
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 1 of 27

IOSMap: TCP and UDP Port Scanning

on Cisco IOS Platforms

GCIA Gold Certification

Author
Advisor

Robert VandenBrink
Rick Wanner

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 2 of 27

Table of Contents

Table of Contents __ 2

Introduction __ 3

The Business Requirement __ 3

Platform Selection and Caveats___ 4

Syntax Selection ___ 5

Host Specifcation, Parsing IP’s and Ports __ 5
Validity Checks___5

Port Specification, Parsing Ports ___ 6

Scan Types ___ 6
TCP Connect Port Scanning __6
UDP Port Scanning__7
Ping Scanning __9
List Scan __9

Notes on Platform Impact and Change Control__ 9

Resource Utilization___ 10
Memory Utilization___11
Resource Utilization Watermarks___13
CPU Utilization__13

Running IOSmap (diagram and examples) __ 14

References __ 18

Appendix: Full Source Code Listing, Commented_____________________________________ 19

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 3 of 27

Introduction
This paper describes IOSmap, a port scanning tool implemented on Cisco IOS using the native TCL (Tool

Command Language) scripting language on that platform. The business requirement for this tool,

implementation considerations and challenges, and design choices are discussed.

The Business Requirement

Writing a tool like a port scanner to run on Cisco IOS might seem like an unusual approach – some might say

it sounds a lot like a solution looking for a problem. However, there are in fact some real-world scenarios

where a solution of this type can fill a unique requirement.

One such circumstance is one that is sometimes seen as a security consultant, and involves some specific

customer security constraints and requirements. For instance, suppose a company employee is suspected

of running a peer-to-peer file distribution application. This violates Corporate Policy, and is illegal in the

jurisdiction of the remote location in which the employee is working. The person being investigated is in the

IT group, so has access and responsibility for change control on the corporate workstations and servers, and

has responsibility for automated tools to report changes on these platforms. Further to this, the security

access this employee regularly has is high enough to expose sensitive information, and the fear is that this

information is exposed on the peer-to-peer network being used. The final constraint is that Corporate Policy

further states that contractor hardware and non-approved software cannot be utilized in engagements of this

type, for fear of inadvertent data exposure (via malware), or intentional data exposure.

This scenario in fact did occur, and the solution that was arrived at was to use a non-critical Cisco router (in

fact, the router local to the network being investigated) to scan the suspect network for TCP ports commonly

used by peer-to-peer file sharing applications. The port scan was scripted using TCL, a scripting language

available on most modern routers and higher-end switches. After the initial port scans found suspect ports,

the same local router was used to capture actual peer-to-peer traffic to build a body of evidence to take to the

Corporate HR Group. After completing this engagement, the primitive port scanner was “cleaned up”, given

some help text and transformed into a more general purpose tool (IOSmap) that can be used by others in

similar circumstances.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 4 of 27

Platform Selection and Caveats
Routing devices are almost always critical components of the infrastructure in any network, large or small.

Because of this, it is recommended that wherever possible non-core, passive backup or spare hardware be

used when running complex scripts. At all times, the resource constraints of the router should be kept in

mind. Routers are typically constrained on memory, but often have CPU cycles to spare. Because of this, a

short subroutine was written to estimate the overall impact of the script prior to execution. If the CPU or

memory utilization is estimated to be potentially excessive, IOSmap displays an error message, and the user

has an opportunity to exit the script immediately. Finally, TCL has no “Ctrl-C” equivalent on IOS, so larger

scans that were perhaps started by accident are not easily ended (unless the terminal session is simply

exited). For these reasons, IOSmap is most often used for “targeted scans”, where a limited number of

addresses and/or ports are scanned. Full subnet scans or full range (1-65535) port scans are generally not

recommended.

A discussion of operational caveats of tools of this type would not be complete without covering two more

points: TCL requires privilege level 15 (full admin) rights to execute a script, and parts of IOSmap will modify

the config and/or enable specific debugs. This should be kept in mind when using IOSmap, as change

control requests will often be required for each of these 3 actions.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 5 of 27

Application Syntax
The input syntax and output format was selected to be as close to standard, familiar tools as possible. To this

end, both the inputs and outputs were designed to be similar to the popular NMAP scanning tool. The

IOSmap tool is not presented as an NMAP port, it is a simple TCP and UDP port scanner on a constrained

platform, so does not have either the capabilities, feature set, flexibility, breadth or speed of the NMAP tool.

All IOSmap parameters are defined at the command line. The help text for IOSmap shows all the scan

options available:
HOST DISCOVERY:
 -P0 Treat all hosts as online - skip Ping test
 -SL List hosts and ports to scan
SCAN TYPE:
 -sP Ping scan only <ICMP ECHO>
 -sT TCP Connect Scan
 -sU UDP Scan
 --reason: display the reason a port state is reported as such
PORT SPECIFICATION:
 -p <port ranges> Specify ports to scan.
 -p22 Scan port 22
 -p22,23,135-139,445 Scan ports 22, 23, 135, 136, 137, 138, 139, 445
TARGET SPECIFICATION:
 CIDR, IP range and single IPs are all a supported - comma delimited
 For example:
 192.168.10.0/24,192.168.17.21-34,192.168.40.1

Host Specifcation, Parsing IP’s and Ports

Validity Checks
Prior to execution, several checks are made to ensure that inputs are valid. All addresses specified are

verified, to ensure that networks are specified with exactly 4 valid octets of 0-255, and that networks specified

via CIDR notation are properly specified with bitmasks of 8-30. If the bitmask is less than 8, it is deemed that

