
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 1

Defeating SQL Injection IDS Evasion

GCIA Gold Certification

Author: Brad Warneck, bwarneck@secureworks.com

Advisor: Jim Purcell

Accepted: January 4th 2007

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 2

Abstract

This paper will explore the continuing rising threat of SQL

injection as techniques are developed making it more difficult

to detect this form of attack vector. More recent forms of SQL

injection capitalize on an IDS's innate weakness of being rule-

based, and gives attackers room to craft an attack in a way to

avoid detection. Techniques of SQL injection will be presented

for those unfamiliar with this threat. Current state of IDS

detection for this vector will be explored. Different methods of

evasion will be covered, depicting how snort rules were misled.

It will also be shown how Defense In Depth is the only true

protection there is against these attacks, through separation of

privileges, application log analysis, and event correlation.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 3

Table of Contents

Abstract.. 2

Introduction ... 4

What is SQL Injection? ... 4

Basic Injection... 5

Blind Injection .. 7

IDS/IPS Detection .. 10

Evasion Techniques.. 12

Variation .. 13

Spacing .. 14

Encodings .. 14

URL Encoding .. 15

Hex Encoding ... 16

Char() encoding ... 16

Multi-Line Comments.. 17

Defeating SQL Injection ... 18

Application Level.. 19

Input Validation .. 19

Parameterized Queries ... 21

Database Level... 22

Stored Procedures.. 22

Separation of Duties .. 23

Honeytokens .. 24

Analysis Level... 25

Application Log Monitoring .. 25

Penetration Testing ... 26

Conclusion .. 27

References .. 28

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 4

Introduction

SQL Injection is nothing new, but it is becoming a more

popular attack vector as more establishments are developing and

deploying web-based applications (both internally and public

facing). Frequently, time restraints are placed on these

deployments and security takes a back seat to functionality.

Therefore, a reliance becomes placed on Intrusion Detection

(IDS) technologies to protect the establishment. With this

increased focus on IDS technology, advanced techniques are being

employed to evade detection. Consequently, this may blind the

organization to potential threats to their credibility,

integrity, and potentially availability. In order to properly

protect a network from SQL injection, one must first be familiar

with how SQL injection works, understand how intrusion detection

identifies this form of attack, how intrusion detection software

can be evaded, and finally know what measures can be taken to

ensure the IDS short-comings do not cause a blind spot to

attacks.

What is SQL Injection?

It is impossible to defend yourself against an attack if

you don't know how the attack works in the first place.

According to Paul Litwin, SQL Injection occurs when “a hacker

enters a malformed SQL statement into the textbox that changes

the nature of the query so that it can be used to break into,

alter, or damage the back-end database” (2004). In other words,

the end user enters data into a web form (including SQL

statements) that is different from what the application is

expecting to receive. The result is a modified query run on the

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 5

database, which could significantly change the output displayed

back to the end user, change the contents of the data in the

database, or even run arbitrary commands on the back-end server

itself. This type of attack is possible due to the fact that

“the SQL language contains a number of features that make it

quite powerful and flexible, namely: the ability to embed

comments; string multiple statements together; query metadata

from standard set of system tables.” (2004), which will also be

shown later drastically increases the difficulty of detection.

Basic Injection

Seen below is part of a very basic PHP script that would

accept user input to a web page form and check this against a

database of known users, where the user-supplied input is used

as part of the query. If the query is successful, the user is

determined to be authorized. This is more commonly referred to

as a login script.

$user = $_POST['username'];

$pass = $_POST['password'];

$query = “SELECT * FROM members WHERE username = '” . $user

 . “' AND password = '” . $pass;

...

