption of Linux application 

container technologies in the enterprise, not much scholarly research exists on how to 

balance the benefits that containers provide with the vulnerabilities that they introduce.  

The unique and intrinsic methods by which Linux application containers are 

created, deployed, networked, and operated do not lend themselves well to the 

conventional application of methods for conducting intrusion detection and analysis in 

traditional physical and virtual machine networks. While similarities exist in some of the 

ways used to perform intrusion detection and analysis in conventional networks as 

compared to container networks, the effectiveness between the two has not been 

measured systematically and analyzed: this presents a gap in application container 

security knowledge. By researching the efficacy of intrusion detection and analysis 

methods as implemented in container networks compared to traditional networks, this 

research will provide empirical evidence to identify the gap, and provide data useful for 

conceiving and developing new and effective methods to secure container networks 

As such this research will attempt to answer the following question: How 

effective are methods for conducting intrusion detection and analysis in Docker Linux 

application container networks when compared with the efficacy of similar methods in 

traditional networks? 
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2. Linux Containers and Docker – a Brief History 
Linux application containers as they are known today, are most directly the 

product of Cgroups, which was formally introduced in the Linux Operating System 

Kernel version 2.6.24, in 2007 (Bottomley & Emelyanov, 2014). At a high-level, Linux 

application containers are lightweight virtual machines that share the same underlying 

operating system kernel, consume the same or shared resources, and contain the code, 

tools, dependencies, and settings required to function. Due to the benefit of containerized 

applications sharing the same underlying host kernel, container hosts can reach a much 

higher deployment density than traditional dedicated application or virtual machine hosts. 

In addition to the application deployment density benefit, Linux container deployments 

also benefit from a shared kernel, with application dependencies residing within the 

individual containers. This benefit allows developers, I.T. operators, and system owners 

to reduce the equipment, software, and operational overhead required to service 

application workloads and their associated costs: Both reasons are why Linux application 

container technologies have soared in popularity over the last few years (Mohallel, Bass, 

& Dehghantaha, 2016). 

In 1979, Bell Laboratories released Unix v7, which introduced chroot into the 

Unix ecosystem. Change root, or chroot for short, gives the operating system the 

capability to change the logical root directory of a running process and its child processes 

to isolate the processes from awareness and access to neighboring processes and 

resources. The chroot feature enables efficient and more secure practices for application 

context isolation and testing, and it set the conceptual stage for Linux application 

containers almost 30 years later. After the development of chroot in 1979, it was not until 

the early 2000’s that new applications of process isolation and control, more resembling 

the current Linux application containers we know today, began to emerge. Systems such 

as FreeBSD Jails, Linux VServer, Solaris Zones, and others set the stage for 

contemporary Linux application container and management technologies such as LXC, 

RKT, Kubernetes, and most famously, Docker (Petazonni, 2015). 
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While relatively new to the mainstream, Linux application containers have been 

around since 2006, when Google developers, Paul Menage and Rohit Seth developed 

Control Groups (cgroups). Control Groups are a Linux kernel feature that enables group 

process management and accounting. Another critical and foundational technology that 

allowed the creation of modern Linux application containers is Linux namespaces. Linux 

namespaces, introduced in the Linux Kernel version 2.4.19, while similar to cgroups that 

came after it, is different and complementary to cgroups. Namespaces serve to isolate 

groups of processes into logical units that are restricted to the unit and limited in their 

interaction with and consumption of host system resources (Bottomley & Emelyanov, 

2014). In essence, the foundational technologies that enable Linux application containers 

are cgroups for resource consumption management and accounting, and namespaces for 

logical partitioning and regulation of host resource access and consumption. 

A lot has changed in the Linux application container world since the development 

of chroot and the adoption of namespaces and cgroups into the Linux kernel. Moreover, 

while still relatively new in the general enterprise, companies such as Google, AWS, and 

Facebook have been using containers for the better part of a decade (Winkel, 2016). So, 

since Linux application containers have been around for years, why are we only now 

seeing the general adoption of the technology into the enterprise? The likely answer to 

that is - Docker. Solomon Hykes, launched the Docker project while working as an 

engineer at dotCloud in France. Hykes realized that while Linux application containers 

were readily available and decently mature for production implementation, the 

technologies were overly complicated and not yet palatable for general enterprise 

adoption (Hykes, 2013).  

At Pycon 2013, with this realization in mind, Hykes released Docker for open 

source distribution. At a high-level, Docker is a Linux application container management 

system which abstracts away much of the complexities associated with containerized 

application development and host infrastructure operations (Mohallel, Bass, & 

Dehghantaha, 2016). However, since the public release of Docker and with the associated 

and significant increase in its development and adoption in the enterprise, many 
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vulnerabilities in the underlying and related technologies have been discovered. 

Furthermore, the complexity associated with developing, delivering, deploying, and 

operating containerized applications and their host infrastructures have introduced new 

challenges and paradigms in the way that security professionals secure such 

environments. 

2.1. Linux Container Security – a New World 
 

The unique methods by which application containers are created, deployed, 

networked, and operated present unique challenges when designing, implementing, and 

operating security systems for these environments. Due to the frequent practice of 

binding containers to non-standard network ports, deploying application workloads 

dynamically over distributed hosts, integrating rapidly evolving application code on 

containers in production, and having specific container instances provisioned for brief 

periods of times, container technologies have become prime targets for adversary attack 

and exploitation. Just as the security industry evolved to secure the enterprise during the 

introduction of computer virtualization, the security industry will need to evolve again, 

and more rapidly, to secure application container infrastructures if the industry hopes to 

keep up with the rapid rate of change. 

 

3. Intrusion Detection Systems and Analysis in a 
Dockerized World 

The existing body of scholarly literature related to developing methods and 

systems for conducting intrusion detection and analysis in application container networks 

is limited. However, there does exist a body of foundational scholarly research and 

literature in application container security, intrusion detection methods, and analysis on 

which to build. Furthermore, there are many sources available related to traditional 

methods and systems for conducting intrusion detection and analysis to compare to new 

and evolving techniques used in container networks. 



© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights. 

Container Intrusions  6 
	

Alfredo	Hickman,	ahusmc@yahoo.com	 	 	

For instance, Abed, Clancy, and Levy, 2015 found that due to the way container 

technologies enable a single host operating system kernel to provide resources to 

containers, attacks on the container based-applications could result in compromises of the 

container hosts, other containers, and even other networks. With this realization, Abed et 

al. proposed the adaptation of the Bag of System Calls (BoSCs) method, sometimes used 

in traditional host-based intrusion detection, to create a container-based host intrusion 

detection system. The technique that Abed and team developed requires the monitoring 

of system call frequency between individual container processes and the host operating 

system kernels for anomaly detection (2015). By recording the frequency of system calls 

between the container host kernel and container processes, the BoSC system could learn 

what normal system call behavior is and then identify statistical deviations from normal 

to identify anomalous and potentially malicious behavior.  

Such adaptations of existing methods for conducting intrusion detection and 

analysis in traditional networks to container networks is an emerging and promising trend 

in container security. OSSEC is one traditional HIDS that can leverage the Linux Audit 

logic to parse system calls and enable BoSC implementations. Such adapted methods aim 

to port proven security methods to mitigate emerging threats and vulnerabilities that, 

while not unique to container deployments, are only exacerbated by the typically high 

volume and speed in which containers are deployed and operated. 

Vulnerabilities such as the kind that Gao et al., 2017 discovered indicate how 

incomplete and ineffective methods used for partitioning and allocating host operating 

system kernel resources to application containers in multi-tenant cloud environments 

resulted in information leakages. In the Synergistic-Power Attack proof-of-concept, the 

authors demonstrated how attackers could use aggregated container, and container host 

leaked data to potentially orchestrate a distributed power spike attack in a multi-tenant 

container-cloud to cause power supply faults and electrical outages in a data center.  

With the research that Gao et al., 2017 conducted, intrusion detection and analysis 

methods could be created to detect the behavior associated with container and container 

hosts information leakage, and the techniques, tactics, and procedures (TTP), that an 

attacker would use to conduct the Synergistic-Power Attack. For example, a BoSC based 
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system could monitor the system calls associated with information leakage between a 

Docker host and container to identify such vulnerabilities. 

The adaptation, creation, and implementation of container-centric intrusion 

detection and analysis methods and systems becomes even more pressing due to research 

findings which indicate that more vulnerabilities are present in container application 

deployments than traditional physical or virtual system deployments. For instance, 

Mohallel, Bass, and Dehghantaha, 2016 conducted quantitative research into how attack 

surface area differs between applications deployed in traditional physical or virtual 

machine implementations as compared to container-based implementations. The authors 

discovered that the amount of vulnerabilities introduced into a container host equals the 

sum of the vulnerabilities found within the host operating system, the container’s base 

image, and the software packages contained within the containers. The research indicates 

that deploying applications in containers can increase the number of vulnerabilities 

present on a container host.  

Not only does research indicate an increase in the number of vulnerabilities 

introduced by application container implementations, but it also shows an increased 

scope and criticality of the vulnerabilities. For example, Winkel, 2017 found that 

attackers could exploit vulnerabilities present in versions of the Linux kernel to escape 

the process, resource, and permissions security mechanisms provided by the operating 

system to the application container. Like what Abed et al., 2015 discovered, this type of 

exploit could result in an attacker escaping the container and then exploiting the 

underlying host system and possibly other systems accessible through the network. While 

similar escape exploits exist and are detectable in traditional virtual machine 

environments, due to the unique nature of container networking, resource allocation, and 

deployment methods, the same is not the case in container environments. The complexity 

of container technologies and operations, the vulnerabilities associated with the 

technologies, and the immaturity of available security systems, warrants research into 

adapted and new means for securing such environments.  

In contrast to host-based methods for intrusion detection and analysis, such as 

BoSC, Winkel proposes a network security monitoring (NSM) approach to collect 
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telemetry and provide forensic visibility to human analysts conducting intrusion detection 

and analysis in Docker container networks. Colm Kennedy, 2016 also proposes a 

network-based approach that can adapt to container networks. Kennedy’s method calls 

for using network decoys which mimic production systems to coax would-be attackers to 

exploit the systems. However, these honeypot decoys would be instrumented and 

monitored in a manner that would facilitate intrusion detection and analysis.  

Complimenting the decoy method, Patrick Neise, 2016 proposes the idea of using 

network flow and graphs to identify relationships between hosts and events in a network 

to aid in intrusion detection and analysis. While the networking and deployment 

methodologies that application container networks employ are significantly different 

from traditional TCP/IP network implementations, the methods that Neise describes are 

analogous to sFlow and relational graph (link) analysis based methods that have been 

employed to gain visibility into Docker container networks.  

As such, network-based intrusion detection and analysis methods such as 

implementing decoys, flow analysis, and relational graph (link) analysis provide 

analogous examples to host-based methods such as BoSC and kernel system call tapping. 

Also, both host and network-based techniques lend themselves well to building container-

based intrusion detections systems and comparing the efficacy between their analogous 

implementations in traditional networks. 

