
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of UNIX HIDS

GIAC GCIA Gold Certification

Author: Janusz Pazgier, januszp@live.com
Advisor: Lenny Zeltser

Accepted: May 7, 2020

Abstract

There has been an increase in UNIX-based adversarial activity, as enterprises and users
shift towards the platform (WatchGuard, 2017). The focus of this paper is to demonstrate
the effectiveness of three separately installed host-based intrusion detection systems
(HIDS): OSSEC, Samhain, and Auditd, and their ability to detect specific MITRE
ATT&CK tactics. Custom scripts implement the ATT&CK tactics of privilege escalation,
persistence, and data exfiltration. The goal is to inform security professionals about the
pros and cons of implementing each of these HIDS.

The author's affiliation with The MITRE Corporation is provided for identification
purposes only, and is not intended to convey or imply MITRE's concurrence with, or
support for, the positions, opinions, or viewpoints expressed by the author.
©2020 The MITRE Corporation. ALL RIGHTS RESERVED

Approved for Public Release; Distribution Unlimited. Public Release Case Number 20-
1273

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

2

	

Janusz Pazgier, januszp@live.com	 	 	

1. Introduction

If one is unfamiliar with a host-based intrusion detection system (HIDS) like OSSEC,

Samhain, and Auditd, then one should reference an introductory article called Intrusion

Detection Systems: Definition, Need and Challenges (Sarmah, 2001). In general, a HIDS

serves as an intrusion detection system that monitors and collects data from a target

system that should be protected, processes and correlates the gathered information, and

initiates responses when evidence of an intrusion is detected (Giovanni Vigna, 2005). As

claimed by Avast, "an IDS is focused on detection and is normally a passive system

(doesn't take action on the detected threat), an IDS is rarely used as a standalone system.

It's many times, coupled with a related system called an intrusion prevention system that

actually takes action on the perceived threat" (Avast, 2020).

The MITRE ATT&CK framework is a globally accessible knowledge base of

adversary tactics and techniques based on real-world observations (The MITRE

Corporation, 2020). The framework consists of tactics like privilege escalation,

persistence, and data exfiltration. Each of these tactics includes techniques that dig deeper

into methods that adversaries use to perform the specific attacks. The ATT&CK

framework provides granular detail of adversary behavior and is complementary to many

other models and frameworks (The MITRE Corporation, 2020). This research reproduces

these three adversarial tactics through custom scripts and demonstrates the efficacy of

HIDS at detecting them.

This paper will focus on comparing the functionality of HIDS at detecting various

types of attacks based on the MITRE ATT&CK framework, through the installation and

configuration of three opensource host-based intrusion detection systems: OSSEC,

Samhain and Auditd. In-depth installation and configuration details are provided to

illustrate how the various parts of the HIDS interact with each other. The functionality of

the HIDS is tested through analysis of alerts generated when executing different scripts

that mock the functionality of tactics and techniques defined in the MITRE ATT&CK

framework.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

3

	

Janusz Pazgier, januszp@live.com	 	 	

2. Pre-requisites

For the testing performed throughout, a Dell R710 server was configured with the

hypervisor VMware ESXi installed. This server has 16 physical cores, 96 GB of RAM,

and 2 TB of storage, allowing for the proper designation of resources for the

preconfigured environment. Building and maintaining a virtual environment to perform

these tests allowed for isolated testing of the features of the HIDS.

2.1. Setup
There are several versions of UNIX-based operating systems, including Linux

(Lackmann, 2010). The tools outlined in this paper will be installed and configured on a

CentOS 7 Linux x64 everything image with the GNOME desktop installed via the GUI

installation of the operating system. A GNOME desktop installation is used instead of a

server with a GUI to mimic the applicability of the HIDS at detecting attack methods on

an end-user system.

To verify that all the packages on the system are up to date, the command "yum

install epel-release && yum update" was run on the hosts. Next, the development

tools package was installed on the hosts to make sure that the pre-requisite packages for

installing the HIDS are compiled and run properly. These packages are installed with the

command 'yum groupinstall "Development tools."' Finally, the three scripts used

for testing the ATT&CK framework tactics were uploaded to the Documents directory of

the test (called "sans") user, which was added to the system. These scripts will aid in

verifying the effectiveness of the HIDS at detecting various tactics and techniques.

