
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

An AWS Network Monitoring Comparison

GIAC (GCIA) Gold Certification

Author: Nichole Dugan, ndugan@gmail.com
Advisor: David Hoelzer

Accepted: 10/7/2019

Abstract

AWS recently released network traffic mirroring in their environment. As this is a

relatively new feature, users of the service in the past have used tools such as Security

Onion to monitor traffic using a hosted base model of forwarding network traffic to

analyze the data. It may not be apparent to an organization which option works best for

them, so an analysis should be done of both the traffic mirroring and host based options

to determine the benefits and drawbacks of each method. This paper seeks to compare the

two types of network monitoring available in the AWS environment, traffic mirroring

and host based, and determine which method is more cost-effective, and, through testing,

determine which method generates more alerts.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 2

Nichole Dugan, ndugan@gmail.com	

1. Introduction
As cloud datacenter offerings become more affordable, more small and medium-

sized companies are moving their hardware infrastructure to the cloud. AWS is one of the

most popular choices, and it offers many services to make the transition from an on-

premise datacenter to one where hardware exists out of the control of the organization.

This lack of control has been a concern for some security and networking professionals

who traditionally ran network Terminal Access Points (TAPs) to monitor for malicious

activity.

This paper discusses two different methods of monitoring infrastructure in the

AWS environment, tests the solutions, and compares and contrasts between the methods.

Evaluation of the solutions include the cost to run each, as well as ease of use.

1.1. Native AWS Monitoring
AWS makes it easy to set up monitoring of a Virtual Private Cloud (VPC) by

setting up VPC Flow Log monitoring. This monitoring can either be turned on for the

entire VPC or an individual Elastic Network Interface (ENI). The flow log record

contains the following fields (AWS, 2019):

• Version

• Account ID

• Interface ID

• Source IP Address

• Destination IP Address

• Source Port

• Destination Port

• Protocol

• Number of Packets Transferred

• Number of Bytes Transferred

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 3

• Start Time

• End Time

• Action Taken by ACLs (ACCEPT or REJECT)

• Log Status (OK, NODATA, SKIPDATA)

An example flow log record is shown below (AWS, 2019).

2 123456789010 eni-abc123de 172.31.16.139 172.31.16.21 20641 22 6

20 4249 1418530010 1418530070 ACCEPT OK

While this data can be useful for troubleshooting issues, it does not give the full

packet and does not allow analysis in tools such as Suricata or Zeek.

1.2. Traffic Mirroring

On June 25th, 2019, AWS announced the availability of traffic mirroring for EC2

instances (AWS, 2019). This option resembles using a network TAP in an on-premise

datacenter. The traffic mirroring packet format contains the following fields (AWS,

2019):

• Virtual Network ID

• Source IP Address

• Destination IP Address
This solution cannot monitor all network traffic and excludes ARP, DHCP, Instance

Metadata Service, NTP, and Windows activation (AWS, 2019). The documentation for

AWS Traffic Mirroring also lists several scaling limitations for traffic mirroring on an

AWS account; however, these limitations should not be a factor for a small or medium-

sized organization. 	

1.3. Security Onion

Security Onion is an open-source Linux distribution that combines many popular

monitoring tools in one location. Security Onion focuses on tools that help with intrusion

detection, enterprise security monitoring, and log management. It contains the following

tools (Security Onion Solutions, 2019):

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 4

• Elasticsearch, Logstash, Kibana (ELK)

• Snort

• Suricata

• Zeek, formerly Bro

• Wazuh, formerly OSSEC

• Sguil

• Squert

• CyberChef

• NetworkMiner
This paper focuses primarily on using Wazuh as a Host Intrusion Detection (HID)

agent, along with using Zeek and Suricata to monitor traffic from the AWS traffic

mirroring option. Currently, Zeek and Suricata are the only options for traffic mirroring

in AWS because they support needed VXLAN decapsulation (AWS, 2019).

1.4. Comparison between Options

Security Onion offers various tools that offer similar functionalities, such as Wazuh

and Logstash. Both offer forwarding of event logs from Windows servers. Wazuh was

chosen over Logstash because Wazuh offers file integrity monitoring along with intrusion

detection and log forwarding. This combination provides a stronger security base by

monitoring system files as well as system events.

