
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Detecting Torrents Using Snort

Rick Wanner 1

Detecting Torrents Using Snort

GIAC GCIA Gold Certification

Author: Richard Wanner, rwanner@pobox.com
Advisor: Leonard Ong

Accepted: November 28, 2008

Abstract

It is estimated that one-third of the traffic on the Internet is peer-to-peer. The fact is that peer-

to-peer protocols such as BitTorrent provide a very efficient way to distribute large files such as

operating system ISOs. Unfortunately that also makes peer-to-peer protocols a very efficient

way to download copyright content such as music and movies. Regardless of whether corporate

policy prohibits downloading of copyrighted content, or prohibits all peer-to-peer usage, it is

essential to be able to detect the various aspects of peer-to-peer usage. This paper decomposes

BitTorrent and the associated protocols used in conjunction with BitTorrent downloads to devise

a number of different ways to detect the aspects of this traffic. This research is then used to

create Snort signatures which can be implemented to detect the BitTorrent traffic in your

environment.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 2

Introduction

Peer to peer applications are increasingly under scrutiny especially on corporate

networks. Peer to peer applications are often cast as the villain due to their association with the

downloading of copyrighted content such as music, movies, and software. However certain peer-

to-peer applications have value and are permitted or at least tolerated in some corporate

networks. One such example of this is BitTorrents.

Like all peer-to-peer technologies BitTorrents can be used to download copyrighted

music, video, and software, through torrent tracker sites such as demonoid.com, torrentspy.com,

mininova.org, torrentreactor.to and numerous others, (Gil, 2007). Gartner has waded into this

discussion describing the impact of BitTorrents as “could be one of the most disruptive

technologies in the next few years” (Prentice, McGuire, 2005). While it is true that BitTorrents

can be utilized to download copyrighted content, BitTorrents also have legitimate uses. One

common legitimate use is in the distribution of large file content like operating system CD and

DVD ISOs. In the past organizations that wished to distribute such content had to bear the costs

of servers and bandwidth required to support the download. Peer-to-peer protocols such as

BitTorrent permit these organizations to substantially reduce the costs of distribution by

permitting users who have even a small portion of the download to participate in distributing the

content thus also distributing the CPU and network load and providing a very efficient way to

distribute and download large software distributions. As one example, BitTorrent is the

preferred method of downloading the Fedora Linux distribution (Fedora, 2007).

 To quote Dr. Eric Cole "Prevention is ideal, but detection is a must” (Cole, 2003). With

that in mind this paper looks at detecting the various aspects of BitTorrent use in the network.

As a case study this paper uses the website mininova.org as a basis for analysis of network traffic

created by the various aspects of BitTorrents and attempts to create snort rules to detect these

phases. Mininova.org is a popular torrent tracker site for torrents containing a wide variety of

content, the majority of which is copyrighted.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 3

1. Anatomy of BitTorrent

There is a whole new vocabulary associated with BitTorrents. In order to improve the

understanding of the rest of the paper it is best to provide a basic understanding of the

terminology involved.

1.1. Definitions

Downloader – a BitTorrent client (peer) which is involved in a transfer of content, but which

does not yet have the complete content available for sharing (seeding). Also referred to as a

leech or leecher.

Peer - any BitTorrent client involved in a transfer. This includes both clients that are

downloading, and those that have completed downloading and are only providing pieces to

clients that are downloading (seeders). (BitTorrent, 2009)

Seeder – any BitTorrent client (peer) which has a complete copy of the shared content and is

sharing it to the P2P network (seeding).

Swarm – all clients (peers) involved in a transfer, whether downloaders or seeders, are referred

to as a swarm.

Torrent File – is a file which contains information about the content to be shared. This file

contains two mandatory sections.

 An announce section which specifies the URL of the tracker.

 An info section which contains the names for the files, their lengths, the piece length

used, and a SHA-1 hash code for each piece, which clients should use to verify the

integrity of the data they receive.

Tracker – As its name suggests, the tracker is a process which keeps track of information about

the download. The tracker is a web-based service which answers HTTP GET requests. The base

URL is the announce URL defined in the torrent file. (TheoryOrg, 2006) The most common

requests can include:

 List of peers involved in the torrent.