Upon installing the pre-requisite packages, and moving the files to the Documents

directory, a snapshot (saved state of the system) of the image is created as a backup in

case something goes wrong in the testing. Next, the created snapshot is cloned (copied)

into three separate virtual machines. It is beneficial to us three separate virtual machines

for this testing because it allows for a standardized environment when installing the three

different HIDS. Furthermore, it decreases the chances of cross-contaminated resources,

rules, and logs.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

4

	

Janusz Pazgier, januszp@live.com	 	 	

2.2. Host-based Intrusion Detection Systems
To demonstrate the efficacy of Linux HIDS, the three tools (OSSEC, Samhain, and

Auditd) were installed and configured to detect the adversarial tactics described in section

2.3. These HIDS were best suited for this research because they are open-source and free

to install, configure, and use on Linux systems. Additionally, the tools provide similar

core functionality, with differentiating additional features. A common approach to

detecting intrusions on a system is file integrity monitoring (FIM). On UNIX-based

operating systems, everything is a file. Therefore, FIM can go a long way when

determining the inappropriate use and potential persistence implanted on a file system.

Another method used to detect possible compromise on a Linux system is through

monitoring of connections from the host, which could be exfiltration attempts of

adversarial. Both are conventional approaches to detecting intrusions on a system and

will be configured based on the documentation from the vendors of the tools.

2.3. Scripts
To compare the efficiency of the three HIDS at detecting adversarial tactics and

techniques, the author developed most of the scripts in this research to mimic adversarial

activities on the devices and to verify a standardized form of execution. Each of the

techniques defined under a tactic in the ATT&CK framework includes examples of how

adversarial use. Each script implements methodologies outlined in these definitions and

examples. The Appendix contains these scripts and execution instructions.

2.3.1. Privilege Escalation
Privilege escalation is a tactic that consists of techniques that adversaries use to gain

higher-level permissions on a system or network (The MITRE Corporation, n.d.). In his

blog Privilege escalation with setuid, Julien Mourer created a program that demonstrates

privilege escalation through misconfigured file configuration. This form of

misconfiguration occurs when a system administrator provides non-wheel user access to

a file that is owned by a user in the wheel group. Once compiled and executed on a host,

it gives root shell access to an unprivileged user.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

5

	

Janusz Pazgier, januszp@live.com	 	 	

2.3.2. Persistence
Persistence is a tactic that an adversary uses to create ways to regain access into a

system post-exploitation. Many of these techniques allow a user to make small

modifications to the UNIX system to create a backdoor for future access. Appendix B

contains the script designed to demonstrate the tactic of persistence through the creation

of additional accounts, modification of file system permissions (misconfigured

attribution), and .bashrc persistence. This script is a modification of a malicious script the

author used during a cybersecurity competition. Once executed, the script creates a new

user, modified the attribution of a file, and adds malicious lines to /etc/bashrc. In

conclusion, the designed script creates a new user, modifies a files known association,

and implements a form of .bashrc persistence.

2.3.3. Data Exfiltration
Data exfiltration consists of techniques that adversaries may use to steal data from a

network (MITRE Corporation, 2019). Appendix C contains a script that mimics the tactic

of exfiltration over an alternative protocol. Upon execution, the opens a new port on the

system and waits for an external party to connect to it to download data.

3. OSSEC
OSSEC is a database file integrity monitoring host-based intrusion detection system,

which also serves as a log aggregator (OSSEC, 2020). Once configured and initialized,

OSSEC generates a knowledge base of the known good state of a system. It uses this

database to perform integrity checks on the filesystem to determine potentially unwanted

modified files. On top of the FIM feature, OSSEC is capable of detecting rootkits

implanted in known locations and performing real-time alerting. OSSEC contains a

plethora of additional features and functionalities, which do not apply to this research.

3.1. Setup
3.1.1. Installation

The OSSEC website contains well-documented installation and configuration

instructions for the tool. There are many ways to install and configure this tool for any

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

6

	

Janusz Pazgier, januszp@live.com	 	 	

environment. OSSEC can run in a server/agent environment where a server can manage

thousands of nodes at a time. The focus of this research is on installing and configuring a

local version of OSSEC. A local version has the same HIDS functionality; however, all

remote services are disabled as the tool is just monitoring the local system.

The first step is to download the OSSEC tool from the source and unpack it. This

can be done using the following commands:

The OSSEC installation directory contains the ./install.sh script, which prompts

the user for installation parameters. These parameters include client/server, local version,

and features to enable. Once executed and provided the proper input, the script will install

and activate the features. However, if invalid information is provided at this step, then a

full reinstall of the tool is required. For this research, all the functions related to FIM are

installed to standardize the installation across the HIDS.

The install type selected is local, as OSSEC is running standalone without a

server/client infrastructure. Next, the integrity checking daemon feature is enabled to

perform FIM on the filesystem. In addition, Rootkit detection is installed to aid in

detecting misconfigured SUIDs. Finally, the active response feature is disabled as the

research focuses on passive monitoring of the system. These selected features enabled

OSSEC as a tool that monitors the integrity of the system and reports any probable

anomalies.

