
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and
block common web application attacks

GIAC GCIA Gold Certification

Author:	 Issac	 Museong	 Kim,	 iamissac@gmail.com	
Advisor:	 Antonios	 Atlasis	

	
Accepted:	 November	 17,	 2011	

	

Abstract	

A	 web	 application	 firewall	 is	 not	 as	 common	 as	 a	 network	 firewall	 is,	 but	 it	 has	 been	
catching	 our	 eyes	 in	 recent	 security	 news,	 security	 articles	 and	 conferences.	 Enterprise	 has	
been	 adopting	 this	 technology	 because	 it	 enhances	 web	 application	 security	 significantly.	
But	 configuring,	 implementing	 and	 maintaining	 this	 new	 technology	 is	 not	 trivial.	 To	 be	
successful	 in	 using	 it,	 you	 must	 understand	 application’s	 behavior	 thoroughly	 and	 carefully	
configure	 the	 firewall	 rules.	 Also,	 since	 commercial	 versions	 of	 this	 technology	 are	
expensive	 to	 purchase,	 implement	 and	 maintain,	 it	 is	 recommended	 to	 start	 with	 an	 open	
source	 product,	 such	 as	 Modsecurity,	 so	 you	 can	 determine	 if	 this	 solution	 is	 appropriate	
for	 your	 budget	 and	 environment.	 This	 paper	 will	 show	 how	 to	 analyze	 common	 web	
attacks	 by	 using	 WAF’s	 detection	 and	 logging	 ability	 along	 with	 Apache	 server’s	 logging	
ability.	 Finally,	 its	 effectiveness	 against	 some	 simple	 and	 some	 more	 advanced	 web	 attacks	
will	 be	 examined.	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 2
	

Issac Museong Kim, iamissac@gmail.com
	

1. Introduction
 Over the last few years, vulnerabilities in web applications have been the biggest threat in

information technology (IT) environment (Modsecurity, 2011). According to the open source

vulnerability database (OSVDB), web application threats become almost fifty percent of all

vulnerabilities in 2010 (HP DVlabs, 2010). You don’t have to be an expert in IT field to figure

out that web applications are being used widely in our everyday life as well as in the business

sector. Therefore, securing web applications is becoming one of the most important things you

need to pay attention as an end-user or as a business user (HP DVlabs, 2010).

A web application firewall (WAF) is a type of firewall that filters HTTP traffic based on

a rule set. It inspects the application layer so it usually comes as an appliance type or as a server

module. It generally identifies and blocks common web attacks such as cross-site scripting (XSS)

and SQL Injection by customizing the rules. Therefore, the customization of its rules is very

significant and requires high maintenance (Owasp, 2011).

 There are many ways to protect a web application, such as implementing a secure coding

practice, managing secure configuration, performing vulnerability assessment and deploying a

web application firewall, but there is no silver bullet that it will protect the application entirely.

Using a web application firewall is just one method that helps to protect such an application.

This technology is relatively new comparing with other technologies, but it can become a

powerful solution when you configure and use it properly (Mischel, 2009).

In this paper, Modsecurity is going to be used to demonstrate how to secure a web

application using a WAF. Modsecurity protects web applications from a range of web attacks

and allows monitoring of HTTP traffic with not many interference in the existing infrastructure

(Modsecurity, 2011). It is an open source WAF module for the Apache web server and it has

been maintained by SpiderLabs, Trustwave. Since this is an open source product, it comes with

free license and many users contribute to the community to improve and maintain the product

(Trustwave, 2011).

 A WAF is not a tool that just blocks the malicious activity on the application layer. It can

also be used to analyze and detect malicious traffic that attacks your critical application.

Therefore, this paper will also show how to analyze common web attacks by using WAF’s

detection and logging ability along with the Apache server’s logging ability.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 3
	

Issac Museong Kim, iamissac@gmail.com
	

2. Setting up and Configuring Modsecurity
2.1. System Setup

 This section describes the configuration of the testing lab. Figure 1 below shows the

Modsecurity architecture in a diagram. First, Fedora Linux 15 is used to host the application. It

requires some libraries such as libapr, libapr-util, libpcre, libxml2 and liblua (Modsecurity, 2011).

If the Apache server is not installed, the latest version of Apache is recommended. In this lab, the

Apache version 2.2.19 is used. After installing the Apache server, the damn vulnerable web

application (DVWA) is installed to illustrate the use of a WAF. DVWA is a framework of a

deliberately vulnerable web application to help the security testers to learn and test their security

skills regarding the protection of a web application (Ivey, 2010). Finally, Modsecurity 2.5.13 is

used to wrap the DVWA application in this lab. In order to use Modsecurity, it first needs to be

compiled. The compilation creates a file called mod_security2.so which is the Modsecurity plug-

in module for the Apache web server. The following line needs to be added to the Apache

configuration file http.conf, as shown below, to enable the Modsecurity module:

 LoadModule security2_module modules/mod_security2.so

After this line has been added, the Apache server needs to be restarted so as the Modsecurity

module to run within the Apache web server.

 Figure 1: Modsecurity Architecture.

2.2. Basic Configuration
Modsecurity has a configuration file called “modsec.conf”. It is recommended to put the

file into the directory /etc/httpd/conf.d/ so it gets loaded automatically whenever the Apache

Fedora	 Linux	 15z	

Apache	 2.2.19	 web	 server	

Modsecurity	 2.5.13	
DVWA	 1.0.7	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 4
	

Issac Museong Kim, iamissac@gmail.com
	

server is restarted. This configuration file contains startup rule sets with auditing settings. The

startup configuration is shown below.
<IfModule security2_module>

Turn rule engine on and set default action

SecRuleEngine On

SecDefaultAction "phase:2,deny,log,status:403"

#Turn Audit on

SecAuditEngine On

SecAuditLog logs/modsec_audit.log

</IfModule>

Figure 2: Modsecurity startup configuration file.

 It is important to understand what each line means. First of all, all rules and configuration

statements must be written between the tags <IfModule> and </IfModule>. Otherwise, it is going

to break the configuration or the rule can be ignored. “#” sign is used to put a comment.

“SecRuleEngine On” line turns the rule engine on which enables the rule processing.

