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Abstract 

The proliferation of TLS across the Internet leads to a safer environment for the end user but a 

more obscure setting for the network defender. This research demonstrates what can be learned using 

Machine Learning analysis of TLS traffic without decryption. It applies a novel approach to TLS analysis 

by analyzing data available in the unencrypted portion of the handshake combined with Open-source 

Intelligence (OSINT) data about Internet Protocol (IP) addresses and domain names. The metadata is then 

analyzed using three different machine learning algorithms: Support Vector Machine (SVM), One-Class 

SVM (OC-SVM), and an Autoencoder Neural Network. This research also addresses the imbalanced data 

distribution between malicious and benign traffic with the OC-SVM and the Autoencoder Neural 

Network. Finally, this research demonstrates that when using the correct header data the SVM and OC-

SVM classify malware with a more than 99% F2 score and the Autoencoder approximately 95% F2. 
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1. Introduction

The use of Secure Sockets Layer/Transport Layer Security (SSL/TLS) is quickly on the 

rise across the Internet. According to the Google Transparency Report ("Google Transparency 

Report," n.d.) and Let's Encrypt statistics ("Let's Encrypt Stats," n.d.), in September of 2020, 

95% of all web pages loaded by the Chrome browser and 92.2% of pages loaded by the Firefox 

browser in the United States used Hypertext Transfer Protocol Secure (HTTPS). Alongside the 

growth of secure web traffic is the increased use of enterprise cloud solutions such as Office365, 

Microsoft Azure, Amazon Web Services (AWS), user Virtual Private Network (VPN) 

connectivity, and the introduction of bring your own device (BYOD) to encrypted mobile 

application protocols. Along with the increase in regular SSL/TLS, malware's use of TLS 

encryption to hide in the noise of day-to-day operations has also increased. 

Given TLS's effectiveness in protecting data and its widespread use for legitimate 

Internet-based services, it is no wonder that many malware authors use it to hide their activities. 

According to a security researcher at Sophos, in February of 2020, nearly a quarter of malware 

analyzed used TLS to conceal Command and Control (C2), installation, payload delivery, and 

even data exfiltration (Nagy, 2020). Also, according to a Zscaler report, "attacks involving the 

use of SSL/TLS encryption jumped 260% in the first nine months of 2020 compared to the same 

period last year" (Vijayan, 2020). Thus, detecting threats embedded within encrypted traffic has 

never been more critical. There are three primary options available to security analysts to 

identify malicious activity in encrypted traffic: manual packet analysis, inline decryption, and 

machine learning. 

Manual packet analysis bears the cost of time, training, required expertise, and a high 

potential of overlooking anomalies. Gaining a complete understanding of a cybersecurity 

incident often requires manual packet and log analysis (Sikos, 2020). However, most forensic 

network analysts will spend years honing their skills through advanced training and daily 

inspection of network events. Even when using advanced visualization tools and analysis 

platforms, a seasoned professional can overlook data correlations that signal malicious intent, 

especially in encrypted traffic. Thus, a manual review of network traffic should not be a 

company's primary means of analysis and other methods considered. 
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Inline decryption raises many concerns around potential privacy and security issues for 

the analysis of encrypted network traffic. According to an NSA issued Cyber Advisory warning 

from November 2019, organizations have multiple concerns with inline decryption (NSA, 2019). 

Risks such as proxy device misconfiguration, certificate trust abuse, single point of failure, and 

breach of privacy regulations are among the list of potential problems (NSA, 2019). The 

organization should thoughtfully consider each risk and weigh it against the benefits of inline 

decryption and inspection. Companies should consider machine learning to help solve encrypted 

traffic analysis problems before adopting such invasive technology. 

Finally, the statistical nature of network data and advances in computing make machine 

learning (ML) a viable option to solve problems like encrypted traffic classification. Omar 

Yaacoubi, CEO of Barac, stated that organizations do not need to rely on "traditional anti-

malware scanners that can't support encrypted traffic, they can now utilize machine learning 

techniques that are able to inspect encrypted traffic without ever having to decrypt it" (Yaacoubi, 

2020). A properly trained ML algorithm can provide insight into communication intent by 

measuring the correlation between various network events or analyzing network metadata. ML 

algorithms can identify network anomalies by analyzing metadata such as protocols used, packet 

density and size, or even communication direction (Anderson, Paul, & McGrew, 2016). To 

identify these anomalies, however, the algorithm must thoroughly understand the structure of the 

analyzed data. 

 

2. TLS Protocol 

2.1 Background 
 It is essential to begin a conversation about Transport Layer Security (TLS) analysis by 

understanding what it is and how it secures communications. The primary purpose of TLS "is to 

provide privacy and data integrity between two communicating applications" (Dierks & Allen, 

1999). Initially introduced in 1999, TLS is the successor of the now deprecated Secure Sockets 

Layer (SSL) protocol and provides additional security and privacy over SSL without providing 

backward compatibility (Dierks & Allen, 1999). Today's primary use is web-based 
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communications to secure Hypertext Transfer Protocol (HTTP) traffic and form the HTTPS 

(Secure) version of the protocol. 

2.2 TLS 1.2 Handshake 
A TLSv1.2 session requires two round trips of messages between a client and a server to 

establish a secure tunnel and follows a well-defined process (Driscoll, n.d.). First, a client 

application such as a web browser sends a ClientHello message that specifies its supported TLS 

version, cryptographic algorithms (cipher suites), and any additional supported features. The 

server responds with a series of messages that perform functions such as selecting the cipher 

suite and TLS version, sending the server's certificate, and providing information necessary for 

encryption key generation. The client validates the provided certificate, sends its key generation 

data to the server, and provides a shared encryption key. Finally, the server responds with a 

ChangeCipherSpec message, after which all communication is encrypted, and the handshake 

completes (Figure 1). 

                 

Figure 1: TLS 1.2 Handshake (Nohe, 2019) 

 
2.3 TLS 1.3 Handshake 
 A TLSv1.3 handshake is a more streamlined, efficient, and secure version of the TLSv1.2 

process. TLSv1.3 prioritizes speed and security by removing obsolete ciphers and hashing 

algorithms such as SHA1, MD5, and DES and reducing the handshake to only three messages. 
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Figure 2: TLS 1.3 Handshake (Nohe, 2019) 

The TLSv1.3 handshake begins just like TLSv1.2 with the same ClientHello message; 

however, this message indicates the desire to use TLSv1.3 to communicate, and the client 

provides a public key to the server. The server responds with a ServerHello message and 

includes a public key. The server's public key is used with the client's public key to derive a 

shared key that encrypts the rest of the handshake. Following the ServerHello message is a 

ChangeCipherSpec message that informs the client that all future handshake communications 

will be encrypted using the derived key. Finally, the server sends an encrypted wrapper 

containing the remainder of its handshake data. TLS is a proven and secure standard of data 

encryption and protection, which makes it a valuable tool for hiding malware communications. 

 
2.4 Malware's use of TLS 
 As malware authors consider how to evade detection and protect their interests, well-

established, proven, and versatile protocols such as TLS quickly become a valid option. A brief 

look at the top malware families of recent months confirms that assumption, with several using 

TLS for various operations. One report by Check Point Software Technologies lists the most 

prevalent malware for November of 2020, and nearly all of those listed use TLS ("November 

2020's most wanted malware: Notorious Phorpiex Botnet returns as most impactful infection," 

2020). Thus, it is incumbent upon the security analyst to determine the best method of network 

traffic analysis. Since TLS obscures both benign and malicious data equally, the introduction of 

machine learning provides a unique opportunity to analyze and classify traffic. 
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3. TLS Analysis Using Machine Learning 

3.1 What is Machine Learning, and why use it for TLS Analysis? 
Machine learning (ML) is becoming a ubiquitous part of our daily lives, yet many do not 

understand what it is or how it can help solve day-to-day problems. One definition of ML states, 

"Machine learning is a branch of artificial intelligence (AI) focused on building applications that 

learn from data and improve their accuracy over time without being programmed to do so" (IBM 

Cloud Education, 2020). In this definition, applications usually refer to computer algorithms 

designed around specific methods of statistical analysis. These algorithms examine large sets of 

data and attempt to predict outcomes based on the information received. 

For a simple example, consider a recommendation list for a video streaming service. The 

ML algorithm, often called a model, reviews the movies or television shows a user indicates they 

like or prefer. These preferences are usually obtained directly through a question-and-answer 

session at account creation. They are then continually updated as the user watches shows and 

movies to help improve the algorithm's understanding of what the user likes and dislikes. Some 

platforms even allow a user to rate a movie or show and incorporates this rating into its predicted 

preference rank. The ML algorithm uses this data for training, making predictions about what the 

user will like. Based on these predictions, the algorithm presents similar content to the user. The 

understanding an ML algorithm derives from a user's activity is similar to that of understanding 

TLS handshakes, thus the abundance of existing research on this topic. 

 
3.2 Existing Machine Learning and TLS Research 

There is currently a significant amount of research surrounding the analysis of encrypted 

TLS traffic. This research does not intend to rehash all the information on this topic but intends 

to review some of the proposed ML-based TLS analysis approaches and discuss this research's 

differentiating factors. Many teams have analyzed encrypted data through ML, using both 

regression and classification to reveal underlying processes. Below are a few of those studies and 

a discussion of their outcomes. 

One of the more prevalent papers, written by a team from Cisco concerning encrypted 

TLS analysis, is titled "Deciphering Malware's use of TLS (without Decryption)" (Anderson, 

Paul, & McGrew, 2016). This seminal work focused on differences between malware and benign 
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traffic using combinations of NetFlow and TLS handshake metadata. It evaluated both malware 

detection and malware family attribution without decrypting the data. Their analysis used four 

different feature sets: flow metadata, the sequence of packet lengths and times, byte distribution, 

and TLS header information. The researchers used an L1 Logistic Regression classifier model to 

ingest various combinations of this data to generate an overall 98.5%-99.6% malware 

classification rate1 (see Figure 3 for classification statistics). 

 
Figure 3: L1 Logistic regression classification rate listed by feature set (Anderson, Paul, & McGrew, 2016) 

Expanding upon the research conducted by Blake and McGrew, another team sought to 

build a robust encrypted malware detection classifier. This team created a tool called MalDetect, 

which leverages a robust Online Random Forest classifier that is trained in online mode to avoid 

any retraining or redeployment when new samples are detected (Liu et al., 2019). This research 

yielded a platform capable of classifying multiple traffic types from legitimate to adware and 

malware; however, its false-negative rates are around 20% and 50% for adware and dynamic 

routing protocols, respectively (Liu et al., 2019). This research's use of a dynamically trainable 

model in the Online Random Forest introduced a novel means of analysis and focused on long-

term usability and sustainability rather than merely hypothetical use cases.  