$result = mysql_query($query);

$rows = mysql_num_rows($result);

if ($rows != 0) { // query matched something

 print "Successful login!";

}

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 6

ID username password

1 alice apples

2 bob banana

3 chuck carrot

Figure 1: initial contents of members table

Figure 1 represents the contents of the table 'members,' showing

three possible valid users and their respective passwords. An

expected successful login to this script would be a username of

'bob' and a password of 'banana,' resulting in the following SQL

query and result set in Figure 2:

SELECT * FROM members WHERE username='bob' AND password='banana'

ID username password

2 bob banana

Figure 2: Result of legitimate query

If the end user were to input the value “steve' OR 1=1 -- ” into

the username field, and leave the password field blank, the

resultant query would be:

SELECT * FROM members WHERE username = 'steve'

OR 1=1 –- AND password = ''

Here is a quick break down this input and resulting query: the

tick mark (') after the username of 'steve' is used to close the

opening tick mark hard coded into the query (username = '); the

'OR 1=1' acts as a logical “or” statement yielding results even

if the predefined where-clause does not match any data; and

finally the double hyphen (--) is a standard SQL comment which

ignores all text from that point to the end of the line, causing

the above query to not test the password field for a match. If

the resultant query were to be spoken in plain English it would

along the lines of, “Show me all listings from the members table

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 7

where the username is steve, or show me everything from the

members table.” As seen in Figure 3, this query would return all

rows of the members table, and result in a successful login even

though a valid username and password was not supplied.

ID username password

1 alice apples

2 bob banana

3 chuck carrot

Figure 3: Result of malformed user-input query

.Blind Injection

Although the previous example may seem trivial because the

PHP script is poorly written, the fact of the matter is that the

application is vulnerable to an injection attack. When a web

programmer has not been mindful of exception handling, SQL error

messages are fed back to the clients' browser window indicating

invalid parameters have been passed to the application. These

error messages can provide a lot of information about the

database structure if not carefully crafted, that can be used in

future, more threatening SQL injection attacks.

The conscientious programmer will be aware of the threat of

displaying these errors to the client, and may code the page in

such a fashion as to not show any signs of failure on the page.

What this programmer might not be aware of, is that while an

attacker can sometimes gain information about the database

structure from error messages, frighteningly they are also able

to obtain information from a lack of error condition. Using a

technique called “blind SQL injection,” carefully crafted

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 8

injection input is passed to the application acting as a “True

or False” style question to the database (CGISecurity.com). If

the page displays exactly as it would if the SQL injection were

not there, it is assumed the injection was successful, and the

injection evaluated as 'True.' The attacker can repeat the

process in a fashion that enables her to map out metadata, and

subsequently contain a further understanding of the database

structure.

A sample of this attack might be as follows: your local

bookstore has a website that permits you to search for all books

by a particular author by visiting the page AuthorsWorks.aspx

with a parameter of the author's name. Therefore, visiting

/AuthorsWorks.aspx?name=Shakespeare

will, as expected, display all of the works of Shakespeare. A

test of the SQL injection is performed by injecting a value that

will knowingly result in a true evaluation, yet not change the

result of the display page. Thus, visiting the address

/AuthorsWorks.aspx?name=Shakespeare and 1=1

will also display all of Shakespeare's works listed in the

database. With these two pages' contents being identical, it

confirms the variable is vulnerable to SQL injection. With this

information, a series of specially crafted SQL queries can be

passed to this variable acting as True/False questions (true if

the expectant page is displayed, false if it is not) to obtain

information about the database and create more sophisticated

injections. One such example of this true/false question mapping

would be the following query:

/AuthorsWorks.aspx?name=Shakespeare AND ASCII(lower(substring((select top 1

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 9

name from sysobjects where xtype='U'), 1, 1))) = 97

This query selects the first character of the first table in the

database, and compares its ASCII value to the number 97 (ASCII

representation for the letter 'a'). If the works of Shakespeare

are displayed, the first table in the database starts with the

letter 'a' due to the true result of the injection. If the

posting is not displayed, subsequent ASCII codes for each

character of the alphabet can be compared until the works are

displayed. Once the first character is discovered, the query

parameters can be adjusted to look at the second character of

the first table, as so:

/AuthorWorks.aspx?id=Shakespeare AND ASCII(lower(substring((select top 1 name
from sysobjects where xtype='U'), 2, 1))) = 97

This concept, originally discovered by Kevin Spett of SPI

Dynamics (2004), serves as proof that a malicious user is able

to determine metadata about your database even when the

application programmer has been mindful of not exposing this

information through error messages. It is equally possible for

an ill-intentioned user to determine column names of tables

using the same method. Once this information is obtained, it is

trivial for her to manipulate the data in the database for their

needs, including changing data, inserting data, deleting data or

even whole tables.

