
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side
Request Forgery Attacks on Amazon Web Services

GIAC (GCIA) Gold Certification

Author: Sean McElroy, me@seanmcelroy.com
Advisor: Tanya Baccam

Accepted: November 9, 2019

Abstract

Cloud infrastructure offers significant benefits to organizations capable of leveraging rich
application programming interfaces (APIs) to automate environments at scale. However,
unauthorized access to management APIs can enable threat actors to compromise the
security of large amounts of sensitive data very quickly. Practitioners have documented
techniques for gaining access through Server-Side Request Forgery (SSRF)
vulnerabilities that exploit management APIs within cloud providers. However, mature
organizations have failed to detect some of the most significant breaches, sometimes for
months after a security incident. Cloud services adoption is increasing, and firms need
effective methods of detecting SSRF attempts to identify threats and mitigate
vulnerabilities. This paper examines a variety of tools and techniques to detect SSRF
activity within an Amazon Web Services (AWS) environment that can be used to monitor
for real-time SSRF exploit attempts against the AWS API. The research findings outline
the efficacy of four different strategies to answer the question of whether security
professionals can leverage additional vendor-provided and open-source tools to detect
SSRF attacks.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

2

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

1. Introduction
Cloud infrastructure-as-a-service providers have experienced tremendous growth

as firms have replaced on-premises equipment with highly scalable, outsourced offerings

in technology refresh cycles. Per-minute billing and workload bidding models for

computing and storage make platforms like Amazon Web Services (AWS), Microsoft

Azure, and Google Cloud Engine attractive for businesses looking to optimize costs and

experiment without significant investments in capital expenditure for infrastructure. Pay-

as-you-go access to machine learning analysis and natural language processing services

attract technologists and developers alike.

Rich APIs for the management plane of cloud service providers allow for

complex deployments on a massive scale with minimal manual effort. New toolchains,

such as Ansible and Terraform, have emerged to implement “infrastructure as code” and

track the state of globally distributed resources, underscoring both the breadth of these

APIs and the growing complexity to manage them without additional technology layers.

First and foremost, these services are designed to enable rapid prototyping, adoption, and

deployment and employ a trust model that prioritizes automation.

Systems that are vulnerable to SSRF share a common, prolific weakness to

injection attacks: insufficient input validation and improper handling permit unauthorized

access or modifications of an underlying or connected system (OWASP, 2017). When a

client can inject commands into a server process, which in turn reissues from the context

of that process, a Server-Side Request Forgery (SSRF) vulnerability exists. An attacker

can exploit an SSRF vulnerability to issue HTTP requests to internal resources, and in the

case of AWS, access a sensitive internal resource called the EC2 Instance Metadata

service (IMS). The IMS supports automation tools in many ways, including returning

temporary credentials that attackers can leverage to access and manipulate other cloud

resources through the AWS API. It is available to EC2 instances through a well-known

link-local address of 169.254.169.254.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

3

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

On-premises or co-located environments provide engineers with opportunities to

install intrusion detection systems (IDS) that could detect injection and SSRF attacks.

Historically, though, cloud services like AWS both disallowed collocation of physical

appliances in their managed infrastructure and provided no “port mirroring” or “span

port” features that could leverage traditional packet capture and analysis techniques for

detection. While administrators can deploy inline virtual appliances, such as inspection

proxies, in AWS, scalability patterns often required multiple layers of Elastic Load

Balancers to support an inline IDS strategy. Furthermore, until 2017, Elastic Load

Balancers were only able to handle TCP traffic (Amazon Web Services, 2017).

However, recently available features like AWS VPC Traffic Mirroring now

natively support out-of-band IDS designs in the cloud. Also, SSRF attacks often leave

artifacts detectable through cloud-native threat detection products like Amazon

GuardDuty, and sometimes through host facilities, such as auditd and iptables. This

paper researches the efficacy of these various tools and techniques in detecting such

SSRF exploitation attempts, using both freely available and cloud vendor-provided tools.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

	

2. Research Method
Injection flaws have been well documented and widely exploited for over 20

years (rain.forest.puppy, 1998). While often described as an attack that induces the

vulnerable system to dispatch an HTTP request, SSRF attacks can leverage other

application layer protocols addressable with a URI or do more than gather sensitive data.

Other vectors include FTP (ERPScan, 2013), XXE attacks that map the internal

environment (Institute of Information Security, 2015), and variations of SSRF that

achieve remote code execution when used as a channel to deliver a Shellshock payload

(Kettle, 2017). Generally, SSRF requires three conditions to compromise the AWS API:

the ability to inject a command, a vulnerable component that will mishandle the payload

and issue a request to the AWS API, and a return path for the AWS API response to a

resource the attacker can observe.