Finally, a project sponsored by Lastline focused on TLS metadata to classify TLS flows 

(Roques, 2019). This study used five different models, Logistic Regression, Random Forest, K-

Nearest neighbors, Linear Discriminant Analysis, and a Linear Support Vector Classifier, each 

with varying results. Overall, this study yielded a model with a 97.6% accuracy of malware 

classification, but that is not necessarily where this research shines. This research stands out for 

its side-by-side comparisons of malicious and benign TLS handshake metadata, directly 

influencing this paper's research and analysis. These feature comparisons yielded potentially 

significant differences in metadata characteristics and offered considerable insight into the 

                                                            
1 It is important to note that the logistic regression classifier was trained with benign traffic and only tested using 
malicious traffic. Thus, the research did not figure false-positive rates into the overall classification rate (Anderson, 
Paul, & McGrew, 2016). 
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potential differences between malware and benign traffic data. This research, and others before 

it, also helped rule out various models for analysis as they have already proven either successful 

or unsuccessful. 

Based on the previous research, many models demonstrated success using TLS 

handshake metadata; however, some, like the MalDetect research team, used outdated datasets, 

potentially leading to misrepresented results. There are many different ML models available to 

analyze data problems that may arise. This paper chose three models with varying degrees of 

success to classify TLS connections as malicious or benign. The models used in this research are 

the Support Vector Machine, One-Class (or single-class) Support Vector Machine, and an 

Autoencoder Neural Network. Each of these models offers a different approach to data analysis, 

and they provide a reasonable expectation of effectiveness for meeting this challenge. 

 
3.3 Support Vector Machines (SVM) 

The first model used in this research is the SVM. An SVM "is a generalization of a 

simple and intuitive classifier called the maximal margin classifier" (James, Witten, Hastie, & 

Tibshirani, 2013). The maximal margin classifier offers a binary classification of datasets by 

calculating a hyperplane (a line in two-dimensional space and a plane in multi-dimensional 

space) between the two data classifications. However, the potential problem of a simple 

hyperplane is determining exactly how to separate the data. As the image in Figure 4 shows, 

many different hyperplanes separate the two data classifications, but which one is the best one? 

 
Figure 4: Hyperplanes separating a binary classified dataset (James, Witten, Hastie, & Tibshirani, 2013) 
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The maximal margin classifier classifies data by calculating the "separating hyperplane 

that is farthest from the training observations" (James, Witten, Hastie, & Tibshirani, 2013). The 

classifier calculates each observation's distance to a given hyperplane, and those with an equal 

distance determine the upper and lower limits of the boundary. The boundary lines work together 

with the hyperplane to create the margin, and the observations that support the margin are called 

the support vectors. Figure 5 shows what this margin looks like for a dataset. The solid line is the 

hyperplane separating data classifications, and the area between the dashed lines and the solid 

line represents the margin. The blue and orange observations that reside on the dashed line are all 

equal distance to the hyperplane, and they are the support vectors or the observations that support 

the maximal margin's size. Thus, this hyperplane with this margin best defines, separates, and 

accurately classifies each class of observations below. 

 
Figure 5: Hyperplane, margin, and support vectors (Thanki & Borra, 2019) 

 The maximal margin classifier works well with linearly separable data; however, analysis 

of the data used in this research (Figure 6, left image) revealed a non-linear relationship. To 

overcome this limitation, the SVM introduces what it calls kernels to support more complex data 

relationships. SVM kernels such as polynomial or radial bias function (RBF) provide non-linear 

flexibility for classifying datasets. The left image in Figure 6 represents the non-linear 

relationship of the dataset used in this research; however, the right picture in Figure 6 

demonstrates the SVM's versatility using the RBF kernel to classify the data. The versatility of 

SVM kernels makes it a sure choice as an evaluation algorithm for this problem. © 20
21
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Figure 6: Component analysis of data used in this research showing the non-linear relationship (Left) and SVM 

with RBF function to overcome the non-linearity (Right) 

 
3.4 One-Class Support Vector Machines (OC-SVM) 

One of the intrinsic limitations of an SVM, and most ML models, is its requirement for a 

relatively balanced dataset. Balancing the dataset means that the ratio of positive (malware) to 

negative (benign) cases in the dataset must be nearly equal for the best results. Without this class 

equality, the SVM struggles to locate the maximal margin as represented in Figure 7. The SVM 

margin error happens because there are not enough positive samples compared to the large 

number of negative observations to calculate the hyperplane or maximal margin. Thus, classifiers 

such as the OC-SVM overcome this limitation. 

 
Figure 7: SVM Struggling to locate the hyperplane (Deepthi, 2019) 
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OC-SVMs capture the majority class's density and classify outliers as anything that 

resides beyond the majority class's extremes. That means that the model is "trained to learn what 

is 'normal' so that when new data is shown, the algorithm can identify whether it should belong 

to the group or not. If not, the new data is labeled as out of [the] ordinary or [an] anomaly" 

(Alam, 2020). Another term for this is outlier detection. For example, using a 1,000-sample 

dataset, the model is trained with 80% benign data (800 samples). Then, the remaining 20% 

sample composed of 99% benign (198 samples) and 1% malicious (2 samples) is used to test the 

model's classification capability. Using such a small proportion of the malware ensures the 

model detects benign data very effectively and that malware exercises no influence over SVM 

margin decisions or classification measurements. 

Another benefit of the OC-SVM is that it is unsupervised, meaning training, or fitting, 

occurs without requiring pre-labeled data. Many ML algorithms, such as the SVM, require 

training data to be correctly labeled before processing. In this research, each record was 

annotated as benign or malicious and was used to train the SVM. The OC-SVM and 

Autoencoder models also used labels, but only to verify classification accuracy after training. 

Thus, for the OC-SVM, a dataset with around 98%-99% benign traffic was used to train the 

model. Once trained, the model processed additional datasets of similar malware ratios to verify 

efficacy. 

 
3.5 Autoencoder Neural Network (Autoencoder) 

The last ML model used for this research is the Autoencoder. An Autoencoder is an 

unsupervised model designed to reduce and encode data from many features down to a lower, 

compressed representation of those features. The "Autoencoder, by design, reduces data 

dimensions by learning how to ignore the noise in the data" (Badr, 2019). As the Autoencoder 

ignores the noise, it looks for unique correlations between various features and extracts those 

correlations for data reconstruction. While the Autoencoder creates a compressed representation 

of a dataset, it attempts to maintain enough variance to reconstruct the original data (Figure 8). 

Thus, "In the context of anomaly detection and condition monitoring, the basic idea is to use the 

autoencoder network to 'compress' the [data] to a lower-dimensional representation, which 

captures the correlations and interactions between the various variables" (Flovik, 2018). The 

Hidden Layer segments in Figure 8 represent the compressed and correlated data values. 
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Figure 8: Autoencoder network (Flovik, 2018) 

 Just like the OC-SVM, the Autoencoder is an unsupervised model. The Autoencoder 

learns by reading large amounts of benign traffic and finding correlations between those data 

points. Once it understands the benign data, it detects anything that falls outside of that data 

standard and marks it as an anomaly or an outlier. Thus, it classifies data by finding correlations 

between its hidden layer components (Figure 8). It uses these correlations to reconstruct the data 

based on threshold calculations, then flags any values above the threshold as anomalous. 

Understanding how ML models work is a vital part of model selection and implementation, but 

just as vital is knowing how to measure a model's efficacy. 

 
3.6 Measuring the Success of a Machine Learning Model 

There are many measurement criteria available to evaluate a model's effectiveness, such 

as accuracy, precision, recall, and F-scores. Each formula involves calculations surrounding true-

positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) predictions. A 

typical representation of these measurements is a diagram called a confusion matrix represented 

in Figure 9. TP and TN values are those where the ML model's predictions correctly align with 

the test data values. FP and FN measurements are those where the ML model's predictions 

incorrectly align with the data values.  
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Figure 9: Confusion matrix diagram 

Model accuracy is the percentage of correct measurements of a test dataset. Accuracy is 

calculated by dividing the number of correct predictions by the total number of predictions. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
correct predictions

all predictions
 

 Precision measurements favor FP errors and are the proportion of positive values that are 

correct. They calculate this value by dividing the number of TP values by the sum of TP and FP 

values. 

𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
TP

TP + FP
 

 Recall favors FN errors and is the proportion of positive measurements out of all possible 

positive predictions. It calculates this proportion by dividing the number of TP by the sum of TP 

and FN. 

𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 =
TP

TP + FN
 

 Finally, the F score, also called F-measure or Fbeta-measure, computes a weighted 

average of the precision and recall values and is a better calculation of the incorrectly classified 

cases than accuracy. Three primary measurements are the F0.5, F1, and F2 scores. The F0.5 

score applies more weight to the precision measurement, the F1 score provides balanced weight 

to both precision and recall, and the F2 score applies more weight to recall. This research chose 

True-negative 

True-positive False-negative 

False-positive 
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the F2 score for its emphasis on recall and the FN measurement, and the potential severity of an 

FN prediction of malicious traffic to an organization. The F2 score's formula is five times 

precision times recall divided by four times precision plus recall. 

𝑓𝑓2 𝑚𝑚𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝 =
5 * precision * recall
4 ∗ precision + recall

 

 There are many other formulas for calculating various ML model effectiveness values, 

but the accuracy, precision, recall, and F2 score are the primary measurements used in this 

research. Each value provides a different view of the model's performance and helps formulate a 

complete picture of efficacy. These measurements were used along with the mean output of a K-

fold cross-validation process (Figure 10) to abide by industry best practices. After determining 

the appropriate measurement statistics and models for analysis, it is time to gather the data and 

format it appropriately. 

 
Figure 10: K-fold cross-validation process 

 

4. Capturing Metadata for Analysis 
4.1 Selecting a Dataset 

This research chose to use a dataset provided by a group from the Canadian Institute for 

Cybersecurity (CIC) sponsored by the Canadian Internet Registration Authority for the discovery 

of malicious DNS over HTTPS (DoH) traffic (MontazeriShatoori, Davidson, Lashkari, & 

Habibi, 2020) as its benign dataset. The dataset generated by this group was created over several 

weeks in early 2020 and provides labeled datasets containing both malicious and benign network 

capture files. This research used four benign network capture files from the Google Chrome and 
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Mozilla Firefox datasets using Cloudflare and Google DNS for analysis2. A network metadata 

capture tool called NetCap (Mieden, 2018) processed each file and extracted TLS client and 

server handshakes. A custom Python program correlated the handshakes and wrote the resulting 

metadata to a comma-separated values (CSV) file for ML processing resulting in 110,490 benign 

samples. 

The malicious network capture files were all obtained from the website malware-traffic-

analysis.net (Duncan, n.d.). This site hosts hundreds of network capture files containing many 

different, relevant, and recent malware samples and their associated infection, payload delivery, 

and C2 traffic profiles. The dataset included 255 capture files across many malware families 

from Dridex, TrickBot, Emotet, Zbot/Zloader, IcedID, Quakbot, and more. The NetCap (Mieden, 

2018) network analysis tool processed these files in the same manner as the benign samples and 

extracted the TLS handshake metadata. A custom Python program correlated the handshakes 

resulting in 6422 malicious samples. Figure 11 shows the relationship of benign to malicious 

data samples. 

