GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Using Web Application Firewall to detect and
block common web application attacks

GIAC GCIA Gold Certification

Author: Issac Museong Kim, iamissac@gmail.com
Advisor: Antonios Atlasis

Accepted: November 17, 2011

Abstract

A web application firewall is not as common as a network firewall is, but it has been
catching our eyes in recent security news, security articles and conferences. Enterprise has
been adopting this technology because it enhances web application security significantly.
But configuring, implementing and maintaining this new technology is not trivial. To be
successful in using it, you must understand application’s behavior thoroughly and carefully
configure the firewall rules. Also, since commercial versions of this technology are
expensive to purchase, implement and maintain, it is recommended to start with an open
source product, such as Modsecurity, so you can determine if this solution is appropriate
for your budget and environment. This paper will show how to analyze common web
attacks by using WAF’s detection and logging ability along with Apache server’s logging
ability. Finally, its effectiveness against some simple and some more advanced web attacks
will be examined.

Using Web Application Firewall to detect and block common web application attacks | 2

1. Introduction

Over the last few years, vulnerabilities in web applications have been the biggest threat in
information technology (IT) environment (Modsecurity, 2011). According to the open source
vulnerability database (OSVDB), web application threats become almost fifty percent of all
vulnerabilities in 2010 (HP DVlabs, 2010). You don’t have to be an expert in IT field to figure
out that web applications are being used widely in our everyday life as well as in the business
sector. Therefore, securing web applications is becoming one of the most important things you
need to pay attention as an end-user or as a business user (HP DVlabs, 2010).

A web application firewall (WAF) is a type of firewall that filters HTTP traffic based on
a rule set. It inspects the application layer so it usually comes as an appliance type or as a server
module. It generally identifies and blocks common web attacks such as cross-site scripting (XSS)
and SQL Injection by customizing the rules. Therefore, the customization of its rules is very
significant and requires high maintenance (Owasp, 2011).

There are many ways to protect a web application, such as implementing a secure coding
practice, managing secure configuration, performing vulnerability assessment and deploying a
web application firewall, but there is no silver bullet that it will protect the application entirely.
Using a web application firewall is just one method that helps to protect such an application.
This technology is relatively new comparing with other technologies, but it can become a
powerful solution when you configure and use it properly (Mischel, 2009).

In this paper, Modsecurity is going to be used to demonstrate how to secure a web
application using a WAF. Modsecurity protects web applications from a range of web attacks
and allows monitoring of HTTP traffic with not many interference in the existing infrastructure
(Modsecurity, 2011). It is an open source WAF module for the Apache web server and it has
been maintained by SpiderLabs, Trustwave. Since this is an open source product, it comes with
free license and many users contribute to the community to improve and maintain the product
(Trustwave, 2011).

A WAF is not a tool that just blocks the malicious activity on the application layer. It can
also be used to analyze and detect malicious traffic that attacks your critical application.
Therefore, this paper will also show how to analyze common web attacks by using WAF’s

detection and logging ability along with the Apache server’s logging ability.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 3

2. Setting up and Configuring Modsecurity
2.1. System Setup

This section describes the configuration of the testing lab. Figure 1 below shows the
Modsecurity architecture in a diagram. First, Fedora Linux 15 is used to host the application. It
requires some libraries such as libapr, libapr-util, libpcre, libxml2 and liblua (Modsecurity, 2011).
If the Apache server is not installed, the latest version of Apache is recommended. In this lab, the
Apache version 2.2.19 is used. After installing the Apache server, the damn vulnerable web
application (DVWA) is installed to illustrate the use of a WAF. DVWA is a framework of a
deliberately vulnerable web application to help the security testers to learn and test their security
skills regarding the protection of a web application (Ivey, 2010). Finally, Modsecurity 2.5.13 is
used to wrap the DVWA application in this lab. In order to use Modsecurity, it first needs to be
compiled. The compilation creates a file called mod_security2.so which is the Modsecurity plug-
in module for the Apache web server. The following line needs to be added to the Apache
configuration file http.conf, as shown below, to enable the Modsecurity module:

LoadModule security?2 _module modules/mod_security2.so
After this line has been added, the Apache server needs to be restarted so as the Modsecurity

module to run within the Apache web server.

Fedora Linux 15z

Apache 2.2.19 web server

DVWA 1.0.7

Figure 1: Modsecurity Architecture.
2.2. Basic Configuration

Modsecurity has a configuration file called “modsec.conf™. It is recommended to put the

file into the directory /etc/httpd/conf.d/ so it gets loaded automatically whenever the Apache

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 4

server is restarted. This configuration file contains startup rule sets with auditing settings. The

startup configuration is shown below.

<IfModule security2 module>
Turn rule engine on and set default action
SecRuleEngine On
SecDefaultAction "phase:2,deny,log,status:403"
#Turn Audit on
SecAuditEngine On
SecAuditLog logs/modsec audit.log

</IfModule>

Figure 2: Modsecurity startup configuration file.

It is important to understand what each line means. First of all, all rules and configuration
statements must be written between the tags <I[fModule> and </IfModule>. Otherwise, it is going
to break the configuration or the rule can be ignored. “#” sign is used to put a comment.
“SecRuleEngine On” line turns the rule engine on which enables the rule processing.
“SecDefault Action” line takes actions when there is a matching rule in place. In this example, it
is going to deny the request with 403 HTTP error code and to write the result to the Apache error
log and Modsecurity audit log when there is any matching rule. However, since there is no
SecRule in the current configuration, it will allow any requests. “SecAuditEngine On” line turns
audit logging on for any transactions (Mischel, 2009). “SecAuditLog logs/modsec_audit.log”
line enables logs to be written to a modsec_audit.log file. In order to apply the configuration

changes, the Apache daemon must be restarted.

2.3. Basics of Rules and CRS (Core Rule Set)

Modsecurity needs rules to operate. In Modsecurity, each one of these rules is called
SecRule. SecRule has many features and functions. The basic syntax of a rule, which will be
briefly explained later, is shown below:

SecRule Target Operation [Actions]

The ‘Target’ variable is a part of the request or the response that is going to be examined.
The ‘Operation’ is a part of the rule that is going to be compared with a matching variable. By

default, it uses regular expressions if nothing is specified. The ‘Actions’ are optional variables

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 5

that perform specific actions when there is a matching variable. For example, it can either allow
or deny the web traffic by also returning the corresponding status codes. If no actions are
specified, it will take the settings from the SecDefaultAction statement (Mischel, 2009).
Modsecurity does not provide general protection against normal web attacks by default, unless
you install the appropriate rules. Writing such rules can be a complex and a time consuming
process. Therefore, Trustwave’s SpiderLabs founded the OWASP Modsecurity core rule set
(CRS) project. While intrusion detection systems depend on vulnerability signatures, CRS helps
Modsecurity to protect web applications from unknown vulnerabilities. The CRS rule set is very
easy to follow and deploy since it provides excellent comments; the most updated rule sets can

be downloaded from the OWASP Modsecurity CRS Project Site (Modsecurity, 2011).

