
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Wireshark: A Guide to Color My Packets

Detecting Network Reconnaissance to Host Exploitation

GIAC GCIA Gold Certification

Author: Roy Cheok
Advisor: Robert VandenBrink

Accepted: 1st July 2014

Abstract

When was the last time you faced a packet trace file, and hoped to remember all the
different filters used to detect anomalous network activities? Were you typing in
the filters as you progress, and hoping for an alternate solution? This paper
discusses some basic features in Wireshark, and the advanced techniques for
creating simple to complex Display filters for Coloring rules, using it to identify
network reconnaissance, attacks and recovering evidence from within the packet
trace files.

 2

Roy Cheok, r.cheok+giac@gmail.com

1. Introduction

Incident Responders investigating technology-facilitated crime in an unfamiliar or even

non-homogenous network environment can be given access to raw packet trace files.

These files can provide a plethora of information to determine the source of

compromised, and related nefarious activities. However, in the field environment with

access to limited tools, the challenge is to analyze the packet trace files, identify any

anomalous network activities, and provide an informed assessment in a time-critical

environment.

Wireshark is an open source network protocol analyzer (Combs, n.d.). It can be

customized to create Display filters and Coloring rules to highlight the obvious packets

when reviewing complex network interaction; establishing the general flow of network

activities, or identify anomalous traffic that relates to a network attack.

It is evident, the use and application of Wireshark Coloring rules can provide a faster

analysis of result. By using colors to attract attention to the packet details, it can be a

useful presentation tool to demonstrate the flow of complex data to non-technical staff, or

jury in a court of law. Incident Responders can also harness the flexibility and portability

of Wireshark Coloring rules by sharing customized rules that are helpful and assist in

getting results that would otherwise be difficult or missed entirely.

This paper will guide the readers through examples, exploring Wireshark features used in

creating Display filters and Coloring rules to detect network reconnaissance, attacks, and

recovering data from packet trace files. With due diligence, experience and research, an

Incident Responder should build a collection of Wireshark Coloring rules and adopt them

for network forensics or incident response efforts.

2. Wireshark

The Wireshark project (formerly known as Ethereal) is created by Gerald Combs

(Orebaugh, et al., 2007), it comes with an extensive library of supported network

protocols and runs on many platforms, including Windows, Linux and OS-X. By default,

the Wireshark installation package installs the feature-rich Wireshark Graphical User

 3

Roy Cheok, r.cheok+giac@gmail.com

Interface (GUI)1. It also provides the option to install various Wireshark command line

utilities, including a command line version of Wireshark called Tshark. This section

introduces the Wireshark GUI using the labels depicted in Figure 1, which sets out some

of the references used in this paper.

2.1. Wireshark Graphical User Interface

To view a packet trace file, launch Wireshark, and open a packet trace file via the File

Menu. The Wireshark GUI view of an opened packet trace file is illustrated in Figure 1

below:

Figure 1: The various components of the Wireshark GUI

2.2. Wireshark: Profile

It is useful to create custom Wireshark Profiles for specific tasks relating to network

protocol or packet analysis and troubleshooting (i.e. network scanning detection,

unauthorized or anomalous network traffic identification).

To create or manage a new or existing Wireshark Profile, the user can navigate to the

Configuration Profiles via the Edit Menu Toolbar. This option is also available via right-

click on the Profile column in the Status Bar. A Bluetooth2 and Classic3 profile is

1 For the purpose of this paper, Wireshark version: 1.10.6 (Windows 64-bit) was installed on a Microsoft Windows 7 (64-bit) workstation. Wireshark
GUI for Linux and OSX Operating Systems utilized similar Wireshark GUI layout.
2 The Wireshark Bluetooth profile contains additional Bluetooth related Coloring rules.
3 The Wireshark Classic profile uses the default rules but displays the Packet List using a brighter color palette.

TitleBar Menu Toolbar Filter Toolbar Icons Toolbar

Packet Details

Packet List

Packet Bytes

Status Bar

 4

Roy Cheok, r.cheok+giac@gmail.com

available as part of the default Wireshark installation and can be used as a template for

creating a new profile.

When creating a new Profile, a folder with the given profile name is saved in the profiles

folder within the Personal configuration directory. It is used for storing profile settings,

such as user preferences, and files containing custom filters, i.e. Capture filters (cfilters),

Display filters (dfilters) or Color filters (colorfilters).

The ‘About Wireshark’ dialog box via the Help Menu (in Figure 2) provides the essential

Wireshark folders location (i.e. the Global and Personal configuration directories)

installed on the system.

Figure 2: About Wireshark, “Folders” tab: the location of essential Wireshark folders

2.3. Wireshark: Display Filter

The Wireshark Display filter is temporarily applied to locate and display specific packets

based on defined protocol field name(s). We will walk through some of the options to

determine the protocol field names, using it to create simple or compound Display filters.

Option 1: Filter Toolbar – use Wireshark Filter Input Box

In Wireshark, network protocols and its fields used for Display filters are defined in

lowercase (i.e. arp, ip, icmp, tcp, udp, dns, bootp, http). To create a Display filter to show

all TCP packets, enter tcp within the Wireshark Display Filter Input Box as shown in

Figure 3:

Figure 3: By itself, tcp is a valid Display filter to show all TCP packets

(auto-filter checking: Green color background indicates a valid display filter
Red color background indicates an invalid display filter)

 5

Roy Cheok, r.cheok+giac@gmail.com

Wireshark Display Filter Input Box also comes with an auto-lookup feature. It lists the

available protocol fields as you type in the Filter Input Box toolbar. Enter tcp. (followed

by a period), as shown below in Figure 4:

Figure 4: Wireshark auto-lookup feature, listing valid protocol field names.

Option 2: Filter Toolbar – use Wireshark Filter Expression

Apply the following steps shown in Figure 5 to create Display Filter via the

‘Expression…’ button4 or to view a list of supported protocols and related field names:

Figure 5: Creating Display Filter via the Expression…button

Option 3: Packet Detail Pane and Status Bar

To determine the correct Display filter protocol field name, select the required field in the

Packet Details pane and lookup the status bar for the corresponding protocol field name

(as shown by the yellow arrow in Figure 6).