IOS not a good platform for the scan due to resource utilization, and the scan should be broken up if it was

really required. If a bitmask greater than 30 is specified, individual addresses or a short address range is

considered a better method to specify the target. Finally, networks or ports in ranges are verified that they are

entered low-to-high.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 6 of 27

Port Specification, Parsing Ports
Ports are entered as comma separated entities, specified with a “–p” command line argument. Each entity

can be a single port, or a group of ports separated by a dash. For instance, the string

“-p22-25,135,139” would specify ports 22,23,24,25,135 and 139. A validity check is done before proceeding

to ensure that all ports are in the valid range of 1-65535 (scanning for port 0 is not supported).

Scan Types
Scan types can be either TCP, UDP, Ping only or List only.

TCP Connect Port Scanning
Since the TCL implemented on IOS does not permit the formation of raw packets, the only form of TCP

scanning that can be realized is a simple TCP connect scan. If no scan type is specified on the IOSmap

command line, TCP Scans are the default. TCP scanning can be implicitly specified with a “–sT” command

line argument. The table below indicates the port status inferred for each possible return:

Return code to TCP Connect request Port Status
TCP Connect succeeds (three way TCP

handshake completes)
Port is open

TCP Connect fails (three way TCP handshake

does not complete)
Port is closed

A more complete table would look like:

Packet returned Port Status
SYN/ACK Port is open
RST from target Port is closed.
No response There are 3 possible scenarios, and multiple

checks to do in this case:

If not on local network, port is filtered

The host should return either an RST or ICMP

packet (see below), or some intervening device

should return an ICMP packet. If nothing is

returned, a intervening firewall device is simply

“swallowing” the packet.

If on the local network, check ARP cache. If no arp

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 7 of 27

entry exists, host is down.

If on the local network and arp entry exists, port is
filtered

RST from other ip address Port is Filtered
ICMP Port Unreachable

ICMP Type 3, Code 3
Port is closed, as outlined in the UDP Port

scanning section
All other ICMP Unreachables Port is Filtered (see UDP Port Scanning Section)

This more complete table has not been implemented at this time, and are being considered for a future

release.

UDP Port Scanning
UDP port scanning is significantly more complex than TCP port scanning, especially on the IOS platform.

Because there is no three-way handshake, UDP port scanning results must be inferred from other packet

types that return when a UDP packet is sent to the port being tested. This means that a method of capturing

“interesting packets” that return from a probe must be used. Finally, neither TCL nor the IOS command line

has any method of generating a UDP packet.

Several methods were used to overcome these obstacles:

UDP test packets are used by creating IP SLA’s to the test port. IP SLA’s are generally used to

monitor performance of a particular port and/or protocol between two networks, especially if QOS and

actual written service level agreements or requirements apply to intervening networks. Care is taken

to ensure that SLA control packets are not used, as these “pollute” the output with UDP port 1967

control packets. Using SLA functions involves a configuration change to the routers’ running

configuration. This means that UDP port scanning using this method should be subject to any

change control procedures that govern the hardware platform being used.

Return packets are captured by the router in a two step process. First an access list is created to

define what an “interesting packet” might look like – we use access list 111, any ACL name or

number might be used if this conflicts with the router configuration. Next, the local log in memory is

cleared, and a “debug ip packet 111 detailed” is executed, which will capture the return packets to the

log. After a short period of time (3 seconds minimum), the debug is stopped and the access list is

removed. This method of packet capture has a few implications. First, debugs can take significant

amounts of CPU. On modern hardware, this is normally not appreciable, but should be kept in mind.

More importantly, this approach involves both a configuration change and a debug setting, both of

which would require a change control request to be approved in most environments.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 8 of 27

If used in a consulting engagement, even if change control is not of concern to the client, it might be a

good idea to obtain written permission before running UDP scans in this way from an IOS platform.

The following table outlines the various cases that are tested for, and what the resulting port status is inferred

to be. As can be seen, the majority of the feedback used to reach a decision is negative or null, it is rare to

see actual UDP packets return from a request.

ICMP Port Unreachable packet is returned
(ICMP Type 3, Code 3, RFC792)

Port is considered closed.
The ICMP Port Unreachable response comes from

the target host, and indicates that it is not listening

on this port
Any other ICMP Destination Unreachable packet is

returned

These include all ICMP Type 3 packets, with the

following codes:
0 Net Unreachable [RFC792]
1 Host Unreachable [RFC792]
2 Protocol Unreachable [RFC792]
4 Fragmentation Needed and Don't Fragment

was Set
[RFC792]

5 Source Route Failed [RFC792]
6 Destination Network Unknown [RFC1122]
7 Destination Host Unknown [RFC1122]
8 Source Host Isolated [RFC1122]
9 Communication with Destination Network is

Administratively Prohibited
[RFC1122]

10 Communication with Destination Host is
Administratively Prohibited

[RFC1122]

11 Destination Network Unreachable for Type of
Service

[RFC1122]

12 Destination Host Unreachable for Type of
Service

[RFC1122]

13 Communication Administratively Prohibited [RFC1812]
14 Host Precedence Violation [RFC1812]
15 Precedence cutoff in effect [RFC1812]

Port is considered “filtered”
These packets are generally returned by network

gear between the scanner and target, such as

firewalls or routers. These indicate that the

intervening gear is blocking the UDP probe packet

with an ACL or other Firewall mechanism before it

reaches the target host.