This literature review represents some of the latest research in methods for 

detecting data leakage, anomalous behavior, vulnerabilities, and exploitation methods in 

container based environments. Furthermore, the non-container related literature reviewed 

here represents practices that can and have been adapted to create application container 

security systems. 
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3.1. Intrusion Detection and Analysis in Traditional and Virtual 
Networks (Normal IDS & A) 

Much literature exists about intrusion detection and analysis in traditional 

physical and virtual networks. At a high-level, the two standard, mature, and capable 

approaches to the practice are network-based and host-based intrusion detection and 

analysis. Tracing their conceptual origins to events in 1986, computer network intrusion 

detection and analysis gained prominence when Cliff Stoll, a systems manager at the 

Lawrence Berkeley National Laboratory, a U.S. government research facility, noticed 

financial discrepancies in an accounting system. This incident resulted in a dramatic 

investigation which discovered that the accounting discrepancies were not due to flawed 

computer logic or an accident by a human accountant, but were due to coordinated 

intrusions by a foreign state-sponsored agent (Bejtlich, 2013). The event is relevant the 

practice of intrusion detection and analysis in that it served to raise awareness at the 

highest levels of the U.S. government to the importance of securing sensitive computer 

networks and developing national strategic capabilities for conducting computer network 

defense and offense. In many ways, the events at the Berkeley Lab in 1986 spawned the 

intrusion detection and analysis industry that we know today (Bejtlich, 2013). Moreover, 

while much has changed in intrusion detection and analysis since the 1980’s, at its core, 

today’s traditional approaches to the practice remain much the same. 

At a high-level, modern intrusion detection and analysis systems monitor and 

assess networks and hosts for patterns and conditions that are indicative of potentially 

malicious activities and vulnerabilities. Moreover, while the technologies involved in 

evaluating malicious activities and vulnerabilities have evolved significantly over the 

years, it is still the predefined or near-real-time definition of malicious activities or 

vulnerabilities which underpin intrusion detection and analysis methods available today. 

Even with advances in artificial intelligence, machine learning, and threat information 

sharing, intrusion detection, and analysis systems rely on patterns of expected normal 

behavior, definitions of malicious behavior, and identification of deviations from 

“normal” conditions to identify potential malicious activities and vulnerabilities.  
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For example, many traditional applications of network intrusion detection and 

analysis systems are dependent on consistent and pre-defined bindings of an application’s 

network port assignments for analysis. Also, these systems are often reliant on the pre-

defined or near-real-time definition of normal or abnormal network or host activities. 

These systems will then match signatures against associated events or identify deviations 

from normal conditional thresholds to produce alerts or automated responses (Bejtlich, 

2013). It is easy to see that in environments where what is “normal” for one instance of a 

provisioned application that may only exist for minutes and be configured with non-

standard network port bindings presents severe challenges to the traditional network and 

host intrusion detection and analysis paradigms. With the advent of Linux containerized 

application deployments, that is usually the case. 

	

3.2. Intrusion Detection Systems and Analysis in Dockerized Networks  

As is often the case in Linux application container deployments, application 

instances and the containers that host them exist for short periods of time and are 

regularly provisioned with non-standard network port assignments bound to the 

underlying host. Furthermore, with best practices for deploying containerized 

applications calling for microservice architectures, one application deployment could 

require the provisioning of tens of containers to service the overall application (Hayden, 

2015). Microservice architectures in container deployments require that individual 

services be provisioned one per container and grouped in a logical manner that facilitates 

services to the whole application instance and its dependencies (Winkel, 2016).  

The idea behind microservices architectures in Linux application container 

networks is to limit the interaction between adjacent services, to continuously deploy and 

improve the individual services, and to scale resources as required more efficiently. 

However, it is in many ways the adoption of microservice architectures and the 

complexity and variance that they introduce into the network which exacerbates the 

already challenging nature of monitoring and securing Linux application container 

networks. However, the value that application containers provide, coupled with the 
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vulnerabilities and challenges that the technologies introduce have correspondingly 

stimulated the evolution of the security industry. 

	
4. Research Methods - a Tale of Two IDSs 

For this research, attack, analysis, and capability experiments were conducted in a 

lab to assess the efficacy of intrusion detection and analysis capabilities in Docker 

container networks compared to the effectiveness of similar methods in traditional 

networks. The lab consists of a single network with deployments of both traditional and 

container-centric intrusion detection systems. The tests were conducted on Ubuntu 16.04 

LTS hosts. All hosts were up to date at the time of the experimentation and were 

instrumented with the OSSEC HIDS and a Splunk universal forwarder. The OSSEC 

HIDS configurations are identical across all the implementations and have log, malware, 

and file integrity monitoring enabled. The Splunk universal forwarders are configured 

with all default inputs enabled and to transmit syslog to a Splunk unified indexer and 

search head for collection and analysis. On Docker container deployments, the 

Monitoring Docker Splunk App, installed on the Splunk forwarder, facilitates inter-

container and host telemetry collection.  

All test hosts serve the Damn Vulnerable Web App (DVWA), which will be the 

primary target for assessing the efficacy of the various intrusion detection and analysis 

systems. Furthermore, Security Onion 14.04 is deployed in the lab with the Snort NIDS, 

OSSEC HIDS, Bro for traffic monitoring, and ELSA, Squert, Wireshark, and associated 

tools for analysis. Security Onion enables the efficacy assessments of the intrusion 

detection and analysis experiments conducted in the traditional application host 

environment, as well as the application of traditional NIDS and HIDS in the Docker host 

and containerized application environment. In implementations covered by Security 

Onion, the Snort NIDS and OSSEC HIDS configurations are identical and have all rules 

enabled. Wazuh with the OSSEC HIDS and Sysdig Falco with the falco-probe host 

kernel module, for tapping and assessing Linux container host and intra-container 

activities, enable the efficacy assessments of the container intrusion detection and 

analysis use cases. 
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Once the lab infrastructure was deployed and configured, the attack experiments 

were conducted from a Kali Linux host. The attack experiments represent various phases 

of the Cyber Kill-Chain (Lockheed Martin), and they serve to assess the intrusion 

detection and analysis capabilities of the various systems. The attack types, test cases, 

and required capabilities are located in the appendix. Testing artifacts were collected 

from the various intrusion detection and analysis systems. The artifacts and testing results 

serve to measure the effectiveness and capabilities of the multiple systems to detect and 

enable analysis of the various attacks and intrusions.	