“SecDefault Action” line takes actions when there is a matching rule in place. In this example, it

is going to deny the request with 403 HTTP error code and to write the result to the Apache error

log and Modsecurity audit log when there is any matching rule. However, since there is no

SecRule in the current configuration, it will allow any requests. “SecAuditEngine On” line turns

audit logging on for any transactions (Mischel, 2009). “SecAuditLog logs/modsec_audit.log”

line enables logs to be written to a modsec_audit.log file. In order to apply the configuration

changes, the Apache daemon must be restarted.

2.3. Basics of Rules and CRS (Core Rule Set)
 Modsecurity needs rules to operate. In Modsecurity, each one of these rules is called

SecRule. SecRule has many features and functions. The basic syntax of a rule, which will be

briefly explained later, is shown below:

SecRule Target Operation [Actions]

The ‘Target’ variable is a part of the request or the response that is going to be examined.

The ‘Operation’ is a part of the rule that is going to be compared with a matching variable. By

default, it uses regular expressions if nothing is specified. The ‘Actions’ are optional variables

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 5
	

Issac Museong Kim, iamissac@gmail.com
	

that perform specific actions when there is a matching variable. For example, it can either allow

or deny the web traffic by also returning the corresponding status codes. If no actions are

specified, it will take the settings from the SecDefaultAction statement (Mischel, 2009).

Modsecurity does not provide general protection against normal web attacks by default, unless

you install the appropriate rules. Writing such rules can be a complex and a time consuming

process. Therefore, Trustwave’s SpiderLabs founded the OWASP Modsecurity core rule set

(CRS) project. While intrusion detection systems depend on vulnerability signatures, CRS helps

Modsecurity to protect web applications from unknown vulnerabilities. The CRS rule set is very

easy to follow and deploy since it provides excellent comments; the most updated rule sets can

be downloaded from the OWASP Modsecurity CRS Project Site (Modsecurity, 2011).

3. Analyzing and blocking common web application attacks
 In this section, the most common vulnerabilities such as XSS and SQL injection are

exploited against DVWA. First, the attacks run without the Modsecurity blocking rules in place

and the results are analyzed by correlating Wireshark traffic captures, Apache access/error logs

and Modsecurity audit logs. Then, the appropriate blocking rule is placed in the Modsecurity

configuration file based on the analysis. Lastly, the attack runs again to verify the rule by

observing the response as well as by analyzing the logs to check if the attack is stopped.
3.1. Analyzing XSS attacks

 “XSS vulnerability enables an attacker to target other users of the application, potentially

gaining access to their data, performing unauthorized actions on their behalf, or carrying out

other attacks against them” (Stuttard & Pinto, 2007). In this study, the XSS injection string,

“%3C%2FTITLE%3E%3CSCRIPT%3Ealert%28%22XSS%22%29%3B%3C%2FSCRIPT%3E

#” is injected into the “name” parameter, as shown below:

http://127.0.0.1/dvwa/vulnerabilities/xss_r/?name=%3C%2FTITLE%3E%3CSCRIPT%3

Ealert%28%22XSS%22%29%3B%3C%2FSCRIPT%3E#

 Then the browser responds with a popup window displaying the message “XSS”, as

shown in Figure 3.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 6
	

Issac Museong Kim, iamissac@gmail.com
	

Figure 3: Browser screenshot of the XSS attack without an XSS blocking rule.

 Figure 4 shows the Wireshark capture during the attack. It shows a GET request with an

XSS injection script in the packet #4. Then, the packet #6 shows that it accepted the request and

runs the XSS script.

Figure 4: Wireshark screenshot of the XSS attack without an XSS blocking rule.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 7
	

Issac Museong Kim, iamissac@gmail.com
	

Figure 5 is from the Apache access log, which is located at “/etc/httpd/logs/access_log”

and it shows that it accepted the request to the web server.
127.0.0.1 - - [27/Sep/2011:21:31:47 -0700] "GET

/dvwa/vulnerabilities/xss_r/?name=%3C%2FTITLE%3E%3CSCRIPT%3Ealert(%22X

SS%22)%3B%3C%2FSCRIPT%3E HTTP/1.1" 200 4372 "-" "Mozilla/5.0 (X11;

Linux i686; rv:6.0.2) Gecko/20100101 Firefox/6.0.2"

Figure 5: Apache access log without an XSS blocking rule.

Figure 6 is from the Modsecurity audit log, which is located at

“/etc/httpd/logs/modsec_audit.log. The Modsecurity audit log has certain formats. First, it starts

with a unique identifying string such as “cb5e7204” to group the rest of the log entry. After this

string, it has a capital letter, such as “A”, which represents the audit log part. For example, “A”

represents an audit log header, “B” represents a request header, “F” represents a response header,

“H” represents an audit log trailer and “Z” represents the end of an audit log entry. There are

additional parts you can add by adding “SecAuditLogParts” line, but A, B, F, H and Z are the

default settings. As shown in Figure 6, Modsecurity allowed the request because by default, it

allows any requests that do not match with any SecRule.
--cb5e7204-A--

[27/Sep/2011:21:31:47 --0700] ToKjM38AAAEAAAvEEjAAAAAH 127.0.0.1 37879

127.0.0.1 80

--cb5e7204-B--

GET

/dvwa/vulnerabilities/xss_r/?name=%3C%2FTITLE%3E%3CSCRIPT%3Ealert(%22X

SS%22)%3B%3C%2FSCRIPT%3E HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; Linux i686; rv:6.0.2) Gecko/20100101

Firefox/6.0.2

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 8
	

Issac Museong Kim, iamissac@gmail.com
	

Connection: keep-alive

Cookie: security=low; PHPSESSID=ikat12q2sh3l43gnrqoqt4huf4

Cache-Control: max-age=0

--cb5e7204-F--

HTTP/1.1 200 OK

X-Powered-By: PHP/5.3.8

Expires: Tue, 23 Jun 2009 12:00:00 GMT

Cache-Control: no-cache, must-revalidate

Pragma: no-cache

Content-Length: 4372

Connection: close

Content-Type: text/html;charset=utf-8

--cb5e7204-H--

Apache-Handler: php5-script

Stopwatch: 1317184307086553 8511 (263 266 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).