3.1.2. Rule creation
When configuring rules and alerts on OSSEC, one must be acquainted with the

location of the OSSEC configuration files and their purpose. The primary storage

location for all the tools files is /var/ossec. This directory also contains the bin/

directory, which contains all the executable of OSSEC, the etc/ directory, which

contains all the configuration files, and the rules/ directory, which contains rule

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

7

	

Janusz Pazgier, januszp@live.com	 	 	

configurations. To configure the functionality of the features in OSSEC, the

/etc/ossec.conf needs to be modified.

Upon performing a modification to either the ossec.conf or local_rules.xml,

OSSEC requires a restart with the command "var/ossec/bin/ossec-control

restart." Once restarted, OSSEC requires a few minutes to generate an FIM database

and then will perform integrity checks based on the frequency defined in syscheck.

Syscheck is the name of the integrity checking process inside OSSEC (OSSEC, 2020).

By default, syscheck performs every 22 hours on a system. For this research, syscheck

scans the operating system every 60 seconds.

3.2. Privilege Escalation
3.2.1. Rules created

This HIDS has a feature called Rootkit detection, which will help detect the privesc

script, which has a misconfigured SUID bit set. According to the writers of the tool, the

tool can "scan the whole filesystem looking for unusual files and permission problems.

Files owned by root, with write permission to non-root users, are generally malicious, and

the rootkit detection will look for them. The OSSEC Project also states, SUID files,

hidden directories, and files will also be inspected" (OSSEC Project, 2020).

By default, the rootcheck functionality of the rootkit detection feature is

commented out in the ossec.conf file. To enable rootcheck, the lines shown below

need to be uncommented.

By default, rootcheck scans the system every 10 hours. However, this frequency is

shortened to every 60 seconds to speed up the generation of the expected results.

3.2.2. Alerts generated
After enabling the rootcheck feature in the OSSEC config file, restarting OSSEC,

and waiting approximately 30 minutes for OSSEC to thoroughly scan the system, the

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

8

	

Janusz Pazgier, januszp@live.com	 	 	

following alert was discovered:

This alert demonstrates the rootcheck ability to detect files with misconfigured

attributes with ease. Any additional files with misconfigured permissions would cause a

similar alert as long as OSSEC was running on the system. This alert will not help in

identifying a user that misused this file but can help identify misconfigured files on the

operating system.

3.3. Persistence
3.3.1. Rules created

To detect the persistence in our persistence.sh script the modified files will be

monitored when creating a new user (/etc/passwd and /etc/shadow), and any

modifications created to the /etc/bashrc file. These forms of persistence are detected

by verifying the /etc/ directory in real-time against a database of the known good state

of the system.

Additionally, the /bin/ directory will be monitored for any modification to the

binaries on the system. In OSSEC this verification can be enabled by making the

following changes to the /var/ossec/etc/ossec.conf configuration file.

3.3.2. Alerts generated
OSSEC generated the warning below after the execution of ./persistance.sh on the

operating system. The tool detected the modified files, provided the location of the

modified files, compared the hash (md5sum), and the contents that were changed (Note:

Appendix D contains the full output):

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

9

	

Janusz Pazgier, januszp@live.com	 	 	

3.4. Data Exfiltration
3.4.1. Rules created

In addition to checking the files on the system for misconfigured SUIDs, the

rootcheck feature can check for open ports. The port checking feature can be enabled by

adding check_port to yes in the ossec.conf file, as seen below:

This configuration change will monitor the output of netstat for any ports that are

open and will generate an alert when a new port is listening on the system. A nonstandard

open port on an operating system could function as a means of exfiltrating data over an

alternative protocol.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

10

	

Janusz Pazgier, januszp@live.com	 	 	

3.4.2. Alerts generated
As stated above, OSSEC will take the known state of open ports on a system and

compare it to the current state to find anomalies. In this example, OSSEC determined that

port 2222 is a newly opened port and alerted on it.

The functionality in detecting communication over alternative protocol is something

that is lacking in OSSEC. The detection of this adversarial behavior should be

implemented through a network intrusion detection system that can generate a known

good state of the traffic on a network and determine anomalies from that dataset.

4. Samhain
Samhain is easy to install and configure for POSIX systems. This HIDS provides file

integrity checking, log file monitoring/analysis, as well as rootkit detection, port

monitoring, and detection of rogue SUID executables (Wichmann, 2006). According to

another study performed by a SANS student, "Implementing tools like Samhain can

provide organizations with the confidence that data is not modified in any unauthorized

manner and help cover any regulatory compliances" (Nel, 2014).

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

11

	

Janusz Pazgier, januszp@live.com	 	 	

4.1. Setup
4.1.1. Installation

The command shown below downloads the latest version of Samhain from the

website:

 Next, the instructions on the website require the unpacking of the downloaded

folder with the following commands:

 Similarly to OSSEC, Samhain is installed and configured through the execution of

an install script. For this research, suidcheck is enabled to detect any files with

misconfigured SUID and GID bits. Additionally, port-check is enabled to detect

unknown open ports on the system. The command below installs Samhain with these

features enabled:

The Samhain installation completes successfully after "make install"

concludes.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

12

	

Janusz Pazgier, januszp@live.com	 	 	

Note: The procedures outlined above install Samhain as a standalone appliance.