 
Figure 11: Malicious vs. benign data (1 is malware, 0 is benign). This diagram also represents the intentionally 

imbalanced dataset used to ensure model efficacy given a small sample of the positive case. 

                                                            
2 There may be some inconsistencies in the benign data samples given their focus on DoH traffic flows; however, 
this research did not consider inconsistencies. Future research is necessary to determine if DoH skewed the 
analysis results. 
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4.2 TLS Handshake Metadata 
Previous research of TLS using ML discovered a measurable variance between malicious 

and benign TLS handshakes (Roques, 2019). Thus, this research focuses only on the handshake 

metadata and a few OSINT resources without using packet metadata such as NetFlow or 

sequence of packet lengths and times to influence ML outcomes. The metadata obtained was 

available during the plaintext portion of the handshake, which led to the capture of 510 TLS 

features outlined in Table 1. 

Feature Size Data Type 
Source Port 
Destination Port 
TLS Record Type 
Client TLS Version 
Message Length 

1 
1 
1 
1 
1 

Int 
Int 
Int 
Int 
Int 

Cipher Suite Length 
Cipher Suites 

1 
351 

Int 
Float 

Extension Length 1 Int 
Handshake Type 
Handshake Length 
Handshake Version 

1 
1 
1 

Int 
Int 
Int 

Signature Algorithms 
Supported Groups 

36 
49 

Float 
Float 

Supported Points 3 Int 
Server OCSP Stapling 
Server TLS Version 
Server Supported TLS Version 
Server Extensions 

1 
1 
1 

59 

Int 
Int 
Int 

Float 
Total 510  

Table 1: TLS Handshake Metadata Features 
 
4.3 Adding OSINT Metadata 

Further processing incorporated multiple Open-source Intelligence (OSINT) sources to 

determine if the additional data offered any significant insight concerning intent. Five different 

OSINT resources provided understanding, and, in most cases, a "1" indicated the existence of a 

record, and a "0" denoted the record's absence. Additionally, record age provided precedence 

using the number of days between the entry's first and last reported timestamps. 
Feature Size Data Type 

DGA Intel 
AlienVault OTX 
URL Haus 
SSL Blacklist JA3 
Tranco 

1 
2 
2 
2 
1 

Float 
Float 
Int 
Int 

Float 
Total 8  

Table 2: OSINT Metadata Features 
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The first OSINT tool used is a Python library called dgaintel (Mallarapu, 2019). This tool 

uses deep learning to determine whether a domain name is genuine or created by a domain 

generation algorithm (DGA) as a malicious C2 server. Dgaintel uses a Convolutional Neural 

Network with Long Short-Term Memory (CNN-LSTM) to calculate the degree of confidence 

that a human-generated the domain name. This tool's output is a floating-point number between 

"0", indicating a human-generated domain, and a "1" indicating a DGA domain. 

Next, the domain name was compared against entries in the Tranco Top 1 Million 

domains list. The Tranco list is a security-focused list of the most popular websites across the 

Internet, similar to the Alexa Top 1 Million. It offers a pre-built Python lookup library and a 

combined list capability, offering a 30-day aggregated ranking of the most common domain lists 

(Le Pochat, Van Goethem, Tajalizadehkhoob, Korczynski, & Joosen, 2019). Thus, for this 

research, a comparison of domain names gathered from packet metadata and DNS lookups 

across 15 days provided insight into the domain's popularity and legitimacy. Each domain entry 

received a "1" for every day of appearance, and the script added the mean value to the 

connection metadata CSV file. 

The next OSINT resource used was the AlienVault Open Threat Exchange (OTX) online 

database of malicious URLs ("AlienVault - Open Threat Exchange," n.d.). AlienVault OTX is a 

free, API driven, community-supported threat intelligence service where security analysts and 

organizations can contribute to the security community in multiple ways. Analysts can submit 

malware samples for analysis, add detected malicious IP addresses or domain names, or monitor 

systems for specific indicators of compromise. Organizations can also scan internal endpoints 

with the OTX Endpoint Scanner and perform individual IP or hostname lookups against the OTX 

system database. For this research, an IP or hostname matching a database entry received a "1" 

along with a count of the number of days between the first reported and last reported date. 

Along with the AlienVault OTX resource were the two final OSINT resources available 

through abuse.ch. The first resource is called URL Haus, and its goal is "sharing malicious URLs 

that are being used for malware distribution" ("URLhaus," n.d.). This resource is like AlienVault 

in that it is a free, community-supported resource, but it contains a very different list of domains. 

Also, instead of trying to be a one-stop-shop like AlienVault, it specializes in malicious URL 
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detection. This research gathered the same data from URL Haus as AlienVault, the domain or 

IP's existence in the malware database, and its record age. 

Finally, abuse.ch offers another service called the SSL Blacklist, a project whose goal is 

to identify and create a blocklist for SSL/TLS certificates used by botnets and C2 servers 

("SSLBL," n.d.). The certificate blocklist is a list of SHA1 hashes of suspect TLS certificates 

gathered from across the Internet. However, due to TLS certificate caching, the certificate is only 

sometimes exchanged between clients and servers. Abuse.ch also offers a JA3 fingerprint 

database of botnet and C2 services leveraging TLS to overcome potential certificate analysis 

limitations. Thus, to ensure consistency across data samples, this research analyzed the JA3 

values obtained during NetCap analysis against the abuse.ch database. Entries appearing in the 

database received a "1" along with a count of the number of days between the first reported and 

last reported date. 

 

5. Feature Correlation and Influence 

5.1 Top 10 Features 
 An essential first step in any ML project is understanding the dataset and any underlying 

correlations that may cause future problems or steer an analyst away from one methodology or 

toward another. TLS metadata analysis yielded many unique correlations that became apparent 

when graphing data relationships. The investigation began by comparing the 10 most important 

features of each classification. In Figure 12, the left image represents malware's 10 most 

important features, while the right image signifies benign traffic. There is minimal overlap 

between the two, proving the likelihood that this problem is solvable through ML. Table 3 maps 

the feature name used in this research to its associated TLS handshake value (refer to 

Appendices B-E for the full list of TLS features and the Internet Assigned Numbers Authority 

(IANA) to dataset name associations). 
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Figure 12: Comparison of the top 10 TLS handshake features by traffic class. The left image is sorted by benign 
importance, and the right image by malicious importance. 

Feature Short Name Actual Value Traffic Class 

sig_0804 
sig_0805 
sig_0806 
ssl_tls_ver 
cs_c02f 
svr_ext_65281 
handshake_len 
message_len 
ext_len 
grp_grease 

rsa_pss_rsae_sha256 
rsa_pss_rsae_sha384 
rsa_pss_rsae_sha512 
TLS Client Version 
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 
renegotiation_info 
TLS Handshake length 
TLS Client message length 
Extension length (number of client extensions offered) 
Generate Random Extensions And Sustain Extensibility 

 
 
 
 
Benign 

svr_ext_65281 
cs_c00a 
cs_c009 
handshake_version 
sig_0501 
sig_0401 
sig_0403 
sig_0503 
src_port 
sig_0601 

renegotiation_info 
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 
TLS Client Handshake Version 
rsa_pkcs1_sha384 
rsa_pkcs1_sha256 
ecdsa_secp256r1_sha256 
ecdsa_secp384r1_sha384 
TCP Source port 
rsa_pkcs1_sha512 

 
 
 
 
Malware 

Table 3: Feature name to real name of top 10 features 

5.2 Source and Destination Ports 
Expanding the filter criteria beyond the top 10 features indicated significant differences 

in other areas, such as source and destination ports. The distribution of source and destination 

ports between the two data classes proved highly variable. While all the benign data samples had 

a zero percent variance in the destination port (TCP port 443), the malware samples 

demonstrated a 6.6% variance across the dataset (Figure 13). This variation was more 

considerable for source ports where the benign data had a 21.4% variance, and malware had a 

51.8% differential (Figure 13). TCP port 443 was the most common source and destination port 
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for the malware samples. In contrast, benign traffic appears with evenly distributed source ports 

spread across the random high ephemeral range, typically above 30,000 (Figures 14 and 15). 

This activity is expected due to how TCP typically makes connections between random high 

ephemeral client ports and lower, IANA designated server ports.  

          
Figure 13: Source (right) and destination (left) port distribution across data classes 

       
Figure 14: Top 10 malware source ports (left) and top 10 benign source ports (right) 
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Figure 15: Top 10 malware destination ports (left), single benign destination port (right) 

5.3 Cipher Suites and Signature Algorithms 
Next, this research reviewed cipher suites and signature algorithms. As with ports, the 

first step was to examine the number of unique cipher suites and signature algorithms offered by 

the client. What stood out are the number of different values used by malware in both scenarios. 

Even though the malware has only a six percent data distribution in the dataset, it still presents 

seven more signature algorithms and 100 more cipher suites than the benign traffic (Figure 16). 

Figure 17 also shows that not only did malware use a wider variety of cipher suites and 

signatures, but it also preferred very different versions than those of benign processes. 

   
Figure 16: Cipher Suite (left) and Signature Algorithm (right) distributions represented by traffic class © 20
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Figure 17: Most common cipher suites (left) and most common signature algorithms (right) sorted by malware 

preference 
 

5.4 Metadata Sizes, Server Responses, and OSINT Data 
 Finally, the last groups of feature data represent areas where malicious actors have the 

least influence and are more difficult to modify than the previous fields. Up until this point, all 

the data features reviewed can be directly influenced by the malware author. They can easily 

change the source or destination ports, modify the client libraries used for development and 

completely change the distribution of cipher suites, signature algorithms, or extensions offered to 

align more readily with benign data samples. However, metadata fields such as the handshake 

length and message length are a bit more complicated. Server responses are more difficult to 

change since rewriting a C2 infrastructure may be required. Finally, the OSINT sources are 

community managed and maintained3. While malware authors may influence some of these 

features, many are often either standardized by available tooling or managed by groups beyond 

their reach. Thus, malware authors have a diminished ability to affect these values compared to 

the previous features. 

 Several unique relationships arise while analyzing the metadata sizes, server responses, 

and OSINT data. Firstly, the mean of the benign length values is significantly larger than that 

used by malware. Based on the initial analysis, it appears that while malware families use more 

                                                            
3 Future analysis on this project might lead to applying additional weights to these features' measurements due to 
the malware author's inability to change or influence them. Using a weighted scale based on the difficulty of 
influence might improve the efficacy of the models. 
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cipher suites or extensions, the overall consistency of the benign clients presents itself with a 

much higher mean value (Figure 18).  

 
Figure 18: Mean of metadata length fields compared 

 Server response values appear evenly distributed, but they are spread across different 

values, as shown in Figure 19. According to measurements, only benign servers indicate a 

supported TLS version different than that used during the handshake. Other measurements stand 

out as being particularly important to benign servers, such as Online Certificate Status Protocol 

(OCSP) stapling, a protocol used to check certificate revocation status, and several server 

extensions such as key_share, connection_id, and application_layer_protocol_negotiation 

("Transport Layer Security (TLS) Extensions," n.d.). 