UDP Packet returned from the target port Port is considered to be “open”.
A return packet is a sure sign that the port is

answering, however in most cases UDP ports do

not return data when probed with zero-data

packets.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 9 of 27

Nothing is returned Port is considered to be “open/filtered”.
This is the most frequent return if a port is open.

Unfortunately, it is also what is returned on many

firewalls if native IDS/IPS features are enabled.

For this reason, an “all quiet” situation is generally

inconclusive.

Ping Scanning
Ping scanning is very straightforward. Target hosts are sent ICMP Echo Requests (pings), and hosts that

return ICMP Echo Replies are considered to be up, and all other hosts are considered to be down. The

native Cisco IOS “ping” command is called to execute the echo request.

List Scan
A list scan simply lists the target addresses and ports that would be scanned. It is often used as a “preflight

check” on the scan, to ensure that syntax is correct. It can also be used as input for a change control request,

should one be required.

Notes on Platform Impact and Change Control
As discussed, TCP scanning has a relatively low but measurable impact on the operational platform – since

the “socket” command used in the TCP connect scan is part of the TCL language, no special measures are

required to perform this function.

One thing to note in all scans is that IOS will view any scan run as “idle time”, as there is no keyboard activity

during a scan. Ensure that the vty “exec-timeout” is long enough to accommodate extended scan runs, or

they will be simply dropped when the vty session is terminated.

The main operational impact on the platform is memory utilization, which is easily quantified (more on this in

the next section).

Similarly, the ping scan simply uses the native “ping” command in IOS in an exec call, so has minimal,

quantifiable memory utilization, and requires no configuration changes. The List Scan has almost no impact

at all, as it simply prints the scan targets to stdout.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 10 of 27

However, UDP port scanning has several specific impacts.

• In order to send UDP packets, the running configuration is modified to create an IP SLA section. This

is removed after each port scan is completed.

• Similarly, access list 111 is created to define “interesting” return traffic from a UDP scan, which is a

second change to the running configuration.

• The “clear log” command simply doesn’t work in cisco’s TCL implementation. To clear the log for

each run, buffered logging is turned off then back on again – this achieves the exact same goal, but

again is a running configuration change.

• All of these will create issues around approval of change control in a well run IT organization. In

addition, these configuration changes will generate network alerts on many networks.

• Finally, the use of debugs in capturing the return traffic might also require approval under a change

control process.

All of these issues will, on many networks, mean that UDP scanning is not practical with this tool.

Resource Utilization
Because routers are such critical devices, when adding new functions it is always important to gauge the

impact of these new functions on performance in delivering their core functions. In particular, memory usage

and cpu utilization are the two most important factors, both are easily measured. The memory usage of port

scanning using TCL was especially interesting.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 11 of 27

Memory Utilization

When scanning TCP ports, measuring memory allocation shows a fixed initial memory block used, then an

almost straight line increase of memory usage as the total port count increases. Multiple IP’s do not

contribute significantly to memory utilization, the critical factor is the total number of ports scanned.

 TCP Port Count

Addresses 20 40 60 80 100

1 2589644 2627088 2656128 2689332 2718372

2 2766588 2802504 2832996 2866200 2895240

3 2960112 2997480 3026520 3063888 3092928

4 3141144 3178512 3207552 3242208 3269796

TCP Port Scanning Memory Utilization

2500000

2600000
2700000

2800000
2900000

3000000
3100000

3200000
3300000

3400000

0 100 200 300 400 500

ports (total)

m
em

These can be represented closely (less than 0.5% error on each value)

Memory = (IP’s * Ports * 1544) + 2568474

Or, in more general terms:

Memory = (Total TCP Ports) * 1544 + 2568474

(Correlation Coefficient R2 = 0.999, where R2 = 1 is a perfect fit)

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 12 of 27

Memory Utilization when scanning UDP ports shows similarly linear behaviour.

 UDP Port Count
Addresses 10 20 30 40 50 60 70 80 90

1 3021456 3429924 3762796 4141488 4515748 4884844 5259228 5632668 6002124

2 6667996 6962216 7252496 7537384 7827084 8120336 8410392 8695720 8984908

3 9570932 9856068 10145624 10439668 10729500 11014544 11303264 11597992 11892280

4 12470828 12764620 13054804 13339756 13628816 13922740 14207852 14497884 14787640

UDP Port Scanning Memory Utilization

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0 100 200 300 400 500

Port Count

M
em

or
y

These can be represented closely by:

Memory = (IP’s * Ports * 30279) + 3120161

Or, in more general terms;

Memory = (Total UDP Ports) * 30279 + 3120161
(Correlation Coefficient R2 = 0.999, where R2 = 1 is a perfect fit)

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 13 of 27

The thing to note in this, is that the memory required for UDP port scanning is significantly higher than for

TCP port scanning. Plotting both functions on the same graph shows this difference dramatically.