Figure	1	Overview	of	an	SSRF	attack	against	EC2	Instance	Metadata	Service	to	access	a	protected	S3	bucket	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

5

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

An example of a vulnerable Node.js Express web application which incorporates

these three required elements is provided below.

const request = require('request');

app.get('/avatar’, function(req, response) {

 request.get(request.query['url']).pipe(response);

});

Figure	2	Excerpt	of	a	Node.js	Express	program	vulnerable	to	SSRF	

This example would execute on a webserver, open and read the contents of a file,

and return it to the caller, even if that url parameter were a fully formed URL to a

remote system. Because an input parameter specifies the location of the file and because

the method fails to perform input validation to ensure the file location is not a URL of a

remote system, this vulnerability can be exploited to induce the webserver to make an

HTTP GET call to a protected resource that the server, but not the attacker, can directly

access.

This research examined a Node.js application vulnerable to SSRF (Art, 2016) on

an AWS EC2 t3a.small instance running Amazon Linux 2. Elastic Load Balancers

terminated TLS to provide plaintext analysis of traffic to the server. By sending an SSRF

payload to the EC2 IMS at http://169.254.169.254/iam/security-credentials/role-name

leveraging this technique, the external tests obtained temporary credentials from the

internal instance. For each test, the researcher reviewed Amazon GuardDuty, AWS VPC

Traffic Mirroring, and host-based facilities auditd and iptables to determine if each

system could positively identify either the request or the response and whether findings

were distinguishable from non-attack accesses of the EC2 IMS. Using the dynamic

capabilities of the AWS cloud, the researcher recreated a vulnerable target host between

each test to ensure observations used new temporary credentials, otherwise temporary

credentials could remain the same for several hours.

The instance type t3a.small was sufficient to minimally test the four detection

methods because it is part of the next generation of instances termed “AWS Nitro” that

support VPC Traffic Mirroring (Amazon Web Services, 2017).

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

6

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

3. Findings and Discussion
3.1. AWS Attack Surface Area

AWS publishes best practices that discourage the profiling of long-lasting AWS

API credentials and encourages the use of Identity and Access Management (IAM) roles

applied to EC2 instances through an Instance Profile. Policies that grant permissions to

AWS resources are applied to instances when they are attached to one IAM role linked to

an instance profile assigned to it. Processes running on an EC2 instance with an IAM

role associated with the instance profile can obtain temporary AWS API credentials by

querying the EC2 IMS, at the well-known, link-local IP address 169.254.169.254.

(Amazon Web Services, 2019).

EC2 instances are implicitly trusted to access the IMS at 169.254.169.254 and

require no special HTTP request headers or authentication to do so. When EC2 instances

are associated with an IAM role, two paths are available to discover the name of the role

and to obtain an access key from temporary credentials with the privileges granted to that

role, respectively:

1. iam/info

2. iam/security-credentials/role-name

Each of the detection research activities, therefore, looked for three observable

payloads of interest: the request for the name of the IAM role attached to the vulnerable

machine, the subsequent request to obtain a credential from the EC2 IMS, and the

response payload from the EC2 IMS, which contains a temporary access key.

3.2. Detection using Amazon GuardDuty
AWS describes GuardDuty as “a continuous security monitoring service”

(Amazon Web Services, 2019), although it is not a traditional intrusion detection or

prevention tool. The service provides the ability for administrators to upload lists of

trusted or malicious IP addresses which guide its assessments of findings, although it

provides no other configuration options for its built-in finding types. While GuardDuty

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

7

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

generates findings relatively quickly after events occur, it is not a real-time detection

mechanism.

In the first portion of this test, a request was made to https://site

/?url=http://169.254.169.254/latest/meta-data/iam/info which resulted in the following

output of the EC2 IMS response:

Figure	3	Vulnerable	application	exposing	EC2	IAM	Role	after	SSRF	

For a period of up to one hour later, GuardDuty registered no reconnaissance

findings for the request to gather the name of the role, which is the first step in retrieving

a temporary credential from the IMS.

Figure	4	GuardDuty	without	findings	after	an	SSRF	attack	

Subsequently, a call to https://site/?url=http://169.254.169.254/latest/meta-

data/iam/security-credentials/msise-ssrf-ec2-role retrieves a temporary access credential

as shown in Figure 5.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

8

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

Figure	5	Exfiltrated	AWS	temporary	credential	after	successful	SSRF	

Again, after an hour of observation, GuardDuty did not identify the SSRF attack.