4 Invoking the Expression button, displays a list of all Wireshark supported protocols and its associated field names.

1. Expression button

2. Selected the

 protocol field

Display the
current active
Profile

3. Use Comparison

 Operators

5. Click on OK to
 continue

4. Enter a value,

 range, or select
 predefined value

 6

Roy Cheok, r.cheok+giac@gmail.com

Figure 6: The selected protocol field name displayed in the Status Bar

Wireshark Display filter can be created by entering the appropriate network protocol field

name in the Display Filter Input Box. Alternatively, right-click on a selected packet in

the Packet List, or protocol field name in the Packet Details to bring up the list of

available options, as shown in Figure 7 below:

Figure 7: A myriad of options are available by right-clicking on a selected packet/protocol field name

The ‘Apply as’ or ‘Prepare a Filter’ option is particularly useful. It can be used to apply a

simple Display filter, or create compound Display filter using comparison and logical

operators. A common list of comparison and logical operators applicable to Wireshark is

provided in the Table 1, with the exception of the ‘contains’ and ‘matches’ operator;

either the short-form expression or the symbol can be used.

Packet Details

Packet List

Packet Details

Options

Packet List

Options

eq ==
ne !=
gt >
lt <
ge >=
le <=
contains case-sensitive string comparison or byte sequences matching
matches search string fields and byte sequences using Perl Compatible Regular Expression (PCRE)
and &&
or ||
not !

Table 1: A list of comparison and logical operators for comparing values or combining Wireshark Display filters

In the example shown in Figure 6, the packet trace file shows an attempt to cause a

Denial of Service (DoS) attack, where specially crafted packets were sent using the same

source IP address and port number as the listening host’s destination IP address and port

number; this is known as the LAND attack (Imperva, n.d.). A vulnerable host will crash

or freeze from processing such packets.

Using the options described in this section, the following Wireshark compound Display

filter created below identifies TCP or UDP based land attack attempts:

To save this Display filter to the current active Wireshark Profile for future analysis,

select the Display filter icon located on the Icon Toolbar, or click on the

‘Filter’ button (shown by the blue arrow in Figure 6) on the Filter Toolbar to bring up the

Display Filter Manager dialog box shown in Figure 8. Select New, enter a filter name

(e.g. Land Attack), the Display filter string, and click Apply to save the Display filter.

Figure 8: Wireshark Display Filter Manager Dialog Box

(ip.src == ip.dst) && (tcp.srcport == tcp.dstport ||
udp.srcport == udp.dstport)

 8

Roy Cheok, r.cheok+giac@gmail.com

Newly created Display filters are saved to the “dfilters” file in the Personal configuration

directory or within its profiles folder, it can be edited using a text editor or via the

Display Filter Manager. Each Display filter in the “dfilter” file uses the following syntax

that ends with a newline: “Display filter name” Display filter string.

Figure 9: Wireshark dfilter file of an active profile, showing the described syntax ending with a newline

To remove the display filter shown in the Filter Input Box, select the ‘Clear’ button on

the Filter Toolbar. To manage or apply previously stored Display filters, click on the

Display filter icon or ‘Filter’ button and select the required Display filter listed in the

Display Filter Manager dialog box

2.4. Wireshark: Coloring Rules

One of the features of Wireshark is the ability to apply custom Coloring rules to highlight

the packets of interest. A Coloring rule is created using the Display filter syntax, and

saving it to the “colorfilters” file using the Wireshark Color Filter rule editor. The

Coloring rules are applied automatically to the packets in the background, integrating

seamlessly with the packet display.

To create and manage a new or existing Coloring rule, navigate to the Wireshark

Coloring rules manager (in Figure 10) via the Coloring Rules icon located on

the Icon Toolbar, or via the sub-menu item: ‘Coloring Rules...’ under the View Menu.

Figure 10: Wireshark: Coloring rules manager, (The title bar indicates the applicable coloring
rules for the current active Profile and the “Checksum Error” rule is shown as being disabled)

 9

Roy Cheok, r.cheok+giac@gmail.com

To create a new Wireshark Coloring rule:

1. Click on the New button to launch the Wireshark Color Filter rule editor (shown in

Figure 10 below).

2. Provide a Coloring rule name

3. Enter the Display Filter (if required, use the Expression option to assist)

e.g. using the example shown in Figure 1, we will create a simple filter to identify Windows ICMP
Echo Request (ICMP type 8, code 0) packets, containing about 32 bytes of data resembling a string
of English alphabets in lowercase.

4. Click on the “Foreground Color” button to select a foreground color

5. Click on the “Background Color” button to select a background color

6. Check to ensure that the Coloring rule is valid via the displayed color shown in the
String Display Filter Input Box (in Figure 11 below):

Figure 11: Wireshark Color Rule Editor with a valid Color Filter

(String Input box: a Green color background indicates a valid Display filter;
 a Red color background indicates an invalid Display filter)

7. Click the “OK” button to create the Coloring rule.

By default, the new Coloring rule is placed at the top of the list in the Coloring rules

manager, the rules are processed and the result is illustrated below:

Figure 12: The “Windows ICMP Echo Request” Coloring Rule was
successfully applied, highlighting the ICMP Echo Request (Ping)

packets: 5, 7, 9, and 11 using the configured color scheme

To identify the Coloring rule that was applied to a specific packet, select one of the

packets (i.e. ICMP Echo Request) from the Packet List, and expand the frame section in

the Packet Details pane to reveal the details of the applied Coloring Rule (as shown in

 10

Roy Cheok, r.cheok+giac@gmail.com

Figure 13). It is also possible to display a list of packets with the same applied rule;

right-click on the Coloring rule in the Packet Details pane, and select the option to apply

it as a simple Display filter.

Figure 13: Indentifying the triggered Coloring Rule from the Frame section in the Packet Details pane

To manage an existing Coloring rule listed in the Coloring rules manager, select the

required Coloring rule and click on the appropriate option button. A temporary disabled

Coloring rule is shown with its Coloring rule name and filter string being strikethrough in

the Coloring rules manager. The example in Figure 10 shows the disabled ‘Checksum

Error’ Coloring rule.

To share a copy of the Coloring rules used in the current Wireshark Profile, use the

Export option within the Coloring rules manager to save it to a file. The Import option

takes in a file containing the imported Coloring rules, and appends it to the end of any

existing Coloring rules. This may include duplicated Coloring rules that can be removed

using the Delete option.

2.4.1. Wireshark: colorfilters file

Wireshark saves pre-defined (default), imported or custom created Coloring rules of an

active profile to a file named: “colorfilters”. It is located within the Personal

configuration directory or profiles folder, and can be edited or reviewed using a text

editor. The syntax used by Wireshark “colorfilters” file is explained below:

: denotes a single line comment, not processed as a coloring rule

@ : denotes a delimiter used to identify and separate the required

 fields used to describe the Coloring Rule:

Packet Details

Packet List

 11

Roy Cheok, r.cheok+giac@gmail.com

 e.g. @Coloring Rule Name@Display Filter String@[Background Color] [Foreground Color]

 note: the Background and Foreground color co-ordinates are each separated by a comma

! : denotes a disabled Coloring Rule

Figure 14: The Wireshark colorfilters file showing the syntax used for Wireshark pre-defined and custom Coloring rules

2.4.2. Wireshark: colorfilters file

To determine or verify the processing order of the Wireshark Coloring rules, we will re-

order the “Windows ICMP Echo Request” Coloring rule created earlier, and moving it

below the Wireshark pre-defined “ICMP” Coloring rule as shown in the figure below:

Figure 15: The re-ordering (up/down move buttons) of the Windows ICMP Echo Request Coloring Rule

The results illustrated in Figure 16, shows that Wireshark processed the Coloring rules

sequentially from top to bottom in the order they are listed, until a match is found for

each packet. If there is no match, the Wireshark default Coloring rule is applied.