2. Environment Setup
For testing purposes, the environment has a flat structure. There is one server, a

domain controller, with the Wazuh agent installed on it that communicates with the

Security Onion server. The Security Onion server is a c5.2xlarge class of server, which

has eight virtual CPUs, and 32 GB of memory. The c class of servers are optimized for

CPU performance, making them an excellent choice to process traffic data. Because

AWS does not easily allow for the creation of an instance from an ISO, it was installed

on an Ubuntu 16.04 server. Security Onion was then able to be installed using the apt-get

command (Security Onion, 2019), but the AWS Ubuntu image does not have a GUI

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 5

version, so X Windows forwarding was done with Xming. This installation of Ubuntu

16.04 needed a change to the /etc/hosts file to add the private IP address of the server

along with the hostname of the server, which takes the format of ip-192-168-1-0. In the

AWS environment, it is best not to configure the interfaces through the Security Onion

setup wizard since this action may cause the instance to become inaccessible.

Another consideration for the setup of Security Onion in an AWS environment is

that the security groups must allow traffic on the port from the server or subnet sending in

traffic. These additions should occur after running the so-allow command in Security

Onion. For example, to allow Wazuh to communicate with the Security Onion server, so-

allow with the "o" option needs to be run, and the security group attached to the instance

needs to allow port 1514 through from the monitored server.

While this configuration for Security Onion works for testing purposes, the

documentation for a production installation includes at least three servers. Documentation

details including a master node to control other nodes, one or more forwarding nodes that

can ingest network traffic data, and one or more storage nodes to run Elasticsearch and

Logstash. Security Onion's recommended architecture, shown in Figure 1, displays

several servers (Security Onion, 2019). This configuration would give a more robust

architecture for a production environment and would utilize the most CPU for

Elasticsearch. Zeek is also CPU-intensive and requires as much network bandwidth as the

data sent to the Zeek sensor.

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 6

Nichole Dugan, ndugan@gmail.com	

Figure	1:	Security	Onion	Recommended	Architecture	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 7

2.1. AWS Traffic Mirroring
AWS Traffic Mirroring allows for the mirroring of one network interface to another

network interface. This mirror can either be from one EC2 instance to another, or from a

network interface to a network load balancer. If using a load balancer to distribute the

traffic to multiple servers, the load balancer must allow traffic on port 4789, the port for

VXLAN traffic.

Understanding this configuration illustrates one difference between network

monitoring in AWS versus an on-premise network: we are only able to monitor traffic

going to a specific instance. This AWS solution might overwhelm a single sensor, so

many sensors may need to be deployed into the network, increasing the cost of the

solution. As discussed previously, AWS lists some traffic that cannot be monitored,

including ARP and DHCP traffic, which could be used to determine new machines in the

environment.	

2.2. Security Onion
Security Onion is a package of several open-source tools that help with intrusion

detection, network monitoring, and log management. Each of the tools can be used

separately or in conjunction with each other. Each item provides benefits; for example,

Wazuh can detect events that occur on a host, such as software installations or privilege

escalation. Zeek and Suricata can monitor network traffic and alert on specific conditions.

Security Onion also provides tools for an analyst to investigate activity on the network,

including Kibana, Squert, Sguil, and Wireshark.

3. Testing the Solution
After Security Onion was installed, Wazuh was installed on a host, and traffic

mirroring was set up between the host and the Security Onion server. Tests of the

solution were comprised of events that follow the CIS Top 20 Critical Security Controls

including Inventory and Control of Hardware Assets, Inventory and Control of Software,

Controlled Use of Administrator Privileges, Limitation and Control of Network Ports,

Secure Configuration for Devices, and Boundary Defense (Center for Internet Security,

2019).

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 8

Nichole Dugan, ndugan@gmail.com	

3.1. Inventory and Control of Hardware Assets
To test the Inventory and Control of Hardware Assets Critical Security Control in

AWS in a virtual environment, a new EC2 instance was created. While Wazuh can create

an IAM account to monitor AWS services (Wazuh, 2019), setting up this configuration

was out of the scope of this research. Zeek or Suricata may have been able to detect this

new server on the network, however the server did not send information to the monitored

network interface, so this new server went undetected. The Kibana dashboard in Security

Onion could provide a useful starting point by reviewing the “Connections” report listed

under the “Bro Hunting” section.	

3.2. Inventory and Control of Software Assets
The Inventory and Control of Software Assets critical security control was tested

by installing Chrome on the monitored server. Wazuh can monitor windows event logs,

and the events associated with installing and uninstalling an application are 11707 and

11724, respectively. Reviewing the rules for Wazuh in /var/ossec/rules/0220-

msauth_rules.xml, shows that rule IDs 18146 and 18147, shown below, are monitored

and sends an alert by email.