Server: Apache/2.2.21 (Fedora)

--cb5e7204-Z--

Figure 6: Modsecurity Audit Log without an XSS blocking rule.

3.2. Blocking XSS attacks
 From the various logs in the above section, it is found that this XSS attack uses keywords

such as “SCRIPT” and “alert” in the uniform resource identifier (URI). The easy and quick way

to block this type of XSS attack is using a Target variable called “REQUEST_URI” which

examines a text in URI. For example, the following line is added to the configuration:

SecRule REQUEST_URI "SCRIPT"|”alert”
This rule denies any requests that include the words “SCRIPT” or “alert” in their URI.

Though this rule does not have a “deny” variable, it denies such requests because the

“SecDefaultAction” is set to “deny” in Figure 2. However, this is a very simple rule that can

block only simple XSS attacks. An attacker can bypass this type of filtering by encoding or by

injecting the script into other places, such as a cookie field. To block more advanced XSS attacks,

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 9
	

Issac Museong Kim, iamissac@gmail.com
	

you can add common attack strings to the existing rules, such as the ones presented in Table1, or

to include the corresponding XSS base rules from the CRS rule set.

Jscript onsubmit copyparentfolder document javascript meta onchange onmove

onerror onselect onmouseover onfocus javascript: alert background onunload

iframe lowsrc onmousemove vbscript livescript: script @import onresize

Table1: Common XSS attack strings.

When the same request was sent after placing the rule, the browser responded with a

“Forbidden” error code, as shown in Figure 7.

Figure 7: Browser response with the XSS blocking rule

Figure 8 shows the Wireshark capture during the attack. It shows the GET request that it

was sent with the aforementioned XSS injection script in the packet #4. Then, the packet #6

shows that it forbids the request.

Figure 8: Wireshark screenshot of the XSS attack with the XSS blocking rule.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 10
	

Issac Museong Kim, iamissac@gmail.com
	

Figure 9 is from the Apache error log which shows that it denied the request to the web

server.
 [Thu Sep 29 19:28:28 2011] [error] [client 127.0.0.1] ModSecurity:

Access denied with code 403 (phase 2). Pattern match "(SCRIPT|alert)"

at REQUEST_URI. [file "/etc/httpd/conf.d/modsec.conf"] [line "15"]

[hostname "127.0.0.1"] [uri "/dvwa/vulnerabilities/xss_r/"] [unique_id

ToUpTH8AAAEAAEgDDEYAAAAB"]

Figure 9: Apache error log with the XSS blocking rule.

As shown in Figure 10, the Modsecurity denied the request because it found the pattern in

the rule.
--22a47b2f-A--

[29/Sep/2011:19:28:28 --0700] ToUpTH8AAAEAAEgDDEYAAAAB 127.0.0.1 43415

127.0.0.1 80

--22a47b2f-B—

GET

/dvwa/vulnerabilities/xss_r/?name=%3C%2FTITLE%3E%3CSCRIPT%3Ealert%28%2

2XSS%22%29%3B%3C%2FSCRIPT%3E HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; Linux i686; rv:6.0.2) Gecko/20100101

Firefox/6.0.2

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Connection: keep-alive

Referer: http://127.0.0.1/dvwa/vulnerabilities/xss_r/

Cookie: security=low; PHPSESSID=ikat12q2sh3l43gnrqoqt4huf4

--22a47b2f-F—

HTTP/1.1 403 Forbidden

Content-Length: 304

Connection: close

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 11
	

Issac Museong Kim, iamissac@gmail.com
	

Content-Type: text/html; charset=iso-8859-1

--22a47b2f-H—

Message: Access denied with code 403 (phase 2). Pattern match

"(SCRIPT|alert)" at REQUEST_URI. [file

"/etc/httpd/conf.d/modsec.conf"] [line "15"]

Action: Intercepted (phase 2)

Stopwatch: 1317349708697236 5950 (1302 1605 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).

Server: Apache/2.2.21 (Fedora)

--22a47b2f-Z--

Figure 10: Modsecurity Audit Log with the XSS blocking rule.

3.3. Analyzing SQL Injection Attacks

 SQL Injection is another common web application attack method. This vulnerability

allows attackers to inject malicious SQL statements to interact with the backend database. From

this injection, the attacker may be able to obtain data as well as to execute malicious commands

to the database (Stuttard & Pinto, 2007). In this study, the SQL injection string (' union all select

user, password from dvwa.users#) was injected into the “id” parameter, as shown below:

http://127.0.0.1/dvwa/vulnerabilities/sqli/?id=%27+union+all+select+user%2C+passwor

d+from+dvwa.users%23&Submit=Submit#

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 12
	

Issac Museong Kim, iamissac@gmail.com
	

Then, the browser responded with a list of users and the corresponding password hashes,

as shown in Figure 11.

Figure 11: Browser screenshot of the SQL Injection attack without a blocking rule.

Figure 12 shows the Wireshark capture during the attack. It shows a GET request which

was sent with an SQL Injection script in the packet #4. Then, the packet #6 shows that it

accepted the request and displays the user ID as well as the hash.

Figure 12: Wireshark screenshot of SQL Injection attack without a blocking rule.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 13
	

Issac Museong Kim, iamissac@gmail.com
	

Figure 13 displays the Apache access log, which shows that it accepted the request to the

web server.
127.0.0.1 - - [30/Sep/2011:18:53:21 -0700] "GET

/dvwa/vulnerabilities/sqli/?id=%27+union+all+select+user%

2C+password+from+dvwa.users%23&Submit=Submit HTTP/1.1" 200 4990

"http://127.0.0.1/dvwa/vulnerabilities/sqli/" "Mozilla/5.0 (X11; Linux

i686; rv:6.0.2) Gecko/20100101 Firefox/6.0.2"

Figure 13: Apache access log without an SQL Injection blocking rule.

As shown in Figure 14, the Modsecurity allowed the request because it did not find any

matching SecRule.