Essentially, a more specific rule should be placed before a general rule to ensure that the

Coloring rule is triggered during processing.

 12

Roy Cheok, r.cheok+giac@gmail.com

Figure 16: The re-ordering of the Coloring ruleset, invoked the Wireshark pre-defined ICMP

 Coloring Rule and removing the colors from the ICMP Echo Request (Ping) packets: 5, 7, 9, and 11

3. Network Reconnaissance

Network reconnaissance is one of the most important stages of any attack. It aims to

identify active hosts listening on the targeted network. It is during this information

gathering and preparatory phase that the attacker(s) maps the network topology, identify

network devices, host IP addresses, open ports, network services and operating system

information that can be associated to known or potential vulnerabilities; exploiting it to

gain unauthorized access and control its targets. The more complete is the information

gathered about the targeted network and its hosts, the higher chance of a successful

attack.

3.1. DNS Reconnaissance

Domain Name Server (DNS) is used to translate a domain name to an IP address. An

organization’s public accessible domain name server generally stores its own DNS

records and can provide a variety of information, including its function described in

RFC1035 (Mocakapetris, 1987).

DNS information is publicly available and can be queried using built-in operating system

command line tools such as nslookup, host, or dig. This information is extremely useful

to an attacker, since DNS reconnaissance can easily obtain a list of known host IP

addresses from the targeted network.

 13

Roy Cheok, r.cheok+giac@gmail.com

Unlike normal DNS query and response that occurs over UDP Port 53, DNS zone

transfer requests and responses occur over TCP Port 53. DNS zone transfer is the

replication process to provide a copy of the DNS zone file resource records from a

primary DNS server to a set of secondary DNS server(s). DNS zone transfer

request/response should be restricted to known secondary DNS server(s); otherwise, an

entire copy of the DNS zone file can be requested.

The following Wireshark compound Display filters retrieve any DNS Zone Transfer

requests and responses from within a packet trace file:

3.1.1. DNS Information

To retrieve a list of DNS queries and responses from within a packet trace file, use the

following Wireshark Display filters:

To display a list of DNS queries or responses containing a specific record type, e.g. DNS

A record; a common list of DNS record types is also provided in Table 2:

A IPv4 host address 0x0001

AAAA IPv6 host address 0x001c

NS authoritative name server 0x0002

CNAME alias canonical name 0x0005

SOA start of zone authority 0x0006

PTR Domain name pointer 0x000c

HINFO host info 0x000d

MINFO mailbox/mail list info 0x000e

MX mail exchange 0x000f

AXFR zone transfer 0x00fc

Table 2: A list of common DNS records types

DNS Zone Transfer request:
(tcp.dstport == 53) && (dns.flags.response == 0) && (dns.qry.type == 0x00fc)

DNS Zone Transfer response:
(tcp.srcport == 53) && (dns.flags.response == 1) && (dns.qry.type == 0x00fc)

DNS queries and responses : dns

DNS queries : dns.flags.response == 0

DNS response : dns.flags.response == 1

DNS query : (dns.flags.response == 0) and (dns.qry.type == 0x0001)

DNS response : (dns.flags.response == 1) && (dns.resp.type == 0x0001)

 14

Roy Cheok, r.cheok+giac@gmail.com

Alternatively, Wireshark can display a list of all name resolution from within a packet

trace file via “Show Address Resolution” option found under the Statistics Menu:

Figure 17: A list of DNS name resolution obtained from within a trace file

3.2. Network Mapping

Network mapping attempts to elicit response from active hosts, mapping its topology,

identifying its IP address, listening ports and services provided over the network.

3.2.1. NMAP Host Discovery & Port Scanning

Network Mapper or commonly known as NMAP was released by Gordon “Fyodor” Lyon

as an open source utility in 1997 for network exploration and security auditing, and runs

on Linux, OS-X, and Windows (Lyon, 2008). While an exhaustive explanation of every

NMAP option and scan technique is not possible, the focus is on identifying the type of

network scans. It is essential to mention that packet-crafting tools, such as Hping5 or

Scapy6 can create similar packets to elicit response. The following are some of the

observation made regarding NMAP7 host discovery and port scanning options:

! NMAP Host Discovery: Ping Scan

NMAP Ping scan is used only for host discovery, it does not conduct a port scan if

it identifies an active host. This is the default scan uses by NMAP before starting

its port or service scanning and remote OS fingerprinting (Lyon, 2014), and can

be disabled.

5 Hping, an open source software available via http://www.hping.org/download.html
6 Scapy, an open source software available via http://www.secdev.org/projects/scapy
7 NMAP version 6.01 was used in this paper and can be found as part of Backtrack 5-R3 Linux Penetration Testing distribution which has been
discontinued, but available via: http://ftp.uio.no/pub/security/backtrack/

 15

Roy Cheok, r.cheok+giac@gmail.com

According to the NMAP man page, running NMAP Ping scan in privilege mode

sends the following four packets to identify an active host (shown with the

corresponding Wireshark Display filters to identify NMAP Ping scan):

1. NMAP sends an ICMP Echo Request with no data

2. NMAP sends a TCP SYN to port 443

 3. NMAP sends a TCP ACK to port 80

4. NMAP sends an ICMP timestamp request without originate time

Before adding the above Wireshark Display Filters to the Coloring rules, it is

pertinent to remember the order of precedence. By re-ordering the fourth ICMP

rule before the first ICMP rule ensures the Coloring rule is correctly triggered.