 Port the client is listening on.

 Statistics about the download including the total amount downloaded, the total amount

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 4

uploaded, and the amount remaining.

Tracker site – a site, typically web based, which provides an index of content available for

sharing and a link to download the torrent file used to initiate the download of the content.

Usually this site, or a related site, keeps track of statistics related to the torrent. Note that this site

does not contain the actual content, only the tracker that points to the content.

1.2. Typical Swarm Architecture

Although there can be some variation in the way a typical torrent swarm is implemented

and several advanced features of the BitTorrent protocol which are not considered as part of this

paper, the following figure provides a generic high level view of the steps in joining a typical

torrent swarm.

`

Client Computer

Torrent Tracker Site

`

Peer

Internet

1

2

`

Peer

`

Peer

3

4

Figure: Typical Swarm Architecture

Step 1: The user connects to a web server hosting a torrent tracking site.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 5

Step 2: The user downloads a torrent metafile file containing information on the content

he wishes to download. One of the pieces of information available in the metafile is the location

of a tracker (or trackers) which manage the swarm containing the content.

Step 3: Using a BitTorrent client the user connects to the tracker requesting information

about this swarm. One of the pieces of information received from the tracker is the IP address

information for peers involved in the swarm.

Step 4: The BitTorrent client contacts peers requesting pieces of the content. At this

point the client has become a downloader peer in the swarm and will be able to download pieces

of the content from other peers and will provide pieces of the content for upload to peers which

do not yet have those pieces. This will continue until the client has received all of the pieces of

the content. At this point the client will stop downloading and will only upload to others (seed).

2. Anatomy of a Torrent Transaction

Mininova.org is a popular tracker site devoted to tracking content of virtually any type

imaginable, from movies, to games, software, books, and numerous other types of content. The

vast majority of the content is copyrighted. This site was chosen for this case study for a number

of reasons. In order to keep this paper family friendly it was important that the case study use a

site that while still being representative of BitTorrent tracker sites, does not have objectionable

content all over its pages. While Mininova.org does track adult content, it does not have adult

ads all over its pages. In addition, while the majority of the content appears to be copyrighted,

mininova.org does track some content that may not be copyright or at the very least is not being

vigorously defended. Rather than risking the wrath of the Recording Industry Association of

America (RIAA)) or similar organizations, I will utilize content that fits into this category.

2.1. Web Connection

The base URL is http://www.mininova.org/. This page contains some background info,

some advertising and an index of torrents being tracked by the site.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 6

Figure: MiniNova – initial connection

The figure below shows more of the index.

Figure: MiniNova – torrent index

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 7

Remember the goal of this exercise is to find ways to detect the torrent transactions.

Utilizing snort as a sniffer to capture this session, we see that this is a typical web connection via

http.

The extract from the dump below shows a three-way handshake to 87.233.147.140.

05/25-02:56:54.488235 172.20.10.70:2498 -> 87.233.147.140:80

TCP TTL:128 TOS:0x0 ID:54717 IpLen:20 DgmLen:48 DF

******S* Seq: 0xB88EC74D Ack: 0x0 Win: 0x4000 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

05/25-02:56:54.597841 87.233.147.140:80 -> 172.20.10.70:2498

TCP TTL:50 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF

***A**S* Seq: 0x448D2F5 Ack: 0xB88EC74E Win: 0x16D0 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

05/25-02:56:54.597847 172.20.10.70:2498 -> 87.233.147.140:80

TCP TTL:128 TOS:0x0 ID:54719 IpLen:20 DgmLen:40 DF

A* Seq: 0xB88EC74E Ack: 0x448D2F6 Win: 0x4470 TcpLen: 20

=+

A quick nslookup confirms that 87.233.147.140 is www.mininova.org

nslookup 87.233.147.140

Non-authoritative answer:

140.147.233.87.in-addr.arpa name = www.mininova.org.

More interestingly a little more research utilizing domaintools.com’s (domaintools,

2007) reverse IP lookup tool shows us that the only thing hosted on this site is Mininova in a few

different flavours.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 8

Figure: MiniNova – domaintools.com reverse lookup

By clicking on one of the items in the index, we can get to the torrent detail screen. This

screen provides more information about the content including size, availability of the content,

and the download link.