--a396eb61-A--

[30/Sep/2011:18:53:21 --0700] ToZykX8AAAEAAEgEC-oAAAAC 127.0.0.1 34717

127.0.0.1 80

--a396eb61-B--

GET

/dvwa/vulnerabilities/sqli/?id=%27+union+all+select+user%2C+password+f

rom+dvwa.users%23&Submit=Submit HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; Linux i686; rv:6.0.2) Gecko/20100101

Firefox/6.0.2

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Connection: keep-alive

Referer: http://127.0.0.1/dvwa/vulnerabilities/sqli/

Cookie: security=low; PHPSESSID=ikat12q2sh3l43gnrqoqt4huf4

--a396eb61-F--

HTTP/1.1 200 OK

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 14
	

Issac Museong Kim, iamissac@gmail.com
	

X-Powered-By: PHP/5.3.8

Expires: Tue, 23 Jun 2009 12:00:00 GMT

Cache-Control: no-cache, must-revalidate

Pragma: no-cache

Content-Length: 4990

Connection: close

Content-Type: text/html;charset=utf-8

--a396eb61-H--

Apache-Handler: php5-script

Stopwatch: 1317434001221137 169753 (20956 20986 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).

Server: Apache/2.2.21 (Fedora)

--a396eb61-Z--

Figure 14: Modsecurity Audit Log without an SQL Injection blocking rule.

3.4. Blocking SQL Injection attack
 From the various logs in the above section, it is found that this SQL Injection attack uses

a keyword “union” in the argument. Similarly to the prevention of the XSS attack, you can add

the following SecRule line to the configuration to block the SQL Injection attack. In this

example, “msg” argument is added to the rule so it writes the log message that explains why it is

blocked:

SecRule ARGS "union” “msg: ‘SQL Injection’”

This rule denies any requests that include the keyword “union” as an argument. Again

this is a very simple type of SQL injection attacks. To block more advanced SQL Injection

attacks, you can add more common attack strings to the existing rule, such as the ones presented

in Table 2, or the corresponding SQL Injection base rules from the CRS rule set should be

included.

xor rlike -- and # union All ;

‘ drop delete having 1=1 admin Select

Table 2: Common SQL Injection attack strings.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 15
	

Issac Museong Kim, iamissac@gmail.com
	

When the same request was sent after placing the rule, the browser responded with

“Forbidden” error code, as shown in Figure 15.

Figure 15: Browser response with the SQL Injection blocking rule.

Figure 16 shows the Wireshark capture during the attack. It shows the GET request

which was sent with the aforementioned SQL injection script in the packet #4. Then, the packet

#6 shows that it forbids the request.

Figure 16: Wireshark screenshot of the SQL Injection attack with the SQL Injection blocking

rule.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 16
	

Issac Museong Kim, iamissac@gmail.com
	

Figure 17 displays the Apache error log that shows it denied the request to the web server.
[Fri Sep 30 20:35:11 2011] [error] [client 127.0.0.1] ModSecurity:

Access denied with code 403 (phase 2).

 Pattern match "union" at ARGS:id. [file

"/etc/httpd/conf.d/modsec.conf"] [line "16"] [msg "SQL Injection"]

[hostname "127.0.0.1"] [uri "/dvwa/vulnerabilities/sqli/"] [unique_id

"ToaKb38AAAEAAGXcEtcAAAAG"]

Figure 17: Apache error log with the SQL Injection blocking rule.

As shown in Figure 18, the Modsecurity denied the request, because it found the pattern

in the rule.
--2ef14200-A--

[30/Sep/2011:20:35:11 --0700] ToaKb38AAAEAAGXcEtcAAAAG 127.0.0.1 60564

127.0.0.1 80

--2ef14200-B--

GET

/dvwa/vulnerabilities/sqli/?id=%27+union+all+select+user%2C+passw

ord+from+dvwa.users%23&Submit=Submit HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; Linux i686; rv:6.0.2) Gecko/20100101

Firefox/6.0.2

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Connection: keep-alive

Referer: http://127.0.0.1/dvwa/vulnerabilities/sqli/

Cookie: security=low; PHPSESSID=ikat12q2sh3l43gnrqoqt4huf4

--2ef14200-F--

HTTP/1.1 403 Forbidden

Content-Length: 303

Connection: close

Content-Type: text/html; charset=iso-8859-1

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 17
	

Issac Museong Kim, iamissac@gmail.com
	

--2ef14200-H--

Message: Access denied with code 403 (phase 2). Pattern match "union"

at ARGS:id. [file "/etc/httpd/conf.

d/modsec.conf"] [line "16"] [msg "SQL Injection"]

Action: Intercepted (phase 2)

Stopwatch: 1317440111243660 80417 (793 79882 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).

Server: Apache/2.2.21 (Fedora)

--2ef14200-Z--

Figure 18: Modsecurity Audit Log with the SQL Injection blocking rule.

4. Attacking the application using automated tools
 In this section, automated testing tools such as XSS Me and Sqlmap are used to test for

XSS and SQL injection vulnerabilities. These automatic testing tools perform more complex and

a wider range of attacks to make sure the SecRule is safe enough to block such attacks. The use

of these tools will be explained briefly. Also, when the existing rules are not good enough to

block an attack, more comprehensive rules will be added after the appropriate analysis.

4.1. XSS attacks using XSS Me
 XSS Me is a Firefox plug-in created by Security Compass. This tool helps testers to run

XSS attacks against a target website instantly while browsing (Security Compass, 2010). XSS

Me performs 154 different types of XSS test by default. To make the test more comprehensive,

the attack strings from XSS cheat sheet by RSnake were added to the existing strings of XSS Me

(Hansen, 2008). So, 328 XSS tests were totally performed against the web application. To run

XSS Me, you first have to get to the URL that needs to be tested and then open the XSS Me side

bar. Figure 19 shows the interface of XSS Me. The “name” parameter was selected, then “run all

tests” was selected to run the attack. XSS Me runs against the same URL that was tested in

section 3.1 with the existing SecRule.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 18
	

Issac Museong Kim, iamissac@gmail.com
	

Figure 19: XSS Me interface.

Figure 20 shows that there were 6 Failures meaning that 6 XSS tests were successful

while there are 162 Warnings meaning that 162 XSS tests were not successful but it may were

vulnerable in other environment, and 160 XSS tests were passed meaning that 160 XSS tests

were not successful.