The figure below illustrates the successful application of the Coloring rules to

identify NMAP Ping scan packets:

Figure 18: The Coloring Rules detect NMAP Ping scan successfully in packets: 3-6;

illustrating the characteristics documented in the man page for NMAP Ping scan

3.2.2. NMAP Port Scanning

! TCP SYN Stealth scan:

The NMAP Stealth scan is a half-open TCP SYN scan. It does not complete the

TCP 3-way handshake. NMAP sends a SYN packet to elicit a SYN/ACK packet

response from a listening port. If it receives a response, NMAP sends a RST

packet to tear down the connection. The following Wireshark Display filter

identifies the TCP SYN packet:

(ip.flags == 0x00) && (icmp.type == 8 && icmp.code == 0) &&
(icmp.seq == 0) && (not data)

(ip.flags == 0x00) && (tcp.flags == 0x0002) &&
(tcp.dstport == 443)

(ip.flags == 0x00) && (tcp.flags == 0x0010) &&
(tcp.dstport == 80)

(ip.flags == 0x00) && (icmp.type == 13 && icmp.code == 0) &&
(icmp.seq == 0) && (icmp[8:4] == 00:00:00:00) && (not data)

(ip.flags == 0x00) && (tcp.flags == 0x0002) &&
(tcp.option_kind == 2) && not (tcp.option_kind == 3 ||
tcp.option_kind ==4)

 16

Roy Cheok, r.cheok+giac@gmail.com

! TCP Connect scan:

The NMAP TCP Connect scan completes the TCP 3-way handshake with the

target listening port(s), and tears down the connection with a RST/ACK packet.

The following Wireshark Display filter identifies the TCP SYN packet:

While both NMAP TCP SYN Stealth and TCP Connect scans initiate destination

port connection using TCP SYN packet, a notable difference in the IP header was

observed:

o NMAP SYN Stealth scan sends SYN packet with IP Don’t Fragment flag

set to 0 and a single TCP Option: Maximum Segment Size (MSS).

o NMAP Connect scan sends SYN packet with IP Don’t Fragment flag set to

1 with multiple TCP Options.

The Display filters described above were added to the Wireshark Coloring rules,

with the results in Figure 19 illustrating the differences:

Figure 19: Coloring rules applied to identify packets relating to NMAP Stealth Scan and TCP Connect Scan

(ip.flags == 0x02) && (tcp.flags == 0x0002) &&
(tcp.option_kind == 2 && tcp.option_kind ==3 &&
tcp.option_kind ==4 && tcp.option_kind ==8)

NMAP Host Discovery

NMAP Host Discovery

NMAP Stealth Scan

NMAP Connect Scan

 17

Roy Cheok, r.cheok+giac@gmail.com

4. Detecting Web Server Scanning

Apart from mapping the topology of a private network or port scanning for listening hosts

connected to Internet, attackers are also looking for vulnerable web servers; seemingly

looking for any opportunity to compromise the integrity of the web server via a

vulnerability, and gaining access to its data store.

Nikto is a web server scanner, an open-source project that is publicly available (Sullo &

Lodge, 2012). It can be used by a diligent system administrator with explicit given

permission or by an attacker to discover well-known vulnerabilities, mis-configurations,

and unpatched software installed on the web server(s). Nikto performs a number of tests

on web servers, including directory traversal attempts to access restricted directories on

the web server, trying to gain access to the underlying operating system or known data

files, and attempts to execute commands outside of the web server root directory.

A simple Wireshark Display filter, using the “contains” comparison operator can be used

to match a sequence of hexadecimal byte values (shown in ASCII as ../) to return a list of

directory traversal attempts:

Figure 20: Identifying Nikto scan via its user-agent string

In the figure above, the user-agent string captured within the HTTP request shows that

the web traffic was generated by Nikto scan. By extending the above filter, a compound

Display filter is created to identify Nikto and its related directory traversal attempts:

To display a list of directory traversals with its corresponding response, update the

Wireshark Display filter to search the packet frame:

http.request.uri contains 2e:2e:2f:

http.user_agent contains "Nikto" and http.request.uri contains 2e:2e:2f:

frame contains 2e:2e:2f:

 18

Roy Cheok, r.cheok+giac@gmail.com

As shown in Figure 21, a manual review identifies a successful attack amongst the

scanning activities:

Figure 21: Detecting a successful directory traversal attack, retrieving the /etc/password file

While it is trivial to modify the user-agent8 string, the following Wireshark compound

Display filter is created to retrieve any HTTP request(s) containing uncommon user-agent

strings, with its result shown in Figure 22:

Figure 22: Identifying a non-browser based web request

8 A comprehensive list of user-agent string can be found via http://www.useragentstring.com/pages/useragentstring.php

http.request && (not http.user_agent matches "(?i)
(Chrome|Mozilla|Gecko|MSIE|Safari|AppleWebKit|Android|Blackberry|Opera)")

 19

Roy Cheok, r.cheok+giac@gmail.com

5. Detecting Host Exploitation

While it is not possible to discuss every attack and exploitation technique used in the

wild, researching common attack vectors can help Incident Responders recognize the

type of attacks used by the attacker(s). As an example, we will briefly discuss using

Wireshark Coloring rules to detect an FTP brute force attack.

5.1. FTP Account/Password Guessing & Brute Force Attack

File Transfer Protocol (FTP) server can be easily setup for sharing of files across the

Internet. It is described in RFC959, and utilizes a client/server model. The client connects

to the FTP server on TCP Port 21 (control channel for FTP command) to initiate a service

request, but utilizes a separate port for data exchange (Postel & Reynolds, 1985). In

relation to data exchange, an FTP server can operate in either Active or Passive mode:

! In Active FTP mode: client issues the "PORT" command and provides the

listening data port. The FTP server then uses TCP Port 20 to connect to the client

specified port for data exchange.

! In Passive FTP mode: server provides the listening data port in response to client

“PASV” command request. The client then connects to server specified port for

data exchange.

According to RFC959, the data port is communicated using the convention:

h1,h2,h3,h4,p1,p2, where h1-h4 is the host address and the listening port for data

exchange is computed using the value of p1 and p2, such that the port is: p1*256+p2.

Some of the common client service commands found in RFC959 are listed below:

USER submit username for login to FTP Server
PASS submit password for login to FTP Server
LIST request for a list of files in the current directory
STOR upload data onto FTP server
RETR download data from the server

The following Wireshark Display filter displays the list of FTP related commands issued

by the FTP client in a packet trace file:

It is also important to know that FTP transactions are in cleartext, thus susceptible to

sniffing attacks. Depending on its configuration, it can also be prone to user

ftp.request.command

 20

Roy Cheok, r.cheok+giac@gmail.com

account/password brute force attacks. Unbeknownst to the owner, their FTP server can be

attacked for nefarious use, such as hosting malicious malware, and insidious use of

sharing offensive images over the Internet.