   
Figure 19: Server response relationship                            Figure 20: OSINT Data relationship 
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 Finally, the OSINT metadata fields round out the features of this dataset. Figure 20 

indicates that AlienVault OTX is the most effective in detecting malware samples, followed 

closely by URL Haus. However, while the OTX platform successfully detected many malware 

samples, it also detected many benign samples. This detection is due to malware's use of popular 

web services such as Dropbox, Google Drive, Twitter, etc., for C2. When this happens, the 

community reports those services to the OTX platform, and those domains become flagged even 

though they are quite common for normal, benign network traffic. 

 

6. Machine Learning Results 

Analysis of the previously described dataset consisted of multiple phases and iterations to 

determine the most accurate classification methodology. First, even though the SVM is efficient 

in processing highly dimensional datasets, this research began the analysis by evaluating 

multiple feature reduction techniques to increase model efficiency. Reduced feature datasets 

proved ineffective during prediction compared to the full dataset, and performance was not 

affected using the complete 518 feature dataset. Thus, this research abandoned feature reduction 

techniques early in experimentation. The results presented here are available at the link in 

Appendix A, and represent model fitting and prediction using all 518 features and various 

distribution sizes of the dataset as indicated in Tables 4-9. 

 

6.1 SVM Analysis 
The first model analyzed was the SVM. This model continually predicted outcomes with 

a mean recall of around 97.7%. The left image of Figure 19 shows the confusion matrix 

representing an accuracy score of approximately 99%, a recall of 96.9%, and a 100% precision 

score using a 25,000-sample training dataset. The right image of Figure 21 shows this model's 

efficacy using the full dataset after training with a randomly selected 25,000-sample batch. The 

right image in Figure 21 shows that the model effectively detected all but 68 malware instances 

out of the 6,422 samples present in the dataset, providing very high scores across the board, as 

demonstrated in Tables 4 and 5. 
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Figure 21: Confusion matrix of SVM early modeling (left) Confusion matrix using full validation dataset (right) 

Further analysis of the SVM and cross-validation of settings yielded high scores for this 

model. The mean F2 score when trained with a 25,000-sample dataset with 20% malware 

distribution is 98.7%. Exporting this model and processing the full validation dataset yielded a 

99.91% F2 score (Figure 21, right), meaning that of all the data samples in this dataset, incorrect 

classification occurred for approximately 100 samples. 

Tables 4 and 5 represent the various training and validation scores across the SVM. Even 

though the 5,000-sample measurements are high, the data diversity proved too small to classify 

data samples across larger datasets. Once the training dataset reached 25,000 samples, the SVM 

required three times the data samples to increase accuracy by 0.001. Thus, the 25,000-sample 

dataset trained the model for all additional testing in Table 5. The SVM demonstrated 

measurable success when classifying the data within this dataset, and, even though the 

methodology is different, the SVM's implementation influenced the configuration of the OC-

SVM. 

Accuracy Precision Recall F2 Score Dataset Size in samples 
0.9987 1.0 0.9791 0.9832 5000 

0.9976 0.9914 0.9683 0.9728 10000 

0.9989 0.9975 0.9847 0.9872 25000 

Table 4: SVM training iterations using varying data distributions and a 20% Malware distribution 
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Accuracy Precision Recall F2 Score Dataset Size in samples 
0.9974 0.9898 0.9659 0.9706 5000 

0.9983 0.9937 0.9790 0.9819 10000 

0.9989 0.9948 0.9876 0.9891 25000 

0.9992 0.9979 0.9897 0.9991 Full Dataset 

Table 5: Pre-trained SVM from 25000 sample size evaluating datasets of varying data size (approximately 

6% Malware distribution) 
 

6.2 OC-SVM Analysis 
The OV-SVM was the most performant model evaluated. Its F2 score consistently 

measured above 99% across both training and evaluation datasets. The confusion matrices in 

Figure 22 and Tables 6-7 represent the OC-SVM classification capabilities and demonstrate its 

effectiveness and potential. The OC-SVM consistently measured a more than 99.5% F2 score 

across varying data sample sizes and an increasing F2 score as the training data size increased. 

The F2 score tapered after around 25,000 samples and required approximately 75,000 data 

samples to increase by an additional 0.001. Thus, the 25,000-sample dataset was used to train the 

model and evaluate larger dataset distributions. A much larger data sample size is necessary to 

determine if the OC-SVM's effectiveness might grow to an even higher F2 and if the overall 

model accuracy scales along with the dataset size. This model will benefit from an additional 

evaluation using a more diverse dataset to ensure overfitting has not occurred. 

      
Figure 22: OC-SVM confusion matrix trained with 20,000-sample benign data and tested with 5,000-

sample mixed data (left), OC-SVM showing previously trained model analyzing 115,000 data sample size (1% 

malware distribution) 
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Accuracy Precision Recall F2 Score Dataset Size in samples 
0.9930 0.9989 0.9941 0.9950 5000 

0.9910 0.9943 0.9966 0.9961 10000 

0.9974 0.9996 0.9978 0.9981 25000 

0.9987 0.9996 0.9990 0.9992 125000 

Table 6: OC-SVM training iterations using varying data distributions (1% Malware distribution) 

Accuracy Precision Recall F2 Score Dataset Size in samples 
0.9966 0.9990 0.9976 0.9979 5000 

0.9968 0.9990 0.9979 0.9981 10000 

0.9974 0.9988 0.9986 0.9986 25000 

0.9975 0.9986 0.9916 0.9933 Full Dataset 

Table 7: Pre-trained OC-SVM from 25000 sample size evaluating datasets of varying size (1% Malware 

distribution) 

 

6.3 Autoencoder Analysis 

 The final ML model used was the Autoencoder neural network. Due to the non-linear 

nature of the dataset (as previously demonstrated in Figure 6), the Autoencoder was a suitable fit 

for this type of model analysis. However, this model was not handled as a standard Autoencoder 

since the problem set is still to perform outlier detection. An article by Vegard Flovic concerning 

its use for anomaly detection and condition monitoring strongly influenced the Autoencoder 

implementation in this research (Flovik, 2018). The blog article presented a problem of 

predicting bearing failure in a factory and used only the "known good" data to train the 

Autoencoder. The model evaluates its accuracy and graphs a curve representing the error rate 

during training, also called the mean absolute error. The point where the model no longer learns 

the curve reaches zero, and this distance is used as a threshold to derive positive and negative 

samples (Figure 23). 

Figure 23 shows the loss curve for the trained data model using a purely benign TLS 

dataset, then the mean absolute error is calculated against malware data from the same dataset. 

The point where the line stops decreasing (Figure 23, left image) is the point at which the 

Autoencoder has effectively learned or modeled the data. Since the only data it has modeled is 

benign, in theory, malicious measurements will be outside the standard loss curve's bounds and 

happen outside the trained data boundary. The distribution of the loss function graph (Figure 23, 
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right image) shows how many standard deviations it takes for the learning curve to drop from its 

peak to zero. The standard deviation measurement provides a "noise" threshold or boundary 

above which all anomalies should appear. Thus, using the loss distribution function in Figure 23 

(right image), the data threshold is between 0.0125 and 0.0150. 

   
Figure 23: Loss curve of Autoencoder (left) with Loss distribution (right) annotating standard deviations to near 0 

loss for threshold calculations 

  After calculating the threshold, the model processes malware cases, and measurements 

provide the selected boundary's efficacy. Using the limit from the curve in Figure 23, the chart in 

the left image of Figure 24 demonstrates the model's classification capability. The scatter plot in 

Figure 24 shows the model's classification capability using a 10,000-sample dataset. The 

anomalies become evident both by color and their presence above the blue threshold line. Benign 

data consistency is also apparent in this graph because it is a tightly clustered mass below the 

threshold. The confusion matrix below (the right image in Figure 24) demonstrates the same 

success level recognized in the threshold diagram and indicates five false positives from the 

dataset and 48 of 700, or approximately 7.4%, false negatives. 

1

 

2

 

3

 

4
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Figure 24: Autoencoder scatter plot (left), and confusion matrix of training sample (right) 

 A more extensive validation dataset was evaluated after training, containing varying data 

distributions as represented in Table 9. The scatter plot in Figure 25 (left image) describes the 

full dataset measurements after training with the 25,000-sample dataset. The highly clustered 

data below the threshold are benign, while data points spread above the boundary represent 

malware. The confusion matrix demonstrates approximately the same ratios as the smaller 

dataset in Figure 25 with a 4.7% false-negative and 4.4% false-positive rate. 

          
Figure 25: Pre-trained Autoencoder evaluating large validation dataset 

 

Accuracy Precision Recall F2 Score Dataset Size in samples 
0.05 0.05 1.0 0.2083 5000 

0.5731 0.1040 0.99 0.3662 10000 

0.9919 0.9906 0.8472 0.8725 25000 

Table 8: Random data sample sizes used to train the model using a 5% malware ratio 
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Accuracy Precision Recall F2 Score Dataset Size in samples 
0.9964 0.9640 0.9640 0.9640 5000 

0.9967 0.9642 0.97 0.9688 10000 

0.9952 0.9528 0.952 0.9521 25000 

0.9948 0.9532 0.9501 0.9507 Full Dataset 

Table 9: Random data sample sizes evaluated against model trained with the 25,000-sample training set 

 

7. Future Research and Conclusions 

The proliferation of TLS and other encrypted protocols is likely to continue to increase 

over the coming years. As such, the security community must work together to solve analysis 

and malicious intent detection of encrypted traffic. ML grants a step in that direction, and 

research such as this offers a means to promulgate that objective. This research analyzed three 

different ML models, each with very different results. 

Overall, the OC-SVM model performed the best, demonstrating a more than 99.5% 

accuracy of malware classification given the dataset used in this research. Once the OC-SVM 

was better understood, adequately trained, and evaluated correctly, the model's efficacy was 

consistently over 99%. After baselining, the OC-SVM can immediately detect malicious activity, 

and the analyst can fine-tune the model to match any environmental differences as they arise. 

Additionally, pre-training may suit this model and make drop-in implementation an option since 

it ignores site-specific data such as source IP. More research is necessary to ensure that these 

results are accurate by gathering more robust datasets, processing a more extensive diversity of 

data samples, and processing live enterprise network traffic, and using the trained model to 

classify live connections. 

The next performant model was the SVM. It performed almost as well as the OC-SVM, 

making it a strong contender to solve the TLS analysis problem using a dataset like the one in 

this research. Demonstrating a consistent 0.98-0.99 F2 score bodes well for the SVM; however, 

it falls short of the OC-SVM in its recall scores, measuring between 0.96-0.98. Such small 

variations may not seem significant, but it is vital to bear in mind that it only takes a single 

instance for a threat actor to be successful and bring an entire network down. A four percent 

false-negative ratio over 100,000 TLS samples equates to 4,000 malicious connections, and all 

are marked as benign by the ML model. Measurements such as this can lead to a lack of 
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confidence in the model's efficacy. Like the OC-SVM, this model requires additional research 

using more diverse datasets and processing live network traffic to verify the measured results. 