Memory Utilization, TCP and UDP Port Scanning

Mem = 1544 (TCP Ports) + 2568474
R2 = 1

Mem = 30279 (UDP Ports) + 3120161
R2 = 1

0

5000000

10000000

15000000

20000000

25000000

0 100 200 300 400 500 600 700

Total Ports Scanned

M
em

or
y

R
eq

ui
re

d

On a lightly loaded router with 256MB of DRAM, a UDP port scan of a full class C network for 35 ports will

exceed the physical memory on the router. In a more realistic scenario, the Processor Pool Free Memory

on such a router (3640, IP Plus feature set used as an example) will typically be in the 50MB range. A UDP

port scan of a full class C network for 5 ports will exceed this value.

Resource Utilization Watermarks
If it is calculated that a given scan will exceed 50% of the available memory, the user is presented with a

message and the opportunity to stop the scan. If it is calculated that a given scan will exceed 75% of the

available memory, the scan is simply terminated with an error message.

CPU Utilization
CPU Utilization was uniformly less than 5% in all test TCP and UDP scans. This impact would be considered

acceptable in most cases.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 14 of 27

Running IOSmap (Network Diagram and Examples)
An example network (shown below) was constructed to demonstrate the use of the IOSmap tool:

In the example runs, IOSmap is called from a tftp path. This was done for simplicity, and is not

recommended in a production environment for security reasons. Since the tftp protocol does not

allow for authentication or encryption, a tftp server can easily be compromised, and TCL scripts

stored on it could easily be updated to include rootkits or other “malcode”. Using a man-in-the-

middle attack, TCL scripts could simply be intercepted and similarly modified in transit between the

tftp server and client, without targetting anything on the tftp server at all. In a production situation,

an SCP server would generally be recommended, as it provides for both encryption and

authentication.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 15 of 27

Sample IOSmap runs are shown below:

Scan 1 – a TCP scan of targeted hosts and ports

R1#tclsh tftp://sec503/iosmap.tcl 1.1.1.1-5,2.2.2.5 -p7-9,13,19,22-24,80,443
Loading iosmap.tcl from 192.168.206.1 (via FastEthernet0/0): !
[OK - 14830 bytes]

Loading services.list from 192.168.206.1 (via FastEthernet0/0): !
[OK - 42121 bytes]

Starting IOSmap 0.9 (http://www.defaultroute.ca) at 2002-03-01 18:18 UTC

Free Memory on Platform = 47298216 / Memory required for this scan =
2661114

Interesting ports on host 1.1.1.1
PORT STATE SERVICE
7/tcp closed echo
8/tcp closed .
9/tcp closed discard
13/tcp closed daytime
19/tcp closed chargen
22/tcp open ssh
23/tcp open telnet
24/tcp closed priv-mail
80/tcp open http
443/tcp open https

Interesting ports on host 1.1.1.2
PORT STATE SERVICE
7/tcp closed echo
8/tcp closed .
9/tcp closed discard
13/tcp closed daytime
19/tcp closed chargen
22/tcp open ssh
23/tcp open telnet
24/tcp closed priv-mail
80/tcp open http
443/tcp open https

Interesting ports on host 1.1.1.3
PORT STATE SERVICE
7/tcp open echo
8/tcp closed .
9/tcp open discard
13/tcp open daytime
19/tcp open chargen
22/tcp open ssh
23/tcp open telnet
24/tcp closed priv-mail
80/tcp open http
443/tcp open https

Interesting ports on host 1.1.1.4
PORT STATE SERVICE

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 16 of 27

7/tcp closed echo
8/tcp closed .
9/tcp closed discard
13/tcp closed daytime
19/tcp closed chargen
22/tcp open ssh
23/tcp open telnet
24/tcp closed priv-mail
80/tcp open http
443/tcp open https

Host 1.1.1.5 is unavailable

Interesting ports on host 2.2.2.5
PORT STATE SERVICE
7/tcp closed echo
8/tcp closed .
9/tcp closed discard
13/tcp closed daytime
19/tcp closed chargen
22/tcp open ssh
23/tcp closed telnet
24/tcp closed priv-mail
80/tcp open http
443/tcp closed https

Scan 2 – a UDP scan of targeted hosts and ports

R1#tclsh tftp://sec503/iosmap.tcl 1.1.1.1-5,2.2.2.5 -p7-9,68-69,123 -sU
Loading iosmap.tcl from 192.168.206.1 (via FastEthernet0/0): !
[OK - 14830 bytes]

Loading services.list from 192.168.206.1 (via FastEthernet0/0): !
[OK - 42121 bytes]

Starting IOSmap 0.9 (http://www.defaultroute.ca) at 2002-03-01 18:21 UTC

Free Memory on Platform = 47293508 / Memory required for this scan =
4210205

Interesting ports on host 1.1.1.1
PORT STATE SERVICE
7/udp closed echo
8/udp closed .
9/udp closed discard
68/udp closed dhcpc
69/udp closed tftp
123/udp open ntp

Interesting ports on host 1.1.1.2
PORT STATE SERVICE
7/udp closed echo
8/udp closed .
9/udp closed discard
68/udp closed dhcpc
69/udp open tftp
123/udp open ntp

Interesting ports on host 1.1.1.3

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 17 of 27

PORT STATE SERVICE
7/udp open echo
8/udp closed .
9/udp open discard
68/udp closed dhcpc
69/udp closed tftp
123/udp open ntp

Interesting ports on host 1.1.1.4
PORT STATE SERVICE
7/udp closed echo
8/udp closed .
9/udp closed discard
68/udp closed dhcpc
69/udp open tftp
123/udp open ntp

Host 1.1.1.5 is unavailable

Interesting ports on host 2.2.2.5
PORT STATE SERVICE
7/udp closed echo
8/udp closed .
9/udp closed discard
68/udp closed dhcpc
69/udp open tftp
123/udp open ntp

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 18 of 27

References

Brent Welch, Ken Jones (2003). Practical Programming in Tcl and Tk (4th Edition). New Jersey: Prentice Hall

PTR, 2003.