In Wireshark, the protocol name: “ftp” displays related packets that communicate on FTP

command channel, TCP port 21. FTP data channel can be located using the field name:

“ftp-data”. Nonetheless, it is essential to review the packets to identify and verify the host

IP address and data port number via a simple Wireshark Display filter:

To identify brute force attack on an FTP server, create the following Display filters and

add them as two separate Coloring rules:

To display a list of credential used in FTP server login attempts:

To confirm a successful login to the FTP server:

Figure 23: Wireshark Coloring rules successfully detects FTP brute Force login attack

As illustrated in the figure above, the Incident Responder can quickly identify the

automated attack using the request time sequence, and reliably determine any successful

login. To investigate subsequent actions, right-click on the packet: “FTP Response: 230-”

in the Packet List, and select the Wireshark option to “Follow TCP stream”. It brings up a

dialog box showing the entire conversation stream, including any request that occurs after

the successful login.

(ftp.request.command == "USER") or (ftp.request.command == "PASS")

(ftp.response.code == 200)

(ftp.request.command == PORT) or (ftp.response.code == 227)

 21

Roy Cheok, r.cheok+giac@gmail.com

6. Data Recovery

Apart from compromising a system, attacker(s) will attempt to take a foothold of its

victim’s infrastructure. They will commonly upload toolkits, insert backdoors, and

extract data from compromised machines. These may include password hash files for

offline password cracking, intellectual property data, email and business financial or

transaction records, etc. In this section, we will take advantage of Wireshark auto-packet

reassemble feature, and use it like a forensic tool to recover data file from raw packet

trace files.

6.1. Identification of common data files in packet trace file:

Prior to any data extraction or recovery, Wireshark Display filter or Coloring rules can be

used for searching common data files contained within the packet trace file. The

following described some of the options:

1. Search by common file extension (e.g *.doc, *.pdf, *.exe, *.zip, *.gz., *.tar):

It is possible to search an entire packet using “frame” or search for packets relating

to specified protocol, defined in lowercase (e.g. ip, tcp, icmp, udp, tftp, ftp, http,

smtp, dns, bootp):

Option A: Use Wireshark comparison operator “contains” for case sensitive string

matching of a single specific file extension:

Options B: Use Wireshark PCRE comparison operator “matches” to search for a set

of strings (keywords are separate by pipe |, group by brackets and enclosed by

inverted commas, where \. denotes a dot and (?i) for case-insensitive search):

It is also possible to search via specific fields name within a protocol, e.g. HTTP web

request, with the result shown below:

frame contains ".exe"

ftp matches "\.(?i)(exe|zip|7z|gz|tar|pdf|doc|xls)"

http.request.uri matches "\.(?i)(exe|zip|7z)"

 22

Roy Cheok, r.cheok+giac@gmail.com

2. Search by known content or case insensitive string matching:

Wireshark comparison operator: “matches” enables PCRE string matching. As an

example, the following Display filter identifies the data stored in the /etc/passwd and

/etc/shadow files:

3. Search by file header signature (aka magic number):

Wireshark can also search for specific file types, using known file header signature.

As an example, the Windows binary executable file contains the file header value:

“MZ” (hex value: 0x4d5a), accompanied by a string of values: “This Program must

be run under Win32” or “This program cannot be run in DOS”.

The following Wireshark Display filters search for Windows executable file header

values (Bruneau, n.d.), and case insensitive text string matching for “This program”:

To recover the data file, select the packet in display (from either Packet List or the Data

field in the Packet Details pane). Right-click for the option to follow the protocol9 stream,

then filter the conversation stream (uni-direction) to show the data content/binary file,

and export the file as a raw file using the “Save-As” option.

9 For TCP Data Recovery, ensures that the TCP protocol preference is set to “Allow subdissector to reassemble TCP streams”. In some instances, the
combination use of hex editor and file carving using known file header signature may be required after exporting the data as a raw file.

frame and (data.data matches "^[a-zA-Z0-9]+:" ||
data-text-lines matches "^[a-zA-Z0-9]+:")

frame matches "(\x4d\x5a\x90|\x4d\x5a\x50)"
&& frame matches "(?i)this program"

 23

Roy Cheok, r.cheok+giac@gmail.com

6.2. Manual Data Recovery of SMTP Data Attachments

The SMTP email standard is described in RFC822 (Postel, 1982) and its attachments are

encoded using Base64 multipurpose content transfer encoding described in RFC2045

(Freed & Borenstein, 1996). Emails can be used as a transport mechanism, sending

malicious content via a spear-phishing attack directed at targeted employee(s), or it can

be used as a means to exfiltrate data.

Manual recovery of SMTP data attachment requires the following steps:

1. Use the following Wireshark filter to locate SMTP packets with attachment(s):

2. Select the packet in the Packet List pane, and right-click to select the Wireshark

option: “Follow TCP stream”. In the Wireshark Stream Content window, select

the appropriate data stream containing the file attachment (shown in figure

below; in Wireshark, Red color text denotes data sent by client, and Blue

colortext denotes data sent by the server):

3. The MIME delimiter tag delimits each attachment. It starts after the line

“Content-Disposition: …” and terminates near the end of the MIME delimiter

tag (as shown in the figure below):

 Highlight (left-click and drag) to select the data containing the attachment, then

right-click to copy the data. Insert the data into a plaintext file and save the file.

smtp matches "(?i)(Content-Transfer-Encoding: base64|attachment)"

 24

Roy Cheok, r.cheok+giac@gmail.com

4. It is possible to decode the Base64 encoded data attachment using the base64

utility10 installed in a Linux workstation (example shown using Backtrack 5-

R311) using the command shown in the diagram below:

6.3. Data Recovery using Wireshark

For HTTP and SMB related file recovery, use the “Export Object” feature in Wireshark:

1. Use Wireshark Display filter, http to display web related packets:

2. Right-click on one of the TCP packets (in the Packet List or Packet Details pane)

and ensure the TCP “Protocol Preferences” option to “Allow subdissector to

reassemble TCP streams” is enabled (as shown in the diagram below):

3. Click on the File Menu, and select “HTTP” within the “Export Objects”.

Depending on the size of the packet trace file, it may take a while to reassemble

the packets and load the HTTP object list shown below. Once it is loaded, select

the file and use the save-as option to export the file.

10 Linux Base64 utility is part of GNU core utilities available via http://ftp.gnu.org/gnu/coreutils/ or
 standalone Base64 utility for windows available via http://www.fourmilab.ch/webtools/base64/base64.zip
11 Backtrack 5-R3 Linux Pentesting distribution has been discontinued, but available via: http://ftp.uio.no/pub/security/backtrack/

 25

Roy Cheok, r.cheok+giac@gmail.com

TCP

ICMP

proxy Victim

Client

Attacker!

Destination Host

7. Detecting Covert Channels

In an environment that has implemented tight security controls, users may be looking at

creative means to access the Internet for their favorite websites. In general, protocol

tunneling carries non-legitimate traffic inside allowed protocol traffic to bypass

restrictions or network security monitoring. Similarly, attacker(s) can be using tunneling

techniques as a backdoor to maintain access to the network, or as a pivot to compromise

other systems; allowing them to move within the environment without raising too much

attention via such convert channel, and exfiltrate the data that are important to the

organization.