3. Analyzing and blocking common web application attacks

In this section, the most common vulnerabilities such as XSS and SQL injection are
exploited against DVWA. First, the attacks run without the Modsecurity blocking rules in place
and the results are analyzed by correlating Wireshark traffic captures, Apache access/error logs
and Modsecurity audit logs. Then, the appropriate blocking rule is placed in the Modsecurity
configuration file based on the analysis. Lastly, the attack runs again to verify the rule by

observing the response as well as by analyzing the logs to check if the attack is stopped.
3.1. Analyzing XSS attacks

“XSS vulnerability enables an attacker to target other users of the application, potentially
gaining access to their data, performing unauthorized actions on their behalf, or carrying out
other attacks against them” (Stuttard & Pinto, 2007). In this study, the XSS injection string,
“%3C%2FTITLE%3E%3CSCRIPT%3Ealert%28%22XSS5%22%29%3B%3C%2FSCRIPT%3E
#” is injected into the “name” parameter, as shown below:

http://127.0.0.1/dvwa/vulnerabilities/xss_r/?name=%3C%2FTITLE%3E%3CSCRIPT%3
Ealert%28%22X55%22%29%3B%3C%2FSCRIPT%3E#

Then the browser responds with a popup window displaying the message “XSS”, as

shown in Figure 3.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 6

G B http//127.00.1/dvwalvulnerabiltes/xss.r/name=<42F TITLE><S CRIPT>alert('XSS' V. MV salert("XSS")</SCRIPTQ)

Figure 3: Browser screenshot of the XSS attack without an XSS blocking rule.

Figure 4 shows the Wireshark capture during the attack. It shows a GET request with an
XSS injection script in the packet #4. Then, the packet #6 shows that it accepted the request and
runs the XSS script.

ul

No. Time Source ~ Destination Protocol Info

1 2001-09-27 20:30:47,080969 127.0.0.1 127.0.0.1 TP 37879 > http [SYN] SeqzD Win=32792 Len=0 NSS=16366 SHCK_PERVEL TSV=S500437 TSERED USe5

22000-09-27 20:30:47,083046 127.0.0.1 127.0.0.1 TP http > 37679 [SYN, ACK] Sea=0 Ack=L Win=32768 Len=) MSS=16396 SACK PERN=L TSV=S500437 TSEReS500437 WS:6
32011-09-27 20:301:47.083062 127.0.0.1 127.0.0.1 TC 37879 > ittp [ACK] Seael Acke]. Vine32832 Len=) TSV=5500437 TSER=S500437

4 2011-09-27 20:30:47.086406 127,0.0.1 127.0.0.1 HTP {GET /dwa/vulnerabilties/xss r/Inane=43Cy2rTITLERSERACSCRIPTS3Ealert (52249522 BBAACKFSKRIPTAAE HITP/L.1
S 2011:09-27 20:30:07.08634 127,0.0.1 127,001 TC http > 37879 [ACK] SegeL Ack=507 Win=33856 Len=) TS=5500441 TSER=55004

6 2011-09-27 20:31:47.094776 127.0.0.1 127.0.0.1 WP HITR/L1 200 0K (text htal)

7 2011-09-27 20:30:47.09806 127.0.0.1 127.0.0.1 TC° 37879 > hitp [AK] Seqe507 Ack=4666 Win=49280 Len0 TSV=S500448 TSERe3500M48

GV ALaTR]

\r\n

\t\teprestiello ¢/TITLESSCRIPToalert (" XSS! ¢/ SCRIPTo</prea\ i
\rin

Figure 4: Wireshark screenshot of the XSS attack without an XSS blocking rule.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 7

Figure 5 is from the Apache access log, which is located at “/etc/httpd/logs/access_log”

and it shows that it accepted the request to the web server.

127.0.0.1 - - [27/Sep/2011:21:31:47 -0700] "GET
/dvwa/vulnerabilities/xss r/?name=%3C%2FTITLE$3E$3CSCRIPT$3Ealert (%22X
SS%22) %$3B%$3C%2FSCRIPTS3E HTTP/1.1" 200 4372 "-" "Mozilla/5.0 (X11;
Linux 1686; rv:6.0.2) Gecko/20100101 Firefox/6.0.2"

Figure 5: Apache access log without an XSS blocking rule.

Figure 6 is from the Modsecurity audit log, which is located at
“/etc/httpd/logs/modsec_audit.log. The Modsecurity audit log has certain formats. First, it starts
with a unique identifying string such as “cb5e7204” to group the rest of the log entry. After this
string, it has a capital letter, such as “A”, which represents the audit log part. For example, “A”
represents an audit log header, “B” represents a request header, “F” represents a response header,
“H” represents an audit log trailer and “Z” represents the end of an audit log entry. There are
additional parts you can add by adding “SecAuditLogParts” line, but A, B, F, H and Z are the
default settings. As shown in Figure 6, Modsecurity allowed the request because by default, it

allows any requests that do not match with any SecRule.

--cb5e7204-A--

[27/Sep/2011:21:31:47 --0700] ToKjM38AAAEAAAVEEJjAAAAAH 127.0.0.1 37879
127.0.0.1 80

--cb5e7204-B--

GET

/dvwa/vulnerabilities/xss r/?name=%3C%2FTITLE$3E$3CSCRIPT$3Ealert (%22X
SS%22) $3B%3C%2FSCRIPTS3E HTTP/1.1

Host: 127.0.0.1

User—-Agent: Mozilla/5.0 (X11; Linux 1686; rv:6.0.2) Gecko/20100101
Firefox/6.0.2

Accept:

text/html,application/xhtml+xml, application/xml;g=0.9,*/*;g=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: IS0-8859-1,utf-8;9g=0.7,*;9=0.7

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 8

Connection: keep-alive

Cookie: security=low; PHPSESSID=ikatl2g2sh3143gnrgogt4hufd
Cache-Control: max-age=0

--cb5e7204-F--

HTTP/1.1 200 OK

X-Powered-By: PHP/5.3.8

Expires: Tue, 23 Jun 2009 12:00:00 GMT

Cache-Control: no-cache, must-revalidate

Pragma: no-cache

Content-Length: 4372

Connection: close

Content-Type: text/html;charset=utf-8

--cb5e7204-H--

Apache-Handler: php5-script

Stopwatch: 1317184307086553 8511 (263 266 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).
Server: Apache/2.2.21 (Fedora)

--cb5e7204-Z2--

Figure 6: Modsecurity Audit Log without an XSS blocking rule.

3.2. Blocking XSS attacks

From the various logs in the above section, it is found that this XSS attack uses keywords
such as “SCRIPT” and “alert” in the uniform resource identifier (URI). The easy and quick way
to block this type of XSS attack is using a Target variable called “REQUEST URI” which
examines a text in URI. For example, the following line is added to the configuration:

SecRule REQUEST URI "SCRIPT"| "alert”
This rule denies any requests that include the words “SCRIPT” or “alert” in their URL

Though this rule does not have a “deny” variable, it denies such requests because the
“SecDefaultAction” is set to “deny” in Figure 2. However, this is a very simple rule that can
block only simple XSS attacks. An attacker can bypass this type of filtering by encoding or by

injecting the script into other places, such as a cookie field. To block more advanced XSS attacks,

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 9

you can add common attack strings to the existing rules, such as the ones presented in Tablel, or

to include the corresponding XSS base rules from the CRS rule set.