Samhain can be installed and configured to run as a server/agent environment where it

can monitor multiple hosts with potentially different operating systems; however, for this

paper, it was installed locally.

4.1.2. Rule creation
The configuration file for Samhain is located at /etc/samhainrc, and by default

is commented out so that it can function on a large assortment of operating systems. To

limit false positives, only the sections about detecting the adversarial activities generated

by the scripts listed in section 2.3 will be uncommented (enabled). Upon performing an

edit to the /etc/samhainrc configuration file, the Samhain database must be initialized

through the execution of the command: "./samhain -t init." Once created, the

database can be found in the directory "/var/lib/samhain/samhain_file." According

to the tool's documentation, "One should delete or rename the baseline database file if

they want to run "samhain -t init" a second time" (Wichmann, 2006).

4.2. Privilege Escalation
4.2.1. Rules created

Samhain has a set of features for detecting files with misconfigured setuid and

setSGID bits. It is not only capable of alerting when it detects such a file, but it can also

be configured to alert, quarantine, or delete the file in question. The following are the

changes made to the /etc/samhainrc:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

13

	

Janusz Pazgier, januszp@live.com	 	 	

 As can be seen in line two, the suid checker was activated, and the interval

changed to every 60 seconds. Configuring Samhain to such a low interval is not

recommended for production systems; however, for this study, it allows for quicker

testing. Next, the limit of files checked per second was configured to infinite to allow for

a more immediate examination of the entire filesystem. This value should be limited in a

production environment. Further, the SeveritySuidCheck is set to crit, to classify the

incident accordingly and for easier identification in the log file. Finally, prevention

methods like quarantining are left commented out to limit the functionality of Samhain to

alerting on the incident.

4.2.2. Alerts generated
Samhain generated the alert below after placing the privilege escalation script in the

Documents folder of the test user and executing the script per the steps listed in Appendix

A. Upon scanning the filesystem, Samhain generated an alert upon discovering a file with

a misconfigured SUID.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

14

	

Janusz Pazgier, januszp@live.com	 	 	

The alert above demonstrates Samhain’s ability to check the filesystem for misconfigured

files continuously. Additionally, with the enablement of the

SuidCheckQuarentineFiles feature, Samhain would quarantine this file and potentially

remove it from an adversary's control.

4.3. Persistence
4.3.1. Rules created

One of the main functionalities of Samhain is File integrity monitoring. The

/etc/samhainrc configuration file contains fields that allow the specifications of files

and directories to monitor for file creation, modification, execution, and attribution. To

detect the persistence script, the [IgnoreNone] feature of Samhain will be

implemented, which tracks all changes, including access times of the files specified.

Additionally, the [Attribution] feature of Samhain is enabled, which will only

monitor the change in the attribution of files defined. These changes are below:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

15

	

Janusz Pazgier, januszp@live.com	 	 	

In the configuration snippet above, enables the monitoring of all changes to

/etc/passwd and /etc/shadow files. These files are essential because any modification

of these files implies the creation of a user on the system. Additionally, all changes to

/etc/bashrc are tracked. Finally, only the monitoring of /etc/nmap is limited to

attribution because the goal is to follow a misconfiguration of file permissions.

4.3.2. Alerts generated
Samhain generated the below alerts upon execution of the persistence script on

the CentOS 7 system (Note: Appendix E contains the full output):

 Samhain created an alert when the /etc/passwd and /etc/shadow file was

modified. It did not alert on what modification was changed to the file; however, it was

able to determine a difference between the known good state checksum and the new one.

Additionally, it alerted that a new user /home/ directory was added for a new user called

sans1234. Next, Samhain alerted that the file permissions for /bin/nmap were changed

and that the /etc/bashrc file was also modified in some way. Although these alerts

were easy to configure, they did not generate enough verbosity to quickly determine what

type of modifications were made to the files, only that changes were made.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

16

	

Janusz Pazgier, januszp@live.com	 	 	

4.4. Data Exfiltration
4.4.1. Rules created

An additional feature of Samhain is the ability to monitor the open ports of the

system. This ability allows possible data exfiltration through alternative methods and

identification of regular operating ports from abnormal ports as an alert. This can be

performed in Samhain by enabling the [PortCheck] feature and specifying the port

range to check, the required ports, the interface to check on, and the interval to perform

the checks. As seen in the samhainrc configuration below, the default required ports

were unmodified; however, the min and max port value to check was modified to be from