For reference, the following table has been compiled from

multiple SQL injection “cheat sheets” found on the web (RSnake,

2007; Mavituna, 2007). These are just a few, to give you an idea

of what else is possible, and should not be considered all

encompassing.

1 EXEC SP_ (or EXEC XP_)

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 10

1 AND 1=1

1' AND 1=(SELECT COUNT(*) FROM tablenames); --

1 UNION ALL SELECT 1,2,3,4,5,6,name FROM sysObjects WHERE xtype = 'U' --

Tex’+’t

5-1

WAITFOR DELAY '0:0:10'--

';shutdown --

IDS/IPS Detection

Intrusion detection and intrusion prevention have become

heavily relied on for detection and protecting against SQL

Injection attacks. In fact, according to a SQLSecurity.com

(2007) poll, thirty nine percent of network/security

administrators use intrusion detection technologies as their

primary defense for SQL injection, outweighing all other methods

by at least fourteen percent.

From the previous section, the general form of a SQL

injection attack is understood. Briefly summarized, they

generally consist of the reserved SQL keywords and often times

comment characters to ignore the remainder of the hard-coded

query. A simple signature to detect the infamous SQL injection

vulnerability test of “' or 1=1” can be displayed as follows:

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection attempt”;
flow: to_server, established; content: “' or 1=1 --”; nocase; sid: 1; rev:1;)

This signature may appear to be pretty generic at a quick

glance, however upon further inspection it is quite specific and

cannot be relied on for catching all instances of the “or 1=1”

test. The first thing to note is the tick mark ('). Having this

tick mark limits the signature to only catching injections

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 11

performed on input fields that are non-numeric. If the attacker

knows the field is a numeric only field, the tick mark will not

be used in the injection. The next somewhat obvious thing to

note is the use of the comment form of double-hyphen (--).

Although this is possibly the most common form of comment, other

comments do exist such as the hash (#) and the multi-line

comment (/* */). Therefore, a more reliable signature for

catching these attempts would be written using a Perl Compatible

Regular Expression (pcre) as seen here:

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection attempt”;
flow: to_server, established; pcre: “/(and|or) 1=1 (\-\-|\/*|\#)/i”; sid: 1;
rev:2;)

This signature is helpful to detect when someone is attempting

to discover a SQL injection vulnerability, but obviously this

test case is not needed to attempt an injection. If an attacker

desired, a more sophisticated injection could be used right off

the bat in hopes of the input parameter being vulnerable. Here

are a couple fairly generic signatures looking for some of the

more common keywords used in SQL:

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection SELECT
statement”; flow: to_server, established; pcre:”/select.*from.*(\-\-
|\/*|\#)/i”; sid: 2; rev: 1;)

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection UNION
statement”; flow: to_server, established; pcre:”/union.*(\-\-|\/*|\#)/i”; sid:
3; rev: 1;)

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection UPDATE
statement”; flow: to_server, established; pcre:”/update.*set.*\=.*(\-\-
|\/*|\#)/i”; sid: 3; rev: 1;)

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection DROP TABLE
statement”; flow: to_server, established; pcre:”/drop table.*(\-\-|\/*|\#)/i”;
sid: 3; rev: 1;)

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection WAITFOR
DELAY statement”; flow: to_server, established; pcre:”/waitfor delay \'[0-

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 12

9]{1,3}:[0-9]{1,2}:[0-9]{0,2}\'.*(\-\-|\/*|\#)/i”; sid: 4; rev: 1;)

These signatures just cover�� few basic SQL commands. They will

need to be tuned on a per environment basis, dependent on what

content the HTTP_SERVERS actually serve. The ultra-paranoid

security technician would develop the rest of the signature

arsenal for each of the SQL keywords. However, a point to be

considered is the quantity of reserved words and that each

signature will be checked until a match is found, system

resources utilized by the additional signatures are also

amplified, not to mention the quantity of false positive alerts.

Taking into account that this is just one form of attack, and as

expressed in the following section can be easily evaded, the

added resource consumption may not merit its' worth on a busy

network. The signatures will catch the lazy, sloppy, or

apathetic attacker, but more sophisticated attacks will

penetrate undetected by the IDS. That being said, it is still be

worth while to maintain a basic set of signatures to catch

and/or block these attacks.