Figure 20: XSS testing with the existing SecRule using the XSS Me tool

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 19
	

Issac Museong Kim, iamissac@gmail.com
	

To block these 6 XSS attacks, the strings in Table1 are added to the existing SecRule that

was used to block the XSS attack, as shown below:

SecRule REQUEST_URI

"(Jscript|onsubmit|copyparentfolder|document|javascript|meta|Onchange|onmove|onerro

r|onselect|onmouseover|onfocus|javascript:|alert|background|onunload|iframe|lowsrc|on

mousemove|vbscript|livescript:|script|@import|onresize)"

SecRule ARGS

"(Jscript|onsubmit|copyparentfolder|document|javascript|meta|Onchange|onmove|onerro

r|onselect|onmouseover|onfocus|javascript:|alert|background|onunload|iframe|lowsrc|on

mousemove|vbscript|livescript:|script|@import|onresize)"

Figure 21 shows the test results with the updated SecRule in place. Out of 328 tests, there

were 0 failures meaning that all XSS tests were not successful and that they were blocked by

Modsecurity.

Figure 21: XSS testing with the updated SecRule using the XSS Me tool.

Lastly, the application was tested by using some of the XSS obfuscated strings that were

presented in the Black Hat USA 2009 by Eduardo Vela and David Linsay, as shown below (Vela

& Lindsay, 2009):

Figure 22 from the Modsecurity audit logs shows that these obfuscated attacks are

blocked by Modsecurity. However, this does not mean that the web application is safe against

any future obfuscated attack; hence, it is recommended to include the CRS rule set and update

them periodically.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 20
	

Issac Museong Kim, iamissac@gmail.com
	

GET

/dvwa/vulnerabilities/xss_r/?name=%3Cimg+src%3D%22x%3Aalert%22+onerro

r%3D%22eval%28src%252b%27%280%29%27%29%22%3E HTTP/1.1

--cf6ca670-H--

Message: Access denied with code 403 (phase 2). Pattern match

"(Jscript|onsubmit|copyparentfolder|document|javascript|meta|On

change|onmove|onerror|onselect|onmouseover|onfocus|javascript:|alert|

background|onunload|iframe|lowsrc|onmousemove|vbscript|livescript:|sc

ript|@import|onresize)" at REQUEST_URI. [file

"/etc/httpd/conf.d/modsec.conf"] [line "20"] [msg "XSS attack"]

--cf6ca670-B--

GET

/dvwa/vulnerabilities/xss_r/?name=%3Cimg+src%3D%22x%3Agif%22+onerror%

3D%22eval%28%27al%27%252b%27lert%280%29%27%29%22%3E HTTP/1.1

--cf6ca670-H--

Message: Access denied with code 403 (phase 2). Pattern match

"(Jscript|onsubmit|copyparentfolder|document|javascript|meta|On

change|onmove|onerror|onselect|onmouseover|onfocus|javascript:|alert|

background|onunload|iframe|lowsrc|onmousemove|vbscript|livescript:|sc

ript|@import|onresize)" at REQUEST_URI. [file

"/etc/httpd/conf.d/modsec.conf"] [line "20"] [msg "XSS attack"]

--cf6ca670-B--

GET

/dvwa/vulnerabilities/xss_r/?name=%3Cimg+src%3D%22x%3Agif%22+onerror%

3D%22window%5B%27al%5Cu0065rt%27%5D+%280%29%22%3E%3C%2Fimg%3E

HTTP/1.1

--cf6ca670-H--

Message: Access denied with code 403 (phase 2). Pattern match

"(Jscript|onsubmit|copyparentfolder|document|javascript|meta|On

change|onmove|onerror|onselect|onmouseover|onfocus|javascript:|alert|

background|onunload|iframe|lowsrc|onmousemove|vbscript|livescript:|sc

ript|@import|onresize)" at REQUEST_URI. [file

"/etc/httpd/conf.d/modsec.conf"] [line "20"] [msg "XSS attack"]

Figure 22: Modsecurity audit log of obfuscated XSS attacks with the updated SecRule

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 21
	

Issac Museong Kim, iamissac@gmail.com
	

4.2. SQL injection attacks using Sqlmap
 The Sqlmap is “an open source penetration testing tool that automates the process of

detecting and exploiting SQL injection flaws and taking over of database servers” (Damele &

Stampar 2011). Python interpreter version 2 or newer is required to run this tool. In this study,

the following command was run to identify SQL injection vulnerabilities:

./sqlmap.py -u

'http://127.0.0.1/dvwa/vulnerabilities/sqli/index.php?id=1&Submit=Submit#' --

cookie='security=low; PHPSESSID=ikat12q2sh3l43gnrqoqt4huf4' --dbms=MySQL --

tamper='tamper/randomcase.py, tamper/charencode.py' --level=5 --risk=3

Understanding the command above is important. First, “-u” switch sets the target URL

and “-- cookie” sets the cookie value. DVWA application uses a cookie value to authenticate the

users, so this value is required whenever the request is sent to the application. “--dbms” sets the

type of the database of the target application so it only injects the attack strings that works for the

specific database. In this experiment, it is already known that it uses a MySQL database from the

DVWA documentation (Ivey, 2011). “--tamper” option allows the obfuscation of the attack

strings in order to bypass the detection. “randomcase.py” script randomizes the attack strings and

“charencode.py” script encodes the characters. “--level” option sets the level of test to perform

meaning that level 1 uses limited number of tests whereas level 5 uses much larger amount of

tests. “--risk” option sets the risk of the tests to perform, meaning that risk 1 uses a limited

number of injection points whereas risk 3 uses a much larger amount of injection points (Damele

& Stampar 2011). Figure 23 shows the output of the testing against the SecRule that was created

in Section 3.4. The highlighted lines show that the tool injected 211 tests and the parameter “id”

is vulnerable.
sqlmap/1.0-dev (r4397) - automatic SQL injection and database takeover

tool

[18:10:54] [INFO] loading tamper script 'randomcase'

[18:10:54] [INFO] loading tamper script 'charencode'