4.1. Effectiveness Criteria 
The effectiveness of the various intrusion detection and analysis systems are 

measured against the following criteria and associated test cases: Note: The associated 

test cases are located in the appendix. 

1.	 Detection	of	scanning	activity	

2.	 Detection	of	application	attacks	

3.	 Detection	of	malware	deployment	

4.		 Detection	of	malware	execution	

5.	 Detection	of	malicious	command	and	control	

6.		 Detection	of	malicious	privilege	escalation	

7.	 Detection	of	malicious	data	exfiltration	

8.		 Detection	of	file	integrity	violations	

9.	 Detection	of	leaked	system	data	 	

10.	 Auto-detection	of	anomalous	behavior		

11.	 Auto-detection	of	attacker,	victim,	infrastructure	relationship	

12.	 Capability	for	forensic	artifact	retrieval	(PCAP,	Flow,	Logs,)	
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4.2. Measurement Criteria 

A scoring system is used to measure the effectiveness of the intrusion detection 

systems to detect and provide analysis capabilities of the associated test case 

experiments. Each test case experiment will have a maximum of three points awarded. 

Points are weighted as follows: 

One Point: Not Effective (Method did not work). 

Two Points: Moderately Effective (Method worked, but did not allow for 

complete functionality, or equivalent to traditional network implementation). 

Three Points: Effective (Method worked as effectively as traditional network 

implementation). 

The point-based measurements of effectiveness will describe the efficacy of 

intrusion detection and analysis methods as applied in container networks, compared to 

the effectiveness of similar methods employed in traditional networks. Also, the findings 

of this research and the scoring of the effectiveness criteria could aid in the identification 

and development of new methods for securing container networks. 
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5. Research Findings – the Answers to Life, the 
Universe, and Everything 

The following are the effectiveness results and analysis of the various intrusion 

detection and analysis methods assessed. Note: Where applicable, the NIDS and HISD 

configurations are identical and vary only in implementation or capabilities provided by 

the analysis platforms, such as Security Onion, Splunk, or Wazuh. 

Table 1. 

Damn Vulnerable Web App Hosted on Traditional Virtual Machine and Protected by 

Security Onion. 

 

In this use case, Security Onion was deployed with the Snort network-based 

intrusion detection system with the Emerging Threats ruleset completely enabled, and the 

OSSEC host-based intrusion detection system on the protected virtual machine 

application host. 

For the scanning portion of the tests, Snort detected all but the Nmap stealth and 

network range scans. OSSEC did not detect the Nessus host and web application 

Attack	Phase	Detection,	CapabilityTest	Cases Outcome Score
Scanning	Detection Sparta	scan	with	nmap Snort	detected	scan 3
Scanning	Detection Nikto	Web	App	Scan Snort	detected	scan 3
Scanning	Detection NMAP	host	scan	intense	plus	UDP Snort	detected	scan 3
Scanning	Detection NMAP	host	scan	stealth	(SYN	scan) Neither	Snort	nor	OSSEC	detected	nmap	

stealth	scan
1

Scanning	Detection Internal	network	scan	intense Neither	Snort	nor	OSSEC	detected 1
Scanning	Detection Host	vulnerability	scan	Nessus	basic Snort	detected	scan 3
Scanning	Detection Host	vulnerability	scan	Nessus	WebApp	Scan Snort	detected	scan 3
App	Attack	Detection Conduct	SQL	injection	attack Snort	detected	scan 3
App	Attack	Detection Conduct	authentication	and	session	management	attack Snort	detected	scan 2
App	Attack	Detection Conduct	XSS	attack	reflected Snort	detected	scan 3
Malware	Detection Deploy	malicious	payload	to	host Neither	Snort	nor	OSSEC	detected 1
Malware	Detection Execute	malicious	payload	on	host Neither	Snort	nor	OSSEC	detected 1
C2	Detection Execute	C2	activity	on	host Neither	Snort	nor	OSSEC	detected 1
Privilege	Escalation	
Detection

Execute	privilege	escalation	on	host Snort	detected 3

Data	Exfiltration	Detection Conduct	data	exfiltration Neither	Snort	nor	OSSEC	detected 1
File	Integrity	Detection Alter	sensitive	files	and	check	FIM	for	alerts	(registry,	conf	files,	password	files,	system	files,	user	 OSSEC	detected 2
System	Information	Leakage Check	for	detection	of	leaked	system	data	(resource	usage,	location	services) Snort	detected 2
Auto	Anomaly	Detection Check	for	automated	alerting	of	suspected	suspicious	behavior	-	execute	potentially	malicious	 Snort	detected 2
Attacker	-	Victim	Relation	 Check	for	relationship	mapping	between	attacker	and	victim Attacker	victim	auto	detected	and	 3
Forensic	Artifact	Retrieval Check	for	capabilities	to	retrieve	forensic	artifacts	(logs,	pcaps,	flows,	files) Capable 3

Total	Points 44
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vulnerability scans, or Nmap scans during the software service and version enumeration 

portions of the scans.  

For the attack portion of the tests, Snort detected all the attacks. However, Snort 

only detected the authentication and session management attack via the curl detection 

policy which triggered when curl was used to pull the session ID token from DVWA. For 

this, I subtracted one point. OSSEC did not detect any of the attacks. 

For the malware portion of the tests, neither Snort nor OSSEC detected the 

downloading of the EICAR test file nor the execution of the EICAR payload in a shell 

script. 

Neither Snort nor OSSEC detected the command and control activities that were 

conducted on the victim host using both SSH and Netcat. 

Snort detected privilege escalation. OSSEC did not detect privilege escalation 

attempts on the victim host. 

Neither Snort nor OSSEC detected the exfiltration of the passwd and shadow files 

from the protected /etc/ directory. 

OSSEC detected file integrity modifications in protected directories. However, 

one point was subtracted due to Security Onion not surfacing the alerts automatically or 

in real time via Sguil. Hunting was required to find the associated alerts in ELSA. Snort 

did not detect file integrity attacks. 