Evasion Techniques

Intrusion detection technologies are commonplace amongst

corporate networks, and if it is capable of detecting SQL

injection then you are safe, right? ...Wrong. It is important to

understand the shortcomings of the technologies you use, so that

you may compensate for them in other areas. Due to the flexible

and powerful nature of SQL, the attack vector field is increased

to a point where IDS signatures can be tricked and certain

injection attacks just simply cannot be detected by and IDS

solution.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 13

Variation

Looking back to the basic SQL injection example in the

introductory section of this paper is the injection statement “'

or 1=1 --” and the second section provided an IDS signature for

this injection looking for “or 1=1” with any of the SQL accepted

comments. This signature could easily be evaded with a variation

on the comparison statement, simply by placing tick marks around

the ones: “' or '1'='1'”. This in interpreted by SQL as a

comparison of two strings (or varchars) instead of two numeric

values. The evaluation of the two strings is a true statement,

in the same manner that the two numerics compared yielded true,

causing the overall evaluation of our query to remain unchanged.

It would be possible to write another signature for this as

well, however there are near infinite possibilities for

variation on this statement. Since the objective is to have a

where-statement that always evaluates to 'true' any mathematical

or string comparison that SQL is capable of performing can be

used. The following queries will all return identical result

sets:

 SELECT * FROM members WHERE username = 'steve' OR 1=1 –-

 SELECT * FROM members WHERE username = 'steve' OR 2=2 –-

 SELECT * FROM members WHERE username = 'steve' OR 1<2 –-

 SELECT * FROM members WHERE username = 'steve' OR 1+1=2 –-

 SELECT * FROM members WHERE username = 'steve' OR ”evade”=”ev”+”ade” --

Spacing

Another evasive format is also possible due to the powerful

nature of the SQL language. SQL, by nature, recognized any quote

or tick mark as a notification that a new word is being started,

regardless of its' placement in the line. This means that a SQL

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 14

statement does not need to have any spaces in the entire query

and it will still successfully execute as if the spaces were in

tact. The following queries all return the same dataset as seen

in Figure 5:

SELECT * FROM members WHERE username = 'steve' OR 1=1 –-

SELECT * FROM members WHERE username='steve'OR'1'='1'–-

SELECT*FROM`database`.`members`WHERE`database`.`username`='steve'OR'1'='1'–-

ID username password

1 alice apples

2 bob banana

3 chuck carrot

Figure 5: Result of all three queries listed above

Of course, additional signatures could be written for this as

well. However, between the previous evasion technique of

variation and this technique of spacing, your basic signature

set just grew exponentially.

Encodings

Using various encodings is a very powerful technique in

evasion. Encodings not only have the ability to evade IDS

signatures, but they also provide the ability to evade input

validation. The easiest to understand is URL encoding.

URL Encoding

Due to the fact that RFC 1738 for URL specifications only

calls for a small subset of all ASCII characters be permitted in

a URL, there exists an alternate method for using the invalid

characters when passing GET parameters. This method is using the

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 15

hexadecimal code that corresponds with the character, preceded

by a percent sign. This is commonly recognized as '%20' where a

space would normally be seen. However, the legal characters can

also be represented using the hexadecimal codes as well. If an

IDS signature is looking for the word “select” as a possible SQL

injection, simply changing the injection to its' URL Encoded

equivalent (%73%65%6C%65%63%74) will completely bypass setting

off this alarm. Using the PCRE format for the signatures permits

these encodings to be added to the signatures with relative

ease. Here is what the newly modified basic “select” signature

looks like:

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection SELECT
statement”; flow: to_server, established;
pcre:”/(s|%73)(e|%65)(l|%6C)(e|%65)(c|%63)(t|%74).*(f|%66)(r|%72)(o|%6F)(m|%6D)
.*(\-\-|\/*|\#)/i”; sid: 2; rev: 2;)

This signature looks better now. However, even though the

case insensitive flag (/i) was specified at the end of the PCRE,

it is not intelligent enough to convert the URL encodings to

their equivalent uppercase. The signature modified (again) will

take the form:

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection SELECT
statement”; flow: to_server, established;
pcre:”/(s|%73|%53)(e|%65|%45)(l|%6C|%4C)(e|%65|%45)(c|%63|%43)(t|%74|%45).*(f|%
66|%46)(r|%72|%52)(o|%6F|%4F)(m|%6D|%4D).*(\-\-|\/*|\#)/i”; sid: 2; rev: 3;)

This signature will now match any non-encoded 'select'

statement, as well as any upper and lowercase encoded variation

of this query string. The same procedure should be taken on the

rest of the SQL signatures in your rule base.