Figure: MiniNova – torrent detail

Again, this is just a standard web transaction utilizing http. It does not provide us any

new way of detecting this traffic.

Clicking on the download link will result in the download of the torrent metainfo file.

From the sniffer trace we can see the HTTP GET for the torrent metainfo file. Notice in

this trace, and the subsequent screenshot, the metainfo file has an extension of .torrent.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 9

05/25-02:57:04.916664 172.20.10.70:2544 -> 87.233.147.130:80

TCP TTL:128 TOS:0x0 ID:55150 IpLen:20 DgmLen:894 DF

AP Seq: 0x7F0AD9D Ack: 0x10BEB7D3 Win: 0x4470 TcpLen: 20

47 45 54 20 2F 74 6F 72 72 65 6E 74 73 2F 39 32 GET /torrents/92

33 39 33 39 2E 74 6F 72 72 65 6E 74 20 48 54 54 3939.torrent HTT

50 2F 31 2E 31 0D 0A 41 63 63 65 70 74 3A 20 69 P/1.1..Accept: i

6D 61 67 65 2F 67 69 66 2C 20 69 6D 61 67 65 2F mage/gif, image/

78 2D 78 62 69 74 6D 61 70 2C 20 69 6D 61 67 65 x-xbitmap, image

2F 6A 70 65 67 2C 20 69 6D 61 67 65 2F 70 6A 70 /jpeg, image/pjp

Note that we are now communicating with 87.233.147.130 to download the torrent

metainfo file.

nslookup 87.233.147.130

Non-authoritative answer:

130.147.233.87.in-addr.arpa name = loadbalancer.mininova.org.

Clicking on Open will result in the torrent metainfo file being downloaded and

transferred to the µtorrent client.

Figure: MiniNova – torrent download

In this case the BitTorrent client used is µtorrent. µtorrent when it is passed the torrent

metainfo file it opens a dialog box which permits you to define what content to download, where

to store it, and a few other parameters. Once “OK” is clicked control is passed to the µtorrent

client to start downloading the content.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 10

Figure: MiniNova – µtorrent download

Once “OK” is clicked control is passed to the µtorrent client to start downloading the

content pointed to by the metafile.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 11

Figure: µtorrent client download

Once the download has completed the torrent will switch to seeding mode, where it is no

longer downloading content, but is only seeding for others to download.

Figure: µtorrent seeding

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 12

3. Building the Snort Signatures

3.1. Anatomy of a Snort Signature

While it is beyond the scope of this paper to go into details on how to build snort

signatures, a basic tutorial will improve the clarity of the remainder of the paper.

Snort rules are divided into two sections. The first section is the rule header, which

describes under what circumstances snort trigger the rule based on high level characteristics of

the network traffic flow such as direction of flow, protocols, IP addresses, ports, etc. The header

also contains the action that should be taken if the rule is triggered. The most common action is

“alert”, which is the one that we will use for all of the rules we are building in this paper,

although others are available.

The second section is the rule options section which may contain additional, more

detailed, matching criteria and describes what snort should output if the signature is triggered.

In the signature below:

alert tcp any any -> 10.10.10.0/24 80 (content:"GET"; msg:"WWW GET detected"; sid:1000001; rev:1;)

The portion of the rule up to the open round bracket is the rule header and within the

brackets are the rule options.

In this example the action is “alert”. The source information is on the left side of the “-

>”. In this case the rule is set to trigger on any TCP traffic with any source address and source

port. The right side of the header indicates to match on a destination IP in the 10.10.10.0/24

subnet and a destination port of 80.

The options section checks the content of the matched packet to see if it contains the

string “GET”, a common string in web transactions. If the content matches it will put out an

alert with the messages “WWW GET detected”. There are a couple of other options which bear

some explaining. In order to more easily identify a particular snort rule, each rule should be

assigned a sid, or snort identifier. Snort reserves all sids below one million for itself, so user

generated rules should have a sid of one million or greater. The option used in this rule is the

rev: which tells the version number of the particular rule.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 13

One other aspect of Snort worth pointing out is that by tradition user created snort rules

are placed in the local.rules file in the Snort rules directory.