As a final post-exploitation activity, the following commands were run from a remote

computer to use the stolen credential to list S3 buckets in the account:

$ export AWS_ACCESS_KEY_ID=ASIA....MJ3S

$ export AWS_SECRET_ACCESS_KEY=D397Z....OMdp

$ export AWS_SESSION_TOKEN=AgoJb3....Z4hk=

$ aws s3 ls

2019-09-15 17:10:49 msise-ssrf

Figure	6	Post-SSRF	exploitation	commands	to	confirm	AWS	API	access	

Six minutes after the use of the stolen credential, GuardDuty did identify the post-

SSRF attack activity as shown in Figure 7.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

9

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

Figure	7	GuardDuty	post-SSRF	exploitation	finding	upon	external	credential	use	

Ultimately, GuardDuty failed to detect the SSRF attack and exfiltration of

credentials. If one uses credentials outside of the EC2 instance that generated them,

GuardDuty generated a finding of type

UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration. However, because this

finding is not the SSRF attack itself, a threat actor who can achieve successful SSRF may

already be privileged enough to perform other malicious actions. If the attacker can issue

additional commands using the credential through command injection, GuardDuty may

not identify the post-exploitation activity.

GuardDuty is ineffective because, according to its documentation, the sources it

analyzes to generate findings do not include the payload content, but rather only metadata

in the form of VPC Flow Logs, AWS CloudTrail event logs, and DNS logs. This

metadata is not sufficient to detect an SSRF targeting a link-local address, which does not

show up in VPC Flow Logs and does not initiate a DNS resolution request.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

10

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

3.3. Detection using VPC Traffic Mirroring
VPC Traffic Mirroring provides a copy of network traffic, both inbound and

outbound, on an Elastic Network Interface (ENI) attached to the desired source to the

ENI of a designated target. The service provides only the mechanism to obtain network

traffic but does not otherwise process or analyze it. It is incumbent on the implementer to

deploy, configure, and maintain an IDS in an out-of-line configuration to generate events

of interest.

Figure	8	Network	diagram	of	lab	environment	

VPC Traffic Mirroring is straightforward to set up, given both the source and

target of a mirroring session are an AWS Nitro-based instance. While AWS VPC Traffic

Mirroring documentation uses the terms “source” and “target”, the “target” running the

IDS will be able to observe both requests to and responses from ENI attached to the

“source”. The researcher created a traffic mirroring session that read all TCP traffic

using a 0.0.0.0/0 source and destination in the Traffic Filter¾ from the “source” ENI on

the instance with the vulnerable service to a target with a second ENI dedicated. AWS

still evaluates the security group rules of the target, in addition to the Traffic Filter rules

for payloads observed by the source.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

11

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

Figure	9	AWS	VPC	Traffic	Mirroring	filter	configuration	

 The researcher verified the preliminary configuration by testing sudo tcpdump

-vi eth1, where eth1 was a second ENI dedicated to the ingest interface for the mirror

session. The resulting output demonstrated content payloads of an SSRF attack request

and response, indicating that Snort, Zeek, and other open-source tools can detect them.

Figure	10	Redacted	tpcdump	output	on	target	once	VPC	Traffic	Mirroring	enabled	

Because VPC Traffic Mirroring encapsulates mirrored traffic in a VXLAN

header, an IDS deployed to a traffic mirroring target must be able to parse the VXLAN

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

12

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

conventions to inspect and alert on payloads. While Snort 2.9.14.1 can match content in

an IP packet, it cannot decapsulate VXLAN, preventing the use of the Stream

preprocessor in more precise rules that account for a TCP flow. For tests performed with

network intrusion detection tools for VPC Traffic Mirroring, the researcher confirmed the

traffic mirroring feature did not capture local requests to EC2 IMS over the link-local

169.254.169.254 address.

3.3.1. Detecting SSRF using Zeek
Zeek, formerly named “Bro”, is a network traffic analysis tool with a flexible,

event-based model and supports scripting capabilities. While Zeek is a specialized event-

based correlation tool, version 3.0 supports both VXLAN decapsulation and signature-

based detection using regular expressions. Given these capabilities, both an SSRF

request and response can be identified independently with the following two Zeek

signature definitions:

signature aws-ec2-ims-request {

 ip-proto == tcp

 dst-port == 80

 payload /.*meta-data\/iam\/security-credentials/

 event "EC2 Instance Metadata path in request, SSRF attempt"

}

signature aws-ec2-ims-response-access-key {

 ip-proto == tcp

 src-port == 80

 payload /.*\"SecretAccessKey\" :/

 event "Potential AWS IAM temporary credential in HTTP

response, successful SSRF exploitation"

}

Figure	11	Zeek	signature	to	detect	SSRF	targeting	AWS	EC2	IMS	(ssrf.sig)	

The first signature detects both a request to enumerate a role name and the request

to obtain a temporary access credential since both requests share the same partial path.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

13

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

Importantly, the “latest” portion of the path is omitted from the signature, as a specific

IMS protocol version can also be targeted to obtain credentials. Running Zeek using the

command “zeek -r request.pcap -s ssrf.sig” generates a signatures.log file

which details the detections:

Figure	12	Zeek	signatures.log	output	showing	SSRF	detection	

3.3.2. Detecting SSRF using Suricata
While Snort currently does not support VXLAN decapsulation, Suricata 4.1.5

does. Suricata is an open-source intrusion detection and prevention system with many of

the same signature-based capabilities of Snort. While the default signature set in Suricata

does not detect attempted access of the EC2 IMS, by enabling the VXLAN decoder and

defining signatures for the metadata endpoint, it could detect SSRF attempts.

alert ip any any -> $HOME_NET 80 (msg:"AWS EC2 IMS Recon";

sid:10000001; rev:001; flow:to_server; content:"/meta-

data/iam/security-credentials";)

alert ip $HOME_NET 80 -> any any (msg:"AWS EC2 IMS Credential

Exfil"; sid:10000003; rev:001; flow:to_client,established;

content:"\"SecretAccessKey\" :";)

Figure	13	Suricata	rules	that	detect	SSRF	requests	and	responses	with	temporary	credentials	

Because Suricata can correctly interpret VXLAN encapsulation, HTTP activity

does not appear as UDP traffic but rather as the underlying TCP streams. Running

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

14

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

Suricata using the command “suricata -r request.pcap” generates a

/var/log/suricata/fast.log file which details the detections:

Figure	14	Suricata	alert	logs	demonstrating	detection	of	SSRF	attempts	on	the	EC2	IMS	and	credential	exfiltration	

3.4. Detection using iptables
iptables is a packet filter that is available on Amazon Linux. This rule-based

facility allows an administrator to define parameters for matching a packet and then

specify an action for what to do when a match occurs. Available actions include logging,

forwarding, and dropping the packet. While observing the connect syscall is a rather

unspecific way to monitor network activity, iptables provides matching conditions that

include source and destination IP addresses, IP protocol, and destination port.

Furthermore, it can match the UID, GID, PID, and SID of the packet creator.

Given this capability, where an administrator has control over the EC2 instance

where unique UID’s are applied separately to processes, it is possible to reliably detect

SSRF attacks with a low rate of false positives minimally by differentiating by PID, or in

environments where processes are separated by individual purpose service principals, by

UID or GID. Depending on the control environment, there are multiple methods to grant

a process the ability to bind to a privileged port with a separate UID. To test whether

iptables can answer the question as to whether it can be used to detect SSRF, the

researcher granted a system capability to the Node.js binary to permit it to bind to ports

below 1024 with the command sudo setcap CAP_NET_BIND_SERVICE=+eip

/usr/bin/node. However, in production environments, alternative strategies such as

chroot or containerization, or mapping a load balancer’s inbound HTTP or HTTPS

listener to a non-privileged port on the host through port address translation, which AWS

Elastic Load Balancers natively support, may be more appropriate.

With a known UID (1001 in this case) that acts as a server to handle user requests

which we do not expect to call the IMS, one can enter a detection rule using iptables

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

15

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

with the following command: sudo iptables -A OUTPUT -p tcp --dport 80 -
d 169.254.169.254 -m owner --uid-owner 1001 -j LOG

 Once configured, syslog or dmesg logs all access to the IMS that originate from

the Node.js server under test, as evidenced in Figure 15:

Figure	15	dmesg	output	after	an	iptables	LOG	rule	implemented	to	log	IMS	accesses	from	a	publicly	accessible	
server	process.	

Moreover, this research identified a second iptables rule that, when appended

to the iptables rule chain after the LOG rule, could also prevent SSRF by rejecting the

outbound with the command: sudo iptables -A OUTPUT -p tcp --dport 80 -
d 169.254.169.254 -m owner --uid-owner 1001 -j REJECT

With this “reject” rule applied, the vulnerable test program executed but logged

an internal error when the local firewall rule rejected the SSRF connection attempt.

Because the program properly handled the error conditions, the SSRF attempt rejection

did not affect the end-user experience, and the Node.js process reported the following

error to the console:

Figure	16	Application	error	message	when	iptables	blocked	SSRF	access	via	a	REJECT	rule	

With access to the shell of an EC2 instance, a system administrator can use

principal segregation and iptables to both detect and prevent SSRF access to the IMS.

Application programmers also have an opportunity to catch and log connection errors,

which can provide an alternative method for security personnel to identify blocked SSRF

attempts. However, ‘black box’ virtual appliances provided to administrators to deploy

into their environments, such as from the AWS Marketplace, require their publishers to

implement appropriate SSRF protections since customers cannot configure the

iptables host-based control on them.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

16

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

3.5. Detection using auditd
auditd is a package of system logging facilities that enables the capture of low-

level audit activity. It can capture essential information about a wide variety of system

calls (or “syscalls”) and forms the basis of many security event detection systems that

correlate and analyze such data for potential malicious activity.