Hex Encoding

 Another powerful feature of the SQL language is the ability

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 16

to translate hexadecimal encoded strings into their ASCII

equivalent. This becomes useful on more advanced injections

(i.e. using “union select” statements) that do not permit

certain characters on the input validation. Using a SQL query to

determine the hex value of interest can be accomplished:

SELECT HEX('alice');

HEX('alice')

616C696365

Figure 6: Hex encoded string for root

Once the hex value is determined (Figure 6), it can be preceded

with a '0x' to signal the value is hex encoded. If the original

injection were to take the form:

UNION SELECT password FROM members WHERE username = 'alice' --

It could be altered to not use tick marks by replacing 'alice'

with the hex encoded value:

UNION SELECT password FROM members WHERE username = 0x636c696365 --

This makes it a bit more difficult to alert on a particular

expected expression, however it is more commonly used to bypass

input validation when tick marks are not permitted as input.

Char() encoding

Similar in fashion to the hex encoding, is char() encoding.

This technique is geared more toward input validation bypassing

as well, but may also be used to evade non-SQL injection

signatures. The char() function in SQL takes an ASCII decimal

value, and converts it into its representative character. It is

especially useful for evasion because it can be used in a nested

statement. When used in combination with the “load data”

function, potentially, the contents of sensitive file

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 17

“/etc/passwd” can be inserted into another table that can be

read at a later time (assuming database service is running with

appropriate system privileges). This is accomplished by the

query:

LOAD DATA INFILE CHAR(39,47,101,116,99,47,112,97,115,115,119,100,39) INTO TABLE
sometable

This can also be accomplished by a slightly modified version of

the query:

LOAD DATA INFILE CONCAT(CHAR(39), CHAR(47), CHAR(101), CHAR(116), CHAR(99),
CHAR(47), CHAR(112), CHAR(97), CHAR(115), CHAR(115), CHAR(119), CHAR(100),
CHAR(39)) INTO TABLE sometable

Which is the same thing as the query:

LOAD DATA INFILE '/etc/passwd' INTO TABLE sometable

Then, if 'sometable' is able to be viewed on the web page,

normally or through additional injections, the contents of this

sensitive file is known while both input validation as well as

IDS signatures were evaded.

Multi-Line Comments

The final evasion technique covered in this paper is the

nail in the coffin for intrusion detection of SQL injection. The

inclusion of multi-line C-Style comments in SQL provides enough

variation, that it is nearly impossible to detect an injection

when this is used. The comment takes the form “/* */” where the

“/*” is the beginning of the comment, and the “*/” is the end of

the comment. SQL treats these comments in a similar fashion to

white space, in that everything contained in the comment is

ignored as if it did not even exist, causing all surrounding

text to be merged. As a result, numerous identical queries can

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 18

be executed in a multitude of variations resulting in an evasion

of the IDS signatures.

SELECT * FROM members WHERE username = 'steve'/**/OR/**/'1'/**/='1' --

SELECT * FROM members WHERE username = 'steve'/*random text*/OR'1'='1' --

S/*stuff*/E/*blah*/L/*more stuff*/E/**/C/**/T/**/*/**/F/**/R/**/O/**/M/**/
m/**/e/**/m/**/b/**/e/**/r/*evading*/s/*signatures*/ W/**/H/**/E/**/R/**/E
/**/u/**/s/**/e/**/r/*

*/n/**/a/**/m/**/e/**/ =/**/'/**/s/**/t/**/e/**/v/**/e/**/'/**/ O/**/R/**/
'/**/1/**/'/**/=/**/'/**/1/**/'/**/ -/**/-

SELECT * FROM members WHERE username = 'steve' OR '1'='1' --

All of the above queries, although appearing to be

different at a glance, will return the exact same result set.

(Maor & Shulman, 2004).