<rule id="18147" level="5">

 <if_sid>18101</if_sid>

 <id>^11707$</id>

 <options>alert_by_email</options>

 <description>Windows: Application Installed.</description>

 </rule>

 <rule id="18146" level="5">

 <if_sid>18101</if_sid>

 <id>^11724$</id>

 <options>alert_by_email</options>

 <description>Windows: Application Uninstalled.</description>

 </rule>

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 9

Nichole Dugan, ndugan@gmail.com	

While the email was not sent, the action was logged in

/var/ossec/logs/alerts/2019/Aug/ossec-alerts-27.log. The alert is shown below and

references the registry key that was involved in the installation event.

** Alert 1566937963.309047958: -

ossec,syscheck,pci_dss_11.5,gpg13_4.11,gdpr_II_5.1.f,

2019 Aug 27 20:32:43 ([Server Name]) [Server IP]->syscheck-

registry

Rule: 554 (level 5) -> 'File added to the system.'

File

'HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\EventLog\Ap

plication\Chrome' was added.

Attributes:

- MD5: b0a4f0b951abba225dd873dd24883261

- SHA1: 12559e2aadae68d1dc5d158b59125560682d3470

Wazuh allows alert levels from 1 to 16, and level 5 on the alert holds a higher

severity than the default of 3 (Wazuh, 2019). Alerts at this level should send an alert via

email or forward on to a SIEM for further analysis.

3.3. Controlled Use of Administrator Privileges
To help check the usage of administrator privileges as defined in the critical security

control Controlled Use of Administrator Privileges, Windows event IDs 577 and 4673

can be monitored as shown in the Wazuh rule listed below.
 <rule id="18108" level="4">

 <if_sid>18105</if_sid>

 <id>^577$|^4673$</id>

 <description>Windows: Failed attempt to perform a privileged

operation.</description>

<group>authentication_success,pci_dss_10.2.2,gdpr_IV_32.2,</group

>

 </rule>

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 10

Nichole Dugan, ndugan@gmail.com	

An example of an alert that was fired while testing is shown in Appendix A. The

alert gives the user who is attempting the privileged action, the host they are attempting

the privileged action on, and the process involved in the alert. These alerts can help a

security operations team monitor the network.

3.4. Limitation and Control of Network Ports
To monitor the Limitation and Control of Network Ports critical security control in

AWS, additions and changes to security groups should be monitored. While changes to

AWS security groups could be added in Wazuh, as mentioned in Section 3.1, reviewing

the Kibana dashboard for “Connections” under the “Bro Hunting” section can help

monitor open ports between servers in AWS. The version of Zeek included with Security

Onion was unable to decode the VXLAN traffic, so the traffic mirroring port between the

monitored server and the Security Onion server shows the most traffic as the VXLAN

port 4798, as shown in Figure 2.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 11

Figure	2:	Incoming	Port	Connection	Counts	

3.5. Secure Configuration for Devices
The Secure Configuration for Devices critical security control tests if the default

credentials are on a device. By default, when a Windows EC2 instance is created in

AWS, the Administrator account has a 30-character password with a mix of lowercase,

uppercase, numbers, and special characters.

Wazuh tracks failed login attempts to the system. A sample alert, shown in Appendix

B, displays the format of the alert. The alert gives the username, server the user was

trying to log into, and the timestamp. These values can help determine if an attack is

taking place.	

3.6. Boundary Defense
The Boundary Defense critical security control monitors connections into and out of

the perimeter of the organization’s internal network. To review the connections between

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 12

the EC2 instances and external IPs, the “Connections” dashboard under the “Bro

Hunting” section can help an investigator review external network traffic. An example of

the report is shown in Figure 3. This data can be used to compare IP addresses with

known malicious IP addresses from threat intelligence sources.

Figure	3:	Outgoing	IP	Address	Connections	

4. Testing Results
During testing, several events were triggered to mimic real-world attacks

described by CIS's Top 20 Critical Security Controls. A combination of Zeek alerts and

Wazuh alerts were able to detect some of the attempts, but network monitoring in AWS

does not provide as much visibility as an on-premise network. A prime weakness of this

feature is the inability to monitor the network for new devices.

Zeek provided visibility in control of network ports and boundary defense, but

Wazuh provided visibility with inventory and control of software assets, monitoring

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 13

privileged accounts, and secure configuration of devices. Both options require

configuration changes to allow for proper alerting on these events. As with an on-premise

network, a combination of several security controls is needed to minimize security

weaknesses.