Finally, the Autoencoder performed well even though it did not appear as though it would 

during initial training. This model struggled with some false negatives, measuring around 300 

against the full 117,000-sample dataset, giving it a lower mean recall score (approximately 0.95) 

than anticipated. This Autoencoder may not be suited for a problem such as TLS analysis; 

however, additional research can still be conducted to ensure all configuration options and 

analysis techniques are addressed across a more extensive and diverse dataset. Each of the ML 

models reviewed as a part of this research deserves additional consideration to determine their 

feasibility over the long term and usefulness to other statistical analysis forms. 

There is still much work remaining to solve the problem of malware detection in 

encrypted TLS traffic. There remain significant opportunities for statistical analysis of data in 

this vein to understand what is happening on the network. For example, future research could 

include NetFlow for a more holistic view of the handshake process. Additional OSINT resources 

could round out analysis, and visualization tools can provide visual correlation context for an 

event. A more extensive dataset needs to be used with all three models to train against a greater 

diversity of TLS clients and servers before this research can make any definitive statements 

concerning these models' effectiveness. Despite this, however, they all show promise for dealing 

with the imbalanced dataset issue and potentially solving the concern of classifying malicious 

data in encrypted traffic.  

© 20
21

 The
 S

ANS In
sti

tut
e, 

Auth
or 

Reta
ins

 Full
 R

igh
ts



Malware Detection in Encrypted TLS Traffic Through Machine Learning | 32 
 

Bryan Scarbrough, bryan.scarbrough@gmail.com 

References 
Alam, M. (2020, October 17). Support Vector Machine (SVM) for anomaly detection. Retrieved 

January 6, 2021, from Towards Data Science website: 

https://towardsdatascience.com/support-vector-machine-svm-for-anomaly-detection-

73a8d676c331 

AlienVault - Open Threat Exchange. (n.d.). Retrieved January 4, 2021, from Alienvault.com 

website: https://otx.alienvault.com/ 

Anderson, B. (2020, February 5). Overcoming the limitations of TLS fingerprinting for malware 

detection - Blake Anderson. Retrieved January 2, 2021, from 

https://vimeo.com/389483062 

Anderson, B., & McGrew, D. (2017). Machine learning for encrypted malware traffic 

classification: Accounting for noisy labels and non-stationarity. Proceedings of the 23rd 

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 

New York, NY, USA: ACM. 

Anderson, B., Paul, S., & McGrew, D. (2016). Deciphering malware's use of TLS (without 

decryption). Retrieved from http://arxiv.org/abs/1607.01639 

Badr, W. (2019, April 22). Auto-encoder: What is it? And what is it used for? (part 1). Retrieved 

January 5, 2021, from Towards Data Science website: 

https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-

3e5c6f017726 

Can I use... Support tables for HTML5, CSS3, etc. (n.d.). Retrieved December 29, 2020, from 

Caniuse.com website: https://caniuse.com/tls1-3 

Deepthi, A. R. (2019, December 18). Support vector machines & imbalanced data - towards data 

science. Retrieved January 5, 2021, from Towards Data Science website: 

https://towardsdatascience.com/support-vector-machines-imbalanced-data-feb3ecffbb0e 

Dierks, T., & Allen, C. (1999). The TLS Protocol Version 1.0. Retrieved from 

https://tools.ietf.org/html/rfc2246 

Driscoll, M. (n.d.). The illustrated TLS connection. Retrieved December 5, 2020, from 

Ulfheim.net website: https://tls.ulfheim.net/ 

© 20
21

 The
 S

ANS In
sti

tut
e, 

Auth
or 

Reta
ins

 Full
 R

igh
ts



Malware Detection in Encrypted TLS Traffic Through Machine Learning | 33 
 

Bryan Scarbrough, bryan.scarbrough@gmail.com 

Duncan, B. (2019, December 23). Malware-Traffic-Analysis.net - 2019-12-23 - Rig EK sends 

malware payload I cannot identify. Retrieved December 31, 2020, from Malware-traffic-

analysis.net website: https://www.malware-traffic-analysis.net/2019/12/23/index3.html 

Duncan, B. (n.d.). Malware-Traffic-Analysis.net. Retrieved January 20, 2021, from Malware-

traffic-analysis.net website: https://www.malware-traffic-analysis.net/ 

Flovik, V. (2018, December 31). How to use machine learning for anomaly detection and 

condition monitoring. Retrieved January 5, 2021, from Towards Data Science website: 

https://towardsdatascience.com/how-to-use-machine-learning-for-anomaly-detection-

and-condition-monitoring-6742f82900d7 

Google Transparency Report. (n.d.). Retrieved September 25, 2020, from Google.com website: 

https://transparencyreport.google.com/https/overview?hl=en 

IBM Cloud Education. (2020, July 15). What is machine learning? Retrieved January 5, 2021, 

from Ibm.com website: https://www.ibm.com/cloud/learn/machine-learning 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. 

New York, NY: Springer New York. 

Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczynski, M., & Joosen, W. (2019). 

Tranco: A research-oriented top sites ranking hardened against 

manipulation. Proceedings 2019 Network and Distributed System Security Symposium. 

Reston, VA: Internet Society. 

Let's Encrypt Stats. (n.d.). Retrieved September 25, 2020, from Letsencrypt.org website: 

https://letsencrypt.org/stats/ 

Liu, J., Zeng, Y., Shi, J., Yang, Y., Wang, R., & He, L. (2019). MalDetect: A structure of 

encrypted malware traffic detection. Computers, Materials & Continua, 60(2), 721–739. 

Mallarapu, R. (2019, November 21). dgaintel. Retrieved January 3, 2021, from Pypi.org website: 

https://pypi.org/project/dgaintel/ 

Mercury. (2019). Retrieved from https://github.com/cisco/mercury 

Mieden, P. (2018, December 18). Implementation and evaluation of secure and scalable 

anomaly-based network intrusion detection. Retrieved January 3, 2021, from Netcap.io 

website: 

https://www.researchgate.net/publication/329815346_Implementation_and_evaluation_of

_secure_and_scalable_anomaly-based_network_intrusion_detection 

© 20
21

 The
 S

ANS In
sti

tut
e, 

Auth
or 

Reta
ins

 Full
 R

igh
ts



Malware Detection in Encrypted TLS Traffic Through Machine Learning | 34 
 

Bryan Scarbrough, bryan.scarbrough@gmail.com 

MontazeriShatoori, M., Davidson, L., Lashkari, G. K., & Habibi, A. (2020). Detection of DoH 

Tunnels using Time-series Classification of Encrypted Traffic. Calgary, Canada: The 5th 

IEEE Cyber Science and Technology Congress. 

Nagy, L. (2020, February 18). Nearly a quarter of malware now communicates using TLS. 

Retrieved December 30, 2020, from Sophos.com website: https://news.sophos.com/en-

us/2020/02/18/nearly-a-quarter-of-malware-now-communicates-using-tls/ 

Nohe, P. (2019, July 16). TLS 1.3 Update: Everything you need to know. Retrieved December 

29, 2020, from Thesslstore.com website: https://www.thesslstore.com/blog/tls-1-3-

everything-possibly-needed-know/ 

November 2020's most wanted malware: Notorious Phorpiex Botnet returns as most impactful 

infection. (2020, December 9). Retrieved December 31, 2020, from Checkpoint.com 

website: https://blog.checkpoint.com/2020/12/09/november-2020s-most-wanted-

malware-notorious-phorpiex-botnet-returns-as-most-impactful-infection/ 

NSA. (2019, November 19). NSA releases Cyber Advisory: Managing risk from Transport Layer 

Security Inspection. Retrieved February 2, 2021, from Cisa.gov website: https://us-

cert.cisa.gov/ncas/current-activity/2019/11/19/nsa-releases-cyber-advisory-managing-

risk-transport-layer-security 

Rescorla, E., Oku, K., Sullivan, N., & Wood, C. (2020, December 16). draft-ietf-tls-esni-09 - 

TLS Encrypted Client Hello. Retrieved December 30, 2020, from Ietf.org website: 

https://datatracker.ietf.org/doc/draft-ietf-tls-esni/?include_text=1 

Roques, O. (2019, September). Detecting Malware in TLS Traffic. The IEEE Conference on 

Local Computer Networks 30th Anniversary (LCN’05). doi:10.1109/lcn.2005.35 

Sikos, L. F. (2020). Packet analysis for network forensics: A comprehensive survey. Forensic 

Science International: Digital Investigation, 32(200892), 200892. 

SSL Pulse. (n.d.). Retrieved December 29, 2020, from Ssllabs.com website: 

https://www.ssllabs.com/ssl-pulse/ 

SSLBL. (n.d.). Retrieved January 4, 2021, from Abuse.ch website: https://sslbl.abuse.ch/ 

Thanki, R., & Borra, S. (2019). Application of machine learning algorithms for classification and 

security of diagnostic images. In N. Dey, S. Borra, A. S. Ashour, & F. Shi (Eds.), 

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging (pp. 273–292). San 

Diego, CA: Elsevier. 

© 20
21

 The
 S

ANS In
sti

tut
e, 

Auth
or 

Reta
ins

 Full
 R

igh
ts



Malware Detection in Encrypted TLS Traffic Through Machine Learning | 35 
 

Bryan Scarbrough, bryan.scarbrough@gmail.com 

Tranco. (n.d.). Retrieved January 3, 2021, from Tranco-list.eu website: https://tranco-list.eu/ 

Transport Layer Security (TLS) Extensions. (n.d.). Retrieved January 6, 2021, from Iana.org 

website: https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-

values.xhtml 

URLhaus. (n.d.). Retrieved January 4, 2021, from Abuse.ch website: https://urlhaus.abuse.ch/ 

Vijayan, J. (2020, November 10). Malware hidden in encrypted traffic surges amid pandemic. 

Retrieved December 30, 2020, from Dark Reading website: 

https://www.darkreading.com/attacks-breaches/malware-hidden-in-encrypted-traffic-

surges-amid-pandemic/d/d-id/1339420 

Yaacoubi, O. (2020, January 17). Is this the beginning of the end for transport layer security 

inspection techniques? Retrieved February 2, 2021, from Infosecurity-magazine.com 

website: https://www.infosecurity-magazine.com/opinions/transport-layer-inspection/ 

  

© 20
21

 The
 S

ANS In
sti

tut
e, 

Auth
or 

Reta
ins

 Full
 R

igh
ts



Malware Detection in Encrypted TLS Traffic Through Machine Learning | 36 
 

Bryan Scarbrough, bryan.scarbrough@gmail.com 

Appendix A 
Project Source Code and Help Docs 

 To access the source code used for this project, refer to the GitHub repository below. The 
code is documented, and the repository contains installation instructions. If you have any 
problems, feel free to raise an issue on GitHub. 