Jscript | onsubmit | copyparentfolder | document | javascript | meta | onchange onmove

onerror | onselect | onmouseover onfocus | javascript: | alert | background | onunload

iframe | lowsrc onmousemove vbscript | livescript: | script | @import onresize

Tablel: Common XSS attack strings.
When the same request was sent after placing the rule, the browser responded with a

“Forbidden” error code, as shown in Figure 7.

oS ||_l http://127.0.0.1/dvwa/vulnerabilitie r/?name= 2FTITLE RIPT>alert("X ' v G'i

Forbidden

You don't have permission to access /dvwa/vulnerabilities/xss_r/ on this server.

Apache/2.2.21 (Fedora) Server at 127.0.0.1 Port 80

Figure 7: Browser response with the XSS blocking rule

Figure 8 shows the Wireshark capture during the attack. It shows the GET request that it
was sent with the aforementioned XSS injection script in the packet #4. Then, the packet #6

shows that it forbids the request.

(=]
No. Time Source Destination Protocol Info

12011-09-29 19:28:28,692976 127.0.0.1 127.0.0.1 TCP 43415 > http [SYN] Seq=0 Win=32792 Len=0 NSS=16396 SACK_PERM=1 TSV=170902047 TSER=0 WS=6

2 2011-09-29 19:28:28.693027 127.0.0.1 127.0.0.1 TGP http > 43415 [SYN, ACK] Seq=0 Ack=1 Win=32768 Len=0 MSS=16396 SACK_PERM=1 TS=170902047 TSER=170902047 WS=6
32011-09-29 19:28:28.693058 127.0.0.1 127.0.0.1 TCP 43415 > http [ACK] Seq=l Ack=1 Win=32832 Len=0 TSV=170902047 TSER=170902047

42011-09-29 19:28:28.696238 127.0.0.1 127.0.0.1 HITP GET /dvwa/vulnerabilyties/xss_r/2name=43Ck2TITLER3EA3CSCRIPT%3EAl ert%28522K05422%2953B%3CH2FSCRIPTH3E HTTP/1.1
5 2011-09-29 19:28:28.696359 127.0.0.1 127.0.0.1 TCP http > 43415 [ACK] Seq=L Ack=540 Win=33856 Len=0 TS\=170902051 TSER=170902050

D Frame 6: 550 bytes on wire (4400 bits), 550 bytes captured (4400 bits)
) Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
) Internet Protocol, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
b Transmission Control Protocol, Src Port: http (80), Dst Port: 43415 (43415), Seq: 1, Ack: 540, Len: 484
v Hypertext Transfer Protocol
D HTTP/1.1 403 Forbidden\r\n

Figure 8: Wireshark screenshot of the XSS attack with the XSS blocking rule.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 10

Figure 9 is from the Apache error log which shows that it denied the request to the web

SCrver.

[Thu Sep 29 19:28:28 2011] [error] [client 127.0.0.1] ModSecurity:
Access denied with code 403 (phase 2). Pattern match " (SCRIPT|alert)"
at REQUEST URI. [file "/etc/httpd/conf.d/modsec.conf"] [line "15"]
[hostname "127.0.0.1"] [uri "/dvwa/vulnerabilities/xss r/"] [unique id

ToUpTHSAAAEAAEgGDDEYAAAAB"]

Figure 9: Apache error log with the XSS blocking rule.

As shown in Figure 10, the Modsecurity denied the request because it found the pattern in

the rule.

--22a47b2f-A--

[29/Sep/2011:19:28:28 --0700] ToUpTH8AAAEAAEgGDDEYAAAAB 127.0.0.1 43415
127.0.0.1 80

--22a47b2f-B—

GET

/dvwa/vulnerabilities/xss r/?name=%3C%2FTITLE%3E%3CSCRIPT%3Ealert%28%2
2XS55%22%29%3B%3C%2FSCRIPTS3E HTTP/1.1

Host: 127.0.0.1

User—-Agent: Mozilla/5.0 (X11; Linux 1686; rv:6.0.2) Gecko/20100101
Firefox/6.0.2

Accept:

text/html,application/xhtml+xml, application/xml;qg=0.9,*/*;g=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;9=0.7

Connection: keep-alive

Referer: http://127.0.0.1/dvwa/vulnerabilities/xss r/

Cookie: security=low; PHPSESSID=ikatl2g2sh3143gnrgogt4hufd
--22a47b2f-F—

HTTP/1.1 403 Forbidden

Content-Length: 304

Connection: close

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 11

Content-Type: text/html; charset=iso-8859-1

--22a47b2f-H—

Message: Access denied with code 403 (phase 2). Pattern match

" (SCRIPT|alert)" at REQUEST URI. [file
"/etc/httpd/conf.d/modsec.conf"] [line "15"]

Action: Intercepted (phase 2)

Stopwatch: 1317349708697236 5950 (1302 1605 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).
Server: Apache/2.2.21 (Fedora)

--22a47b2f-72--

Figure 10: Modsecurity Audit Log with the XSS blocking rule.

3.3. Analyzing SQL Injection Attacks
SQL Injection is another common web application attack method. This vulnerability
allows attackers to inject malicious SQL statements to interact with the backend database. From
this injection, the attacker may be able to obtain data as well as to execute malicious commands
to the database (Stuttard & Pinto, 2007). In this study, the SQL injection string (' union all select
user, password from dvwa.users#) was injected into the “id” parameter, as shown below:

http://127.0.0.1/dvwa/vulnerabilities/sqli/?1d=%27+union+all+selectt+user%2C+passwor

d+from+dvwa.users%23&Submit=Submit#

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 12

Then, the browser responded with a list of users and the corresponding password hashes,

as shown in Figure 11.

a

Vulnerability: SQL Injection

User ID:
[|| Submit |
ID: ' union all select user, password from dvwa.users#

First name: admin
Surname: 5f4dcc3bSaa765d61dE327deb882cf 99

ID: ' union all select user, password from dvwa.users#
First name: gordonb
Surname: 299al8c428cb38d5f260853678922e03

ID: ' union all select user, password from dvwa.users#
First name: 1337
Surname: B8d3533d75ae2¢3966d7e0d4fcc69216b

ID: ' union all select user, password from dvwa.users#
First name: pablo
Surname: 0d107d09fSbbed40cade3deSc71e9e8b7

ID: ' union all select user, password from dvwa.users#
First name: smithy
Surname: S5fddcc3bSaa765d61de327deb882cf 99

Figure 11: Browser screenshot of the SQL Injection attack without a blocking rule.