Snort detected the leakage of certain system information such as software names 

and version numbers. However, one point was subtracted due to Security Onion not 

surfacing the alerts automatically or in real-time via Sguil. Hunting was required to find 

the associated alerts in ELSA. OSSEC did not detect system information leakage. 

Sguil automatically surfaced Snort detections of potentially anomalous behavior. 

However, one point was subtracted due to Security Onion not surfacing the associated 

OSSEC alerts automatically or in real time via Sguil. Hunting was required to find the 

associated alerts in ELSA.  

Security Onion was able to efficiently and dynamically depict attacker to victim 

relationships via collected telemetry. 
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Security Onion was able to produce logs, pcaps, flow data, and associated files. 

Of the intrusion detection and analysis platforms evaluated, Security Onion with 

the Snort NIDS and OSSEC HIDS deployed to protect a traditional virtual machine 

application host was the most effective platform and received a score of 44 points. 

 

Table 2. 

Damn Vulnerable Web App Hosted in a Docker Container and Protected by Security. 

Onion. 

 

In this use case, Security Onion was deployed with the Snort network-based 

intrusion detection system with the Emerging Threats ruleset completely enabled, and the 

OSSEC host-based intrusion detection system on the protected Docker application 

container host. 

For the scanning portion of the tests, Snort detected all but the Nmap stealth and 

network range scans. OSSEC did not detect the Nessus host and web application 

vulnerability scans, or Nmap scans during the software service and version enumeration 

portions of the scans.  

Attack	Phase Test	Cases Outcome Score
Scanning	Detection Sparta	scan	with	nmap Snort	detected	scan 3
Scanning	Detection Nikto	web	app	scan Snort	detected	scan 3
Scanning	Detection NMAP	host	scan	intense	plus	UDP Snort	detected 2
Scanning	Detection NMAP	host	scan	stealth	(SYN	scan) Neither	Snort	nor	OSSEC	detected 1
Scanning	Detection Internal	network	scan	intense Neither	Snort	nor	OSSEC	detected 1
Scanning	Detection Host	vulnerability	scan	Nessus	basic Snort	detected	scan.	OSSEC	did	not. 3
Scanning	Detection Host	vulnerability	scan	Nessus	WebApp	Scan Snort	detected	scan.	OSSEC	did	not. 3
App	Attack	Detection Conduct	SQL	injection	attack Snort	detected	scan.	OSSEC	did	not. 2
App	Attack	Detection Conduct	authentication	and	session	management	attack Snort	detected	scan.	OSSEC	did	not. 2
App	Attack	Detection Conduct	XSS	attack	reflected Snort	detected	scan.	OSSEC	did	not. 3
Malware	Detection Deploy	malicious	payload	to	host Neither	Snort	nor	OSSEC	detected 1
Malware	Detection Execute	malicious	payload	on	host Neither	Snort	nor	OSSEC	detected 1
C2	Detection Execute	C2	activity	on	host Neither	Snort	nor	OSSEC	detected 1
Privilege	Escalation	Detection Execute	privilege	escalation	on	host Neither	Snort	nor	OSSEC	detected 1
Data	Exfiltration	Detection Conduct	data	exfiltration Neither	Snort	nor	OSSEC	detected 1
File	Integrity	Detection Alter	sensitive	files	and	check	FIM	for	alerts	(registry,	conf	files,	password	files,	system	files,	user	 OSSEC	detected 2
System	Information	Leakage Check	for	detection	of	leaked	system	data	(resource	usage,	location	services) Snort	detected 2
Auto	Anomaly	Detection Check	for	automated	alerting	of	suspected	suspicious	behavior	-	execute	potentially	malicious	activity Snort	detected 2
Attacker	-	Victim	Relation	 Check	for	relationship	mapping	between	attacker	and	victim Attacker	victim	auto	detected	and	 3
Forensic	Artifact	Retrieval Check	for	capabilities	to	retrieve	forensic	artifacts	(logs,	pcaps,	flows,	files) Capable 3

Total	Points 40
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For the attack portion of the tests, Snort detected all the attacks. However, Snort 

only detected the authentication and session management attack via the curl detection 

policy which triggered when curl was used to pull the session ID token from DVWA. 

Furthermore, Security Onion did not surface the associated SQL injection attack alert 

automatically or in real time via Sguil. Hunting was required to find the associated alerts 

in ELSA. For these two deficiencies, one point per attack was deducted. OSSEC did not 

detect any of the attacks. 

For the malware portion of the tests, neither Snort nor OSSEC detected the 

downloading of the EICAR test file nor the execution of the EICAR payload in a shell 

script. 

Neither Snort nor OSSEC detected the command and control activities that were 

conducted on the victim host using both SSH and Netcat. 

Neither Snort nor OSSEC detected the privilege escalation attempts on the 

victim host. 

Neither Snort nor OSSEC detected the exfiltration of the passwd and shadow 

files from the protected /etc/ directory. 

OSSEC detected file integrity modifications in protected directories. However, 

one point was subtracted due to Security Onion not surfacing the alerts automatically or 

in real-time via Sguil. Hunting was required to find the associated alerts in ELSA. Snort 

did not detect file integrity attacks. 

Snort detected the leakage of certain system information such as software names 

and version numbers. However, one point was subtracted due to Security Onion not 

surfacing the alerts automatically or in real-time via Sguil. Hunting was required to find 

the associated alerts in ELSA. OSSEC did not detect system information leakage. 

Sguil automatically surfaced Snort detections of potentially anomalous behavior. 

However, one point was subtracted due to Security Onion not surfacing the associated 

OSSEC alerts automatically or in real time via Sguil. Hunting was required to find the 

associated alerts in ELSA.  
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Security Onion was able to efficiently and dynamically depict attacker to victim 

relationships via collected telemetry. 