 

https://github.com/1computerguy/tls-mal-detect 
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Appendix B 
TLS Cipher Suites List 

Dataset Value IANA Value Description 
cs_0000 0x00,0x00 TLS_NULL_WITH_NULL_NULL 
cs_0001 0x00,0x01 TLS_RSA_WITH_NULL_MD5 
cs_0002 0x00,0x02 TLS_RSA_WITH_NULL_SHA 
cs_0003 0x00,0x03 TLS_RSA_EXPORT_WITH_RC4_40_MD5 
cs_0004 0x00,0x04 TLS_RSA_WITH_RC4_128_MD5 
cs_0005 0x00,0x05 TLS_RSA_WITH_RC4_128_SHA 
cs_0006 0x00,0x06 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 
cs_0007 0x00,0x07 TLS_RSA_WITH_IDEA_CBC_SHA 
cs_0008 0x00,0x08 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA 
cs_0009 0x00,0x09 TLS_RSA_WITH_DES_CBC_SHA 
cs_000a 0x00,0x0A TLS_RSA_WITH_3DES_EDE_CBC_SHA 
cs_000b 0x00,0x0B TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA 
cs_000c 0x00,0x0C TLS_DH_DSS_WITH_DES_CBC_SHA 
cs_000d 0x00,0x0D TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA 
cs_000e 0x00,0x0E TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA 
cs_000f 0x00,0x0F TLS_DH_RSA_WITH_DES_CBC_SHA 
cs_0010 0x00,0x10 TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA 
cs_0011 0x00,0x11 TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA 
cs_0012 0x00,0x12 TLS_DHE_DSS_WITH_DES_CBC_SHA 
cs_0013 0x00,0x13 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 
cs_0014 0x00,0x14 TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA 
cs_0015 0x00,0x15 TLS_DHE_RSA_WITH_DES_CBC_SHA 
cs_0016 0x00,0x16 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 
cs_0017 0x00,0x17 TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 
cs_0018 0x00,0x18 TLS_DH_anon_WITH_RC4_128_MD5 
cs_0019 0x00,0x19 TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA 
cs_001a 0x00,0x1A TLS_DH_anon_WITH_DES_CBC_SHA 
cs_001b 0x00,0x1B TLS_DH_anon_WITH_3DES_EDE_CBC_SHA 
cs_001e 0x00,0x1E TLS_KRB5_WITH_DES_CBC_SHA 
cs_001f 0x00,0x1F TLS_KRB5_WITH_3DES_EDE_CBC_SHA 
cs_0020 0x00,0x20 TLS_KRB5_WITH_RC4_128_SHA 
cs_0021 0x00,0x21 TLS_KRB5_WITH_IDEA_CBC_SHA 
cs_0022 0x00,0x22 TLS_KRB5_WITH_DES_CBC_MD5 
cs_0023 0x00,0x23 TLS_KRB5_WITH_3DES_EDE_CBC_MD5 
cs_0024 0x00,0x24 TLS_KRB5_WITH_RC4_128_MD5 
cs_0025 0x00,0x25 TLS_KRB5_WITH_IDEA_CBC_MD5 
cs_0026 0x00,0x26 TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA 
cs_0027 0x00,0x27 TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA 
cs_0028 0x00,0x28 TLS_KRB5_EXPORT_WITH_RC4_40_SHA 
cs_0029 0x00,0x29 TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5 
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cs_002a 0x00,0x2A TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 
cs_002b 0x00,0x2B TLS_KRB5_EXPORT_WITH_RC4_40_MD5 
cs_002c 0x00,0x2C TLS_PSK_WITH_NULL_SHA 
cs_002d 0x00,0x2D TLS_DHE_PSK_WITH_NULL_SHA 
cs_002e 0x00,0x2E TLS_RSA_PSK_WITH_NULL_SHA 
cs_002f 0x00,0x2F TLS_RSA_WITH_AES_128_CBC_SHA 
cs_0030 0x00,0x30 TLS_DH_DSS_WITH_AES_128_CBC_SHA 
cs_0031 0x00,0x31 TLS_DH_RSA_WITH_AES_128_CBC_SHA 
cs_0032 0x00,0x32 TLS_DHE_DSS_WITH_AES_128_CBC_SHA 
cs_0033 0x00,0x33 TLS_DHE_RSA_WITH_AES_128_CBC_SHA 
cs_0034 0x00,0x34 TLS_DH_anon_WITH_AES_128_CBC_SHA 
cs_0035 0x00,0x35 TLS_RSA_WITH_AES_256_CBC_SHA 
cs_0036 0x00,0x36 TLS_DH_DSS_WITH_AES_256_CBC_SHA 
cs_0037 0x00,0x37 TLS_DH_RSA_WITH_AES_256_CBC_SHA 
cs_0038 0x00,0x38 TLS_DHE_DSS_WITH_AES_256_CBC_SHA 
cs_0039 0x00,0x39 TLS_DHE_RSA_WITH_AES_256_CBC_SHA 
cs_003a 0x00,0x3A TLS_DH_anon_WITH_AES_256_CBC_SHA 
cs_003b 0x00,0x3B TLS_RSA_WITH_NULL_SHA256 
cs_003c 0x00,0x3C TLS_RSA_WITH_AES_128_CBC_SHA256 
cs_003d 0x00,0x3D TLS_RSA_WITH_AES_256_CBC_SHA256 
cs_003e 0x00,0x3E TLS_DH_DSS_WITH_AES_128_CBC_SHA256 
cs_003f 0x00,0x3F TLS_DH_RSA_WITH_AES_128_CBC_SHA256 
cs_0040 0x00,0x40 TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 
cs_0041 0x00,0x41 TLS_RSA_WITH_CAMELLIA_128_CBC_SHA 
cs_0042 0x00,0x42 TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA 
cs_0043 0x00,0x43 TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA 
cs_0044 0x00,0x44 TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA 
cs_0045 0x00,0x45 TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA 
cs_0046 0x00,0x46 TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA 
cs_0067 0x00,0x67 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 
cs_0068 0x00,0x68 TLS_DH_DSS_WITH_AES_256_CBC_SHA256 
cs_0069 0x00,0x69 TLS_DH_RSA_WITH_AES_256_CBC_SHA256 
cs_006a 0x00,0x6A TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 
cs_006b 0x00,0x6B TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 
cs_006c 0x00,0x6C TLS_DH_anon_WITH_AES_128_CBC_SHA256 
cs_006d 0x00,0x6D TLS_DH_anon_WITH_AES_256_CBC_SHA256 
cs_0084 0x00,0x84 TLS_RSA_WITH_CAMELLIA_256_CBC_SHA 
cs_0085 0x00,0x85 TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA 
cs_0086 0x00,0x86 TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA 
cs_0087 0x00,0x87 TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA 
cs_0088 0x00,0x88 TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA 
cs_0089 0x00,0x89 TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA 
cs_008a 0x00,0x8A TLS_PSK_WITH_RC4_128_SHA 
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cs_008b 0x00,0x8B TLS_PSK_WITH_3DES_EDE_CBC_SHA 
cs_008c 0x00,0x8C TLS_PSK_WITH_AES_128_CBC_SHA 
cs_008d 0x00,0x8D TLS_PSK_WITH_AES_256_CBC_SHA 
cs_008e 0x00,0x8E TLS_DHE_PSK_WITH_RC4_128_SHA 
cs_008f 0x00,0x8F TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA 
cs_0090 0x00,0x90 TLS_DHE_PSK_WITH_AES_128_CBC_SHA 
cs_0091 0x00,0x91 TLS_DHE_PSK_WITH_AES_256_CBC_SHA 
cs_0092 0x00,0x92 TLS_RSA_PSK_WITH_RC4_128_SHA 
cs_0093 0x00,0x93 TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA 
cs_0094 0x00,0x94 TLS_RSA_PSK_WITH_AES_128_CBC_SHA 
cs_0095 0x00,0x95 TLS_RSA_PSK_WITH_AES_256_CBC_SHA 
cs_0096 0x00,0x96 TLS_RSA_WITH_SEED_CBC_SHA 
cs_0097 0x00,0x97 TLS_DH_DSS_WITH_SEED_CBC_SHA 
cs_0098 0x00,0x98 TLS_DH_RSA_WITH_SEED_CBC_SHA 
cs_0099 0x00,0x99 TLS_DHE_DSS_WITH_SEED_CBC_SHA 
cs_009a 0x00,0x9A TLS_DHE_RSA_WITH_SEED_CBC_SHA 
cs_009b 0x00,0x9B TLS_DH_anon_WITH_SEED_CBC_SHA 
cs_009c 0x00,0x9C TLS_RSA_WITH_AES_128_GCM_SHA256 
cs_009d 0x00,0x9D TLS_RSA_WITH_AES_256_GCM_SHA384 
cs_009e 0x00,0x9E TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 
cs_009f 0x00,0x9F TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 
cs_00a0 0x00,0xA0 TLS_DH_RSA_WITH_AES_128_GCM_SHA256 
cs_00a1 0x00,0xA1 TLS_DH_RSA_WITH_AES_256_GCM_SHA384 
cs_00a2 0x00,0xA2 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 
cs_00a3 0x00,0xA3 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 
cs_00a4 0x00,0xA4 TLS_DH_DSS_WITH_AES_128_GCM_SHA256 
cs_00a5 0x00,0xA5 TLS_DH_DSS_WITH_AES_256_GCM_SHA384 
cs_00a6 0x00,0xA6 TLS_DH_anon_WITH_AES_128_GCM_SHA256 
cs_00a7 0x00,0xA7 TLS_DH_anon_WITH_AES_256_GCM_SHA384 
cs_00a8 0x00,0xA8 TLS_PSK_WITH_AES_128_GCM_SHA256 
cs_00a9 0x00,0xA9 TLS_PSK_WITH_AES_256_GCM_SHA384 
cs_00aa 0x00,0xAA TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 
cs_00ab 0x00,0xAB TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 
cs_00ac 0x00,0xAC TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 
cs_00ad 0x00,0xAD TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 
cs_00ae 0x00,0xAE TLS_PSK_WITH_AES_128_CBC_SHA256 
cs_00af 0x00,0xAF TLS_PSK_WITH_AES_256_CBC_SHA384 
cs_00b0 0x00,0xB0 TLS_PSK_WITH_NULL_SHA256 
cs_00b1 0x00,0xB1 TLS_PSK_WITH_NULL_SHA384 
cs_00b2 0x00,0xB2 TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 
cs_00b3 0x00,0xB3 TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 
cs_00b4 0x00,0xB4 TLS_DHE_PSK_WITH_NULL_SHA256 
cs_00b5 0x00,0xB5 TLS_DHE_PSK_WITH_NULL_SHA384 
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cs_00b6 0x00,0xB6 TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 
cs_00b7 0x00,0xB7 TLS_RSA_PSK_WITH_AES_256_CBC_SHA384 
cs_00b8 0x00,0xB8 TLS_RSA_PSK_WITH_NULL_SHA256 
cs_00b9 0x00,0xB9 TLS_RSA_PSK_WITH_NULL_SHA384 
cs_00ba 0x00,0xBA TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 
cs_00bb 0x00,0xBB TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256 
cs_00bc 0x00,0xBC TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256 
cs_00bd 0x00,0xBD TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256 
cs_00be 0x00,0xBE TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 
cs_00bf 0x00,0xBF TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256 
cs_00c0 0x00,0xC0 TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256 
cs_00c1 0x00,0xC1 TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256 
cs_00c2 0x00,0xC2 TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256 
cs_00c3 0x00,0xC3 TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256 
cs_00c4 0x00,0xC4 TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 
cs_00c5 0x00,0xC5 TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256 
cs_00c6 0x00,0xC6 TLS_SM4_GCM_SM3 
cs_00c7 0x00,0xC7 TLS_SM4_CCM_SM3 
cs_00ff 0x00,0xFF TLS_EMPTY_RENEGOTIATION_INFO_SCSV 
cs_1301 0x13,0x01 TLS_AES_128_GCM_SHA256 
cs_1302 0x13,0x02 TLS_AES_256_GCM_SHA384 
cs_1303 0x13,0x03 TLS_CHACHA20_POLY1305_SHA256 
cs_1304 0x13,0x04 TLS_AES_128_CCM_SHA256 
cs_1305 0x13,0x05 TLS_AES_128_CCM_8_SHA256 
cs_5600 0x56,0x00 TLS_FALLBACK_SCSV 
cs_c001 0xC0,0x01 TLS_ECDH_ECDSA_WITH_NULL_SHA 
cs_c002 0xC0,0x02 TLS_ECDH_ECDSA_WITH_RC4_128_SHA 
cs_c003 0xC0,0x03 TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA 
cs_c004 0xC0,0x04 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 
cs_c005 0xC0,0x05 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 
cs_c006 0xC0,0x06 TLS_ECDHE_ECDSA_WITH_NULL_SHA 
cs_c007 0xC0,0x07 TLS_ECDHE_ECDSA_WITH_RC4_128_SHA 
cs_c008 0xC0,0x08 TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA 
cs_c008 0xC0,0x09 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 
cs_c00a 0xC0,0x0A TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 
cs_c00b 0xC0,0x0B TLS_ECDH_RSA_WITH_NULL_SHA 
cs_c00c 0xC0,0x0C TLS_ECDH_RSA_WITH_RC4_128_SHA 
cs_c00d 0xC0,0x0D TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA 
cs_c00e 0xC0,0x0E TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 
cs_c00f 0xC0,0x0F TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 
cs_c010 0xC0,0x10 TLS_ECDHE_RSA_WITH_NULL_SHA 
cs_c011 0xC0,0x11 TLS_ECDHE_RSA_WITH_RC4_128_SHA 
cs_c012 0xC0,0x12 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 
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cs_c013 0xC0,0x13 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 
cs_c014 0xC0,0x14 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 
cs_c015 0xC0,0x15 TLS_ECDH_anon_WITH_NULL_SHA 
cs_c016 0xC0,0x16 TLS_ECDH_anon_WITH_RC4_128_SHA 
cs_c017 0xC0,0x17 TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA 
cs_c018 0xC0,0x18 TLS_ECDH_anon_WITH_AES_128_CBC_SHA 
cs_c019 0xC0,0x19 TLS_ECDH_anon_WITH_AES_256_CBC_SHA 
cs_c01a 0xC0,0x1A TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA 
cs_c01b 0xC0,0x1B TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA 
cs_c01c 0xC0,0x1C TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA 
cs_c01d 0xC0,0x1D TLS_SRP_SHA_WITH_AES_128_CBC_SHA 
cs_c01e 0xC0,0x1E TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA 
cs_c01f 0xC0,0x1F TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA 
cs_c020 0xC0,0x20 TLS_SRP_SHA_WITH_AES_256_CBC_SHA 
cs_c021 0xC0,0x21 TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA 
cs_c022 0xC0,0x22 TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA 
cs_c023 0xC0,0x23 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 
cs_c024 0xC0,0x24 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 