Figure 12 shows the Wireshark capture during the attack. It shows a GET request which
was sent with an SQL Injection script in the packet #4. Then, the packet #6 shows that it
accepted the request and displays the user ID as well as the hash.

=]

No. Time Source ~ Destination Protocol Info

12011-09-30 18:53:21,209258 127.0.0.1 127.0.0.1 TCP Mm>mmWMM$MMMHWM$MMWUWﬂEHWMMH%WH

2 2011-09-30 18:53:21,209296 127,0.0.1 127.0.0.1 TCP hm>WNWMMUmﬂMHMM%MWM%M%WUWﬂKHW%MWMW%MWS
32011-09-30 18:53:21,209320 127,0.0.1 127.0.0.1 TCP 34717 » http [AcK] Seq=l Ack=1 Win=32832 Len=) TSV=255194564 TSER=255194564

4 2011-09-30 18:53:21,209430 127.0.0.1 127.0.0.1 HITP GET /dwa/wulnerabilities/sql1 /71d=s274untontal Liselecttusert2CpassiordH romtdva. usersk236Subm t=Subm t HITP/1.1
5 2011-09-30 18:53:21,209520 127,0.0.1 127.0.0.1 TCP http > W17 [AcK] Seq=l Ack=542 Win=33856 Len=0 TSV=255194564 TSER=235104564

6 2001-00-30 18:53:21,376904 127.0.0.1 127.0.0.1 HITP HITP/L1 200 0K (text/tml)

(truncated] \t\tepresID: ' union all select user, password fron dwa,userséebrsFirst name: admnebrsSurnane: 5tddocobSaa7esdeld8327debe82ct99e/presepresiD: ' nion all seled

Figure 12: Wireshark screenshot of SQL Injection attack without a blocking rule.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 13

Figure 13 displays the Apache access log, which shows that it accepted the request to the

web server.

127.0.0.1 - - [30/Sep/2011:18:53:21 -0700] "GET
/dvwa/vulnerabilities/sqgli/?id=%27+union+all+select+user$
2C+password+from+dvwa.users$23&Submit=Submit HTTP/1.1" 200 4990
"http://127.0.0.1/dvwa/vulnerabilities/sqgli/" "Mozilla/5.0 (X11; Linux
1686; rv:6.0.2) Gecko/20100101 Firefox/6.0.2"

Figure 13: Apache access log without an SQL Injection blocking rule.

As shown in Figure 14, the Modsecurity allowed the request because it did not find any

matching SecRule.

--a396eb6l-A--

[30/Sep/2011:18:53:21 --0700] ToZykX8AAAEAAEgEC-0AAAAC 127.0.0.1 34717
127.0.0.1 80

--a396eb6l-B--

GET
/dvwa/vulnerabilities/sqli/?id=%27+union+all+select+user%2C+password+f
rom+dvwa.users%$23&Submit=Submit HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; Linux 1686; rv:6.0.2) Gecko/20100101
Firefox/6.0.2

Accept:

text/html,application/xhtml+xml, application/xml;g=0.9,*/*;g=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;9=0.7

Connection: keep-alive

Referer: http://127.0.0.1/dvwa/vulnerabilities/sqgli/

Cookie: security=low; PHPSESSID=ikatl2g2sh3143gnrgogt4hufd
--a396eb6l-F--

HTTP/1.1 200 OK

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 14

X-Powered-By: PHP/5.3.8

Expires: Tue, 23 Jun 2009 12:00:00 GMT
Cache-Control: no-cache, must-revalidate

Pragma: no-cache

Content-Length: 4990

Connection: close

Content-Type: text/html;charset=utf-8
--a396eb6l-H--

Apache-Handler: php5-script

Stopwatch: 1317434001221137 169753 (20956 20986 -)
Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).
Server: Apache/2.2.21 (Fedora)

--a396eb6l-72--

Figure 14: Modsecurity Audit Log without an SQL Injection blocking rule.

3.4. Blocking SQL Injection attack

From the various logs in the above section, it is found that this SQL Injection attack uses
a keyword “union” in the argument. Similarly to the prevention of the XSS attack, you can add
the following SecRule line to the configuration to block the SQL Injection attack. In this
example, “msg” argument is added to the rule so it writes the log message that explains why it is
blocked:

SecRule ARGS "union” “msg: ‘SQOL Injection’”

This rule denies any requests that include the keyword “union” as an argument. Again
this is a very simple type of SQL injection attacks. To block more advanced SQL Injection
attacks, you can add more common attack strings to the existing rule, such as the ones presented
in Table 2, or the corresponding SQL Injection base rules from the CRS rule set should be

included.

XOr rlike -- and # union | All ;

drop delete having 1=1 admin | Select

Table 2: Common SQL Injection attack strings.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 15

When the same request was sent after placing the rule, the browser responded with

“Forbidden” error code, as shown in Figure 15.

a

ﬁw |D http://127.0.0.1/dvwa/vulnerabilities/sqli/?id="+union+all+select+user’%2 C+pa: .. ¥|C

[403 Forbidden |+

Forbidden

You don't have permission to access /dvwa/vulnerabilities/sqli/ on this server.

Apache/2.2.21 (Fedora) Server at 127.0.0.1 Port 80

Figure 15: Browser response with the SQL Injection blocking rule.

Figure 16 shows the Wireshark capture during the attack. It shows the GET request

which was sent with the aforementioned SQL injection script in the packet #4. Then, the packet

#6 shows that it forbids the request.

[=]

No. Time Source~ Destination Protocol Info

1 2011-09-30 20:35:11.202784 127.0.0.1 127.0.0.1 TC 60564 > http [SHN] Seg=0 Wan=32792 Len=0 NSS=16396 SACK PERN=L TSV=21304597 TSERHD =6
22000093 20:35:10, 20818 127.0.0.1 127.0.0.1 T http > 60564 SN, ACK] Seq=0 Acke1 Win=32768 Len=0 MSS=16396 SHCK PERNEL TSV=261304597 TSER=261304567 WS
32001-00-30 20:35:10. 20080 127.0.0.1 127.0.0.1 T 60564 > http [AcK] Seael. Ack=L Win=32832 Len=) TSV=261304697 TSER:261304597
420000930 20:35:10, 200967 127.0.0.0 127.0.0.1 HTP T /dwa/vulnerabuLatoes/sqla/d=k27vummonsal selectsuser2CHpassiordsfromkdiva, usersk236Subm t=Submit HTPL.1
S 2000-09-30 20:35:10. 28028 127.0.0.1 127.0.0.1 T http > 60564 A0k Seael Ack=542 Wn=33856 Len=0 TSV=261304597 TSER=26130457
6 2001-09-30 20:3%5: 10,3317 127.0.0.1 127.0.0.1 HTP HTTP/LL1 403 Forbadden (texthtnl)

N
WL R

D [Expert Info (cat/Sequence): HITR/L.1 403 Forbidden\r\n]
Request Version: HTTP/L1
Response Code: 403

Figure 16: Wireshark screenshot of the SQL Injection attack with the SQL Injection blocking

rule.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 16

Figure 17 displays the Apache error log that shows it denied the request to the web server.