“TCL Reference Manual”, 25 June, 2008 <http://tmml.sourceforge.net/doc/tcl/>.

“Cisco IOS Scripting with Tcl”, 25 June, 2008.

<http://www.cisco.com/en/US/docs/ios/12_3t/12_3t2/feature/guide/gt_tcl.html>.

NMAP Reference Guide, 25 June, 2008 < http://nmap.org/book/man.html >.

“A Little CIDR Calculator”, 05 May, 2008. <http://wiki.tcl.tk/8909>.

“RFC 792 - INTERNET CONTROL MESSAGE PROTOCOL” Sept 1981. <http://www.ietf.org/rfc/rfc0792.txt>.

“RFC 768 – USER DATAGRAM PROTOCOL” 28 Aug 1980. <http://tools.ietf.org/html/rfc768>.

“RFC 761 – TRANSMISSION CONTROL PROTOCOL”, Jan 1980. <http://tools.ietf.org/html/rfc761>.

 .

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 19 of 27

Appendix: Full Source Code Listing, Commented

set defaults if not over-ridden at cmd line
set pingit 1 ; # ping scan set to no (should be yes) Set default values on variables used throughout
set scantype T ; # default scan is TCP
set ports ""
set portslist 0
set timeout 1
set timeoutms 500
set waittime 4000
set svcarraymax 4096
set fullpath $argv0 This is the full pathspec of the called script (IOSmap.tcl)
set reasoncode 0
set reason "NULL"

 This application consists of many procedures (procs)
 These are at the beginning of the listing, the main executable
 Is at the bottom of this listing

proc setloadpath { fullpath } { Get the path that IOSmap was called from
global loadpath We’ll need that later in order to
set firstchar 0
set endchar [expr [string last "/" $fullpath] -1]
set loadpath [string range $fullpath $firstchar $endchar]
return $loadpath
}

proc syntaxhelp {} { This helptext subroutine prints all the cmd line sytax available
 puts stdout
"\7===
========="

\7 prints an ASCII 7 character (aka “bell”). This emits a “beep” when
printed to STDOUT

 puts stdout "IOScan 0.1"
 puts stdout " Usage: IOScan <Scan Type> <Options> <target
specifications>"

 puts stdout "HOST DISCOVERY:"
 puts stdout " -P0 Treat all hosts as online - skip Ping test"
 puts stdout " -SL List hosts and ports to scan"
 puts stdout "SCAN TYPE:"
 puts stdout " -sP Ping scan only <ICMP ECHO>"
 puts stdout " -sT TCP Connect Scan"
 puts stdout " -sU UDP Scan"
 puts stdout "PORT SPECIFICATION:"
 puts stdout " -p <port ranges> Specify ports to scan. "
 puts stdout " -p22 Scan port 22"
 puts stdout " -p22,23,135-139,445 Scan ports 22, 23, 135, 136, 137,
138, 139, 445"

 puts stdout "TARGET SPECIFICATION:"
 puts stdout " CIDR, IP range and single IPs are all a supported - comma
delimited"

 puts stdout " For example:"
 puts stdout " 192.168.10.0/24,192.168.17.21-34,192.168.40.1"
}

proc memcalc { scantype } { This procedure calculates the estimated memory usage the scan run

will take.
 global iplist The iplist is the list of all ip’s to be scanned

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 20 of 27

 global portlist The portlist is the list of ports to be scanned
 if { $scantype == "T" } { If the scan is for TCP ports, define the equation characteristics
 set gradient 1544
 set intercept 2568474
 } else { Similarly, these are the characteristics for a UDP scan.
 set gradient 30279
 set intercept 3120161
 }
 set factor1 50 ; # watermark to ask for a y/n to proceed These are our safety factors (50 and 75%)
 set factor2 75 ; # watermark to force an exit
 set ipcount [llength $iplist] Get the total count of ip’s to scan
 set portcount [llength $portlist] Get the total count of ports to scan
 set calcmem [expr ($portcount * $ipcount * $gradient)] Calculate the total memory to be consumed
 set calcmem [expr ($calcmem + $intercept)]
 set i [exec "sho proc mem | i Processor Pool"] Get the free memory available in the Processor Memory Pool
 set memfree [lindex $i [expr ([llength $i] - 1)]]
 set memlimit1 [expr ($memfree / 100 * $factor1)] Memory limit 1 (50% of free memory)
 set memlimit2 [expr ($memfree / 100 * $factor2)] Memory limit 2 (75% of free memory)
 puts stdout "Free Memory on Platform = $memfree / Memory required for
this scan = $calcmem"