There are limited opportunities to narrow the false positive rate of detection based

on syscalls of interest to this attack. Given that operating systems provide a small

number of frequently used syscalls, an HTTP request for a single SSRF attack is

indistinguishable from legitimate activity. For one, an SSRF attack connects to a known

host, but does so from within the process context of the vulnerable server component,

usually a webserver. If a server process has the need to spawn additional processes,

auditing of the execve syscall, which spawns a new program, would not be reliable

SSRF indicator. An SSRF attack on the IMS targets a well-known destination,

169.254.169.254, and does not need to resolve a hostname to an IP address, rendering

auditing of the gethostname syscall useless to detect SSRF. The connect Linux

syscall can detect SSRF activity directed at the EC2 IMS link-local address of

169.254.169.254. By adding an audit rule similar to the following, auditd records

socket connections in the audit logging directory:

auditctl -a always,exit -F arch=b64 -S connect

Figure	17	Command	to	add	an	auditd	rule	to	log	the	connect()	syscall	

The audit.log file contains verbose information about the process context that

performs any audited action, and connect syscalls contain UID, EUID, GID, and PID

annotations, along with an encoded saddr argument which encodes the socket family,

port number, and IP address in a hexadecimal format. For the EC2 IMS, this value is:
saddr=02000050A9FEA9FE0000000000000000

Just as observed with iptables, security engineers can use audit records to

observe connect requests targeting the IMS which originate from unexpected effective

user identities. This activity would identify SSRF requests with a low false-positive rate

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

17

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

provided administrators use distinct UIDs and GIDs for processes that need IMS access

and for those that do not.

3.6. Discussion of other known detection techniques
3.6.1. Inline Firewall Services and Appliances

Intrusion detection and prevention systems (IDPS) within an AWS virtual private

cloud (VPC) that can decrypt and analyze traffic have the potential to observe and block

attempts to access the IMS. However, because cloud environments use software-defined

networks (SDNs) which do not support both broadcast network addresses and which

traditionally do not support port mirroring or spanning to capture traffic at a network

switch or router device, these strategies required inline appliances, host-based intrusion

detection systems (HIDS), or host-based traffic forwarding to IDS collectors.

Inline IDS systems are problematic in cloud environments because of their

propensity to become overloaded, inability to be effectively load-balanced given SDN

constraints, and deployment cost. Engineers must deploy numerous collectors for

comprehensive ingress and egress coverage (C. Mazzariello, 2010). Instead, a common

practice has been to implement IDPSs or transparent proxies at lower-bandwidth egress

points for explicit whitelisting and blocking functionality.

Host-based traffic forwarding is problematic in AWS as bandwidth limits are

associated with instance type, not the network interfaces attached to them (Amazon Web

Services, 2019). For this reason, bandwidth consumed to clone and forward traffic to an

IDS collector counts against the available capacity of an instance to serve its intended

business need. While others have detailed the use of Snort and Zeek using host-based

traffic forwarding (Reese, 2018), cost-sensitive and highly-scalable cloud workloads

often do not provide for additional application-handling instances solely to maintain

network capacity for a forwarding-based IDS solution. Similarly, HIDS solutions suffer

from resource limitations in cloud environments that can result in high compute

utilization and packet loss (P. K. Shelke, 2012).

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

18

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

3.6.2. AWS WAF
AWS provides a web application firewall (WAF) offering, named AWS WAF,

that operates similarly to inline appliance-based WAF solutions. Implementers must use

the AWS content delivery network, CloudFront, to enable AWS WAF. Unlike

specialized WAF appliances, the AWS WAF comes with comparatively few built-in rules

to detect OWASP threats to applications, namely for SQL injection and Cross-Site

Scripting signatures. However, WAF administrators can configure string and regular

expression matching conditions that can detect and block SSRF, and other security

engineers have demonstrated this previously (Sripati, 2019).

Generally, relying on highly distributed systems like CDNs to provide extension

points for content inspection to detect SSRF activity can be expensive, as the barrier to

entry may not be economical for all enterprises or all publicly exposed workloads (Modi,

2017). However, in AWS workloads already using the CloudFront CDN, using AWS

WAF ACLs to match on the IMS link-local address of 169.254.169.254 can be a

meaningful layered defensive control. Since the AWS WAF operates on the HTTP

transport layer, it may be less subject to false positives for this address which may occur

in binary data, such as image files.

3.6.3. Comparing EC2 IP addresses at AssumeRole with Credential Use
Since an EC2 instance assumes its associated IAM role when it starts, the internal

AWS EC2 service call to AssumeRole is a logged event in AWS CloudTrail. Since the

IMS generates unique temporary access keys for each instance at least every six hours,

one could record the IP addresses of an EC2 instance when it assumes an IAM Role and

correlate them with other API calls logged in CloudTrail. This technique provides for the

observation of temporary credential usage outside the instance that generated them,

which may indicate an SSRF attack was successful in providing unauthorized access

(Bengtston, 2018).