[Fri Sep 30 20:35:11 2011] [error] [client 127.0.0.1] ModSecurity:
Access denied with code 403 (phase 2).

Pattern match "union" at ARGS:id. [file
"/etc/httpd/conf.d/modsec.conf"] [line "16"] [msg "SQL Injection"]
[hostname "127.0.0.1"] [uri "/dvwa/vulnerabilities/sqgli/"] [unique id

"ToaKb38AAAEAAGXCEtcAAAAG"]

Figure 17: Apache error log with the SQL Injection blocking rule.

As shown in Figure 18, the Modsecurity denied the request, because it found the pattern

in the rule.

--2efl14200-A--

[30/8ep/2011:20:35:11 --0700] ToaKb38AAAEAAGXCEtcAAAAG 127.0.0.1 60564
127.0.0.1 80

--2efl14200-B--

GET
/dvwa/vulnerabilities/sqli/?id=%27+union+all+select+user%2C+passw
ord+from+dvwa.users%$23&Submit=Submit HTTP/1.1

Host: 127.0.0.1

User-Agent: Mozilla/5.0 (X11; Linux 1686; rv:6.0.2) Gecko/20100101
Firefox/6.0.2

Accept:
text/html,application/xhtml+xml, application/xml;qg=0.9,*/*;g=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip, deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;9=0.7

Connection: keep-alive

Referer: http://127.0.0.1/dvwa/vulnerabilities/sqgli/

Cookie: security=low; PHPSESSID=ikatl2g2sh3143gnrgogt4hufd

--2efl14200-F--

HTTP/1.1 403 Forbidden

Content-Length: 303

Connection: close

Content-Type: text/html; charset=iso-8859-1

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 17

--2efl14200-H--

Message: Access denied with code 403 (phase 2). Pattern match "union"
at ARGS:id. [file "/etc/httpd/conf.

d/modsec.conf"] [line "16"] [msg "SQL Injection"]

Action: Intercepted (phase 2)

Stopwatch: 1317440111243660 80417 (793 79882 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).

Server: Apache/2.2.21 (Fedora)

--2efl14200-2--

Figure 18: Modsecurity Audit Log with the SQL Injection blocking rule.

4. Attacking the application using automated tools

In this section, automated testing tools such as XSS Me and Sqlmap are used to test for
XSS and SQL injection vulnerabilities. These automatic testing tools perform more complex and
a wider range of attacks to make sure the SecRule is safe enough to block such attacks. The use
of these tools will be explained briefly. Also, when the existing rules are not good enough to

block an attack, more comprehensive rules will be added after the appropriate analysis.

4.1. XSS attacks using XSS Me

XSS Me is a Firefox plug-in created by Security Compass. This tool helps testers to run
XSS attacks against a target website instantly while browsing (Security Compass, 2010). XSS
Me performs 154 different types of XSS test by default. To make the test more comprehensive,
the attack strings from XSS cheat sheet by RSnake were added to the existing strings of XSS Me
(Hansen, 2008). So, 328 XSS tests were totally performed against the web application. To run
XSS Me, you first have to get to the URL that needs to be tested and then open the XSS Me side
bar. Figure 19 shows the interface of XSS Me. The “name” parameter was selected, then “run all
tests” was selected to run the attack. XSS Me runs against the same URL that was tested in

section 3.1 with the existing SecRule.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 18

XSS Me

XSS-Me is a tocol to aid in testing for Cross-Site Scripting vulnerabilities in the
current page.

[Test all forms with all attacks]

[Test all forms with top attacks]

XSS | URLs |

name

= | =

=] [Submit ~]

(R

Figure 19: XSS Me interface.

Figure 20 shows that there were 6 Failures meaning that 6 XSS tests were successful
while there are 162 Warnings meaning that 162 XSS tests were not successful but it may were
vulnerable in other environment, and 160 XSS tests were passed meaning that 160 XSS tests

were not successful.

Security

il Test Results
XSS String Tests Summary (328 tests executed)

Failures: E
Warnings: 162
Passes: (G O

XSS String Test Results

Submitted Form State:
unnamed field: Submit

Results:

DOM was modified by attack string. Field appears to be very vulnerable to XSS String.
Tested value: <xml id="X"><a><script>document.vulnerable=true;</script>;</a=</xml>

DOM was modified by attack string. Field appears to be very vulnerable to XSS String.
Tested value: <<script=document vulnerable=true;</script>

Figure 20: XSS testing with the existing SecRule using the XSS Me tool

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 19

To block these 6 XSS attacks, the strings in Tablel are added to the existing SecRule that
was used to block the XSS attack, as shown below:

SecRule REQUEST URI

"(Jscript|onsubmit|copyparentfolder|document|javascript|meta|Onchange|onmove|onerro

rlonselect|onmouseover|onfocus|javascript:|alert|background|onunload|iframe|lowsrc|on

mousemove|vbscript|livescript:|script|@import|onresize)”

SecRule ARGS

"(Jscript|onsubmit|copyparentfolder|document|javascript|meta|Onchange|onmove|onerro

rlonselect|onmouseover|onfocus|javascript:|alert|background|onunload|iframe|lowsrc|on

mousemove|vbscript|livescript:|script|@import|onresize)”

Figure 21 shows the test results with the updated SecRule in place. Out of 328 tests, there
were 0 failures meaning that all XSS tests were not successful and that they were blocked by

Modsecurity.

o

XSS String Tests Summary (328 tests executed)

Failures: b
Warnings: 162

Passes: | 0

Figure 21: XSS testing with the updated SecRule using the XSS Me tool.

Lastly, the application was tested by using some of the XSS obfuscated strings that were
presented in the Black Hat USA 2009 by Eduardo Vela and David Linsay, as shown below (Vela
& Lindsay, 2009):

Figure 22 from the Modsecurity audit logs shows that these obfuscated attacks are
blocked by Modsecurity. However, this does not mean that the web application is safe against

any future obfuscated attack; hence, it is recommended to include the CRS rule set and update

them periodically.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 20

GET

/dvwa/vulnerabilities/xss r/?name=%3Cimg+src%3D%$22x%3Aalert%22+onerro
r%$3D%22eval%28src%$252b%27%280%29%27%29%22%3E HTTP/1.1

--cfb6cab70-H--

Message: Access denied with code 403 (phase 2). Pattern match

" (Jscript|onsubmit |copyparentfolder|document|javascript|meta|On
change|onmove|onerror |onselect|onmouseover|onfocus|javascript: |alert|
background|onunload|iframe|lowsrc|onmousemove |vbscript|livescript: |sc
ript|@import|onresize)" at REQUEST URI. [file
"/etc/httpd/conf.d/modsec.conf"] [line "20"] [msg "XSS attack"]
--cfb6cab70-B--

GET

/dvwa/vulnerabilities/xss r/?name=%$3Cimg+src%3D%22x%$3Agif%22+onerrors
3D%22eval%28%27al%27%252b%271ert%280%29%27%29%22%3E HTTP/1.1
--cf6ca670-H--