 [18:10:54] [INFO] testing connection to the target url

[18:10:55] [INFO] testing if the url is stable, wait a few seconds

[18:10:56] [INFO] url is stable

[18:10:56] [INFO] testing if GET parameter 'id' is dynamic

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 22
	

Issac Museong Kim, iamissac@gmail.com
	

[18:10:56] [WARNING] GET parameter 'id' appears to be not dynamic

[18:10:56] [INFO] heuristic test shows that GET parameter 'id' might

be injectable (possible DBMS: MySQL)

[18:10:56] [INFO] testing sql injection on GET parameter 'id'

[18:10:56] [INFO] testing 'AND boolean-based blind - WHERE or HAVING

clause'

[18:10:58] [INFO] testing 'AND boolean-based blind - WHERE or HAVING

clause (Generic comment)'

[18:10:59] [INFO] testing 'OR boolean-based blind - WHERE or HAVING

clause'

[18:11:00] [INFO] GET parameter 'id' is 'OR boolean-based blind -

WHERE or HAVING clause' injectable

[18:11:00] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE or

HAVING clause'

[18:11:00] [INFO] GET parameter 'id' is 'MySQL >= 5.0 AND error-based

- WHERE or HAVING clause' injectable

[18:11:00] [INFO] testing 'MySQL > 5.0.11 stacked queries'

[18:11:00] [INFO] testing 'MySQL < 5.0.12 stacked queries (heavy

query)'

[18:11:00] [INFO] testing 'MySQL > 5.0.11 AND time-based blind'

[18:11:10] [INFO] GET parameter 'id' is 'MySQL > 5.0.11 AND time-based

blind' injectable

[18:11:10] [INFO] testing 'MySQL UNION query (NULL) - 1 to 10 columns'

[18:11:10] [INFO] target url appears to be UNION injectable with 2

columns

[18:11:10] [INFO] GET parameter 'id' is 'MySQL UNION query (NULL) - 1

to 10 columns' injectable

[18:11:10] [WARNING] in OR boolean-based injections, please consider

usage of switch --drop-set-cookie if you experience any problems

during data retrieval

GET parameter 'id' is vulnerable. Do you want to keep testing the

others? [y/N] N

sqlmap identified the following injection points with a total of 211

HTTP(s) requests:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 23
	

Issac Museong Kim, iamissac@gmail.com

Place: GET

Parameter: id

Type: boolean-based blind

Title: OR boolean-based blind - WHERE or HAVING clause

Payload: id=-2213' OR NOT (7100=7100) AND 'VBXM'='VBXM&Submit=Submit

Type: error-based

Title: MySQL >= 5.0 AND error-based - WHERE or HAVING clause

Payload: id=1' AND (SELECT 3198 FROM(SELECT

COUNT(*),CONCAT(CHAR(58,100,104,110,58),(SELECT (CASE WHEN (3198=3198)

THEN 1 ELSE 0 END)),CHAR(58,103,120,117,58),FLOOR(RAND(0)*2))x FROM

INFORMATION_SCHEMA.CHARACTER_SETS GROUP BY x)a) AND

'Ezsb'='Ezsb&Submit=Submit

Type: UNION query

Title: MySQL UNION query (NULL) - 2 columns

Payload: id=1' UNION ALL SELECT

CONCAT(CHAR(58,100,104,110,58),IFNULL(CAST(CHAR(121,104,70,108,121,115

,88,113,67,112) AS CHAR),CHAR(32)),CHAR(58,103,120,117,58)), NULL# AND

'diwU'='diwU&Submit=Submit

Type: AND/OR time-based blind

Title: MySQL > 5.0.11 AND time-based blind

Payload: id=1' AND SLEEP(5) AND 'AFme'='AFme&Submit=Submit

[18:11:18] [INFO] changes made by tampering scripts are not included

in shown payload content(s)

[18:11:18] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Fedora

web application technology: Apache 2.2.21, PHP 5.3.8

back-end DBMS: MySQL 5.0

Figure 23: SQL Injection testing with the existing SecRule using the Sqlmap tool.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 24
	

Issac Museong Kim, iamissac@gmail.com
	

To block this type of SQL injection attack, the strings in Table2 are added to the existing

SecRule, as shown below:

SecRule ARGS "(union|xor|rlike|--|#|union

all|;|‘|drop|delete|having|1=1|admin|select|and)" “msg: ‘SQL Injection’”

Figure 24 shows the test results with the SecRule above in place. The highlighted line

shows that the SQL injection is not successful and the request was forbidden 8425 times. Even

though the attack strings are obfuscated by using the “--tamper” option, it is still blocked by

Modsecurity. However, this does not mean that it is safe against any future obfuscated attacks, so

it is recommended to include the CRS rule set and update them periodically.
[21:19:50] [INFO] loading tamper script 'randomcase'

[21:19:50] [INFO] loading tamper script 'charencode'

[21:19:50] [INFO] using '/home/sqlmap/output/127.0.0.1/session' as

session file

[21:19:50] [INFO] testing connection to the target url

[21:19:50] [INFO] testing if the provided string is within the target

URL page content

[21:19:50] [INFO] testing if GET parameter 'id' is dynamic

[21:19:50] [INFO] confirming that GET parameter 'id' is dynamic

[21:19:50] [INFO] GET parameter 'id' is dynamic

[21:19:50] [WARNING] heuristic test shows that GET parameter 'id'

might not be injectable

[21:19:50] [INFO] testing sql injection on GET parameter 'id'

[21:21:15] [WARNING] GET parameter 'id' is not injectable

[21:21:15] [INFO] testing if GET parameter 'Submit' is dynamic

[21:21:15] [WARNING] GET parameter 'Submit' appears to be not dynamic

[21:21:15] [WARNING] heuristic test shows that GET parameter 'Submit'

might not be injectable

[21:21:15] [INFO] testing sql injection on GET parameter 'Submit'

[21:21:15] [INFO] testing 'AND boolean-based blind - WHERE or HAVING

clause'

[21:21:15] [INFO] GET parameter 'Submit' is 'AND boolean-based blind -

WHERE or HAVING clause' injectable

[21:21:21] [WARNING] GET parameter 'Submit' is not injectable

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 25
	

Issac Museong Kim, iamissac@gmail.com
	

[21:21:21] [INFO] testing if Referer parameter 'Referer' is dynamic

[21:21:21] [WARNING] Referer parameter 'Referer' appears to be not

dynamic

[21:21:21] [WARNING] heuristic test shows that Referer parameter

'Referer' might not be injectable

[21:21:21] [INFO] testing sql injection on Referer parameter 'Referer'