The most significant problem with this solution was Zeek failing to distinguish

between the forwarded traffic and traffic coming into the Security Onion sensor. This

problem caused Zeek to interpret the majority of traffic to be on port 4798 and not the

ports associated with the original traffic. Further testing was done between the latest

version of Zeek and the version of Zeek included in Security Onion 16.04. The results of

the testing process are included in section 5.

5. VXLAN Testing
The AWS networking environment uses VXLAN tunneling to do traffic mirroring.

Zeek Version 3.0.0 released on August 8th, 2019 supports decapsulation of VXLAN

traffic (Zeek, 2019). The version of Bro included in Security Onion 16.04 is 2.6.3. The

latest version of Zeek was installed on a separate Ubuntu server, and further tests were

completed.

Two tests were performed on each instance to determine the difference between the

Zeek and Bro instances in AWS. The first test attempted to connect to the Windows

server using RDP and the incorrect credentials. The second test performed was a ping

from a workstation to the Windows server.

The test results showed that the Security Onion sensor was unable to pick up either

the ping or RDP traffic from the workstation. The sensor running the latest version of

Zeek was able to detect the traffic from the workstation and place the traffic in the proper

file, rdp.log or conn.log.

More research needs to be done to determine if the latest version of Security Onion

can be upgraded to use the latest version of Zeek or if a separate Zeek sensor could send

its logs to Security Onion. Sending the logs to Security Onion would allow a security

team to utilize the reports available in the Kibana dashboard while still using the AWS

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 14

Traffic Mirroring solution. A possible solution to this problem is to use FileBeats to send

the Zeek logs to the Elasticsearch database hosted in Security Onion (Logz.io, 2018).

6. Cost Analysis
To set up the recommended Security Onion architecture, as shown in Figure 1, a

minimum of three servers should be run. The master node running Elasticsearch should

remain at a c5.2xlarge while the forward and storage nodes would each be c5.xlarge. The

c5 class of servers emphasize CPU performance, which is required for processing of

network traffic. A breakdown of the costs to run this configuration is shown below.

• Master node - $0.34/hour, $2,978.40/year

• Forward node - $0.17/hour, $1,498.20/year

• Storage node - $0.17/hour, $1,498.20/year

• Traffic mirroring - $0.015/hour, $131.40/year per server

With an environment of 25 monitored servers, the total cost for traffic mirroring

would be $3,285/year. The total estimate for running this solution for a year is $9,259.80.

In contrast, the Gigamon GigaVue option available from the AWS Marketplace is

$3.20/hour for a total of $28,032/year (Gigamon, 2019). If the traffic mirroring is sent to

an on-premise target, additional data charges would be incurred, as AWS charges for data

downloaded from the VPC.

7. Conclusion
Moving to a cloud infrastructure can help mitigate security risks by sharing some

security responsibility with the cloud hosting provider. However, as more organizations

are breached in the cloud, it is crucial that they monitor their cloud resources to ensure

they have not been compromised. Before AWS introduced their Traffic Mirroring options

on June 25th 2019, other solutions that we proposed involved routing all traffic through a

security device controlled by the organization’s network administrators as proposed by

Radichel (Radichel, 2017). While this solution has the possibility of capturing more data

than the traffic mirroring allowed in AWS, it presents a single point of failure. The traffic

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 15

mirroring solution offered in AWS needs to forward traffic to a listener, and Security

Onion has the ability to read network traffic and generate alerts based on certain

conditions.

This paper tested two solutions offered by Security Onion to help detect events

that fall into the categories listed by CIS’s Top 20 Critical Security Controls. Wazuh was

able to detect items that take place within the host, for example, failed login attempts.

Zeek was able to detect network items through AWS traffic mirroring such as external

IPs accessing internal resources. The Security Onion’s Zeek sensor could not decapsulate

the VXLAN traffic include in the Traffic Mirroring solution offered by AWS. More

research should be done to determine if Security Onion could be upgraded or if Zeek

could forward its logs to Security Onion. Wazuh had limitations with alerting and

distinguishing between abnormal events and regular events. More configuration changes

would need to be made to make a useful solution.

While the cost of this solution would be around $10,000, this is a considerable

cost savings compared to a hosted solution such as the GigaVUE solution provided in the

AWS Marketplace. This cost difference may be a factor in small or medium-sized

organizations that are willing to take more time to configure an open-source solution such

as Security Onion.