cs_c025 0xC0,0x25 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 
cs_c026 0xC0,0x26 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 
cs_c027 0xC0,0x27 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 
cs_c028 0xC0,0x28 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 
cs_c029 0xC0,0x29 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 
cs_c02a 0xC0,0x2A TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 
cs_c02b 0xC0,0x2B TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 
cs_c02c 0xC0,0x2C TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 
cs_c02d 0xC0,0x2D TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 
cs_c02e 0xC0,0x2E TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 
cs_c02f 0xC0,0x2F TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 
cs_c030 0xC0,0x30 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 
cs_c031 0xC0,0x31 TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 
cs_c032 0xC0,0x32 TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 
cs_c033 0xC0,0x33 TLS_ECDHE_PSK_WITH_RC4_128_SHA 
cs_c034 0xC0,0x34 TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA 
cs_c035 0xC0,0x35 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA 
cs_c036 0xC0,0x36 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA 
cs_c037 0xC0,0x37 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 
cs_c038 0xC0,0x38 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 
cs_c039 0xC0,0x39 TLS_ECDHE_PSK_WITH_NULL_SHA 
cs_c03a 0xC0,0x3A TLS_ECDHE_PSK_WITH_NULL_SHA256 
cs_c03b 0xC0,0x3B TLS_ECDHE_PSK_WITH_NULL_SHA384 
cs_c03c 0xC0,0x3C TLS_RSA_WITH_ARIA_128_CBC_SHA256 
cs_c03d 0xC0,0x3D TLS_RSA_WITH_ARIA_256_CBC_SHA384 
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cs_c03e 0xC0,0x3E TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256 
cs_c03f 0xC0,0x3F TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384 
cs_c040 0xC0,0x40 TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256 
cs_c041 0xC0,0x41 TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384 
cs_c042 0xC0,0x42 TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256 
cs_c043 0xC0,0x43 TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384 
cs_c044 0xC0,0x44 TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256 
cs_c045 0xC0,0x45 TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384 
cs_c046 0xC0,0x46 TLS_DH_anon_WITH_ARIA_128_CBC_SHA256 
cs_c047 0xC0,0x47 TLS_DH_anon_WITH_ARIA_256_CBC_SHA384 
cs_c048 0xC0,0x48 TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256 
cs_c049 0xC0,0x49 TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384 
cs_c04a 0xC0,0x4A TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256 
cs_c04b 0xC0,0x4B TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384 
cs_c04c 0xC0,0x4C TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256 
cs_c04d 0xC0,0x4D TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384 
cs_c04e 0xC0,0x4E TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256 
cs_c04f 0xC0,0x4F TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384 
cs_c050 0xC0,0x50 TLS_RSA_WITH_ARIA_128_GCM_SHA256 
cs_c051 0xC0,0x51 TLS_RSA_WITH_ARIA_256_GCM_SHA384 
cs_c052 0xC0,0x52 TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 
cs_c053 0xC0,0x53 TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 
cs_c054 0xC0,0x54 TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256 
cs_c055 0xC0,0x55 TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384 
cs_c056 0xC0,0x56 TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256 
cs_c057 0xC0,0x57 TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384 
cs_c058 0xC0,0x58 TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256 
cs_c059 0xC0,0x59 TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384 
cs_c05a 0xC0,0x5A TLS_DH_anon_WITH_ARIA_128_GCM_SHA256 
cs_c05b 0xC0,0x5B TLS_DH_anon_WITH_ARIA_256_GCM_SHA384 
cs_c05c 0xC0,0x5C TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 
cs_c05d 0xC0,0x5D TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 
cs_c05e 0xC0,0x5E TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256 
cs_c05f 0xC0,0x5F TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384 
cs_c060 0xC0,0x60 TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 
cs_c061 0xC0,0x61 TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 
cs_c062 0xC0,0x62 TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256 
cs_c063 0xC0,0x63 TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384 
cs_c064 0xC0,0x64 TLS_PSK_WITH_ARIA_128_CBC_SHA256 
cs_c065 0xC0,0x65 TLS_PSK_WITH_ARIA_256_CBC_SHA384 
cs_c066 0xC0,0x66 TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256 
cs_c067 0xC0,0x67 TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384 
cs_c068 0xC0,0x68 TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256 
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cs_c068 0xC0,0x69 TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384 
cs_c06a 0xC0,0x6A TLS_PSK_WITH_ARIA_128_GCM_SHA256 
cs_c06b 0xC0,0x6B TLS_PSK_WITH_ARIA_256_GCM_SHA384 
cs_c06c 0xC0,0x6C TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 
cs_c06d 0xC0,0x6D TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 
cs_c06e 0xC0,0x6E TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 
cs_c06f 0xC0,0x6F TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 
cs_c070 0xC0,0x70 TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256 
cs_c071 0xC0,0x71 TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384 
cs_c072 0xC0,0x72 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 
cs_c073 0xC0,0x73 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 
cs_c074 0xC0,0x74 TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 
cs_c075 0xC0,0x75 TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 
cs_c076 0xC0,0x76 TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 
cs_c077 0xC0,0x77 TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384 
cs_c078 0xC0,0x78 TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256 
cs_c079 0xC0,0x79 TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384 
cs_c07a 0xC0,0x7A TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256 
cs_c07b 0xC0,0x7B TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384 
cs_c07c 0xC0,0x7C TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 
cs_c07d 0xC0,0x7D TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 
cs_c07e 0xC0,0x7E TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256 
cs_c07f 0xC0,0x7F TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384 
cs_c080 0xC0,0x80 TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256 
cs_c081 0xC0,0x81 TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384 
cs_c082 0xC0,0x82 TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256 
cs_c083 0xC0,0x83 TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384 
cs_c084 0xC0,0x84 TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256 
cs_c085 0xC0,0x85 TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384 
cs_c086 0xC0,0x86 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 
cs_c087 0xC0,0x87 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 
cs_c088 0xC0,0x88 TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 
cs_c089 0xC0,0x89 TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 
cs_c08a 0xC0,0x8A TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 
cs_c08b 0xC0,0x8B TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 
cs_c08c 0xC0,0x8C TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256 
cs_c08d 0xC0,0x8D TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384 
cs_c08e 0xC0,0x8E TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256 
cs_c08f 0xC0,0x8F TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384 
cs_c090 0xC0,0x90 TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256 
cs_c091 0xC0,0x91 TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384 
cs_c092 0xC0,0x92 TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256 
cs_c093 0xC0,0x93 TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384 
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cs_c094 0xC0,0x94 TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256 
cs_c095 0xC0,0x95 TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384 
cs_c096 0xC0,0x96 TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 
cs_c097 0xC0,0x97 TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 
cs_c098 0xC0,0x98 TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256 
cs_c099 0xC0,0x99 TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384 
cs_c09a 0xC0,0x9A TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 
cs_c09b 0xC0,0x9B TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384 
cs_c09c 0xC0,0x9C TLS_RSA_WITH_AES_128_CCM 
cs_c09d 0xC0,0x9D TLS_RSA_WITH_AES_256_CCM 
cs_c09e 0xC0,0x9E TLS_DHE_RSA_WITH_AES_128_CCM 
cs_c09f 0xC0,0x9F TLS_DHE_RSA_WITH_AES_256_CCM 
cs_c0a0 0xC0,0xA0 TLS_RSA_WITH_AES_128_CCM_8 
cs_c0a1 0xC0,0xA1 TLS_RSA_WITH_AES_256_CCM_8 
cs_c0a2 0xC0,0xA2 TLS_DHE_RSA_WITH_AES_128_CCM_8 
cs_c0a3 0xC0,0xA3 TLS_DHE_RSA_WITH_AES_256_CCM_8 
cs_c0a4 0xC0,0xA4 TLS_PSK_WITH_AES_128_CCM 
cs_c0a5 0xC0,0xA5 TLS_PSK_WITH_AES_256_CCM 
cs_c0a6 0xC0,0xA6 TLS_DHE_PSK_WITH_AES_128_CCM 
cs_c0a7 0xC0,0xA7 TLS_DHE_PSK_WITH_AES_256_CCM 
cs_c0a8 0xC0,0xA8 TLS_PSK_WITH_AES_128_CCM_8 
cs_c0a9 0xC0,0xA9 TLS_PSK_WITH_AES_256_CCM_8 
cs_c0aa 0xC0,0xAA TLS_PSK_DHE_WITH_AES_128_CCM_8 
cs_c0ab 0xC0,0xAB TLS_PSK_DHE_WITH_AES_256_CCM_8 
cs_c0ac 0xC0,0xAC TLS_ECDHE_ECDSA_WITH_AES_128_CCM 
cs_c0ad 0xC0,0xAD TLS_ECDHE_ECDSA_WITH_AES_256_CCM 
cs_c0ae 0xC0,0xAE TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 
cs_c0af 0xC0,0xAF TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 
cs_c0b0 0xC0,0xB0 TLS_ECCPWD_WITH_AES_128_GCM_SHA256 
cs_c0b1 0xC0,0xB1 TLS_ECCPWD_WITH_AES_256_GCM_SHA384 
cs_c0b2 0xC0,0xB2 TLS_ECCPWD_WITH_AES_128_CCM_SHA256 
cs_c0b3 0xC0,0xB3 TLS_ECCPWD_WITH_AES_256_CCM_SHA384 
cs_c0b4 0xC0,0xB4 TLS_SHA256_SHA256 
cs_c0b5 0xC0,0xB5 TLS_SHA384_SHA384 
cs_c100 0xC1,0x00 TLS_GOSTR341112_256_WITH_KUZNYECHIK_CTR_OMAC 
cs_c101 0xC1,0x01 TLS_GOSTR341112_256_WITH_MAGMA_CTR_OMAC 
cs_c102 0xC1,0x02 TLS_GOSTR341112_256_WITH_28147_CNT_IMIT 
cs_c103 0xC1,0x03 TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_L 
cs_c104 0xC1,0x04 TLS_GOSTR341112_256_WITH_MAGMA_MGM_L 
cs_c105 0xC1,0x05 TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_S 
cs_c106 0xC1,0x06 TLS_GOSTR341112_256_WITH_MAGMA_MGM_S 
cs_c1a8 0xCC,0xA8 TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 
cs_c1a9 0xCC,0xA9 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 
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cs_c1aa 0xCC,0xAA TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 
cs_c1ab 0xCC,0xAB TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 
cs_c1ac 0xCC,0xAC TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 
cs_c1ad 0xCC,0xAD TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 
cs_c1ae 0xCC,0xAE TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256 
cs_d001 0xD0,0x01 TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 
cs_d002 0xD0,0x02 TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384 
cs_d003 0xD0,0x03 TLS_ECDHE_PSK_WITH_AES_128_CCM_8_SHA256 
cs_d005 0xD0,0x05 TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256 
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Appendix C 
TLS Signature Algorithms List 