Security Onion was able to efficiently produce logs, pcaps, flow data, and 

associated files. 

Of the intrusion detection and analysis platforms evaluated, Security Onion with 

the Snort NIDS and OSSEC HIDS deployed to protect a Docker application container 

host and workloads was the second most effective platform and received a score of 40 

points. 

Table 3. 

Damn Vulnerable Web App Hosted in a Docker container and Protected by Wazuh. 

 

In this use case, Wazuh was deployed with the OSSEC host-based intrusion 

detection system on the protected Docker application container host, and the Wazuh PCI 

DSS extension enabled. 

For the scanning portion of the tests, OSSEC detected all but the Nikto and 

Nessus web application scans and the Nmap stealth scan.  

For the attack portion of the tests, OSSEC did not detect any of the attacks.  

Attack	Phase Test	Cases Outcome Score
Scanning	Detection Sparta	scan	with	nmap OSSEC	detected 3
Scanning	Detection Nikto	web	app	scan OSSEC	did	not	detect 1
Scanning	Detection NMAP	host	scan	intense	plus	UDP OSSEC	detected 3
Scanning	Detection NMAP	host	scan	stealth	(SYN	scan) OSSEC	did	not	detect 1
Scanning	Detection Internal	network	scan	intense OSSEC	detected 3
Scanning	Detection Host	vulnerability	scan	Nessus	basic OSSEC	detected 3
Scanning	Detection Host	vulnerability	scan	Nessus	WebApp	Scan OSSEC	did	not	detect 1
App	Attack	Detection Conduct	SQL	injection	attack OSSEC	did	not	detect 1
App	Attack	Detection Conduct	authentication	and	session	management	attack OSSEC	did	not	detect 1
App	Attack	Detection Conduct	XSS	attack	reflected OSSEC	did	not	detect 1
Malware	Detection Deploy	malicious	payload	to	host OSSEC	detected 2
Malware	Detection Execute	malicious	payload	on	host OSSEC	did	not	detect 1
C2	Detection Execute	C2	activity	on	host OSSEC	did	not	detect 1
Privilege	Escalation	Detection Execute	privilege	escalation	on	host OSSEC	detected 3
Data	Exfiltration	Detection Conduct	data	exfiltration OSSEC	did	not	detect 1
File	Integrity	Detection Alter	sensitive	files	and	check	FIM	for	alerts	(registry,	conf	files,	password	files,	system	files,	user	data) OSSEC	detected 3
System	Information	Leakage Check	for	detection	of	leaked	system	data	(resource	usage,	location	services) OSSEC	detected 1
Auto	Anomaly	Detection Check	for	automated	alerting	of	suspected	suspicious	behavior	-	execute	potentially	malicious	activity Capable 3
Attacker	-	Victim	Relation	 Check	for	relationship	mapping	between	attacker	and	victim Capable 3
Forensic	Artifact	Retrieval Check	for	capabilities	to	retrieve	forensic	artifacts	(logs,	pcaps,	flows,	files) Moderately	Capable 2

Total	Points 38
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For the malware portion of the tests, OSSEC detected the placement of the 

EICAR payload shell script in the protected /etc/ directory. However, it is unlikely that 

OSSEC would have detected, in real time, the test malware file if it was deposited and 

executed from a non-protected directory. OSSEC, as configured on all the test hosts, 

conducts daily malware checks.  

OSSEC did not detect the execution of the EICAR payload shell script. 

OSSEC did not detect the command and control activities that were conducted on 

the victim host using both SSH and Netcat. 

OSSEC detected the privilege escalation attempts on the victim host via the 

Wazuh PCI DSS extension.  

OSSEC did not detect the exfiltration of the passwd and shadow files from the 

protected /etc/ directory. 

OSSEC detected file integrity modifications in protected directories.  

OSSEC did not detect the leakage of certain system information such as software 

names and version numbers. 

OSSEC automatically surfaced potentially anomalous behavior. 

Wazuh was able to efficiently and dynamically depict attacker to victim 

relationships via collected telemetry. 

Wazuh was only capable of producing limited alert and log reports. Wazuh was 

unable to produce specific logs, pcaps, flow data, and associated files. 

Of the intrusion detection and analysis platforms evaluated, Wazuh with the 

OSSEC HIDS deployed to protect a Docker application container host and workloads 

was the least effective platform and received a score of 38 points. 
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Table 4. 

Damn Vulnerable Web App Hosted in a Docker container and Protected by Sysdig Falco. 

 

In this use case, Sysdig Falco was deployed with the falco-probe Linux kernel 

module on the Docker host. The falco-probe kernel module facilitates the tapping of bi-

directional container host to container and container to container system call 

communications. Furthermore, Falco is a headless application that can surface alerts to 

numerous output destinations such as standard output, syslog, flat files, and local 

programs. In this use case, Falco alerts, and telemetry was sent to a central Splunk 

instance via a Splunk universal forwarder and the Monitoring Docker Splunk app 

installed on the test host. All intrusion analysis was done via Splunk. 

For the scanning portion of the tests, Falco detected all but the Nmap stealth scan. 

Falco did not detect any of the attacks. One point was subtracted per test case due 

to the alerts surfacing through log management capabilities in the Monitoring Docker 

Splunk app used in the falco implementation. 

Falco did not detect any of the malware test cases. 