However, an attacker who can access the IMS to obtain credentials can likely

access the AWS API from within that same instance, which would evade this detection

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

19

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

technique (Fernandez, 2019). This detection technique of recording access credential

generations and correlating their usage over time would also be complex to implement

and operate in environments that leverage multiple regions for resiliency since

CloudTrail logs, as well as the AWS Security Token Service that creates temporary

credentials, can operate both regionally and globally (Amazon Web Services, 2019).

Furthermore, the trend towards managed containerized service offerings like AWS

Elastic Kubernetes Service (EKS) that multiplex and rotate many containers and IP

addresses on a single EC2 instance, each with unique IAM roles, introduce significant

challenges when correlating probable SSRF activity with this method.

4. Recommendations and Implications
4.1. Recommendations for Practice
4.1.1. Configuration Best Practices

Administrators of Amazon Web Services should be familiar with and follow

published best practices, including the AWS Well-Architected Framework

documentation. Specifically, administrators should enable VPC Flow Logs and Amazon

GuardDuty to detect post-SSRF IMS credential use attempts outside the environment. A

variety of continuous monitoring tools exist to measure the conformance of AWS

accounts to the AWS Well-Architected Framework and Center for Internet Security

Amazon Web Services Foundations Benchmark, such as Cloud Conformity and Prowler,

respectively. Security teams should deploy detective tools to monitor for the

implementation of these controls across AWS accounts. Especially for environments that

depend on manual administration instead of a high degree of automation, changes can

introduce variance and the potential for security misconfiguration.

Unless necessary for an EC2 instance to access the AWS API, administrators

must not attach an IAM role to an instance. When necessary, IAM policy authors should

carefully construct statements using a least-privileges methodology when attaching them

to roles used for this purpose. Authors should also utilize IAM policy conditions that

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

20

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

limit service access, so temporary access credentials issued by the IMS and obtained

through an SSRF attack have limited value when outside the environment. As with all

technical controls, knowledgeable teams should review IAM role use and IAM policy

statements regularly.

As a layered control, host-based controls like iptables that log and prevent

access to the IMS except when originating from processes that have a known, legitimate

need to read instance metadata or obtain temporary access credentials to act on behalf of

an instance to access other AWS services. Additionally, given that VPC Traffic

Mirroring now allows established intrusion detection tools to monitor and alert on

suspicious traffic, security engineers should review the Zeek or Suricata rules developed

as part of this research for inclusion in IDS deployments in Amazon Web Services,

particularly for instances that serve external traffic. Of the detection mechanisms

evaluated in this research, only the host-based packet filter iptables and VPC Traffic

Mirroring using Zeek or Suricata were found to detect SSRF at the point of credential

theft from the IMS, before credentials were used to attempt unauthorized access or

modification of cloud environments. While both were effective, VPC Traffic Mirroring

is superior given its ability to provide detective coverage of all AWS EC2 resources,

including virtual appliance to which AWS account holders have no interactive login or

administrative access to configure directly.

4.1.2. Effectiveness of Layered Detection Techniques
Given the relatively low cost of enabling VPC Flow Logs and GuardDuty, and

while this research observed detection capabilities that were limited to post-SSRF exploit

activities, organizations with sensitive data on the AWS cloud should strongly consider

enabling this service and monitoring it closely, at least for the

UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration finding type.

However, because post-SSRF exploit activity can happen much later in the

timeline of a successful attack, monitoring activity from the host using iptables and

auditd is a logical next step in expanding the detective capability to identify SSRF

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

21

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

attack attempts. Environments with sensitive data are generally required to have

centralized logging facilities by regulatory mandate or industry compliance standards,

and by using automation to deploy iptables to log and alert attempts from servers

without a need to access the IMS from a centralized logging repository, administrators

gain additional, not duplicative, visibility into SSRF attacks earlier in the process for

machines they can directly control. Using iptables, administrators can configure a

preventative control in addition to benefiting from layered detection.

VPC Traffic Mirroring and a traditional IDS solution requires additional cost and

expertise to capture, store, analyze, and act on findings. However, in a cloud

environment, the resource investment is not the only factor, as the IDS must be able to

receive unencrypted network packets or have the capability to decrypt them. Generally,

cloud configuration best practices dictate encryption be enabled both for data at rest and

data in transit whenever possible. Especially for environments that leverage the

automated certificate issuance that cloud provider certificate authorities offer, this can be

problematic as private keys are generally not available when using fully managed

provider CA solutions. To gain the benefits of VPC Traffic Mirroring, organizations

must weigh the tradeoff of TLS termination on cloud load balancers and mirror the

unencrypted traffic on network interfaces behind them. Some firms may have legal or

compliance requirements that limit their ability to adopt this layer of detection. When

faced with that tradeoff, they should consider compensating controls if they have ‘black

box’ virtual appliances deployed in their environments that SSRF attacks may target.