[21:23:59] [WARNING] Referer parameter 'Referer' is not injectable

[21:23:59] [INFO] testing if User-Agent parameter 'User-Agent' is

dynamic

[21:26:48] [WARNING] User-Agent parameter 'User-Agent' is not

injectable

[21:26:48] [INFO] testing if Cookie parameter 'security' is dynamic

[21:26:48] [WARNING] Cookie parameter 'security' appears to be not

dynamic

[21:26:48] [WARNING] heuristic test shows that Cookie parameter

'security' might not be injectable

[21:26:48] [INFO] testing sql injection on Cookie parameter 'security'

[21:29:53] [WARNING] Cookie parameter 'security' is not injectable

[21:29:53] [INFO] testing if Cookie parameter 'PHPSESSID' is dynamic

sqlmap got a 302 redirect to 'http://127.0.0.1:80/dvwa/login.php'. Do

you want to follow redirects from now on (or stay on the original

page)? [Y/n] n

[21:30:03] [INFO] confirming that Cookie parameter 'PHPSESSID' is

dynamic

[21:30:03] [INFO] Cookie parameter 'PHPSESSID' is dynamic

[21:30:03] [WARNING] heuristic test shows that Cookie parameter

'PHPSESSID' might not be injectable

[21:30:03] [INFO] testing sql injection on Cookie parameter

'PHPSESSID'

[21:35:05] [WARNING] Cookie parameter 'PHPSESSID' is not injectable

[21:35:05] [CRITICAL] all parameters appear to be not injectable.

[21:35:05] [WARNING] HTTP error codes detected during testing:

403 (Forbidden) - 8425 times

Figure 24: SQL Injection testing with the updated SecRule using the Sqlmap tool.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 26
	

Issac Museong Kim, iamissac@gmail.com
	

Lastly, the application was tested with one of the latest obfuscated SQL injection

techniques that were presented by the CWH Underground team (Phongthiproek, 2011). This

technique uses a MySQL server’s comment feature which is the “/*” character sequence to the

following “*/” character sequence with a new line character such as “%0D%0A”. Combining

these two methods, it allows the attack strings to extend over multiple lines so Modsecurity fails

to detect the pattern (Phongthiproek, 2011). The attack string “' union all select user, password

from dvwa.users#” from the section 3.3 was obfuscated as following:

‘union%23foo%2F*bar%0D%0Aall%20select%23foo%0D%0Auser%2Cpassword%20fr

om%20from%20dvwa.users%23

The above stings are equivalent to the following SQL payload:

 ' union#foo*/*bar

 all select#foo

user, password from dvwa.users#

But when these strings are passed to the MySQL database, they are interpreted as following:

' union all select user, password from dvwa.users#

Figure 25 from the Modsecurity audit log shows that the attack was not successful and that it was

blocked by Modsecurity. However, this may work against different types of SecRule or

applications so it is worth to try it. The CWH Underground team proved that the attack was

successful against the application that utilizes the CRS SQL injection rule version 2.2.1. As of

this writing, the latest version of CRS SQL injection rule is 2.2.2 so, it is recommended to update

the rules frequently if the CRS rule set is used.
--aa2d3934-A--

[29/Oct/2011:18:01:14 --0700] Tqyh2n8AAAEAAAjUCgoAAAAD 192.168.63.1

46195 192.16

8.63.157 80

--aa2d3934-B--

GET

/dvwa/vulnerabilities/sqli/?id=%E2%80%98union%2523foo%252F*bar%25

0D%250Aall%2520select%2523foo%250D%250Auser%252Cpassword%2520from

%2520from%2520dvwa.users%2523&Submit=Submit HTTP/1.1

Host: 192.168.63.157

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 27
	

Issac Museong Kim, iamissac@gmail.com
	

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-alive

Referer: http://192.168.63.157/dvwa/vulnerabilities/sqli/

Cookie: security=low; PHPSESSID=osqeourqqjacdph85t9oi58ji3

--aa2d3934-F--

HTTP/1.1 403 Forbidden

Content-Length: 308

Connection: close

Content-Type: text/html; charset=iso-8859-1

--aa2d3934-H--

Message: Access denied with code 403 (phase 2). Pattern match

"(union|xor|or|rli

ke|--|#|all|'|drop|delete|having|select|and)" at ARGS:id. [file

"/etc/httpd/conf

.d/modsec.conf"] [line "24"]

Action: Intercepted (phase 2)

Stopwatch: 1319936474504182 9305 (1552 8952 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).

Server: Apache/2.2.21 (Fedora)

--aa2d3934-Z--

Figure 25: Example of an advanced obfuscating SQL Injection attack.

5. Successful implementation of Modsecurity
 In the above section, the deny rule was added to block the attacks right after the

corresponding analysis, but in real world this is a very dangerous approach, because, it may

break some legitimate application functions. For example, one of the demonstrated XSS attacks

was blocked by restricting the use of the “SCRIPT” string in the URI. This method worked in the

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 28
	

Issac Museong Kim, iamissac@gmail.com
	

above example, but if a critical function of the application has the word “script” in the URI, this

will break the application. As a security professional, it is important to consider availability as

well as confidentiality and integrity of the application server. In this section, it is going to be

discussed how to implement Modsecurity successfully for your application.

5.1. Whitelisting model vs. Blacklisting model
 When implementing a WAF for an application, it is very important to choose either the

whitelisting or the blacklisting model. With the whitelisting model, exact actions of the

application needs to be defined in the rule set and the WAF will only allow the requests that were

specified in the rule set. Any other requests will be denied. Therefore, the whitelisting method

provides high security and protection against new types of attacks, but it is really difficult to

implement because you need a detailed knowledge of the application; any misinterpretation of

the application behavior causes the failure of the application (Mischel, 2009).

On the other hand, with the blacklisting model, you only have to specify the requests you

want to block and all other request will be allowed. So, it is much easier to implement it than the

whitelisting approach and it is less likely that the application will fail. However, it is weak

against attacks that were not defined in the rule set.