This is a very basic snort rules primer, but it should be enough to permit understanding of

the examples provided in this paper. Let’s get on to defining some Snort rules for detecting the

BitTorrent traffic.

3.2. Web Session

This provides one possible way of detecting access to this site. Snort provides the

capability to create signatures to detect if certain URLs have been accessed. A check for the

various Mininova domains in the URL would provide a way of detecting access. We could also

potentially use the IP address, but this will probably be less effective. The IP address is more

likely to change than the domain name.

A simple snort signature to detect access to the Mininova site would be:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P mininova"; content:"GET";

content:"mininova"; sid:1100021; rev:1;)

Breaking the signature down, it looks for outbound HTTP GET traffic with a content of

“mininova”. When implemented the alert generated by this alert looks as follows:

[**] [1:1100021:1] P2P mininova [**]

[Priority: 0]

04/25-10:26:08.342435 142.165.5.95:5200 -> 72.14.207.104:80

TCP TTL:127 TOS:0x0 ID:12407 IpLen:20 DgmLen:1151 DF

AP Seq: 0x4A2B93C1 Ack: 0x38D70FBD Win: 0x403D TcpLen: 20

This approach does have some drawbacks. The first is that this type of signature will only

work for identified sites for which signatures exist. While there are a relatively small set of high

runner torrent tracker sites on the Internet which count for the majority of traffic, there are

thousands of others that exist. It could be onerous to try to create and keep a list up to date of all

sites. However this is a reasonable method if you want to detect access to obviously bad sites.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 14

The second drawback is that this signature will be noisy. A web page is composed of

several elements that are all loaded independently. So a typical web page will cause this

signature to be triggered many times all related to the same access. The main page of Mininova

generated 27 instances of the above alert.

Snort does provide a mechanism for thresholding alerts. The alert will still trigger and

thus consume resources on the snort probe, but it will only be displayed based on the threshold

values.

For example modifying the signature to:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P mininova"; content:"GET";

content:"mininova"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100021; rev:1;)

This defines a threshold that will only display one alert per 60-second interval for each

source IP. This is an effective way to threshold these alerts to a reasonable level.

Technically, there is no problem with browsing the torrent tracker websites, the real

potential issue begins when the download begins. Let’s see if we can utilize aspects of the

torrent transaction to detect this traffic.

3.3. Torrent metainfo File Download

As discussed earlier the key to initiating a download utilizing the BitTorrent protocol is

the download of a metafile which contains the tracker information for the torrent. There are a

couple of ways we could detect this action. The first is to watch for the .torrent file extension.

Looking at the sniffer trace for this transaction you can clearly see the response for the

request to download the torrent metafile.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 15

Figure: torrent metafile download

Looking closely you can see that this is an HTTP response and that it contains the name

of the torrent metafile in this case “battlestar.galactica.s04e10.hdtv.xvid-lmao.avi.torrent” a

torrent metafile for an episode of Battlestar Galactica.

Using this information to detect the .torrent extension and extrapolating from the

signatures we have looked at above, a basic snort rule could be:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P .torrent metafile"; content:"HTTP/";

content:".torrent"; flow:established,to_server; classtype:policy-violation; sid:1100010; rev:1;)

Breaking down the signature, it is simply looking for an HTTP response containing the

string “.torrent”. While “.torrent” is a fairly specific string it could show up in a document or

other file and create false positives.

Another possible method would be to look for a deterministic pattern in the metafile

contents.

Looking into the specification for the metafile (theory.org 2008), we see that the metafile

contains an announce section that is composed of the tag “announce” followed by the URL of the

tracker information. The catch is that all contents of the metafile are bencoded. Without getting

into too much detail on bencoding, the metafile is composed of fields of the form “d<bencoded

string><bencoded element>e”. A bencoded string is of the form <length of string>:<string>. In

this case the “announce” tag when bencoded will be “8:announce”.Since it is at the beginning of

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 16

the field we know that the “d” will be appended as well, making “d8:announce” a string which

appears in each torrent metafile.