Attack	Phase Test	Cases Outcome Score
Scanning	Detection Sparta	scan	with	nmap Detected 3
Scanning	Detection Nikto	web	app	scan Detected 3
Scanning	Detection NMAP	host	scan	intense	plus	UDP Detected 3
Scanning	Detection NMAP	host	scan	stealth	(SYN	scan) Not	Detected1
Scanning	Detection Internal	network	scan	intense Detected 3
Scanning	Detection Host	vulnerability	scan	Nessus	basic Detected 3
Scanning	Detection Host	vulnerability	scan	Nessus	WebApp	Scan Detected 3
App	Attack	Detection Conduct	SQL	injection	attack Detected 2
App	Attack	Detection Conduct	authentication	and	session	management	attack Detected 2
App	Attack	Detection Conduct	XSS	attack	reflected Detected 2
Malware	Detection Deploy	malicious	payload	to	host Not	Detected1
Malware	Detection Execute	malicious	payload	on	host Not	Detected1
C2	Detection Execute	C2	activity	on	host Not	Detected1
Privilege	Escalation	Detection Execute	privilege	escalation	on	host Detected 3
Data	Exfiltration	Detection Conduct	data	exfiltration Not	Detected1
File	Integrity	Detection Alter	sensitive	files	and	check	FIM	for	alerts	(registry,	conf	files,	password	files,	system	files,	user	data) Detected 3
System	Information	Leakage Check	for	detection	of	leaked	system	data	(resource	usage,	location	services) Not	Detected1
Auto	Anomaly	Detection Check	for	automated	alerting	of	suspected	suspicious	behavior	-	execute	potentially	malicious	activity Detected 3
Attacker	-	Victim	Relation	 Check	for	relationship	mapping	between	attacker	and	victim Detected 2
Forensic	Artifact	Retrieval Check	for	capabilities	to	retrieve	forensic	artifacts	(logs,	pcaps,	flows,	files) Capable 2

Total	Points 43
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Falco did not detect the command and control activities that were conducted on 

the victim host using both SSH and Netcat. 

Falco detected the privilege escalation attempts on the victim host.  

Falco did not detect the exfiltration of the passwd and shadow files from the 

protected /etc/ directory. 

Falco detected file integrity modifications in protected directories.  

Falco did not detect the leakage of certain system information such as software 

names and version numbers. 

Falco automatically surfaced potentially anomalous behavior. 

Falco was not able to efficiently and dynamically depict attacker to victim 

relationships. One point was subtracted due to associated correlations surfacing through 

the log management capabilities in the Monitoring Docker Splunk app used in the falco 

implementation. 

Falco was only capable of producing limited alert and log reports. One point was 

subtracted due to Falco’s inability to produce specific logs, pcaps, flow data, and 

associated files. 

Of the intrusion detection and analysis platforms evaluated, Sysdig Falco with the 

falco-probe kernel module and Monitoring Docker for Splunk app deployed to protect a 

Docker application container host and workloads was the most effective platform and 

received a score of 43 points.  
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6. What Now – Recommendations and Implications for 
Security and a Better Tomorrow 

The research presented in this paper indicates that while technology can do much 

to enable security, it can also do much to hinder security and introduce vulnerabilities. As 

such, experienced security professionals skilled in their tools, tactics, and procedures are 

paramount to security. Defense in depth is still critical to security. This research indicates 

that no one security technology, nor single security platform can detect all the attacks, 

vulnerabilities, and threats to an environment. 

Capability, capacity, configuration, and implementation architecture define 

security coverage. If the security tooling deployed and implemented is incapable, 

misconfigured, or deployed in a position of incomplete coverage, it will not be effective. 

Furthermore, exclusive reliance on the fidelity and capability of security tooling to 

prevent, detect, and surface all attacks, vulnerabilities, and threats present in an 

environment, even if correctly configured and implemented, is unrealistic and unwise. 

Proactive threat hunting and centralized log management are required to mitigate the tool 

capability gap. The capability gap was demonstrated in the research in instances where 

attack experiments resulted in telemetry that was not surfaced as an alert in the security 

tooling user interfaces but instead was detected in the SIEM or NSM.  

Vulnerability assessments of application containers and their associated images 

are essential to overall container environment security. By integrating purpose-built 

container and image vulnerability scanning into the continuous integration and 

continuous deployment (CI/CD) pipeline, security professionals can dynamically detect 

when vulnerabilities are introduced into the images used to create containers and into the 

software packages, application logic, and dependencies used when presenting the 

applications. With this capability, security professionals can then remediate or mitigate 

the discovered vulnerabilities.   

6.1. Recommendations for More Effective IDS solutions in 
Application Container Environments 

Hardening, instrumenting, monitoring, and segmenting application container hosts 

and management platforms are critical to container environment security. The Center for 
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Internet Security publishes security configuration benchmarks for the most common 

Linux operating systems and web servers used in container implementations. 

Furthermore, CIS also published benchmarks for both the community and enterprise 

versions of Docker. The CIS benchmarks are located here: 

https://www.cisecurity.org/cis-benchmarks/   

This research indicates that instrumenting application container hosts with 

security tooling is critical. As such, host-based systems such as Sysdig Falco with its 

Linux kernel module that can monitor system calls between the host and containers to 

detect malicious activities is key to container environment security. The research also 

indicates that monitoring application container hosts with non-kernel module HIDS, such 

as those relying on Linux Audit, is also useful. However, in-depth analysis of container 

host and intra-container communications are only possible with kernel level tapping 

modules. 

 Hand-in-hand with proper instrumentation is active monitoring of container 

environments by experienced and skilled security professionals. Application container 

deployments introduce even more complexity and telemetry into environments than 

traditional network implementations. Furthermore, as described in the research findings, 

even when telemetry is generated in container networks and ingested into security 

platforms, alerts are not guaranteed to be produced or surfaced. In these instances, 

hunting conducted by security professionals is crucial to the prevention, detection, 

alerting, response, and remediation of associated vulnerabilities, threats, attacks, and 

intrusions.  

Appropriate segmentation of application container networks can also assist in 

intrusion detection and analysis. Due to the typically high deployment densities of 

containerized applications on hosts, and the complex orchestration of containerized 

workloads, non-standard network port assignments are common in container 

environments. This complexity makes traditional network firewall and intrusion detection 

impractical for securing individual containerized workloads. However, segmenting 

application container hosts within secured networks and then deploying traditional 

network firewalls and intrusion detection systems can aid in securing the overall 
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container environment by restricting access to the network and alerting when unusual 

activity occurs. Furthermore, implementing container-aware web application firewalls 

that can dynamically associate container instances with application traffic and network 

port assignments can help overall security.  