7.1. Ping Tunnel (ptunnel): tunneling using ICMP packets

ptunnel is a free and open source software that can be used for tunneling TCP packets

over ICMP Echo Request and Reply packets, and can be executed on a Windows or

Linux based machines (Stodle, 2011).

As illustrated in the above diagram, the proxy is the bridge between the client and the

destination host; communication between the client machine and the proxy host is

conducted using ICMP Echo Request/Reply, the proxy host will forward the packets via

TCP to the destination host. The ptunnel client software can be executed from the victim

or the attacker’s machine. However, ptunnel requires the attacker to have control of a

machine that is used as a proxy host.

7.2. Wireshark: Detecting SSH over ICMP

The Internet Control Message Protocol (ICMP) is described in RFC777 and is used to

communicate transient error condition (Postel, 1981). To determine if a host is online, an

ICMP Echo Request (Type 8) is sent to elicit an ICMP Echo Reply (Type 0). These

packets are commonly allowed to traverse within and across network perimeter.

 26

Roy Cheok, r.cheok+giac@gmail.com

Type Code Checksum

Identifier Sequence Number

Data….

Figure 24: ICMP Echo Request/Reply packet format

To provide an understanding of the fields contained within an ICMP Echo Request/Reply

packet, the packet layout is shown in Figure 24. Normally, an ICMP Echo Request sent

by a Windows operating system (in Figure 1), and Linux operating system (in Figure 25)

contains 32 bytes and 48 bytes of data respectively. Excessive ICMP data size is

abnormal and should be checked. As a defense against network mapping, external facing

network devices should not be configured to respond to external ICMP request.

Figure 25: Linux ICMP Echo Request/Reply

Secure Shell (SSH) encrypts data packets in transit and its identification ensures that any

unauthorized outbound encrypted traffic running from internal host(s) can be

investigated, and prevented from leaving the network. To detect SSH encrypted session

over ICMP packet in Wireshark, create a Display filter to list all ICMP packets matching

case insensitive string “SSH-“:

One of the ICMP Echo Request packets, identified by the above Wireshark Display filter

shows a ptunnel packet within its ICMP data section. A ptunnel packet can be identified

by its magic hex-value: 0xD5200880 (highlighted in red box), and contained the

corresponding ICMP header session identifier number (highlighted by the yellow boxes),

shown in Figure 26 below:

icmp && data.data matches "(?i)SSH-"

0 31 15 7

 27

Roy Cheok, r.cheok+giac@gmail.com

Figure 26: Wireshark Display filter successfully displaying packets related to SSH tunneling over ICMP packets

A review of the packet that initiates the SSH session over ICMP (in Figure 27 below),

shows the ptunnel packet within the ICMP data section (magic hex value: 0xD5200880),

its final SSH destination host IP, and listening port in hexadecimal value.

Figure 27: The packet captured via the proxy shows the host that initiated the SSH session in packet 1
(the red box highlights the ptunnel magic value, the yellow box highlights the SSH destination

host IP and the green box highlights the SSH destination host port)

Finally as a short-term containment measure, use Wireshark to create an Access Control

List (ACL) rule for CISCO network device or supported firewalls to drop incoming or

outgoing packets from a specific host by selecting the offending packet from the Packet

List pane, and use the ‘Firewall ACL rules’ option located under the Tools Menu (as

shown in Figure 28).

 28

Roy Cheok, r.cheok+giac@gmail.com

Figure 28: A list of supported firewalls shown in the Wireshark Firewall ACL rules option

8. Conclusion

When it comes to the number of options available for a packet and protocol analyzer, few

come close to the number of options for the price offered by Wireshark. While it is not

possible to describe every Wireshark option or create filters for every known or unknown

attack, we can always seize the opportunity to think outside the box, and re-purpose the

features that exist in Wireshark and apply it to our own situation. This paper described

the basic features of Wireshark for packet analysis, and the advanced techniques using

Coloring rules to deal with simple to complex network interaction and network attacks.

The Wireshark Coloring rules present another option in our detection and defense efforts,

limited only by an Incident Responder’s knowledge and creativity in developing

meaningful Display filters and Coloring rules. It is portable, and can be used

systematically to identify unauthorized activities, showing cause in the event of an attack

to detect network reconnaissance and vulnerability scans, establishing source and type of

attack, identify covert channels used for circumventing controls, and aid in the discovery

and recovery of evidence from raw packet trace files. The flexibility of Wireshark

Coloring rules is a useful tool to have in the Incident Responder’s toolkit for packet

analysis, and network forensics.

 29

Roy Cheok, r.cheok+giac@gmail.com

9. References

Bambenek, J. (2008). Double Flux Defense in the DNS Protocol. Retrieved May 4, 2014,

from http://tools.ietf.org/html/draft-bambenek-doubleflux-01

Bruneau, G. (n.d.). SANS Institute Hex File Headers and Regex for Forensics Cheat

Sheet v1.0. Retrieved May 4, 2014 from: http://digital-

forensics.sans.org/media/hex_file_and_regex_cheat_sheet.pdf

Combs, G. (n.d.). About Wireshark. Retrieved May 4, 2014, from

http://www.wireshark.org/about.html

Freed, N., & Borenstein, N. (1996). RFC2045 Multipurpose Internet Mail Extension.

Retrieved May 4, 2014, from http://www.ietf.org/rfc/rfc2045.txt

Imperva. (n.d.). LAND Attacks. Retrieved May 4, 2014, from

http://www.imperva.com/resources/glossary/land_attacks.html

Lyon, G. F. (2014). Nmap Changelog. Retrieved May 4, 2014 from

http://nmap.org/changelog.html

Lyon, G. F. (2008). Nmap network scanning: official Nmap project guide to network

discovery and security scanning. Sunnyvale, CA: Insecure.Com, LLC.

Orebaugh, A., Ramirez, G., Burke, J., Morris, G., Pesce, L., Wright, J. (2007). Wireshark

& Ethereal network protocol analyzer toolkit (p. 53). Rockland, MA: Syngress

Postel, J. (1981). RFC777 Internet Control Message Protocol. Retrieved May 4, 2014,

from https://tools.ietf.org/html/rfc777

Postel, J. (1982). RFC821 Simple Mail Transfer Protocol. Retrieved May 4, 2014, from

http://tools.ietf.org/html/rfc821

Postel, J., & Reynolds, J. (1995). RFC959 File Transfer Protocol (FTP). Retrieved May

4, 2014, from http://www.ietf.org/rfc/rfc959.txt

Stodle, D. (2011). Ping Tunnel For these times when everything else is blocked.