Looking at a sniffer trace of the transfer it is possible to see the “d8:announce” in the file

followed by the URLs of the trackers.

Figure: torrent metafile contents d8:announce

Using this information a basic snort signature to detect the torrent metafile download is:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrent metafile Download";

content:"d8\:announce"; flow:established,to_server; classtype:policy-violation; sid:1100000; rev:1;)

In the content: section the match string contains a “\” which is used to escape the “:”,

since a “:” is a special character in snort.

Breaking down the signature, it is simply looking for the string “d8:announce” in the data

stream. This string should be precise enough to not create too many false positives.

3.4. BitTorrent Protocol

Up until now we have looked at the preliminary steps used to setup a BitTorrent transfer,

but no actual transfer of content has occurred. Let’s look a little further into the BitTorrent

protocol to find ways to detect a transfer in progress.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 17

3.4.1. BitTorrent Handshake

If we look at the BitTorrent protocol a little closer there are a couple of ways that could

detect the behavior of BitTorrent using snort. For example the BitTorrent protocol (Cohen,

2008) utilizes a handshake that is used between peers in the swarm to initiate a connection.

From the BitTorrent specification (theory.org, 2008) “The handshake is a required

message and must be the first message transmitted by the client. It is (49+len(pstr)) bytes long.

…in version 1.0 of the BitTorrent protocol, pstrlen = 19, and pstr = "BitTorrent protocol".

The current version of the BitTorrent protocol is 1.0. With a little translation from

protocol specification to English, this means that the protocol length will be 19 decimal bytes

and the string “BitTorrent protocol” will be present in the output.

To lay it out in a more familiar format, here is a representation of the first 20 bytes of the

BitTorrent handshake packet.

0 15 16 32

Pstrlen = 19

i

B

t

T

r

o

r

e

t

n

p

o

r

t

o

o

c

l

Figure: BitTorrent protocol – first 22 bytes

This is only the first 20 bytes, the part we are interested in, this is followed by 8 reserved

bytes, a 20-byte hash, and a 20-byte peer identifier string.

Looking at a capture of the handshake the 13 hex that corresponds to the 19 decimal

pstrlen, and the “BitTorrent protocol” string is clearly visible.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 18

Figure: BitTorrent handshake capture

This is a very unique pattern which can be used to identify a BitTorrent protocol in

progress.

Using this information a basic snort signature to detect the BitTorrent handshake is:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"P2P BitTorrent handshake";

flow:to_server,established; content:"BitTorrent protocol"; classtype:policy-violation; sid:1100012; rev:1;)

Breaking down the signature, it is simply looking for the string “BitTorrent protocol” in

the data stream. This signature has the potential to cause a significant number of false positives,

since any stream containing “BitTorrent protocol” will trigger this signature regardless of

whether it is a BitTorrent handshake, or a harmless text file. We may need to find a way to make

this signature more specific to eliminate those false positives.

3.4.2. Reserved Bits

As one way of making the above signature more specific I looked deeper into the

protocol specification, it appears at first glance that there are 8 reserved bytes that are not used

today and are supposed to be initialized to null. Looking at the capture it is easy to see the

reserved bytes, unfortunately, they do not appear to be all nulled.

Figure: BitTorrent handshake - reserved bytes

This is a lesson in not including data in your signatures without validating that it is

correct. Despite substantial investigation I have not been able to determine what the bytes set in

the reserved area are used for.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 19

3.5. Distributed Hash Table (DHT)

Earlier in the paper it was described that BitTorrent networks are supported by tracker

sites which are used to find peers that have pieces of the content. But what if the tracker is

unavailable?

For just this purpose the Distributed Hash Table (DHT) feature was added to create the

concept of trackerless torrents (BitTorrent, 2009). If the client has enabled DHT then each client

keeps a table of all known peers involved in the swarm, and how to contact them. In effect each

peer becomes a tracker. (Gibbocool, 2009)

To enable DHT in µtorrent click “Enable DHT Network” on the BitTorrent screen of the

preferences.