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 16

Nichole Dugan, ndugan@gmail.com	

References
AWS.	(2019,	June	25).	Announcing	Amazon	VPC	Traffic	Mirroring	for	Amazon	EC2	

Instances.	Retrieved	from	AWS:	https://aws.amazon.com/about-aws/whats-
new/2019/06/announcing-amazon-vpc-traffic-mirroring-for-amazon-ec2-
instances/	

AWS.	(2019).	Traffic	Mirroring	Limits	and	Considerations.	Retrieved	from	AWS	
Documentation:	https://docs.aws.amazon.com/vpc/latest/mirroring/traffic-
mirroring-considerations.html	

AWS.	(2019).	Traffic	Mirroring	Packet	Format.	Retrieved	from	AWS	Documentation:	
https://docs.aws.amazon.com/vpc/latest/mirroring/traffic-mirroring-
sessions.html	

AWS.	(2019).	VPC	Flow	Logs.	Retrieved	from	AWS	Documentation:	
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html	

AWS.	(2019).	Working	with	Open-Source	Tools	for	Traffic	Mirroring.	Retrieved	from	
AWS	Documentation:	
https://docs.aws.amazon.com/vpc/latest/mirroring/tm-example-open-
source.html	

BL	King	Consulting.	(2019).	Security	Onion.	Retrieved	from	AWS	Marketplace:	
https://aws.amazon.com/marketplace/pp/B07NWLLZ73?qid=1561124889
839&sr=0-1&ref_=srh_res_product_title	

Center	for	Internet	Security.	(2019).	CIS	Center	for	Internet	Security.	Retrieved	from	
The	20	CIS	Controls	&	Resources:	https://www.cisecurity.org/controls/cis-
controls-list/	

Chuvakin,	A.	(2010,	August	6).	Dr	Anton	Chuvakin	Blog	PERSONAL	Blog.	Retrieved	
from	Blogspot:	http://chuvakin.blogspot.com/2010/08/updated-with-
community-feedback-sans_06.html?m=1	

Gigamon.	(2019,	August	28).	AWS	Marketplace.	Retrieved	from	GigaVUE	Cloud	Suite	
for	AWS	5.6	–	100	pack:	
https://aws.amazon.com/marketplace/pp/prodview-
ptts57jwmr2mu?qid=1567018756766&sr=0-1&ref_=srh_res_product_title	

Logz.io.	(2018,	March	12).	Integrating	Bro	IDS	with	the	ELK	Stack	–	Part	1.	Retrieved	
from	Logz.io:	https://logz.io/blog/bro-elk-part-1/	

Radichel,	T.	(2017,	August	10).	Packet	Capture	in	AWS.	Retrieved	from	SANS	Reading	
Room:	https://www.sans.org/reading-room/whitepapers/cloud/packet-
capture-aws-37905	

Security	Onion.	(2019).	Architecture.	Retrieved	from	Security	Onion	Documentation:	
https://securityonion.readthedocs.io/en/latest/architecture.html#distribute
d	

Security	Onion.	(2019).	Production	Deployment.	Retrieved	from	Security	Onion	
Documentation:	https://securityonion.readthedocs.io/en/latest/production-
deployment.html	

Security	Onion	Solutions.	(2019).	About.	Retrieved	from	Security	Onion:	
https://securityonion.readthedocs.io/en/latest/about.html	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 17

Nichole Dugan, ndugan@gmail.com	

Wazuh.	(2019).	Alerts.	Retrieved	from	Wazuh	Docs:	
https://documentation.wazuh.com/3.x/user-manual/reference/ossec-
conf/alerts.html#reference-ossec-alerts	

Wazuh.	(2019).	Monitoring	AWS	Services.	Retrieved	from	Wazuh	Docs:	
https://documentation.wazuh.com/3.x/amazon/services/index.html	

Zeek.	(2019,	August	8).	Zeek	Blog.	Retrieved	from	Zeek:	https://blog.zeek.org/	

.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 18

Appendix A

** Alert 1566913314.257333854: - windows,

windows_security,authentication_success,pci_dss_10.2.2,gdpr_IV_32

.2,

2019 Aug 27 13:41:54 ([Server Name]) [Server IP]->EventChannel

Rule: 60107 (level 4) -> 'Failed attempt to perform a privileged

operation'

{"win":{"system":{"providerName":"Microsoft-Windows-Security-

Auditing","providerGuid":"{54849625-5478-4994-A5BA-

3E3B0328C30D}","eventID":"4673","version":"0","level":"0","task":

"13056","opcode":"0","keywords":"0x8010000000000000","systemTime"