Message: Access denied with code 403 (phase 2). Pattern match

" (Jscript|onsubmit |copyparentfolder|document|javascript|meta|On
change|onmove|onerror|onselect|onmouseover|onfocus|javascript: |alert|
background|onunload|iframe|lowsrc|onmousemove |vbscript|livescript: |sc
ript|@import|onresize)" at REQUEST URI. [file
"/etc/httpd/conf.d/modsec.conf"] [line "20"] [msg "XSS attack"]
--cf6ca670-B--

GET

/dvwa/vulnerabilities/xss r/?name=%3Cimg+src%3D%$22x%3Agif%22+onerrors
3D%22window$5B%27al%$5Cu0065rt%27%5D+%280%29%22%3E%$3C%$2Fimg%3E
HTTP/1.1

--cf6ca670-H--

Message: Access denied with code 403 (phase 2). Pattern match

" (Jscript|onsubmit |copyparentfolder|document|javascript|meta|On
change|onmove|onerror|onselect|onmouseover|onfocus|javascript: |alert]|
background|onunload|iframe|lowsrc|onmousemove |vbscript|livescript: |sc
ript|@import|onresize)" at REQUEST URI. [file

"/etc/httpd/conf.d/modsec.conf"] [line "20"] [msg "XSS attack"]

Figure 22: Modsecurity audit log of obfuscated XSS attacks with the updated SecRule

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 21

4.2. SQL injection attacks using Sqlmap

The Sqlmap is “an open source penetration testing tool that automates the process of
detecting and exploiting SQL injection flaws and taking over of database servers” (Damele &
Stampar 2011). Python interpreter version 2 or newer is required to run this tool. In this study,
the following command was run to identify SQL injection vulnerabilities:

/sqlmap.py -u

'hitp://127.0.0.1/dvwa/vulnerabilities/sqli/index.php ?id= [&Submit=Submit#' --

cookie='"security=low;, PHPSESSID=ikatl2q2sh3143gnrqoqt4huf4' --dbms=MySQL --

tamper="tamper/randomcase.py, tamper/charencode.py' --level=5 --risk=3

Understanding the command above is important. First, “-u” switch sets the target URL
and “-- cookie” sets the cookie value. DVWA application uses a cookie value to authenticate the
users, so this value is required whenever the request is sent to the application. “--dbms” sets the
type of the database of the target application so it only injects the attack strings that works for the
specific database. In this experiment, it is already known that it uses a MySQL database from the
DVWA documentation (Ivey, 2011). “--tamper” option allows the obfuscation of the attack
strings in order to bypass the detection. “randomcase.py” script randomizes the attack strings and
“charencode.py” script encodes the characters. “--level” option sets the level of test to perform
meaning that level 1 uses limited number of tests whereas level 5 uses much larger amount of
tests. “--risk” option sets the risk of the tests to perform, meaning that risk 1 uses a limited
number of injection points whereas risk 3 uses a much larger amount of injection points (Damele
& Stampar 2011). Figure 23 shows the output of the testing against the SecRule that was created
in Section 3.4. The highlighted lines show that the tool injected 211 tests and the parameter “id”

1s vulnerable.

sglmap/l.0-dev (r4397) - automatic SQL injection and database takeover
tool
[18:10:54] [INFO] loading tamper script 'randomcase'
[18:10:54] [INFO] loading tamper script 'charencode'
[18:10:54] [INFO] testing connection to the target url
[18:10:55] [INFO] testing if the url is stable, wait a few seconds
[18:10:56] [INFO] url is stable
[18:10:56] [INFO] testing if GET parameter 'id' is dynamic

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 22

[18:10:56] [WARNING] GET parameter 'id' appears to be not dynamic
[18:10:56] [INFO] heuristic test shows that GET parameter 'id' might
be injectable (possible DBMS: MySQL)

[18:10:56] [INFO] testing sgl injection on GET parameter 'id'
[18:10:56] [INFO] testing 'AND boolean-based blind - WHERE or HAVING
clause'

[18:10:58] [INFO] testing 'AND boolean-based blind - WHERE or HAVING
clause (Generic comment)'

[18:10:59] [INFO] testing 'OR boolean-based blind - WHERE or HAVING
clause'

[18:11:00] [INFO] GET parameter 'id' is 'OR boolean-based blind -
WHERE or HAVING clause' injectable

[18:11:00] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE or
HAVING clause'

[18:11:00] [INFO] GET parameter 'id' is 'MySQL >= 5.0 AND error-based
- WHERE or HAVING clause' injectable

[18:11:00] [INFO] testing 'MySQL > 5.0.11 stacked queries'

[18:11:00] [INFO] testing 'MySQL < 5.0.12 stacked queries (heavy
query) '

[18:11:00] [INFO] testing 'MySQL > 5.0.11 AND time-based blind'
[18:11:10] [INFO] GET parameter 'id' is 'MySQL > 5.0.11 AND time-based
blind' injectable

[18:11:10] [INFO] testing 'MySQL UNION query (NULL) - 1 to 10 columns'
[18:11:10] [INFO] target url appears to be UNION injectable with 2
columns

[18:11:10] [INFO] GET parameter 'id' is 'MySQL UNION query (NULL) - 1
to 10 columns' injectable

[18:11:10] [WARNING] in OR boolean-based injections, please consider
usage of switch --drop-set-cookie if you experience any problems
during data retrieval

GET parameter 'id' is vulnerable. Do you want to keep testing the
others? [y/N] N

sgqlmap identified the following injection points with a total of 211

HTTP (s) requests:

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 23

Place: GET

Parameter: id

Type: boolean-based blind

Title: OR boolean-based blind - WHERE or HAVING clause

Payload: id=-2213" OR NOT (7100=7100) AND 'VBXM'='VBXM&Submit=Submit

Type: error-based

Title: MySQL >= 5.0 AND error-based - WHERE or HAVING clause

Payload: id=1' AND (SELECT 3198 FROM(SELECT

COUNT (*) , CONCAT (CHAR (58,100,104,110,58), (SELECT (CASE WHEN (3198=3198)
THEN 1 ELSE 0 END)),CHAR(58,103,120,117,58),FLOOR (RAND(0)*2))x FROM
INFORMATION SCHEMA.CHARACTER SETS GROUP BY x)a) AND

'Ezsb'="Ezsb&Submit=Submit

Type: UNION query

Title: MySQL UNION query (NULL) - 2 columns

Payload: id=1' UNION ALL SELECT

CONCAT (CHAR(58,100,104,110,58) , IFNULL (CAST (CHAR(121,104,70,108,121,115
,88,113,67,112) AS CHAR),CHAR(32)),CHAR(58,103,120,117,58)), NULL# AND
'diwU'="diwU&Submit=Submit

Type: AND/OR time-based blind

Title: MySQL > 5.0.11 AND time-based blind

Payload: id=1' AND SLEEP(5) AND 'AFme'='AFme&Submit=Submit
[18:11:18] [INFO] changes made by tampering scripts are not included
in shown payload content (s)

[18:11:18] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Fedora

web application technology: Apache 2.2.21, PHP 5.3.8

back-end DBMS: MySQL 5.0

Figure 23: SQL Injection testing with the existing SecRule using the Sqlmap tool.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 24

To block this type of SQL injection attack, the strings in Table2 are added to the existing
SecRule, as shown below:

SecRule ARGS "(union|xor|rlike|--|#union

all

Figure 24 shows the test results with the SecRule above in place. The highlighted line

" <« ”»

msg: ‘SQL Injection’

;| ‘|drop|delete|having|1=1|admin|select|and
shows that the SQL injection is not successful and the request was forbidden 8425 times. Even
though the attack strings are obfuscated by using the “--tamper” option, it is still blocked by
Modsecurity. However, this does not mean that it is safe against any future obfuscated attacks, so

it is recommended to include the CRS rule set and update them periodically.