2000 to 65000. Additionally, the interface to monitor was modified to localhost

(127.0.0.1) to enable Samhain to watch all internet interfaces on the system. Finally, the

interval to check ports was changed to 5 minutes:

4.4.2. Alerts generated
After executing the data exfiltration script on this CentOS 7 machine that is

running Samhain, the alerts below were generated based on the changes to samhainrc

configuration file:

The two CRIT warnings that were generated above show that a new TCP

connection at port 2222 was created. The first alert warns that no service is linked to the

newly created port, while the second alert states that a new service was created with that

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

17

	

Janusz Pazgier, januszp@live.com	 	 	

port. Additionally, Samhain is alerting that there is a port open to receive data, and that

data was sent over the same port. This alert is useful in informing security professionals

that an attempt was made to exfiltrate data out of the system through a specific port.

5. Auditd
Auditd is an essential feature to the Linux Kernel that collects system activity and

generates alerts based on predetermined rules. Red Hat concurs when they note, "due to

its close integration with the kernel, Auditd is capable of monitoring System calls, file

access, and modifications as well as a list of preconfigured auditable events that are

maintained by RHEL" (Redhat, n.d.).

5.1. Setup
5.1.1. Installation

Auditd comes preconfigured on our version of CentOS 7, and therefore the

installation is already done. However, to verify that all required packages are installed on

the system, it is advised to run the following:

Once all the packages are installed and updated to the version displayed above,

then Auditd can be started and enabled on startup. As seen below:

Once Auditd is installed, the first rules can be written to alert on malicious activities

on the system.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

18

	

Janusz Pazgier, januszp@live.com	 	 	

5.1.2. Rule creation
The working directory of Auditd is "/etc/audit/," and is the location of the audit

configuration file (auditd.conf). According to the man page of Auditd, "the audit

daemon itself has some configuration options that the admin may wish to customize.

They are found in the auditd.conf file" (Grubb, 2020). For this research, no changes

were made to this file. The rules that the audit daemon uses for alerts can be found in

"/etc/audit/rules.d/audit.rules."

This file contains preconfigured default rules for auditd. Additional rules were written for

detecting privilege escalation, persistence, and data exfiltration.

The creation of Auditd rules requires an understanding of rule structure, flags, and values.

In Auditd, the rule structure for interacting with the filesystem is:

In the filesystem rule structure, the permission flags are any of the following (Grubb,
AUDIT.RULES, n.d.):

• r: read of the file

• w: write to the file

• x: execute the file

• a: change the file attribute

Additionally, the auditd rule structure for interacting with system calls is:

In the system calls rule structure the -a option tells the kernel to append a rule at the

end of the rule list. The -S options are the syscall name or number, which is vital in

notifying the auditor which syscall to monitor. The option -F is used to determine what

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

19

	

Janusz Pazgier, januszp@live.com	 	 	

to match against before generating an alert, and finally, the -k is the key name to display

to the log file when the alert is triggered (Grubb, n.d.).

5.2. Privilege Escalation
5.2.1. Rules created

To catch the privilege escalation script, one must create rules to identify any files

that have misconfigured permissions and generate an alert when such a script is executed

to gain escalated permissions. The rule below is one way that Auditd can be configured to

catch this form of attack:

This rule starts by always appending an alert to the logging file upon the exit of a

syscall. The -F flag specifies the architecture of the file. In this case, it is a b64 (64-bit

system). Next, the -F flags specify what syscalls to monitor, and include setuid, setgid,

setreuid and setregid. All four of these subroutines reset the file user IDs. Finally, -k

defines the key as SetUGID for identification purposes when parsing the logs in the next

section.

5.2.2. Alerts generated
The privilege escalation program was executed to gain a root shell on the system,

and the following alert was found in "/var/log/audit/audit.log" (The alert has been

condensed to save on space):

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

20

	

Janusz Pazgier, januszp@live.com	 	 	

As seen in the alert above, Auditd detected that a file called privesc created a

syscall and went from UID 1000 to UID 0, which is root. Through this one-line addition

to the audit.rules, a system administrator could be alerted any time that a similar privilege

escalation was performed on a Linux system.

5.3. Persistence
5.3.1. Rules created

To catch the methods of persistence defined in the persistence.sh script found in

Appendix b; following rules were created:

The rules above begin by monitoring the execution of the adduser, passwd, and

sudoers commands, which are used to create an account, create a password, and add the

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

21

	

Janusz Pazgier, januszp@live.com	 	 	

new account to sudoers. There are other ways to perform these actions, for example, one

could modify the /etc/passwd and /etc/shadow files directly; however, those files are

modified if the binary of adduser, passwd, or sudoers is executed. The next rule

monitors the binary data of /bin/nmap for a change in attribution or permissions. Like

privilege escalation demonstrated in the previous module, an adversary could create

persistence on a system by messing with the permissions of a file that has an interactive

shell. In this instance, if an adversary modified the permissions of Nmap, then they could

gain rule access to the system by executing (gtfobins, n.d.): “nmap –interactive." The

final rule created is to monitor the /etc/bashrc file for modifications. To enable full

monitoring for file system permission weakness and bashrc persistence, the -p flags were

not set for /bin/nmap and /etc/bashrc.