	

6.2. Implications for Future Research  
The practice of application container security is ripe for research. For instance, 

one of the most recent and compelling technologies developed to secure web applications 

is RASP, or runtime application self-protection. RASP is built into the application and is 

executed at runtime allowing for the detection and response of malicious activities at the 

application layer. At this time, RASP technologies are restricted to web application 

deployments based a limited set of webservers and custom application runtime 

environments. However, RASP technology is promising and developing rapidly. 

Furthermore, RASP applied to containerized applications is nascent and prime for 

development. RASP presents exciting and potentially valuable opportunities for future 

research.  

Container network-based intrusion detection is also prime for future research. By 

solving for dynamic application container behavior profiling and network application port 

mapping, advances in container firewalls have set the stage for the development of 

container NIDS. Especially compelling is the potential value in combining data and 

information gained from container HIDS, with container network security telemetry 

generated by application and network aware container firewalls, to facilitate the 

development of container NIDS. 

Another point of future research is the development of machine-learning 

applications to facilitate the development of active container intrusion detection and 

analysis systems. The dynamic nature of containerized application development and 

operations makes securing these environments difficult, especially when operating under 

traditional security paradigms. As such, automation provided by machine learning can 

augment security operations. Methods, such as Bag of System Calls, briefly covered in 

this research, can provide such assistance. Using machine learning systems such as 
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BoSC, security tooling and procedures can be developed to automatically detect, alert, 

and respond to unusual and potentially malicious activities and conditions.  

7. Conclusion 
Application container technologies are evolving rapidly, their adoption into the 

enterprise is soaring, and the implementation use cases are growing in proportion, 

criticality, and complexity. Furthermore, the vulnerabilities introduced by application 

container implementations and the attacks being developed to exploit the vulnerabilities 

are also evolving rapidly. Combine this landscape with the rapid digital transformation of 

business processes and the widespread adoption of public cloud technologies, commonly 

used to host containerized applications, and the necessity to develop effective container 

intrusion detection and analysis systems become evident. As the research suggests, no 

one security platform was able to secure the whole container environment. It appears that 

securing application container environments both at the network and at the host-level is 

key to effective security. Furthermore, centralized collection and analysis of container 

network and host telemetry were beneficial to the security of the environments tested. 

The research presented here is limited to assessing the effectiveness of methods 

for conducting intrusion detection and analysis in Docker Linux application container 

networks when compared with the efficacy of similar methods in traditional networks. 

For this purpose, Security Onion with the familiar Snort NIDS and OSSEC HIDS, Wazuh 

with the OSSEC HIDS, and Sydig Falco, with its kernel tapping module were selected. 

This research attempts to remove biases by scoring against absolute effectiveness, 

absolute ineffectiveness, and moderate effectiveness. However, moderate effectiveness 

can be judged subjectively due to the assessor's definition of the term. While not 

exhaustive, this research presents experiments which are representative of typical attack 

types depicted in the Cyber Kill-Chain. Furthermore, the techniques and tools utilized 

during the experiments are representative of those commonly used by security 

professionals when plying their trade. In sum, this research aims to identify gaps in 

current knowledge and capabilities available to secure application container networks and 

to spur the development of new research, techniques, and technologies to secure such 

environments. 
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Appendix 
 
 
 

 

Attack	Phase Test	Cases Test	Case	Commands
Scanning	Detection Sparta	scan	with	nmap sparta
Scanning	Detection Nikto	web	app	scan nikto	-h	http://192.168.1.19/*.*
Scanning	Detection NMAP	host	scan	intense	plus	UDP nmap	-sS	-sU	-T4	-A	-v	192.168.1.24
Scanning	Detection NMAP	host	scan	stealth	(SYN	scan) nmap	-sS	host_ip
Scanning	Detection Internal	network	scan	intense nmap	-T4	-A	-v	192.168.1.0/24
Scanning	Detection Host	vulnerability	scan	Nessus	basic
Scanning	Detection Host	vulnerability	scan	Nessus	WebApp	Scan
App	Attack	Detection Conduct	SQL	injection	attack 1'	OR	1=1	UNION	SELECT	null,	version()#
App	Attack	Detection Conduct	authentication	and	session	management	attack Use	BrutePWPwnage.txt	in	Kali-MS-DVWA	DB	Folder
App	Attack	Detection Conduct	XSS	attack	reflected <script>alert(123)</script>
Malware	Detection Deploy	malicious	payload	to	host wget	http://www.eicar.org/download/eicar.com	and	
Malware	Detection Execute	malicious	payload	on	host sh	eicar.sh
C2	Detection Execute	C2	activity	on	host SSH	and	Netcat
Privilege	Escalation	Detection Execute	privilege	escalation	on	host SU	with	brute-forced	creds
Data	Exfiltration	Detection Conduct	data	exfiltration nc	-l	-p	7777	>	filename	&	nc	192.168.1.22	7777	<	filename
File	Integrity	Detection Alter	sensitive	files	and	check	FIM	for	alerts	(registry,	conf	files,	password	files,	system	files,	user	 add test to the end of passwd and shadow
System	Information	Leakage Check	for	detection	of	leaked	system	data	(resource	usage,	location	services) nmap	-sV	--script	http-apache-server-status	192.168.1.17
Auto	Anomaly	Detection Check	for	automated	alerting	of	suspected	suspicious	behavior	-	execute	potentially	malicious	
Attacker	-	Victim	Relation	 Check	for	relationship	mapping	between	attacker	and	victim
Forensic	Artifact	Retrieval Check	for	capabilities	to	retrieve	forensic	artifacts	(logs,	pcaps,	flows,	files)