Print memory values – this keeps it top-of-mind for anyone running
the script

 puts stdout " "
 if { $calcmem > $memlimit2 } { We’re over 75% - exit the application
 puts stdout "\7The resources estimated for your scan will exceed
$factor2\%"

 puts stdout "of your available memory total of $calcmem"
 puts stdout "Execution cannot proceed without impacting primary device
functions"

 return 1
 } elseif { $calcmem < 0 } { Our calc has overflowed the precision of TCL, so we know that it’s

more than physical ram of any router platform
 puts stdout "\7The resources used by your scan will exceed the physical
memory installed"

 puts stdout "on your platform. Execution cannot proceed without
impacting"

 puts stdout "primary device functions"
 return 1
 } elseif { $calcmem > $memlimit1 } { Memory usage calc is over 50% - ask for confirmation to proceed.
 puts stdout "\7The resources used by your scan will exceed $factor1%"
 puts stdout "of your available memory total of $calcmem"
 puts stdout "This may impact primary device functions"
 puts -nonewline stdout "do you wish to proceed (y/n) ==> "
 flush stdout
 set response [gets stdin];
 if { $response == "y" } { return 0 } else { return 1 }
 } elseif { $calcmem < $memlimit1 } { return 0 } Final case, all is well, proceed with the scan.
}

proc IPtoHex { IP } { Convert an ip address to it’s hexadecimal equivalent
 binary scan [binary format c4 [split $IP .]] H8 Hex
 return $Hex
}

proc hex2dec {hexvalue} { Convert a hexadecimal value to decimal
 set decvalue [format "%u" [expr 0x$hexvalue]]
 return $decvalue
}

proc dec2hex { decvalue } { Convert decimal value to hexadecimal
 set hexvalue [format "%#010X" [expr $decvalue]]

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 21 of 27

 return $hexvalue
}

 proc Hex2IP { Hex } { Convert a hexadecimal value to it’s equivalent IP address
 # first trim off leading "0x" if it's there
 if { [string length $Hex] == 10 } { set Hex [string range $Hex 2 9] }

 binary scan [binary format H8 $Hex] c4 IPtmp
 foreach num $IPtmp {
 lappend IP [expr ($num + 0x100) % 0x100]
 }
 set IP [join $IP .]
 return $IP
}

 proc isipvalid { IP } { Is the ip address valid?
 # only digits'n'dots
 regsub -all {[.0-9]} $IP {} scratchvar Are all the chars either numeric or periods?
 if { $scratchvar != "" } {
 return 0
 }

 # 4 octets means exactly 3 dots
 regsub -all {[0-9]} $IP {} scratchvar Do we have exactly 3 periods?
 if { $scratchvar != "..." } {
 return 0
 }

 # is each octet betw 0 and 255? Are all values between 0 and 255?
 foreach b [split $IP .] {
 if { [string length $b] == 0 } {
 return 0
 }
 set ob $b
 #parse out leading zeros
 scan $b %d b
 if { $b < 0 | $b > 255 } {
 return 0
 }
 }
 return 1 Final case, all is well
 }

 proc iscidrvalid { CIDR } { Is the network subnet mask (in CIDR notation) valid?
 # numeric check
 regsub -all {[0-9]} $CIDR {} scratchvar
 if { [string length $scratchvar] != 0 } {
 return 0
 }

 #convert to numeric, check values
 #because this is running on a router, mask <8 is not acceptable due to
scan time.

Values under 8 are too many IP’s to scan on a router

 # mask of /31 or /32 is also not acceptable Values over 30 mess up the math, and are better specified as a range
or discrete IP’s anyway

 scan $CIDR %d CIDR
 if { $CIDR < 8 | $CIDR > 30 } {
 return 0

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 22 of 27

 }
 return 1 Final case, all is well, proceed.
 }

proc ipCIDR { net } { Parse out a network specified as a CIDR block into discrete IP’s
 global iplist

 set work1 [split $net /]
 set ip1 [lindex $work1 0]

 if { ! [isipvalid $ip1] } {
 puts stdout "\7Invalid IP address specified ==> $ip1"
 puts " "
 return 1
 }

 scan $net {%d.%d.%d.%d/%d} a b c d bits

 if { ! [iscidrvalid $bits] } {
 puts stdout "Invalid Netmask address specified ==> /$bits"
 puts stdout "Because of platform considerations, subnet mask must be
>=8 or <=30"

 puts " "
 return 1
 }

 set hexmask [expr {0xffffffff & (0xffffffff << (32-$bits))}] Get the broadcast ip address
 set bnet [hex2dec [IPtoHex $ip1]]
 set realnet [expr $bnet & $hexmask]
 set firstip [expr $realnet+1] The first ip is the network + 1
 set bcast [expr $bnet | ($hexmask ^ 0xffffffff)]
 set lastip [expr $bcast - 1] The last ip to scan is the broadcast – 1

 for { set j $firstip } { $j <= $lastip } { incr j} { Now, loop from first to last IP, and populate the IP list
 set work1 [dec2hex $j]
 lappend iplist [Hex2IP $work1]
 }
 return 0
}

proc iprange { net } { Parse out a network ,specified as with a range in octet 4
 global iplist
 set work1 [split $net -]
 set ip1 [lindex $work1 0] Get the first ip
 set maxoct4 [lindex $work1 1] Get the last ip

 if { ! [isipvalid $ip1] } { Are both ip’s valid?
 puts stdout "Invalid IP address specified ==> $ip1"
 return 1
 }
 scan $ip1 {%d.%d.%d.%d} a b c d

 set ipmax $a.$b.$c.$maxoct4

 if { ! [isipvalid $ipmax] } {
 puts stdout "Invalid IP address specified ==> $ipmax"
 return 1