4.1.3. Challenges Regarding the Evolution of the SSRF Techniques
Because SSRF requests targeting the AWS EC2 IMS are addressing a static IP

address, detecting link-local IP addresses like 169.254.169.254 in HTTP requests or the

path iam/security-credentials is straightforward to encode into an IDS or WAF signature.

Filter bypass techniques that obfuscate URLs may use mixed decimal, octal, and

hexadecimal representation of the same address as 169.0xfe.0251.254. Simple static text

or regular expression rule matches will fail to identify such evasion techniques unless

administrators use a more sophisticated detection engine to identify unusual payloads.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

22

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

More recent, novel approaches to evading detection with SSRF attacks include

using specific Unicode characters to use the text-based nature of HTTP to split lines

using protocol control indicators in the request to achieve injection capable of delivering

an SSRF payload (Kelly, 2018). Other approaches, such as Request Smuggling, use

malformed HTTP headers or leverage specific parsing behaviors of webservers to inject

requests from the attacker into the start of another request to the same device (C. Linhart,

2005). First described in a publication from 2005, the flexible, forgiving nature of HTTP

continues to breathe new life into HTTP parsing vulnerabilities, most recently by

leveraging differing behaviors of Transfer-Encoding and Content-Encoding in a variant

dubbed “HTTP Desync” to present new vectors for delivering injections, including SSRF

(Kettle, HTTP Desync Attacks: Request Smuggling Reborn, 2019). One technique to

defend against HTTP Desync may be to use content delivery networks, such as

Cloudflare, Amazon CloudFront, or Imperva Cloud WAF, as TLS termination points if

they offer stricter parsing of HTTP than the origins they protect.

4.1.4. Recommendations for Cloud Providers
Frequently, SSRF attacks leverage only control over the host and path of the

HTTP request to succeed, and often cannot inject or manipulate other HTTP headers. In

the case of Google Cloud’s Compute Engine, it has implemented a required header and

value of “Metadata-Flavor: Google” to access management APIs to reduce the success of

SSRF attacks that cannot set this header (Google, 2019). AWS has no such protection,

but if AWS added a requirement to access the EC2 IMS that would be difficult for an

SSRF attack to mimic, it might reduce the potential for the success of SSRF.

The EC2 IMS provides a predictable target to attack with a well-known, link-local

address. Currently, AWS WAF does not by include default content inspection rules for

requests containing the 169.254.169.254 address or for responses containing a temporary

access key. In the case of AWS, and generally for cloud providers, including WAF rules

that cover SSRF use cases by default would improve the general detective capabilities for

their customers.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

23

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

Furthermore, while the temporary access key begins with characters ‘ASIA’ by

convention, such keys are not implicitly limited to a caller. A temporary key obtained by

an instance through IMS can issue API calls from outside of AWS infrastructure, in part,

because before the advent of AWS PrivateLink in November 2017, AWS API calls

within cloud networks were routed externally, over the public internet. (Amazon Web

Services, 2017). If cloud providers, including AWS, required caller authentication to

access sensitive operations and limited callers’ use of temporary access credentials to the

internal, it could reduce the damage potential of an SSRF attack.

4.2. Implications for Future Research
While many companies are migrating workloads to the cloud, traditionally, this

has been termed a “lift and shift” operation as IT professionals trade virtual machines in

on-premises infrastructures or co-located data centers for virtual machines operating as

EC2 instances, using familiar operating systems and providing interactive administrative

access. However, companies are also developing new workloads directly on the cloud,

leveraging novel cloud services such as AWS Elastic Kubernetes Services, AWS Fargate,

and AWS Lambda, all of which provide a computing environment but abstract away

administrative access, reserving that control plan for the cloud provider itself. Each of

these offerings provides the opportunity for server-side request forgery against vulnerable

applications or code, and each limits the ability of security professionals to use traditional

tools to detect and prevent such attacks. Additional detection techniques may exist that

are specific to cloud infrastructures, and security researchers should continue to search

for layered controls that protect sensitive data from SSRF on cloud environments.

5. Conclusion
In summary, the cloud is not immune to server-side request forgery, and practical

techniques exist to both detect and prevent attacks on vulnerable applications.

Organizations that transmit or store sensitive data in the cloud should implement

appropriate detective controls to identify SSRF exploitation attempts long before they

learn about data exfiltration from a third-party. By leveraging these well-established

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

24

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

tools on the cloud, security professionals can secure cloud workloads from SSRF

targeting the AWS API and EC2 IMS, and the cloud can be an exciting, cost-effective,

and safe place to deliver innovations at a massive scale and speed.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

25

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

References
	
Amazon Web Services. (2017, September 7). Announcing Network Load Balancer for

Elastic Load Balancing. Retrieved from About AWS:

https://aws.amazon.com/about-aws/whats-new/2017/09/announcing-network-

load-balancer-for-elastic-load-balancing/

Amazon Web Services. (2017, November). AWS re:Invent 2017: NEW LAUNCH!