5.2. Log Mode
 In the previous section, both the whitelisting and the blacklisting model were discussed,

but the last one will be examined further for the rest of the section. In the above testing, the

“SecDefaultAction” was set to a deny mode so it only denies every request that is matched by

SecRule, while any other request is allowed. Again, this is a very dangerous approach to start

with; instead, it is recommended to use the log mode which allows the requests that are matched

by a SecRule to create a log entry. To enable the log mode, you need to change the “deny”

variable to “pass” from the “SetDefaultAction” line of configuration file, as shown below. If you

have used any deny action for individual rules which supersede the default action, you need to

change it to “pass, log” as well.

SecDefaultAction "phase: 2, pass, log”

When you use the log mode, it does not affect the functionality of the web application

because it does not block any request. You need to carefully examine the logs and find out what

requests have been logged by the Modsecurity audit log. If a valid request is caught by any

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 29
	

Issac Museong Kim, iamissac@gmail.com
	

SecRule and appears in the log, you need to modify your SecRule accordingly. But going

through the tons of log entries is a difficult task. To help with log auditing, it is a good idea to

use the “msg” option, as shown in Section 3.4. Using this “msg” option, you can specify why the

traffic is logged and you can find out easily which rule you need to fix. Also, it is a good idea to

setup a log monitoring system that can parse the large amount of logs easily.

5.3. Deny Mode
 You can’t stay in the log mode forever. When you are not seeing any more legitimate

traffic getting logged by the SecRule during the log mode for a reasonable amount of time, you

have to make a decision to go to the deny mode, which denies the requests that are matched by

SecRule. To enable the deny mode, you need to change the “pass” variable to “deny” from the

SetDefaultAction” line of the configuration file, as shown below. Again, if you have used any

pass action for an individual rule which supersedes the default action, you need to change it to

“deny, log, redirect:127.0.0.1/dvwa/” as well.

SecDefaultAction "phase: 2, deny, log, redirect:127.0.0.1/dvwa/”

When the request gets denied, it is wise to redirect the traffic to the default website

instead of displaying error messages, because it is not appropriate to show to the customers an

error message or to provide any clue to the attackers. As shown above, the “redirect” action is

used to redirect the traffic to the homepage of the DVWA web application when the request gets

denied. Even though you have spent reasonable amount time in the log mode, there is always a

chance of misconfiguration or a new type of traffic to be denied. For example, there can be a

critical process that only runs once a year, but it happens to include a string that gets denied by

the existing SecRule. Therefore, it is important to prepare a system that monitors the denied

requests and alerts the administrator immediately so he or she can check the logs to investigate

the case.

6. Conclusions
 Web applications have been evolving so fast and they have become one of the most

important things that we can’t live without, such as electricity and water. The use of web

applications will not stop increasing but, on the other hand, attackers will not stop trying to

penetrate your applications to. Implementing a web application firewall is a great method to

protect your application from web attacks. However, the cost and the complexity of

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 30
	

Issac Museong Kim, iamissac@gmail.com
	

implementing a WAF are huge. If you are new to the WAF technology, you should start with an

open source technology, such as Modsecurity, to learn the technology. Then, as a next step, you

can test your small application. Once you are confident with the technology, you can start

implementing it for your main application in order to protect it.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Using Web Application Firewall to detect and block common web application attacks | 31
	

Issac Museong Kim, iamissac@gmail.com
	

7. References
Damele , B. , & Stampar , M. (2011) . Sqlmaps ' s user manual . Ret r ieved f rom

ht tp : / / sq lmap.sourceforge .ne t /doc/README.pdf

Hansen , R. (2008) . Xss chea t shee t . Ret r ieved f rom

ht tp : / /ha .ckers .org /xss .h tml

HP DVlabs , (2010) . 2010 fu l l year top cyber secur i t y r i s k s r epor t .
Re t r i eved f rom h t tp : / / dv labs . t i pp ingpo in t . com/ img/Fu l lYea r2010
R i sk Repor t . pd f

Ivey , T . (2010) . Damn vulnerable web appl ica t ion o f f ic ia l documentat ion .
Ret r ieved f rom
ht tps : / /dvwa.svn .sourceforge .ne t / svnroot /dvwa/docs /DVWA_v1.3 .
pdf

Mische l , M(2009) . Modsecur i t y 2 .5 . (1 s t ed .) . B i rmingham, UK: Pack t
Pub l i sh ing L td .

Modsecu r i ty , (2011) . Modsecur i t y r e f e rence manua l . T rus twave Ho ld ings ,
Inc .Re t r i eved f rom h t tp : / / sou rce fo rge .ne t / apps /med iawik i /mod-
secu r i ty / index .php? t i t l e=Refe rence_Manua l

Owasp , (2011) . Web app l i ca t ion f i r ewa l l . Re t r i eved f rom
h t tp s : / /www.owasp .o rg / index .php /Web_Appl i ca t ion_F i rewa l l 	

Phongthiproek , P . (2011) . Beyond sq l i : Obfuscate and bypass . Ret r ieved
f rom ht tp : / /www.explo i t -db .com/papers /17934/

S tu t t a rd , D , & P in to , M(2007) . The web app l i ca t ion hacker ' s handbook . (1
ed .) . I nd ianapo l i s , IN : Wi ley& Sons Pub l i sh ing .

Secu r i ty Compass . (2010) . Re t r i eved f rom h t tp s : / / addons .moz i l l a .o rg / en -
US/ f i r e fox /addon /xs s -me /

T rus twave , (2011) . New modsecur i t y r e l ease inc ludes key da ta pro tec t ion
advancemen t s . Re t r i eved f rom
h t tp s : / /www. t rus twave . com/pres sRe leases .php?n=new-
modsecur i ty - r e l ease - inc ludes -key -da ta -p ro t ec t ion -advancemen t s 	

Vela , E . , & Lindsay , D. (2009) . Our favor i te xss f i l ters / ids . Ret r ieved f rom
ht tp : / /www.blackhat .com/presenta t ions /bh-usa-
09/VELANAVA/BHUSA09-VelaNava-Favor i teXSS-SLIDES.pdf