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 23 of 27

 }

 if { $d > $maxoct4 } { Is the range specified low-to-high?
 puts stdout "Invalid IP address range specified ==> $ip1-$maxoct4"
 return 1
 }
 for { set j $d} {$j <= $maxoct4 } { incr j} {
 lappend iplist $a.$b.$c.$j
 }
 return 0 Final case, all is well
}

proc parsenet { networklist } { Parse the complete IP list out from the cmd line string
 global iplist
 set netlist [split $networklist ,] Split out the commas

 foreach net $netlist {
 if { [string first / $net] >0 } { Is it a CIDR block?
 set retval [ipCIDR $net]
 } elseif { [string first - $net] >0} { Is it specified as a range?
 set retval [iprange $net]
 } else {
 if { ! [isipvalid $net] } { Is it a single ip address?
 puts stdout "Invalid IP address specified ==> $net"
 return 1
 }
 lappend iplist $net }
 }
 return 0 Final case, all is well
}

proc pinger {ip timeout} { Ping a host and tell me if it exists
 set pingretry 3
 # returns a 1 if any icmp echo replies make it back, otherwise returns a 0
 if { [regexp "(!)" [exec "ping $ip timeout $timeout repeat $pingretry"]] } {
return 1 } else { return 0 }

}

proc scantcpconnect {host port} { TCP Connect scan of a discrete ip address and port
 global timeout
 global reason
 set timeout1 [expr $timeout*1000] Convert the timeout to milliseconds
 catch { socket $host $port } sock Connect
 after $timeout1 Wait for the timeout
 if { [string first sock $sock] == 0} { If the string “sock” is returned from the socket command, the port is

open
 catch { close $sock }
 return "open "
 } else { return "closed" } If not, it’s closed
}

proc udpscan { ip port } { Attempt to see if a UDP port is open on a single ip address
 # timers should be global, logfile should NOT be global
 global timeoutms These timeouts are hard-coded for now.
 global waittime
 global reason
 ios_config "no logging buffer" Clear the buffered log (this is a config change)

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 24 of 27

 ios_config "logging buff 8192 debug"
 set retcode "error" ; # just in case, give retcode a value

 # set up the list of interesting packets to look for (ie set up packet
capture filter)

Create the access list that identifies what we’re looking for

 ios_config "access-list 111 permit udp any host $ip eq $port"
 ios_config "access-list 111 permit udp host $ip eq $port any"
 ios_config "access-list 111 permit icmp host $ip any unreach"

 # now, watch for these packets (ie start your packet capture)
 exec "debug ip packet 111 det" Log occurrences of matches to our ACL to the log (ie – capture

packets)

 # next, send test udp packets to trigger responses
 ios_config "ip sla monitor 111" "type udpEcho dest-ipaddr $ip dest-port
$port control disable" "time $timeoutms" "freq 1"

Now, lets create an IP SLA to send some udp probe packets
Note that control packets are DISABLED

 ios_config "ip sla mon schedule 111 life forever start now" Schedule the IP SLA to run

 after $waittime ; # wait - 2sec is generally enough for the log to
catch up

 # now clean up confg and debug changes Clean up:
 exec "no debug ip pack 111 det" • Stop the packet capture
 ios_config "no access-list 111" • Clear the ACL
 ios_config "no ip sla monitor 111" • Erase the IP SLA

 set startpos "dst=$port"
 set logfile [exec "show log"] Move the log into a variable list

 set ipstart 0
 set portunreach 0
 set unreach 0

 # first, find the first occurrence of our target in the log

 set ipstart [string first $startpos $logfile] Where is the first occurrence of a sent packet?

 #now, look for icmp type 3, or icmp type 3 code 3, occuring after this ip
value

Look for ICMP Port unreachable replies returned after this packet

 # (ie - make sure we're not reading a previous status).
 if { $ipstart > 0 } {
 Set unreach [string last "ICMP type=3" $logfile] Find the last ICMP UNREACHABLE
 Set portunreach [string last "ICMP type=3, code=3" $logfile] Find the last ICMP PORT UNREACABLE
 set udpreturn [string last "UDP src=$port" $logfile] Find the last UDP port from the target
 set retcode "open/filtered" ; # set the case for no packets back at
all

The default case is no packets back – open/filtered

 if { $unreach > $ipstart } { set retcode "filtered" } ICMP unreachable indicates filtered
 if { $portunreach > $ipstart } { set retcode "closed" } Is it closed? (ICMP port unreachable) – overwrites “filtered” case

above as it’s a more specific ICMP unreachable
 if { $udpreturn > $ipstart } { set retcode "open" } Return packet indicates open port
 } else { set retcode "open/filtered" } ; # this accounts for no packets
back on empty logfile

This case is for an empty logfile (should never occur)

 return $retcode
}

proc scanit {localportlist localnetworklist scantype pingit} { Generic scan a network list with a portlist, all scan types
global timeout
global svctcp

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 25 of 27

global svcudp
global svcarraymax
global reason
global reasoncode

foreach host $localnetworklist { For each host in the list ….