Defeating SQL Injection

There are numerous ways in which an environment can be

strengthened to help remediate the risk of SQL Injection

attacks. No single method is the silver bullet to SQL injection,

and the combination of all methods does not guarantee safety

either. However, the more precautions taken, the better off you

will be. These measures can be taken both on the web application

level, at the database level, and also at the analysis level.

.Application Level

Input Validation

Dave Child says “the cardinal rule of all web development,

and I can't stress it enough, is: Never, Ever, Trust Your Users.

Assume every single piece of data your site collects from a user

contains malicious code.” (2004). If that one simple sentence

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 19

can be remembered, security stature will already be increased

greatly. Most SQL injection attacks come from malformed data put

into input boxes on a web page form, where the attacker hopes

the data is used directly as part of a SQL query. The concept of

not trusting user input should actually be expanded to “do not

trust any dynamic data used in queries.” This modified statement

is more encompassing to cover cookies, session data, header

data, and anything else that might be used in a SQL query that

can be easily modified by the end user. So you don't trust user

input, now what? The concept behind not trusting input is to

reject any potentially dangerous input, performed by pattern

matching on the data. The simple way to perform input validation

is to develop a list of known bad patterns, and if the input

contains it, to remove or escape this data and continue to run

the query. The best way to do this is, instead of developing a

blacklist, is to develop a whitelist of acceptable input. Also,

it must be stressed that these input checks should be done on

the server side, not the client side (i.e. using javascript). A

common technique used in attacks is for the attacker to “Save”

the page from his browser to her local machine. She can then

remove the “maxlength” restrictions on the input boxes, as well

as any client-side input checking, before submitting the form to

your server. Due to the vast differences on input types, here

are a few examples to clarify how to properly develop a

whitelist:

1. Phone Numbers – While a phone number may be entered into a

text field many different ways: (123) 456-7890;

123.456.7890; the real content of interest are solely the

digits. Therefore, a whitelist would be best suited as

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 20

removing an non-numeric characters from the variable, and

then ensuring the length is smaller or equal to the

expected length.

$sanitized['phone'] = trim(preg_replace('/[^0-9]/', '', $_POST['phone']))

This will leave the sanitized variable as “1234567890”,

which cannot contain an injection. It also merits checking the

length of the sanitized value to ensure it is within proper

bounds.

2. Drop-down lists – A naive programmer would think that since

he has a drop down list of only three possible choices,

that data will arrive cleanly to the server. Using the

previously mentioned method of saving the page locally, and

attacker can add in his own options, or modify the

variables being sent to the server on the fly using a

software like the Firefox plug-in TamperData

(http://tamperdata.mozdev.org/). If said programmers

website sold small, medium, and large widgets, the best way

to sanity-check this drop down selected option is using a

switch statement of the known options:

switch ($_POST['widget_size']) {

 case “small”:

 case “medium”:

 case “large”:

 $sanitized['widget_size'] = $_POST['widget_size'];

 break;

 default: // code to return error message

}

Now it is guaranteed the value is one of the three listed

options.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 21

Although many websites claim it, escaping input variables

is not a secure precaution to take. As depicted in the

previous section, there are measures that can be taken to

evade these escapes.

Parameterized Queries

A prepared statement (also known as a parameterized query)

is a query template that is created with unfilled variables, and

passed to the database where it is validated for proper syntax

and then stored for later use. The template is then called by

passing the unfilled variables as parameters. This greatly

reduces the amount of overhead used when a query is called

multiple times, since only the changing variables need to be

retransmitted to the database. This feature also improves the

safety of the queries because they are formed before the user

supplied data is inserted into it, and the entire statement is

treated as one query, instead of potentially multiple queries.

PHP can implement this feature using the MySQL Improved (mysqli)

extension, and ASP .NET can also handle prepared statements. The

appropriate syntax in PHP for executing a prepared statement

would look like:

$mysqli = new mysqli('dbhost','username','password','databasename');

$query = $mysqli->prepare(“SELECT * FROM members WHERE username = ?”);

$query->bind_param('s',$user);

$query->execute();

As seen here, the dynamic variable is replaced in the query with

a question mark (?) to notify the back-end database that is

where the variable will be placed. It is also possible to us

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 22

multiple variables, by simply using a question mark at each

location (Greant & Richter, 2004).