5.3.2. Alerts generated
The persistence.sh script was executed to create a new user, change the

permissions of the nmap binary, and add a malicious line to /etc/bashrc. The following

alerts were generated for the creation of additional accounts:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

22

	

Janusz Pazgier, januszp@live.com	 	 	

As seen in the /var/logs/audit/audit.log above, Auditd alerted that a new user

was created, that the user had their password changed, and that the task completed

successfully. Then, the log file continued to show that a syscall executed chmod on the

file /bin/nmap and finally that the script named persistence.sh triggered the key

bash_profile.

5.4. Data Exfiltration
5.4.1. Rules created

The documentation for writing rules for detecting data exfiltration over alternative

protocols in Auditd is suboptimal. The rule below was gathered from a GitHub page,

which contains Auditd rules that map to the MITRE ATT&CK framework (bfuzzy,

2018). This rule was developed to catch exfiltration attempts over a command and control

channel. However, it is capable of demonstrating the alerting of a connection over an

alternative protocol. The first -F is used to indicate that the architecture is x64 (64-bit

system). Next, outbound connections could indicate the exfiltration of data; therefore, the

syscall connect is monitored. This syscall will be useful in capturing TCP connections,

which is what the scripts in section 2.3.3 will create. The final part of this rule is the

second -F flag, where the a2 stands for the field, and 110 is the value. The definition of

this value is not well documented, and additional research is needed to point out the

correlation of values. Knowing these two values allows us to create a rule that is looking

for a TCP connection that did not time out.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

23

	

Janusz Pazgier, januszp@live.com	 	 	

5.4.2. Alerts generated
After executing the data exfiltration script, the following alert was generated by

Auditd (Note: Note: Appendix F contains the full output):

In the alert above, Auditd alerted that a new connection was made through the use

of nc or netcat binary. As can be seen in this alert, the a2 value for these syscalls is not

equal to 110, which is what the created rule checks. This alert shows that a connection to

exfiltrate data was made; however, it does not show what data has been exfiltrated.

6. Recommendations and Implications
This research examined the efficacy of three separately installed HIDS; OSSEC,

Samhain, and Auditd, at detecting various types of tactics and techniques defined by the

MITRE ATT&CK framework. The tactics that were tested are privilege escalation,

persistence, and data exfiltration. The tools were installed and configured on three

separate standardized CentOS 7 operating systems, and their efficiency was tested

through the detection of adversarial activities generated by scripts, which can be found in

the Appendix. Figure 1 summarizes, which HIDS detected which tactic and technique

from the ATT&CK framework and are explained further below.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

24

	

Janusz Pazgier, januszp@live.com	 	 	

MITRE ATT&CK Matrix Host-based Intrusion Detection Systems

Tactics Technique OSSEC Samhain Auditd

Privilege

Escalation

Setuid and

Setguid
Alerted presence of

misconfigured file.

Alerted presence of

misconfigured file.

Alerted execution of

misconfigured file.

Persistence

Create Account

Alerted modification of

/etc/passwd and

/etc/shadow. Presented

exact changes.

Alerted modification of

/etc/passwd and

/etc/shadow.

Alerted when binary

adduser and passwd was

executed.

Setuid and

Setguid

Alerted on modification of

attributes of a file against

known good state of

filesystem.

Alerted on modification

of attributes of a file

against known good

state of filesystem.

Alerted when attributes

of monitored file were

modified.

.bashrc

persistance

Alerted when /etc/bashrc

was modified. Presented

exact changes.

Alerted when /etc/bashrc

was modified.

Alerted when

/etc/bashrc was

modified.

Data

Exfiltration

Exfiltration over

alternative

protocol

Alerted when new port was

opened on system. Failed

to detect file being

exfiltrated.

Alerted when new port

was opened on system.

Failed to detect file

being exfiltrated.

Alerted when new

connection was

established. Failed to

detect file being

exfiltrated.

Figure	1	Summary	of	Tactic	detection	by	HIDS	

6.1. Privilege Escalation
The privilege escalation script executed on the CentOS 7 hosts relied on the

technique of SUID and SGID misconfiguration, which allows a file that is owned by a

regular user to be performed with root privileges. This can lead to an escalation of

privileges from an unprivileged user to root. As can be seen in Figure 1, each of the tools

generated an alert upon discovering a misconfigured file, but the alerts showed different

levels of information across platforms. OSSEC and Samhain were able to find the

malicious file and alert that it exists but	were	not	able to identify that it ran. Auditd,

which looks for the exact syscall, was able to inform when the file was executed but was

not able to show the misconfigured permissions. It is concluded that for these tools to

work at their full potential to detect this specific technique, then Auditd should be

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

25

	

Janusz Pazgier, januszp@live.com	 	 	

configured on the system, and OSSEC and Samhain should aggregate the logs generated

by Auditd and alert on them.