Retrieved May 4, 2014, from http://www.cs.uit.no/~daniels/PingTunnel/

Sullo, C., & Lodge, D. (2012). Nikto. Retrieved May 4, 2014, from

https://www.cirt.net/node/89

The Sys-Security Group. (n.d.). Xprobe. Retrieved May 4, 2014, from

http://ofirarkin.wordpress.com/xprobe/

University of Southern California. (1981). RFC793 Transmission Control Protocol.

Retrieved May 4, 2014, from http://tools.ietf.org/html/rfc793

 30

Roy Cheok, r.cheok+giac@gmail.com

10. Appendix

Here are some additional Wireshark Display filters that can be added as Coloring Rules:

! Identify IP routing options in use:
loose source : 0x83
strict source : 0x89
record route : 0x07
timestamp : 0x44

! SMB – Identify upload of executable file(s):

SMB – Identify executable file(s) being opened:

SMB – Identify host operating system information:

! Identify data payload sent within a SYN packet, as permitted in section 3.4 of

RFC793, (University of Southern California, 1981):

! Possible fast flux DNS responses, consisting multiple IP addresses with low TTL:

The “dns.count.answers” should be set to an arbitrary value of choice or made

optional, as the filters also checks for low TTL value that is less than 1hr, 24hrs or

72hrs (Bambenek, 2008).

! A list of some useful HTTP Wireshark Display filters:

HTTP options via the Statistics menu returns related HTTP information:

 a. HTTP >> Packet counter: returns a list of HTTP request methods and status code responses

 b. HTTP >> Requests: returns a list of request to each Web server

 c. HTTP >> Load distribution: returns the number of requests & responses for each web server

(ip.hdr_len > 20) && (ip.opt.type == 0x83|| ip.opt.type == 0x89 ||
ip.opt.type == 0x07 || ip.opt.type == 0x44)

(smb.create.action == 2) and (smb.file matches "\.(?i)exe")

(smb.create.action == 1) and (smb.file matches "\.(?i)exe")

(dns.flags.response == 1) && (dns.count.answers >= 5) &&
(dns.resp.ttl < 3600 || dns.resp.ttl < 86400 || dns.resp.ttl <
259200)

smb.native_os && smb.native_lanman

(tcp.flags == 0x0002) && (tcp.hdr_len >= 20) && (tcp.segment_data > 0)

HTTP requests : http.request
HTTP responses : http.response
Successful HTTP response : http.response.code == 200
HTTP client(4xx) or server(5xx)errors : http.response code > 399

 31

Roy Cheok, r.cheok+giac@gmail.com

! NMAP remote active OS Fingerprinting:

NMAP sends at least 16 probes to conduct remote active OS fingerprinting. The

unique probes documented in the NMAP Network Scanning book (Lyon, 2008)

were used to create the corresponding Display filters for the Coloring rules:

o TCP Options, Sequence Generation Probes: O1-O6

NMAP TCP Option and Sequence Generation probes send 6 TCP SYN

packets to an open port, each containing different TCP options. The options

for each probe are described below, followed by the corresponding Wireshark

compound Display filters:

O1: window scale (10), NOP, MSS (1460), timestamp (TSval: 0xFFFFFFFF;

TSecr: 0), SACK permitted. The window field is 1.

O2: MSS (1400), window scale (0), SACK permitted, Timestamp (TSval:

0xFFFFFFFF; TSecr: 0), EOL. The window field is 63.

O3: Timestamp (TSval: 0xFFFFFFFF; TSecr: 0), NOP, NOP, window scale

(5), NOP, MSS (640). The window field is 4.

O1:
tcp.flags == 0x0002) && (frame[54:3] == 03:03:0a) &&
(tcp.options.mss_val == 1460) &&
(tcp.options.sack_perm == 1) &&
(tcp.options.timestamp.tsval == 4294967295) &&
(tcp.options.timestamp.tsecr == 0) &&
(tcp.window_size_value == 1)

alternatively O1:
(tcp.flags == 0x0002) && (tcp.window_size_value == 1) &&
(tcp.options ==
03:03:0a:01:02:04:05:b4:08:0a:ff:ff:ff:ff:00:00:00:00:04:02)

O2:
(tcp.flags == 0x0002) && (frame[58:3] == 03:03:00) &&
(tcp.options.mss_val == 1400) &&
(tcp.options.sack_perm == 1) &&
(tcp.options.timestamp.tsval == 4294967295) &&
(tcp.options.timestamp.tsecr == 0) && (frame[73:1] == 00)
&& (tcp.window_size_value == 63)

Alternatively O2:
(tcp.flags == 0x0002) && (tcp.window_size_value == 63) &&
(tcp.options ==
02:04:05:78:03:03:00:04:02:08:0a:ff:ff:ff:ff:00:00:00:00:00)

O3:
(tcp.flags == 0x0002) && (tcp.window_size_value == 4) &&
(tcp.options ==
08:0a:ff:ff:ff:ff:00:00:00:00:01:01:03:03:05:01:02:04:02:80)

 32

Roy Cheok, r.cheok+giac@gmail.com

O4: SACK permitted, Timestamp (TSval: 0xFFFFFFFF; TSecr: 0), window

scale (10), EOL. The window field is 4.

O5: MSS (536), SACK permitted, Timestamp (TSval: 0xFFFFFFFF; TSecr:

0), window scale (10), EOL. The window field is 16.

O6: MSS (265), SACK permitted, Timestamp (TSval: 0xFFFFFFFF; TSecr:

0). The window field is 512.

o ICMP Probe: IE1 and IE2

The ICMP probes are sent immediately after the previous TCP Sequence

Generation probes. NMAP sends the first ICMP echo request packet with the

IP Don’t Fragment flag set, a Type-of-Service (TOS) of value 0, ICMP type

8, Code 9 (instead of 0), random IP identifier, ICMP sequence number: 295,

and a data payload containing 120 bytes of 0x00. The first Wireshark filter has

the data payload value hard coded 120 times. An alternative filter is provided

below using the Wireshark PCRE “matches” comparison operator,

nonetheless both filters provide similar result:

IE1:
(ip.flags == 0x02) && (ip.dsfield == 0) && (icmp.type == 8)
&& (icmp.code == 9) && (icmp.seq == 295) && (data.len ==
120) && (data.data ==
00:
00:
00:
00:
00:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00)

alternatively IE1:
(ip.flags == 0x02) && (ip.dsfield == 0) && (icmp.type == 8)
&& (icmp.code == 9) && (icmp.seq == 295) && (data.data
matches "\x00+") && (data.len == 120)

O4:
(tcp.flags == 0x0002) && (tcp.window_size_value == 4) &&
(tcp.options ==
04:02:08:0a:ff:ff:ff:ff:00:00:00:00:03:03:0a:00)