[21:19:50] [INFO] loading tamper script 'randomcase'

[21:19:50] [INFO] loading tamper script 'charencode'

[21:19:50] [INFO] using '/home/sglmap/output/127.0.0.1/session’' as
session file

[21:19:50] [INFO] testing connection to the target url

[21:19:50] [INFO] testing if the provided string is within the target
URL page content

[21:19:50] [INFO] testing if GET parameter 'id' is dynamic

[21:19:50] [INFO] confirming that GET parameter 'id' is dynamic
[21:19:50] [INFO] GET parameter 'id' is dynamic

[21:19:50] [WARNING] heuristic test shows that GET parameter 'id'
might not be injectable

[21:19:50] [INFO] testing sgl injection on GET parameter 'id'
[21:21:15] [WARNING] GET parameter 'id' is not injectable

[21:21:15] [INFO] testing if GET parameter 'Submit' is dynamic
[21:21:15] [WARNING] GET parameter 'Submit' appears to be not dynamic
[21:21:15] [WARNING] heuristic test shows that GET parameter 'Submit'
might not be injectable

[21:21:15] [INFO] testing sgl injection on GET parameter 'Submit'
[21:21:15] [INFO] testing 'AND boolean-based blind - WHERE or HAVING
clause'

[21:21:15] [INFO] GET parameter 'Submit' is 'AND boolean-based blind -
WHERE or HAVING clause' injectable

[21:21:21] [WARNING] GET parameter 'Submit' is not injectable

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 25

[21:21:21] [INFO] testing if Referer parameter 'Referer' is dynamic
[21:21:21] [WARNING] Referer parameter 'Referer' appears to be not
dynamic

[21:21:21] [WARNING] heuristic test shows that Referer parameter
'Referer' might not be injectable

[21:21:21] [INFO] testing sgl injection on Referer parameter 'Refer
[21:23:59] [WARNING] Referer parameter 'Referer' is not injectable
[21:23:59] [INFO] testing if User-Agent parameter 'User-Agent' is
dynamic

[21:26:48] [WARNING] User-Agent parameter 'User-Agent' is not
injectable

[21:26:48] [INFO] testing if Cookie parameter 'security' is dynamic
[21:26:48] [WARNING] Cookie parameter 'security' appears to be not
dynamic

[21:26:48] [WARNING] heuristic test shows that Cookie parameter
'security' might not be injectable

[21:26:48] [INFO] testing sgl injection on Cookie parameter 'securi
[21:29:53] [WARNING] Cookie parameter 'security' 1is not injectable
[21:29:53] [INFO] testing if Cookie parameter 'PHPSESSID' is dynami
sglmap got a 302 redirect to 'http://127.0.0.1:80/dvwa/login.php'.
you want to follow redirects from now on (or stay on the original
page)? [Y/n] n

[21:30:03] [INFO] confirming that Cookie parameter 'PHPSESSID' is
dynamic

[21:30:03] [INFO] Cookie parameter 'PHPSESSID' is dynamic
[21:30:03] [WARNING] heuristic test shows that Cookie parameter
'"PHPSESSID' might not be injectable

[21:30:03] [INFO] testing sgl injection on Cookie parameter
'PHPSESSID'

[21:35:05] [WARNING] Cookie parameter 'PHPSESSID' is not injectable
[21:35:05] [CRITICAL] all parameters appear to be not injectable.
[21:35:05] [WARNING] HTTP error codes detected during testing:

403 (Forbidden) - 8425 times

er'

ty'!

e}

Do

Figure 24: SQL Injection testing with the updated SecRule using the Sqlmap tool.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 26

Lastly, the application was tested with one of the latest obfuscated SQL injection
techniques that were presented by the CWH Underground team (Phongthiproek, 2011). This
technique uses a MySQL server’s comment feature which is the “/*” character sequence to the
following “*/” character sequence with a new line character such as “%0D%0A”. Combining
these two methods, it allows the attack strings to extend over multiple lines so Modsecurity fails
to detect the pattern (Phongthiproek, 2011). The attack string “' union all select user, password
from dvwa.users#” from the section 3.3 was obfuscated as following:

‘union%23f00%2F *bar?0D%0Aall%20select%23f00%0D%0Auser%s2 Cpassword %2 0fr

om%?20from%20dvwa.users%23
The above stings are equivalent to the following SQL payload:

"union#foo*/*bar

all select#foo

user, password from dvwa.users#

But when these strings are passed to the MySQL database, they are interpreted as following:

"union all select user, password from dvwa.users#

Figure 25 from the Modsecurity audit log shows that the attack was not successful and that it was
blocked by Modsecurity. However, this may work against different types of SecRule or
applications so it is worth to try it. The CWH Underground team proved that the attack was
successful against the application that utilizes the CRS SQL injection rule version 2.2.1. As of
this writing, the latest version of CRS SQL injection rule is 2.2.2 so, it is recommended to update

the rules frequently if the CRS rule set is used.

--aa2d3934-A--

[29/0ct/2011:18:01:14 --0700] Tgyh2n8AAAEAAAJUCgoOAAAAD 192.168.63.1
46195 192.16

8.63.157 80

--a2a2d3934-B--

GET
/dvwa/vulnerabilities/sqli/?1id=%E2%80%98union%2523f00%252F*bar%25
0D%250Rall%2520select$2523£f00%250D%250Auser%s252Cpasswords2520£from
$2520from%2520dvwa.users%2523&Submit=Submit HTTP/1.1

Host: 192.168.63.157

User—-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 27

Accept:
text/html, application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8
Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: IS0-8859-1,utf-8;9g=0.7,*;9=0.7
Keep-Alive: 115
Connection: keep-alive
Referer: http://192.168.63.157/dvwa/vulnerabilities/sqli/
Cookie: security=low; PHPSESSID=osgeourqgqgjacdph85t90i58ji3
--aa2d3934-F--
HTTP/1.1 403 Forbidden
Content-Length: 308
Connection: close
Content-Type: text/html; charset=iso-8859-1
--aa2d3934-H--
Message: Access denied with code 403 (phase 2). Pattern match

" (union|xor|or|rli

ke|--]#]all|"'|drop|delete|having|select|and)" at ARGS:id. [file
"/etc/httpd/conf
.d/modsec.conf"] [line "24"]

Action: Intercepted (phase 2)

Stopwatch: 1319936474504182 9305 (1552 8952 -)

Producer: ModSecurity for Apache/2.5.13 (http://www.modsecurity.org/).
Server: Apache/2.2.21 (Fedora)

--aa2d3934-72--

Figure 25: Example of an advanced obfuscating SQL Injection attack.