Figure: Enabling Distributed Hash Table (DHT) in µtorrent

According to the DHT specification, DHT consists of a number of different queries and

corresponding responses. (theory.org, 2009)

 Ping – used to check if a peer is available.

 Find_node – used to find the contact information for a peer.

 Get_peers – requests a list of peers which have pieces of the content.

 Announce_peer – announces the contact information for the peer to the network.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 20

The most basic and most frequently used query is ping, so that is a reasonable place to

start in detecting DHT usage.

According to the specification a DHT ping is a bencoded string consisting of a single

argument which is a 20 byte node ID ad the command type of ping.

When the ping command is bencoded it will be (theory.org 2008):

d1:ad2:id20:abcdefghij0123456789e1:q4:ping1:t2:aa1:y1:qe

where “abcdefghij0123456789” is a placeholder for the id.

One possible signature to detect DHT ping would be:

alert udp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrent DHT ping";

content:”d1\:ad2\:id20\:”; content:”ping”; classtype:policy-violation; sid:1100021; rev:1;)

This signature generates a significant number of alerts, so a threshold is probably appropriate to

keep this alert from filling the database.

alert udp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrent DHT ping";

content:”d1\:ad2\:id20\:”; content:”ping”; threshold: type limit, track by_src, count 1 , seconds 60;

classtype:policy-violation; sid:1100021; rev:1;)

4. Encryption

It is estimated that more than 1/3 of the traffic on the Internet is peer-to-peer. This has

lead to certain ISP’s trying to find ways to reduce the impact of BitTorrent traffic on their

networks. The most often employed technique is traffic-shaping. Traffic shaping allows ISPs to

detect and limit the bandwidth utilization of BitTorrent traffic via protocol detection.

In order to counteract this approach the BitTorrent developers created a traffic

obfuscation scheme called Message Stream Encryption (Azureus, 2007) which involves a Diffie-

Helman key exchange and encryption of the header and optionally the body with the RC4

encryption protocol.

In µtorrent encryption can be enabled on the BitTorrent menu in the preferences in the

Protocol Encryption section.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 21

Figure: µtorrent encryption

Once enabled, all BitTorrent traffic after the download of the .torrent metafile will be

encrypted. This means that detection of torrent traffic can still be done by URL and by

triggering on the metafile, but that detection of any of the BitTorrent protocol components will

fail due to the traffic being encrypted.

5. Summary

This paper broke down BitTorrent and its related protocols into its constituent parts and

showed how this knowledge can be used to create viable IDS signatures. Since the time the

original research was performed signatures to detect some similar aspects of the BitTorrent

application and protocol have been released by projects such as Bleeding Threats and more

recently Emerging Threats (Jonkman, 2009). Although BitTorrent was used as the case study for

this paper, the goal of this paper was to show how most applications can broken down into its

constituent parts and the related protocols with the aim of being able to decompose the

components and create IDS signatures that will allow you to detect that application. With a little

research and testing the concepts in this paper can easily be applied to most applications and IDS

combinations to detect violations of acceptable use or other policies.

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting Torrents Using Snort

Rick Wanner 22

6. References

About Reverse IP. Retrieved October 12, 2007, from domaintools.com Web site:

http://www.domaintools.com/reverse-ip

Azureus Project, (2007, Dec 1). Message Stream Encryption - AzureusWiki . Retrieved May 14, 2008, from

Azureus Wiki Web site: http://www.azureuswiki.com/index.php/Message_Stream_Encryption

Cohen, B (2008, Jan 8). BitTorrent Protocol Specification. Retrieved March 16, 2008, from

http://BitTorrent.org/beps/bep_0003.html Web site: http://BitTorrent.org/beps/bep_0003.html

Cole, E (2003, December). SANS GSEC Lectures. SANSFire 2003, Washington, DC.