O5:
(tcp.flags == 0x0002) && (tcp.window_size_value == 16) &&
(tcp.options ==
02:04:02:18:04:02:08:0a:ff:ff:ff:ff:00:00:00:00:03:03:0a:00)

O6:
(tcp.flags == 0x0002) && (tcp.window_size_value == 512) &&
(tcp.options ==
02:04:01:09:04:02:08:0a:ff:ff:ff:ff:00:00:00:00)

 33

Roy Cheok, r.cheok+giac@gmail.com

NMAP sends the second ICMP echo request packet with IP Don’t Fragment

flag set 0, a Type-of-Service (TOS) of value 4, ICMP type 8 Code 0, IP ID

was incremented by 1 from previous value used by IE1, ICMP sequence

number: 296, and a data payload of 150 bytes of 0x00. The following

Wireshark filter was updated to reflect the changes:

o UDP Probe: U1

NMAP attempts to elicit an ICMP port unreachable packet from a closed UDP

port, with a UDP packet consisting of IP identification value of 0x1042, and a

data payload containing 300 ‘C’ (0x43) characters.

o TCP Explicit Congestion Notification Probe: ECN

NMAP sends a SYN packet to an open TCP port with the Explict Congestion

Notification (ECN), Congestion Window Reduced (CWR) and Explict

Congestion Notification Echo (ECE) control flag set. An urgent pointer value

of 0xF7F5, urgent flag not set, windows size of 3, and TCP options consisting:

windows scale (10), No Operation (NOP), Maximum Segment Size, MSS

(1460), Selective ACKnowledgement (SACK) permitted, NOP, NOP.

o TCP Probes: T2-T7

NMAP sends 6 TCP probes: T2-T6 containing the TCP options:

03:03:0a:01:02:04:01:09:08:0a:ff:ff:ff:ff:00:00:00:00:04:02, each of the 6

packets are describe below, with the corresponding Wireshark Display filter:

IE2:
(ip.flags == 0x00) && (ip.dsfield == 4) && (icmp.type == 8)
&& (icmp.code == 0) && (icmp.seq == 296) && (data.data
matches "\x00+") && (data.len == 150)

U1:
(udp && not icmp) && (ip.id == 0x1042) && (data.len == 300)
&& (data.data matches "\x43{300}")

ECN:
(tcp.flags == 0x08c2) && (tcp.window_size_value == 3) &&
(tcp.urgent_pointer == 0xf7f5) &&
(tcp.options == 03:03:0a:01:02:04:05:b4:04:02:01:01)

 34

Roy Cheok, r.cheok+giac@gmail.com

T2: IP Don’t Fragment set, TCP null packet and a window field of 128 to an

open port.

T3: IP Don’t Fragment is not set, TCP packet with SYN, FIN, URG, and PSH

flags set and a window field of 256 to an open port.

T4: IP Don’t Fragment set, TCP ACK packet and a window field of 1024 to

an open port.

T5: IP Don’t Fragment is not set, TCP SYN packet and a window field of

31337 to a closed port.

T6: IP Don’t Fragment set, TCP ACK packet and a window field of 32768 to

a closed port.

T7: IP Don’t Fragment is not set, TCP packet with FIN, PSH, and URG flags

set and a window field of 65535 to a closed port.

T2:
(ip.flags == 0x02) && (tcp.flags == 0x0000) &&
(tcp.window_size_value == 128) && (tcp.options ==
03:03:0a:01:02:04:01:09:08:0a:ff:ff:ff:ff:00:00:00:00:04:02)

T3:
(ip.flags == 0x00) && (tcp.flags == 0x002b) &&
(tcp.window_size_value == 256) && (tcp.options ==
03:03:0a:01:02:04:01:09:08:0a:ff:ff:ff:ff:00:00:00:00:04:02)

T4:
(ip.flags == 0x02) && (tcp.flags == 0x0010) &&
(tcp.window_size_value == 1024) && (tcp.options ==
03:03:0a:01:02:04:01:09:08:0a:ff:ff:ff:ff:00:00:00:00:04:02)

T5:
(ip.flags == 0x00) && (tcp.flags == 0x0002) &&
(tcp.window_size_value == 31337) && (tcp.options ==
03:03:0a:01:02:04:01:09:08:0a:ff:ff:ff:ff:00:00:00:00:04:02)

T6:
(ip.flags == 0x02) && (tcp.flags == 0x0010) &&
(tcp.window_size_value == 32768) && (tcp.options ==
03:03:0a:01:02:04:01:09:08:0a:ff:ff:ff:ff:00:00:00:00:04:02)

T7:
(ip.flags == 0x00) && (tcp.flags == 0x0029) &&
(tcp.window_size_value == 65535) && (tcp.options ==
03:03:0f:01:02:04:01:09:08:0a:ff:ff:ff:ff:00:00:00:00:04:02)

 35

Roy Cheok, r.cheok+giac@gmail.com

! Xprobe2 is a remote active OS fingerprinting tool developed by Sys-Security

Group (Sys-Security Group, n.d.). A series of Wireshark Display filters were

created from observation to identify some of the packets related to Xprobe2

version 2.1 (installed as part of the Linux Backtrack 5-R3 Penetrating Testing

distribution):

! (ip.flags == 0x00) && (icmp.type == 8) && (icmp.code == 0) &&
(data.len == 48)

! (ip.flags == 0x02) && (icmp.type == 8) && not (icmp.code == 0) &&
(data.len == 48)

! (ip.flags == 0x00) && (icmp.type == 13 && icmp.code == 0) &&
(icmp.seq == 0) && not (icmp[8:4] == 00:00:00:00)

! (ip.flags == 0x00) && (icmp.type == 15 && icmp.code == 0) &&
(icmp.seq == 0) && (not data)

! (ip.flags == 0x00) && (icmp.type == 17 && icmp.code == 0) &&
(icmp.seq == 0) && (icmp[8:4] == 00:00:00:00)

! (udp && not icmp) && (ip.ttl == 255) && (dns.flags.response == 1)
&& (dns.qry.name == "www.securityfocus.com")

! (udp && not icmp)&& (ip.flags == 0x02) && (udp.dstport == 161) &&
(snmp.name == 1.3.6.1.2.1.1.1.0)

! (udp && not icmp) && (ip.flags == 0x00) && (udp.srcport == 5555) &&
(udp.dstport == 161)

! (ip.flags == 0x02) && (ip.ttl == 1) && (tcp.flags == 0x0002) &&
(tcp.dstport == 65535) && (tcp.window_size_value == 0)

! (ip.flags == 0x02) && (tcp.flags == 0x0002) && (tcp.dstport ==
65535)