5. Successful implementation of Modsecurity

In the above section, the deny rule was added to block the attacks right after the
corresponding analysis, but in real world this is a very dangerous approach, because, it may
break some legitimate application functions. For example, one of the demonstrated XSS attacks

was blocked by restricting the use of the “SCRIPT” string in the URI. This method worked in the

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 28

above example, but if a critical function of the application has the word “script” in the URI, this
will break the application. As a security professional, it is important to consider availability as
well as confidentiality and integrity of the application server. In this section, it is going to be

discussed how to implement Modsecurity successfully for your application.

5.1. Whitelisting model vs. Blacklisting model

When implementing a WAF for an application, it is very important to choose either the
whitelisting or the blacklisting model. With the whitelisting model, exact actions of the
application needs to be defined in the rule set and the WAF will only allow the requests that were
specified in the rule set. Any other requests will be denied. Therefore, the whitelisting method
provides high security and protection against new types of attacks, but it is really difficult to
implement because you need a detailed knowledge of the application; any misinterpretation of
the application behavior causes the failure of the application (Mischel, 2009).

On the other hand, with the blacklisting model, you only have to specify the requests you
want to block and all other request will be allowed. So, it is much easier to implement it than the
whitelisting approach and it is less likely that the application will fail. However, it is weak
against attacks that were not defined in the rule set.

5.2. Log Mode

In the previous section, both the whitelisting and the blacklisting model were discussed,
but the last one will be examined further for the rest of the section. In the above testing, the
“SecDefaultAction” was set to a deny mode so it only denies every request that is matched by
SecRule, while any other request is allowed. Again, this is a very dangerous approach to start
with; instead, it is recommended to use the log mode which allows the requests that are matched
by a SecRule to create a log entry. To enable the log mode, you need to change the “deny”
variable to “pass” from the “SetDefaultAction” line of configuration file, as shown below. If you
have used any deny action for individual rules which supersede the default action, you need to
change it to “pass, log” as well.

SecDefaultAction "phase: 2, pass, log”

When you use the log mode, it does not affect the functionality of the web application
because it does not block any request. You need to carefully examine the logs and find out what

requests have been logged by the Modsecurity audit log. If a valid request is caught by any

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 29

SecRule and appears in the log, you need to modify your SecRule accordingly. But going
through the tons of log entries is a difficult task. To help with log auditing, it is a good idea to
use the “msg” option, as shown in Section 3.4. Using this “msg” option, you can specify why the
traffic is logged and you can find out easily which rule you need to fix. Also, it is a good idea to

setup a log monitoring system that can parse the large amount of logs easily.
5.3. Deny Mode

You can’t stay in the log mode forever. When you are not seeing any more legitimate
traffic getting logged by the SecRule during the log mode for a reasonable amount of time, you
have to make a decision to go to the deny mode, which denies the requests that are matched by
SecRule. To enable the deny mode, you need to change the “pass” variable to “deny” from the
SetDefaultAction” line of the configuration file, as shown below. Again, if you have used any
pass action for an individual rule which supersedes the default action, you need to change it to
“deny, log, redirect:127.0.0.1/dvwa/” as well.

SecDefaultAction "phase: 2, deny, log, redirect:127.0.0.1/dvwa/”

When the request gets denied, it is wise to redirect the traffic to the default website
instead of displaying error messages, because it is not appropriate to show to the customers an
error message or to provide any clue to the attackers. As shown above, the “redirect” action is
used to redirect the traffic to the homepage of the DVWA web application when the request gets
denied. Even though you have spent reasonable amount time in the log mode, there is always a
chance of misconfiguration or a new type of traffic to be denied. For example, there can be a
critical process that only runs once a year, but it happens to include a string that gets denied by
the existing SecRule. Therefore, it is important to prepare a system that monitors the denied
requests and alerts the administrator immediately so he or she can check the logs to investigate

the case.

6. Conclusions

Web applications have been evolving so fast and they have become one of the most
important things that we can’t live without, such as electricity and water. The use of web
applications will not stop increasing but, on the other hand, attackers will not stop trying to
penetrate your applications to. Implementing a web application firewall is a great method to

protect your application from web attacks. However, the cost and the complexity of

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 30

implementing a WAF are huge. If you are new to the WAF technology, you should start with an
open source technology, such as Modsecurity, to learn the technology. Then, as a next step, you
can test your small application. Once you are confident with the technology, you can start

implementing it for your main application in order to protect it.

Issac Museong Kim, iamissac@gmail.com

Using Web Application Firewall to detect and block common web application attacks | 31

7. References

Damele, B., & Stampar, M. (2011). Sq/maps's user manual. Retrieved from
http://sglmap.sourceforge.net/doc/ README.pdf
Hansen, R. (2008). Xss cheat sheet. Retrieved from

http://ha.ckers.org/xss.html

HP DVlabs, (2010). 2010 full year top cyber security risks report.
Retrieved from http://dvlabs.tippingpoint.com/img/FullYear2010
Risk Report.pdf

Ivey, T. (2010). Damn vulnerable web application official documentation.
Retrieved from
https://dvwa.svn.sourceforge.net/svnroot/dvwa/docs/DVWA v1.3.

pdf

Mischel, M(2009). Modsecurity 2.5. (1st ed.). Birmingham, UK: Packt
Publishing Ltd.

Modsecurity, (2011). Modsecurity reference manual. Trustwave Holdings,
Inc.Retrieved from http://sourceforge.net/apps/mediawiki/mod-
security/index.php?title=Reference Manual

Owasp, (2011). Web application firewall. Retrieved from
https:// www.owasp.org/index.php/Web_Application Firewall

Phongthiproek, P. (2011). Beyond sqli: Obfuscate and bypass. Retrieved
from http://www.exploit-db.com/papers/17934/

Stuttard, D, & Pinto, M(2007). The web application hacker's handbook. (1
ed.). Indianapolis, IN: Wiley& Sons Publishing.

Security Compass. (2010). Retrieved from https://addons.mozilla.org/en-
US/firefox/addon/xss-me/

Trustwave, (2011). New modsecurity release includes key data protection
advancements. Retrieved from
https://www.trustwave.com/pressReleases.php?n=new-
modsecurity-release-includes-key-data-protection-advancements

Vela, E., & Lindsay, D. (2009). Our favorite xss filters/ids. Retrieved from
http://www.blackhat.com/presentations/bh-usa-
09/ VELANAVA/BHUSAO09-VelaNava-FavoriteXSS-SLIDES.pdf

Issac Museong Kim, iamissac@gmail.com