:"2019-08-

27T13:41:53.433519000Z","eventRecordID":"32648375","processID":"4

","threadID":"5928","channel":"Security","computer":"[Server

FQDN]","severityValue":"AUDIT_FAILURE","message":"A privileged

service was

called."},"eventdata":{"subjectUserSid":"[SID]","subjectUserName"

:"[Username]","subjectDomainName":"[Domain]","subjectLogonId":"0x

456187f","objectServer":"Security","privilegeList":"SeTcbPrivileg

e","processId":"0x1568","processName":"C:\\Windows\\explorer.exe"

}}}

win.system.providerName: Microsoft-Windows-Security-Auditing

win.system.providerGuid: {54849625-5478-4994-A5BA-3E3B0328C30D}

win.system.eventID: 4673

win.system.version: 0

win.system.level: 0

win.system.task: 13056

win.system.opcode: 0

win.system.keywords: 0x8010000000000000

win.system.systemTime: 2019-08-27T13:41:53.433519000Z

win.system.eventRecordID: 32648375

win.system.processID: 4

win.system.threadID: 5928

win.system.channel: Security

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 19

Nichole Dugan, ndugan@gmail.com	

win.system.computer: [Server Name]

win.system.severityValue: AUDIT_FAILURE

win.system.message: A privileged service was called.

win.eventdata.subjectUserSid: S-1-5-21-313415027-1372798643-

1237804090-22119

win.eventdata.subjectUserName: [Username]

win.eventdata.subjectDomainName: [Domain]

win.eventdata.subjectLogonId: 0x456187f

win.eventdata.objectServer: Security

win.eventdata.privilegeList: SeTcbPrivilege

win.eventdata.processId: 0x1568

win.eventdata.processName:	C:\Windows\explorer.exe	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 20

Appendix B
** Alert 1566950401.0: - windows,

windows_security,win_authentication_failed,pci_dss_10.2.4,pci_dss

_10.2.5,gpg13_7.1,gdpr_IV_35.7.d,gdpr_IV_32.2,

2019 Aug 28 00:00:01 ([Server Name]) [IP]->EventChannel

Rule: 60131 (level 5) -> 'Windows DC Logon Failure'

{"win":{"system":{"providerName":"Microsoft-Windows-Security-

Auditing","providerGuid":"{[GUID]}","eventID":"4769","version":"0

","level":"0","task":"14337","opcode":"0","keywords":"0x801000000

0000000","systemTime":"2019-08-

28T00:00:01.302225400Z","eventRecordID":"32699434","processID":"6

08","threadID":"1752","channel":"Security","computer":"[Server

FQDN]","severityValue":"AUDIT_FAILURE","message":"A Kerberos

service ticket was

requested."},"eventdata":{"targetUserName":"[Username]","targetDo

mainName":"[Domain]","serviceName":"[Username]","serviceSid":"S-

1-0-

0","ticketOptions":"0x40810000","ticketEncryptionType":"0xfffffff

f","ipAddress":"::ffff:[IP]","ipPort":"63302","status":"0x1b","lo

gonGuid":"{00000000-0000-0000-0000-000000000000}"}}}

win.system.providerName: Microsoft-Windows-Security-Auditing

win.system.providerGuid: {54849625-5478-4994-A5BA-3E3B0328C30D}

win.system.eventID: 4769

win.system.version: 0

win.system.level: 0

win.system.task: 14337

win.system.opcode: 0

win.system.keywords: 0x8010000000000000

win.system.systemTime: 2019-08-28T00:00:01.302225400Z

win.system.eventRecordID: 32699434

win.system.processID: 608

win.system.threadID: 1752

win.system.channel: Security

win.system.computer: [Server FQDN]

Nichole Dugan, ndugan@gmail.com	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

AWS Network Monitoring 21

Nichole Dugan, ndugan@gmail.com	

win.system.severityValue: AUDIT_FAILURE

win.system.message: A Kerberos service ticket was requested.

win.eventdata.targetUserName: [Username]

win.eventdata.targetDomainName: [Domain]

win.eventdata.serviceName: [Username]

win.eventdata.serviceSid: S-1-0-0

win.eventdata.ticketOptions: 0x40810000

win.eventdata.ticketEncryptionType: 0xffffffff

win.eventdata.ipAddress: ::ffff:[IP]

win.eventdata.ipPort: 63302

win.eventdata.status: 0x1b

win.eventdata.logonGuid: {00000000-0000-0000-0000-000000000000}