6.2. Persistence
	 An adversary can use persistence to create ways to regain access to a

compromised host post-exploitation. The persistence script executed in this paper creates

an additional account, modifies the permissions of binary, and adds persistence to the

/etc/bashrc. Each of the HIDS used in this paper were able to discover this script in the

configured manner. Both OSSEC and Samhain were able to detect that the /etc/passwd

and /etc/shadow file were modified from the original, that the permissions of

/bin/nmap were altered and that /etc/bashrc was changed. Additionally, as seen in

Figure 1, Auditd caught when the command adduser and passwd were executed, when

/bin/nmap had its permissions modified, and /etc/bashrc was changed. All three of

the tools were able to alert on the execution of this persistence script successfully.

OSSEC was able to provide the most verbose information about the changes to the files.

6.3. Data Exfiltration
The tactic of data exfiltration is used by an adversary to take valuable files and

information from a compromised system back to the attack system. The script used to

exfiltrate data by transferring a file between predefined ports, which represents the tactic

of exfiltration over an alternative protocol. Both OSSEC and Samhain used the known

good state of the system to determine when a new port was created, but these tools would

not have caught the attack if that connection existed when the database was initialized.

Auditd could only alert that a socket connect has been established. Neither of the tools

was able to detect the file that was fed over the network. It is difficult for a HIDS to

determine what is an exfiltration attempt and what is not. Network intrusion detection

systems should be used to monitor network traffic, generate a known good state, and spot

data exfiltration anomalies (Rapid7, 2017).

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

26

	

Janusz Pazgier, januszp@live.com	 	 	

7. Conclusion

With the increased adversarial activity on Unix based operating systems, security

professionals need to be educated on which open-source HIDS most effectively detect

potential vectors of compromise. This research compared the efficacy of OSSEC,

Samhain, and Auditd at identifying various types of adversarial tactics and techniques

gathered from the MITRE ATT&CK framework. It has been concluded that the HIDS

chosen for this paper have their unique benefits. For example, the installation of OSSEC

was straight forward and allowed for the basic logging of incidents, and easy enabling of

features upon limited configuration. On the contrary, Samhain required an in-depth

configuration to generate similar alerts as OSSEC. Finally, Auditd comes preinstalled on

most Linux operating systems, and its granular creation of rules enables alerting of UNIX

system calls. Each of these HIDS can detect privilege escalation, persistence, and data

exfiltration in their way. However, their full potential at detecting adversarial activities is

achieved when they are configured to work together.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

27

	

Janusz Pazgier, januszp@live.com	 	 	

References
Avast.	(2020).	What	is	an	Intrusion	Detection	System	(IDS)?	Retrieved	from	Avast:	

https://smb.avast.com/answers/intrusion-detection-system-ids	

bfuzzy.	(2018,	November	26).	auditd-attack.	Retrieved	from	Github:	

https://github.com/bfuzzy/auditd-attack/blob/master/auditd-attack.rules	

gabrielfalcao.	(2013).	Retrieved	from	Github:	

https://gist.github.com/gabrielfalcao/4216897	

Giovanni	Vigna,	C.	K.	(2005,	June	15).	Host-Based	Intrusion	Detection	.	Retrieved	

from	University	of	California,	Santa	Barbara:	

https://sites.cs.ucsb.edu/~chris/research/doc/infsec05_hids.pdf	

Grubb,	S.	(2020).	auditd	-	Linux	Man	Page.	Retrieved	from	die.net:	

https://linux.die.net/man/8/auditd	

Grubb,	S.	(n.d.).	AUDIT.RULES.	Retrieved	from	jangnan.org:	

https://linux.jangnan.org/usr/share/man/man7/audit.rules.7.gz.html	

Grubb,	S.	(n.d.).	audit.rules(7)	-	Linux	man	page.	Retrieved	from	die.net:	

https://linux.die.net/man/7/audit.rules	

gtfobins.	(n.d.).	nmap.	Retrieved	from	gtfobins.github.io:	

https://gtfobins.github.io/gtfobins/nmap/	

Lackmann,	G.	(2010).	An	introduction	to	UNIX/Linux.	Retrieved	from	North	Carolina	