Dataset Value IANA Value Description 
sig_0201 0x0201 rsa_pkcs1_sha1 
sig_0203 0x0203 ecdsa_sha1 
sig_0401 0x0401 rsa_pkcs1_sha256 
sig_0403 0x0403 ecdsa_secp256r1_sha256 
sig_0420 0x0420 rsa_pkcs1_sha256_legacy 
sig_0501 0x0501 rsa_pkcs1_sha384 
sig_0503 0x0503 ecdsa_secp384r1_sha384 
sig_0520 0x0520 rsa_pkcs1_sha384_legacy 
sig_0601 0x0601 rsa_pkcs1_sha512 
sig_0603 0x0603 ecdsa_secp521r1_sha512 
sig_0620 0x0620 rsa_pkcs1_sha512_legacy 
sig_0704 0x0704 eccsi_sha256 
sig_0705 0x0705 iso_ibs1 
sig_0706 0x0706 iso_ibs2 
sig_0707 0x0707 iso_chinese_ibs 
sig_0708 0x0708 sm2sig_sm3 
sig_0709 0x0709 gostr34102012_256a 
sig_070a 0x070A gostr34102012_256b 
sig_070b 0x070B gostr34102012_256c 
sig_070c 0x070C gostr34102012_256d 
sig_070d 0x070D gostr34102012_512a 
sig_070e 0x070E gostr34102012_512b 
sig_070f 0x070F gostr34102012_512c 
sig_0804 0x0804 rsa_pss_rsae_sha256 
sig_0805 0x0805 rsa_pss_rsae_sha384 
sig_0806 0x0806 rsa_pss_rsae_sha512 
sig_0807 0x0807 ed25519 
sig_0808 0x0808 ed448 
sig_0809 0x0809 rsa_pss_pss_sha256 
sig_080a 0x080A rsa_pss_pss_sha384 
sig_080b 0x080B rsa_pss_pss_sha512 
sig_081a 0x081A ecdsa_brainpoolP256r1tls13_sha256 
sig_081b 0x081B ecdsa_brainpoolP384r1tls13_sha384 
sig_081c 0x081C ecdsa_brainpoolP512r1tls13_sha512 
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Appendix D 
TLS Supported Groups List 

Dataset Value IANA Value Description 
grp_01 1 sect163k1 
grp_02 2 sect163r1 
grp_03 3 sect163r2 
grp_04 4 sect193r1 
grp_05 5 sect193r2 
grp_06 6 sect233k1 
grp_07 7 sect233r1 
grp_08 8 sect239k1 
grp_09 9 sect283k1 
grp_10 10 sect283r1 
grp_11 11 sect409k1 
grp_12 12 sect409r1 
grp_13 13 sect571k1 
grp_14 14 sect571r1 
grp_15 15 secp160k1 
grp_16 16 secp160r1 
grp_17 17 secp160r2 
grp_18 18 secp192k1 
grp_19 19 secp192r1 
grp_20 20 secp224k1 
grp_21 21 secp224r1 
grp_22 22 secp256k1 
grp_23 23 secp256r1 
grp_24 24 secp384r1 
grp_25 25 secp521r1 
grp_26 26 brainpoolP256r1 
grp_27 27 brainpoolP384r1 
grp_28 28 brainpoolP512r1 
grp_29 29 x25519 
grp_30 30 x448 
grp_31 31 brainpoolP256r1tls13 
grp_32 32 brainpoolP384r1tls13 
grp_33 33 brainpoolP512r1tls13 
grp_34 34 GC256A 
grp_35 35 GC256B 
grp_36 36 GC256C 
grp_37 37 GC256D 
grp_38 38 GC512A 
grp_39 39 GC512B 
grp_40 40 GC512C 
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grp_4 41 curveSM2 
grp_256 256 ffdhe2048 
grp_257 257 ffdhe3072 
grp_258 258 ffdhe4096 
grp_259 259 ffdhe6144 
grp_260 260 ffdhe8192 
grp_65281 65281 arbitrary_explicit_prime_curves 
grp_65282 65282 arbitrary_explicit_char2_curves 
grp_grease 

 
Used for "random" values provided 
as a part of TLS GREASE 
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Appendix E 
TLS Extensions List 

Dataset Value IANA Value Extension Name 
svr_ext_00 0 server_name 
svr_ext_01 1 max_fragment_length 
svr_ext_02 2 client_certificate_url 
svr_ext_03 3 trusted_ca_keys 
svr_ext_04 4 truncated_hmac 
svr_ext_05 5 status_request 
svr_ext_06 6 user_mapping 
svr_ext_07 7 client_authz 
svr_ext_08 8 server_authz 
svr_ext_09 9 cert_type 
svr_ext_10 10 supported_groups (renamed from "elliptic_curves") 
svr_ext_11 11 ec_point_formats 
svr_ext_12 12 srp 
svr_ext_13 13 signature_algorithms 
svr_ext_14 14 use_srtp 
svr_ext_15 15 heartbeat 
svr_ext_16 16 application_layer_protocol_negotiation 
svr_ext_17 17 status_request_v2 
svr_ext_18 18 signed_certificate_timestamp 
svr_ext_19 19 client_certificate_type 
svr_ext_20 20 server_certificate_type 
svr_ext_21 21 padding 
svr_ext_22 22 encrypt_then_mac 
svr_ext_23 23 extended_master_secret 
svr_ext_24 24 token_binding 
svr_ext_25 25 cached_info 
svr_ext_26 26 tls_lts 
svr_ext_27 27 compress_certificate 
svr_ext_28 28 record_size_limit 
svr_ext_29 29 pwd_protect 
svr_ext_30 30 pwd_clear 
svr_ext_31 31 password_salt 
svr_ext_32 32 ticket_pinning 
svr_ext_33 33 tls_cert_with_extern_psk 
svr_ext_34 34 delegated_credentials 
svr_ext_35 35 session_ticket (renamed from "SessionTicket TLS") 
svr_ext_36 36 TLMSP 
svr_ext_37 37 TLMSP_proxying 
svr_ext_38 38 TLMSP_delegate 
svr_ext_39 39 supported_ekt_ciphers 
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svr_ext_40 40 Unassigned 
svr_ext_41 41 pre_shared_key 
svr_ext_42 42 early_data 
svr_ext_43 43 supported_versions 
svr_ext_44 44 cookie 
svr_ext_45 45 psk_key_exchange_modes 
svr_ext_46 47 certificate_authorities 
svr_ext_48 48 oid_filters 
svr_ext_42 49 post_handshake_auth 
svr_ext_50 50 signature_algorithms_cert 
svr_ext_51 51 key_share 
svr_ext_52 52 transparency_info 
svr_ext_55 55 external_id_hash 
svr_ext_56 56 external_session_id 
svr_ext_65281 65281 renegotiation_info 
svr_ext_unassigned  Used for "random" values provided by client 
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