Database Level

Stored Procedures

Stored procedures are conceptually the same thing at

prepared statements, with the exception that they are stored

directly on the database, instead of inside the web application.

Although many web sites preach stored procedures are the silver

bullet to SQL injection, if the stored procedure is not properly

written, it can still be vulnerable to SQL injection attacks. Of

the two MS-SQL stored procedures below, the first is still

vulnerable while the second is not.

CREATE PROCEDURE sp_userName @user varchar(50) = NULL AS

DECLARE @sql nvarchar(1000)

SELECT @sql = ' SELECT * FROM members WHERE '

IF @suer IS NOT NULL

 SELECT @sql = @sql + ' username = ''' + @user + ''''

EXECUTE sp_executesql @sql

CREATE PROCEDURE sp_userName @user varchar(50) = NULL AS

DECLARE @sql nvarchar(1000)

SELECT @sql = ' SELET * FROM members WHERE '

IF @user IS NOT NULL

 SELECT @sql = @sql + ' username = @user'

EXEC sp_executesql @sql, N'@user varchar(50)',@user

Because the first example uses tick marks within the query, user

input is capable of escaping this tick mark and adding in

arbitrary SQL code. The second example on the other hand, define

that variable as a varchar prior to execution, and subsequently

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 23

does not need to us the tick marks around the variable. The

second method is not susceptible to SQL injection.(Kumar, 2006)

Separation of Duties

The most basic security measure that can be taken to

protect your data is by reducing the amount of privileges the

calling user has. If the user account only has 'select'

permissions on a database, any injection attempts to modify or

delete data, or run system function calls will be in vein. If

the web application has the need to modify data, an additional

account should be created with solely that permission.

Furthermore, it is advisable for the user account to be further

restricted to 'select' permissions on only one table, or one

subset of tables. If data theft is the goal of the attacker, the

fewer tables he can access the better. By performing this

privilege reduction, the risk factor is not being eliminated,

but it is being reduced.

Honeytokens

Certain SQL injection attempts, like the 'or 1=1' approach,

will most times access all items in a given database table

whereas normal application usage will only access a subset of

the data at a time. Knowing this, what is known as a

'honeytoken' can be planted in the database. According to Lance

Spitzner, a honeytoken is “a digital or information system

resource whose value lies in the unauthorized use of that

resource” (2003). Essentially, a fictitious database entry is

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 24

created that should not be accessed under normal usage of the

application. The only case where this entry would be accessed

would be unauthorized usage. Therefore, monitoring the access of

this honeytoken would be a dead give away of hostile activity

occurring. The simplest way to accomplish this monitoring would

be to create an IDS signature that detects the value of this

data as it travels between the database server and the web

application server. Looking at Figure 1, if the database entry

of 'Trogdor!!' were entered as a honeytoken username, the

following IDS signature could be developed to detect it being

accessed:

alert tcp $DATABASE_SERVERS $DATABASE_PORTS -> $HTTP_SERVERS any (msg:
“HoneyToken Access”; flow: to_server, established; content:”Trogdor!!”; sid: 1;
rev: 1;)

The signature is inspecting all traffic flowing from the

database server to the web server, not vice versa, and any port

on the web server. This is because the web server will make its'

query to the database server using an ephemeral port, and the

honeytoken data will be delivered to the web server. Once this

alert is generated, the request can be correlated with

application logs from the web server to determine the true

source of the activity (Spitzner, 2003).

.Analysis Level

Application Log Monitoring

A time consuming but nearly fool-proof method of detecting

SQL injection manually reviewing the application level logs on

devices of interest, such as Apache or IIS logs. Using anomaly

based analysis one can quickly determine stray page requests

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 25

from normal requests. Once the stray requests are determined,

further investigation of these can be done to classify the log

entry as benign or a potential attack.

127.0.0.1 - - [03/Apr/2007:14:11:12 -0500] "GET
/login.php?username=alice&pass=apples HTTP/1.1" 200 132

The above log entry would be an expected line for a

legitimate login attempt from the page login.php. Below is what

a SQL injection attack would look like in the application log.