State	University:	

https://projects.ncsu.edu/atmos_collaboration/gary/mea443/ppt/443_F10_

linux.pdf	

MITRE	Corporation.	(2019,	July	19).	Exfiltration.	Retrieved	from	MITRE	ATT&CK:	

https://attack.mitre.org/tactics/TA0010/	

Mourer,	J.	(2014,	September	12).	Privilege	escalation	with	setuid.	Retrieved	from	

Getkey:	https://getkey.eu/blog/541346dd/privilege-escalation-with-setuid	

Nel,	M.	(2014,	April	24).	sans.org.	Retrieved	from	SAMHAIN:	Host	Based	Intrusion	

Detection	via	File:	https://www.sans.org/reading-

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

28

	

Janusz Pazgier, januszp@live.com	 	 	

room/whitepapers/detection/samhain-host-based-intrusion-detection-file-

integrity-monitoring-34567	

OSSEC.	(2020).	Syscheck.	Retrieved	from	ossec.net:	

https://www.ossec.net/docs/manual/syscheck/index.html	

OSSEC.	(2020).	The	World’s	Most	Widely	Used	Host-based	Intrusion	Detection	System.	

Retrieved	from	OSSEC:	https://www.ossec.net/	

OSSEC	Project.	(2020).	Rootcheck.	Retrieved	from	ossec:	

https://www.ossec.net/docs/manual/rootcheck/manual-rootcheck.html	

OSSEC	Project	Team.	(n.d.).	OSSEC	Documentation.	Retrieved	from	OSSEC:	

https://www.ossec.net/docs/	

Rapid7.	(2017,	Jan	11).	The	Pros	&	Cons	of	Intrusion	Detection	Systems.	Retrieved	

from	Rapid7:	https://blog.rapid7.com/2017/01/11/the-pros-cons-of-

intrusion-detection-systems/	

Redhat.	(n.d.).	Audit	Record	Types.	Retrieved	from	redhat.com:	

https://access.redhat.com/articles/4409591#audit-record-types-2	

SANS	Institute.	(2005).	Retrieved	from	cyber-defense.sans.org:	https://cyber-

defense.sans.org/resources/papers/gsec/host-vs-network-based-intrusion-

detection-systems-102574	

Sarmah,	A.	(2001).	Intrusion	Detection	Systems:	Definition,	Need	and	Challenges.	

Retrieved	from	Sans:	https://www.sans.org/reading-

room/whitepapers/detection/intrusion-detection-systems-definition-

challenges-343	

The	MITRE	Corporation.	(2020).	Retrieved	from	MITRE	ATT&CK:	

https://attack.mitre.org/	

The	MITRE	Corporation.	(2020).	Frequently	Asked	Questions.	Retrieved	from	MITRE	

ATT&CK:	https://attack.mitre.org/resources/faq/	

The	MITRE	Corporation.	(n.d.).	Privilege	Escalation.	Retrieved	from	mitre.org:	

https://attack.mitre.org/tactics/TA0004/	

Tripwire.	(2019,	March	16).	Open	Source	Tripwire.	Retrieved	from	Github:	

https://github.com/Tripwire/tripwire-open-source	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

29

	

Janusz Pazgier, januszp@live.com	 	 	

WatchGuard.	(2017).	Internet	Security	Report	-	Q1	2017.	Retrieved	from	

WatchGuard:	https://www.watchguard.com/wgrd-resource-

center/security-report-q1-2017	

Wichmann,	R.	(2006).	Initialize	the	baseline	database.	Retrieved	from	samhna:	

https://www.la-samhna.de/samhain/manual/installation-initialize.html	

Wichmann,	R.	(2006).	The	SAMHAIN	file	integrity	/	host-based	intrusion	detection	

system.	Retrieved	from	Samhain	labs:	https://la-samhna.de/samhain/	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

30

	

Janusz Pazgier, januszp@live.com	 	 	

8. Appendix A – Privilege Escalation Program

	
	 To	execute	this	program	to	test	your	HIDS,	one	must	first	compile	this	code	

with	"gcc filename.c -o filename"	and	misconfigure	its	permissions	"chown

root filename"	and	"chmod u+s filename."	Afterward,	this	file	can	be	executed	

from	an	unprivileged	user	to	gain	root	access.	

9. Appendix B – Persistence Script

	
Note: This script must be made executable (chmod u+x filename) before it can be run.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

31

	

Janusz Pazgier, januszp@live.com	 	 	

10. Appendix C – Data Exfiltration Script

	
Note: This script must be made executable (chmod u+x filename) before it can be run.	
	
	
	
	
	
	
	
	
	
	
	
	
	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

32

	

Janusz Pazgier, januszp@live.com	 	 	

11. Appendix D – OSSEC Persistence Alert

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Efficacy of Linux HIDS

33

	

Janusz Pazgier, januszp@live.com	 	 	

12. Appendix E – Samhain Persistence Alert

13. Appendix F – Auditd Data Exfiltration Alert