 # set existance default in case -P0 (no ping) is specified
 set hostexist 1 If we’re not pinging the hosts, tell me that they are all up.
 if {$pingit == 1} { set hostexist [pinger $host $timeout] } If we’re pinging, do it

 if { $scantype == "P" } { Is it a ping scan?
 if { $hostexist ==1 } { If so, simply print the results and go on to the next
 puts stdout "Host $host is up"
 } else { puts "Host $host is down" }
 } else {

 if {$hostexist == 1 } { Is the host up?
 puts stdout "Interesting ports on host $host"
 puts -nonewline stdout "PORT STATE SERVICE"
 if {$reasoncode == 1} {puts -nonewline stdout " REASON"}
 puts ""

Print the port title line – REASON is only printed if requested

 foreach port $localportlist {
 if { $scantype == "T" } { Is it a TCP scan?
 set state [scantcpconnect $host $port] If so, proceed
 set proto "tcp"
 if {$port <= $svcarraymax} {
 set service $svctcp($port) Format the results
 }
 } elseif {$scantype == "U" } { Is it a UDP scan?
 set state [udpscan $host $port] If so, proceed
 set proto "udp"
 if {$port <= $svcarraymax} { Format the results
 set service $svcudp($port)
 }
 } elseif {$scantype == "L" } { Is it a list scan?
 set proto "tcp" If so, format the results (assume TCP)
 set state "unscanned"
 if {$port <= $svcarraymax} {
 set service $svctcp($port)
 }
 }

 puts -nonewline stdout "$port/$proto $state $service"
 if {$reasoncode == 1} { puts -nonewline stdout " $reason"}
 puts stdout ""

Print the results for this ip and port
Again, the reason code is only printed if requested

 On to the next port
 }
 } else { puts stdout "Host $host is unavailable" } Host is not up
 puts stdout "\n\n"
 } On to the next ip
 }
return
}

proc parseports { ports } { Parse the ports out from the command line string

 global portlist
 set localportlist [split $ports ,]

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 26 of 27

 foreach port $localportlist {
 if {[string first - $port] > 0} { Is this a port range?
 set localplist [split $port -]
 for {set lport [lindex $localplist 0]} {$lport <= [lindex $localplist 1]} {incr
lport} {

Loop through

 if {$lport > 0 && $lport <65535 } { Ensure that we are >0 and < 64K
 lappend portlist $lport
 } else {
 puts stdout "Invalid port value ==> $lport" Invalid port error
 return 1
 }
 }

 } else {
 if {$port >0 && $port <65535 } { This is a single port - again, check
 lappend portlist $port
 } else {
 puts stdout "Invalid port value ==> $port"
 return 1
 }
 }
 }
return 0
}

proc getservices { loadpath } { Get the services file (we have names for the same services as NMAP

does
 global svctcp
 global svcudp
 global svcarraymax

 for {set i 1} {$i < $svcarraymax} {incr i} { Populate the array with dots first (undefined ports)
 set svctcp($i) "."
 set svcudp($i) "."
 }
 set svcfile "/services.list"
 if [catch {open $loadpath$svcfile r} fileId] { Now, get the services file from the same location we loaded IOSmap

from.
 puts stderr "Cannot open services file" Error in file read
 } else {
 set services [read $fileId] Read the file into a temp list
 close $fileId
 }

 foreach record $services { For each line in the file
 set localrec [split $record ,]
 set localproto [lindex $localrec 0]
 set localport [lindex $localrec 1]
 set localsvc [lindex $localrec 2]

 switch $localproto {
 tcp {set svctcp($localport) $localsvc } Populate the tcp and udp service description arrays
 udp {set svcudp($localport) $localsvc }
 }

 }
 return
}

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

SANS SEC503 Gold Paper: IOSmap: TCP and UDP Port Scanning on Cisco IOS Platforms

28 Sept, 2008 Robert VandenBrink Page 27 of 27

 Main Script Execution Starts Here

#process cmd line arguments First, lets get the cmd line arguments
foreach arg $argv {
 switch -glob -- $arg { Depending on the cmd line switches
 -sU {set scantype U} Populate the appropriate variables
 -sT {set scantype T}
 -sP {set scantype P ; set ports 1}
 -sL {set scantype L ; set ports 1 ; set pingit 0}
 -P0 {set pingit 0}
 -p* {set ports $arg}
 -h { set scantype "H" }
 default {set network $arg} If there is no switch, assume that it’s a network value
 }
 }

 if {$scantype != "P"} { Is it NOT a Ping sweep?
 set loadpath [setloadpath $fullpath] (Services file is not required for pings)

 #populate the arrays defining the tcp and udp service descriptions
 #depends on a data file in a hard-coded directory
 getservices $loadpath
 }

 # dump out intro line
 puts stdout "\n\n"
 puts stdout [clock format [clock seconds] -format {Starting IOSmap 0.9 (
http://www.defaultroute.ca) at %Y-%m-%d %H:%M �%Z}]

Print out the “splash” line
Hopefully this will motivate some to set time (either static or via NTP)
and timezone on their gear

 puts ""

if {$scantype != "H" } { Is it NOT a request for syntax help?

 # trim "-p out of ports arg, parse out the ports to a list of discrete values
 set ports [string trimleft $ports -p] Pull the “-p” off the port list
 set ok1 [parseports $ports] Now, get the port list

 # parse network values out to a discrete list of ip addresses
 set ok2 [parsenet $network] Get the network list

 set ok [expr $ok1+$ok2]

 if { $ok == 0 } { Are the port list and network list both ok?

 set retcode [memcalc $scantype] Calculate the memory utilization

 if {$retcode == 0 } { Is the memory situation ok?
 # scan the list of ports and ip's as specified
 scanit $portlist $iplist $scantype $pingit If so, scan the ports
 }
 } else {
 syntaxhelp Print the syntax help text
}
}