Amazon EC2 Bare Metal Instances (CMP330). Retrieved October 7, 2019, from

Amazon Web Services channel on YouTube.com:

https://www.youtube.com/watch?v=o9_4uGvbvnk

Amazon Web Services. (2017, November 8). Introducing AWS PrivateLink for AWS

Services. Retrieved from About AWS: https://aws.amazon.com/about-aws/whats-

new/2017/11/introducing-aws-privatelink-for-aws-services/

Amazon Web Services. (2019, September 6). CloudTrail Concepts. Retrieved from AWS

CloudTrail User Guide:

https://docs.aws.amazon.com/en_pv/awscloudtrail/latest/userguide/cloudtrail-

concepts.html

Amazon Web Services. (2019, October). Elastic Network Interfaces. Retrieved from

Amazon Elastic Compute Cloud User Guide for Linux Instances:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

Amazon Web Services. (2019, September 21). Instance Metadata and User Data.

Retrieved from AWS Documentation for EC2:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

26

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

https://docs.aws.amazon.com/en_pv/AWSEC2/latest/UserGuide/ec2-instance-

metadata.html

Amazon Web Services. (2019, October 1). What Is Amazon GuardDuty? Retrieved from

Amazon Guard Duty User Guide:

https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html

Art, S. (2016, September 26). Nodejs-SSRF-App. Retrieved October 8, 2019, from

GitHub.com: https://github.com/sethsec/Nodejs-SSRF-App/

Bengtston, W. (2018, August 8). Netflix Cloud Security: Detecting Credential

Compromise in AWS. Retrieved from The Netflix Tech Blog:

https://medium.com/netflix-techblog/netflix-cloud-security-detecting-credential-

compromise-in-aws-9493d6fd373a

C. Linhart, A. K. (2005). HTTP Request Smuggling. Watchfire.

C. Mazzariello, R. B. (2010). Integrating a Network IDS into an Open Source Cloud

Computing Environment. 2010 Sixth International Conference on Information

Assurance and Security (IAS). IEEE.

ERPScan. (2013, March 27). SSRF DoS Relaying. Retrieved from ERPScan.io Blog:

https://erpscan.io/press-center/blog/ssrf-dos-relaying/

Fernandez, G. (2019, September 3). Metadata abuse in AWS. Retrieved from Technology

with a business perspective.: https://medium.com/@gonfva/metadata-abuse-in-

aws-d264274f5764

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

27

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

Google. (2019, October 01). Storing and retrieving instance metadata. Retrieved from

Compute Engine Documentation: https://cloud.google.com/compute/docs/storing-

retrieving-metadata

Institute of Information Security. (2015, April 16). Server Side Request Forgery (SSRF).

Retrieved from Institute of Information Security Blog:

https://iisecurity.in/blog/server-side-request-forgery-ssrf/

Kelly, R. (2018, September 10). Security Bugs in Practice: SSRF via Request Splitting.

Retrieved from Personal blog: https://www.rfk.id.au/blog/entry/security-bugs-

ssrf-via-request-splitting/

Kettle, J. (2017, July 27). Cracking the lens: targeting HTTP's hidden attack-surface.

Retrieved from PortSwigger Research: https://portswigger.net/research/cracking-

the-lens-targeting-https-hidden-attack-surface

Kettle, J. (2019). HTTP Desync Attacks: Request Smuggling Reborn. PortSwigger Web

Security.

Modi, C. &. (2017, March). Virtualization layer security challenges and intrusion

detection/prevention systems in cloud computing: a comprehensive review.

Journal of Supercomputing, 73(3), 1192-1234.

OWASP. (2017). Top 10-2017 A1-Injection. Retrieved from The Open Web Application

Security Project: https://www.owasp.org/index.php/Top_10-2017_A1-Injection

P. K. Shelke, S. S. (2012, May). Intrusion Detection System for Cloud Computing.

International Journal of Scientific & Technology Research(4).

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Catch Me If You Can: Detecting Server-Side Request Forgery
Attacks on Amazon Web Services

28

	

Sean	McElroy,	me@seanmcelroy.com	 	 	

rain.forest.puppy. (1998, December 25). NT Web Technology Vulnerabilities. Phrack

Magazine, 8(54). Retrieved from http://phrack.org/issues/54/8.html

Reese, S. (2018, January 15). Network Traffic Capture in Virtual Enviroments. Retrieved

from rsreese.com: https://www.rsreese.com/network-traffic-capture-in-virtual-

enviroments/

Sripati, P. (2019, September 26). How To Secure Web Applications With AWS WAF?

Retrieved from AWS Architect Certification Training:

https://www.edureka.co/blog/secure-web-applications-with-aws-waf/

	