Fedora Project, (2007). FedorMain - Fedora Project Wiki. Retrieved April 28, 2007, from FedoraMain - Fedora

Project Wiki Web site: http://fedoraproject.org/wiki/

Gibbocool, (2009, Dec 12). A guide to DHT (Trackerless Torrents). Retrieved May 16, 2009, from Mystery

Axiom Forums Web site: http://forums.mystery-axiom.com/showthread.php?t=24717

Gil, P (2009, January 28). The Top 35 Torrent Sites of 2009. Retrieved January 28, 2009, from about.com Web

site: http://netforbeginners.about.com/od/peersharing/a/torrent_search.htm

Jonkman, Matt (2009). Emerging Threats. Retrieved May 25, 2009, from Emerging Threats Web site:

http://www.emergingthreats.net/

Prentice, S, Macguire M (2005, June 27). Don't Overlook Legitimate Uses of File-Sharing Technology.

Retrieved April 28, 2007, from Gartner Inc. Web site:

http://www.gartner.com/DisplayDocument?doc_cd=129361

Roesch, M Green, C (2006, Apr 7). Snort Users Guide. Retrieved June 3, 2007, from Snort, the defacto standard

for intrusion prevention/detection Web site:

http://www.snort.org/docs/snort_manual/2.6.1/snort_manual.pdf

Theory.org, (2008, Feb 12). Theory.org. Retrieved March 16, 2008, from BitTorrentSpecification - TheoryOrg

Web site: http://wiki.theory.org/BitTorrentSpecification

Wikipedia, (2007, May 14). BitTorrent - Wikipedia, The Free Encyclopedia. Retrieved May 15, 2007, from

Wikipedia.org. Wikipedia, The Free Encyclopedia Web site: http://en.wikipedia.org/wiki/BitTorrent

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Appendix: Snort Signatures

This section provides a list of the final versions of the signatures derived from the

research for this paper. Assuming your snort configuration is properly configured and

properly defines $HOME_NET, you should be able to cut and paste these signatures into

the local.rules file.

to detect .torrent file extension in HTTP GET

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P .torrent metafile request";

content:"HTTP/"; content:".torrent"; flow:established,to_server; classtype:policy-violation; sid:1100010;

rev:1;)

to detect torrent metafile download

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrent metafile download";

content:"|64 38 3a|announce"; flow:established; classtype:policy-violation; sid:1100011; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"P2P BitTorrent handshake";

flow:to_server,established; content:"BitTorrent protocol|0000 0000|"; classtype:policy-violation;

sid:1100012; rev:1;)

#detects various torrent tracker sites

this is a list of high runners, but is far from complete

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P TVTorrents"; content:"tvtorrents";

threshold: type limit, track by_src, count 1 , seconds 60; sid:1100020; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P mininova"; content:"GET";

content:"mininova"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100021; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P thepireatebay.org"; content:"GET";

content:"thepiratebay"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100022; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrentreactor"; content:"GET";

content:"torrentreactor"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100023; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P demonoid"; content:"GET";

content:"demonoid"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100024; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P bitsoup"; content:"GET";

content:"bitsoup";threshold: type limit, track by_src, count 1 , seconds 60; sid:1100025; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P bitenova"; content:"GET";

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Detecting BitTorrents Using Snort 24

Author Name, email@address

content:"bitenova"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100026; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrentportal"; content:"GET";

content:"torrentportal"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100027; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P youtorrent"; content:"GET";

content:"youtorrent"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100028; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P isohunt"; content:"GET";

content:"isohunt"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100029; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrentz"; content:"GET";

content:"torrentz"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100030; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrentscan"; content:"GET";

content:"torrentscan"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100031; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrentmatrix"; content:"GET";

content:"torrentmatrix"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100032; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrents.to"; content:"GET";

content:"torrents.to"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100033; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P filemp3.org"; content:"GET";

content:"filemp3"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100034; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P filemp3.org"; content:"GET";

content:"filemp3"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100035; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrentspy"; content:"GET";

content:"torrentspy"; threshold: type limit, track by_src, count 1 , seconds 60; sid:1100036; rev:1;)

detects DHT ping traffic

alert udp $HOME_NET any -> $EXTERNAL_NET any (msg: "P2P torrent DHT ping";

content:”d1\:ad2\:id20\:”; content:”ping”; threshold: type limit, track by_src, count 1 , seconds 60;

classtype:policy-violation; sid:1100021; rev:1;)

© SANS Institute 2009, As part of the Information Security Reading Room Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