127.0.0.1 - - [03/Apr/2007:14:11:12 -0500] "GET
/login.php?username=steve'or'1'='1'--&pass=ignored HTTP/1.1" 200 132

It is evident at a glance the second log entry is an

abnormal input for a username that typically only consists of

alphabetic characters.

This process of log analysis is limited to GET requests, as

POST variables are not stored in the logs by default (for

security purposes). Using an application firewall, such as

ModSecurity for Apache (http://www.modsecurity.org/), will

enable the ability to log these POST variables for more thorough

analysis.

Penetration Testing

Penetration testing is an authorized attack on your

applications to determine where the vulnerabilities lie, and

what code needs to be addressed. Network applications are

constantly being changed and created in enterprise environments.

Therefore, penetration testing on all web applications on the

network should be a continual process.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 26

Thankfully, there exist many tools that automate this

process. The folks over at the Open Web Application Security

Project have a nice collection of free security tools, like

SQLiX. This automated tool is “able to crawl, detect SQL

injection vectors, identify the back-end database and grab

function call/UDF results (even execute system commands for MS-

SQL).” The feature that sets SQLiX apart from other automated

SQL injection tools is its' ability to detect blind injection

vectors, aside from normal injection vectors.

While these automated tools are great for speeding up the

penetration testing process, manual penetration testing should

also be employed as often as possible. These automated tools are

frequently limited in the range of exploitations they make, and

new techniques will surface that the applications may be

vulnerable to.

Conclusion

SQL injection is a very powerful attacking technique, that

expands vastly beyond the basic examples provided within this

paper. However, you should now have a strong understanding of

how this technique works. It has also been expressed how an

intrusion sensor catches these attacks, as well how attackers

can craft their way around these detections. It is evident that

the best way to prepare and defend against SQL injection is

through Defense-in-Depth. There does not exist a method that

will single handedly defeat SQL injection, but when combined

together they provide a near impenetrable web based application.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 27

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 28

References

CGISecurity.com. CGISecurity.com: What is Blind SQL Injection?.

 Retrieved on January 11, 2007 from

 http://cgisecurity.com/questions/blindsql.shtml.

Child, David. (July 2004). Writing Secure PHP. Retrieved March

 20, 2007 from http://www.ilovejackdaniels.com/php/writing-

 secure-php.

Greant, Zak & Richter, Georg. (March 16, 2004). ext/mysqli:

 Part I – Overview and Prepared Statements. Retrieved on

 March 26, 2007 from

 http://devzone.zend.com/node/view/id/686.

Kumar, Santosh. (June 2006). Are stored procedures safe against

 SQL injection?. Retrieved on March 27, 2007 from

 http://palisade.plynt.com/issues/2006Jun/injection-

 stored-procedures/.

Litwin, Paul. (2004). Data Security: Stop SQL Injection Attacks

 Before They Stop You. Retrieved February 3, 2007 from

 http://msdn.microsoft.com/msdnmag/issues/04/09/

 SQLInjection/.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Defeating SQL Injection IDS Evasion

Brad Warneck 29

Maor, Ofer & Shulman, Amichai. (April 2004). SQL Injection

 Signatures Evasion. Retrieve on February 18, 2007 from

 http://www.imperva.com/application_defense_center/

 white_papers/sql_injection_signatures_evasion.html.

Mavituna, Ferrah. SQL Injection Cheat Sheet. Retrieved on March

 19, 2007 from

 http://ferruh.mavituna.com/makale/sql-injection-cheatsheet/.

Rsnake. SQL Injection cheat sheet; Esp: for filter evasion.

 Retrieved on March 17, 2007 from

 http://ha.ckers.org/sqlinjection/.

Spett, Kevin. (2005). Blind SQL Injection: Are your web

 applications vulnerable?. Retrieved March 14, 2007 from

 http://www.spidynamics.com/whitepapers

 /Blind_SQLInjection.pdf.

Spitzner, Lance. (2003). Honeytokens: The Other Honeypot.

 Retrieved May 21, 2007 from http://www.securityfocus.com/

 infocus/1713.

SQLSecurity.com. (2006). What is your "primary" defensive

 mechanism for application security flaws?. Retrieved on

 March 4, 2007 from http://www.sqlsecurity.com/default.aspx.

Additional Reading:

OWASP: http://www.owasp.org/index.php/Category:OWASP_SQLiX_Project

